• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-dimensional transition metal halide PdX2(X =F,Cl,Br,I):A promising candidate of bipolar magnetic semiconductors

    2023-12-15 11:51:16MiaoMiaoChen陳苗苗ShengShiLi李勝世WeiXiaoJi紀(jì)維霄andChangWenZhang張昌文
    Chinese Physics B 2023年12期
    關(guān)鍵詞:苗苗

    Miao-Miao Chen(陳苗苗), Sheng-Shi Li(李勝世), Wei-Xiao Ji(紀(jì)維霄), and Chang-Wen Zhang(張昌文)

    School of Physics and Technology,Institute of Spintronics,University of Jinan,Jinan 250022,China

    Keywords: PdX2 (X =F,Cl,Br,I),bipolar magnetic semiconductors,first-principles calculations

    1.Introduction

    Recently, the development of high-performance twodimensional (2D) spintronic nanodevices has attracted widespread attention, with the current mainstream trend of miniaturization of electronic information devices.[1-8]The generation of 100% spin-polarized currents and manipulation of carriers’ spin polarization at the Fermi level (EF) are two key challenges for the development of high-performance 2D spintronic nanodevices.Half-metals (HMs),[9]with one metallic spin channel and another semiconducting channel,are highly desired because they provide 100%spin-polarized currents, but they have a fixed spin direction.Conventionally,the directions of spin polarization in materials can be manipulated by a magnetic field,whereas it is hard to be complicated in operation and useful only for certain materials and has an adverse impact on adjacent device parts.[10-18]The proposal of bipolar magnetic semiconductor(BMS)[19]material solves the problems, which allows us to achieve HM with different conductive spin channels by applying a gate voltage.This depends on their unique electronic structure: the valence band(VB)and the conduction band(CB)have opposite spin polarizations near theEF.[20,21]However,the method requires persistent electrical control which is volatile and achieved by applying a gate voltage.[19,20,22]So far,although there are many theoretically predicted BMS materials,[23-27]the experimental realization of BMS[28]is still lacking,as the large leakage current hinders its application in memory storage devices.[29]Recently,Li and Denget al.[30]proposed a new method to manipulate both spin-polarized orientations in BMS materials by the introduction of a ferroelectric(FE)gate with proper band alignment.Compared with traditional electrical control approaches, the method can overcome volatility, which is more energy-efficiency.Thus,it is emergent to search for and design experimentally reachable 2D BMS.

    In this work,we first study the geometric,electronic,and magnetic properties of PdX2(X=F,Cl,Br,I)monolayers.It is found that PdCl2,PdBr2,and PdI2monolayers are outstanding candidates for spintronic materials and are possible to construct different spin-polarization transport channels in a single material by carrier doping.Hence, they are highly likely to become a material for spin field effect transistors(FET).Then we explore the robustness of PdCl2, PdBr2, and PdI2under external strains and strong electric fields and find that only the BMS properties of PdCl2and PdBr2are robust against external strains and strong electric fields.Furthermore, we introduce Ga2S3and Ga2Se3with different ferroelectric polarization to realize the nonvolatile spin polarization regulation of PdCl2and PdBr2.Finally, based on this, we design a multiferroic memory device and a spin filter device.Our research provides theoretical support for the experimental implementation of BMS.

    2.Computational details

    All of our density theory functional (DFT) calculations use the projection-enhanced wave (PAW) method,[31]which is implemented in the Viennaab initiosimulation package (VASP).[32,33]The paper uses Perdew-Burke-Ernzerhof(PBE)functional[34]to describe the correlation and exchange interactions of PdX2.The strong correlation effects for the Pd-4d electrons use the PBE+Umethod[35]and the HubbardUparameter is 3.5 eV.Then we employ the Heyd-Scuseria-Ernzerhof hybrid functional method(HSE06)[36]to obtain the accurate band structures.The cutoff energy is set to 400 eV.The Brillouin zone is sampled by using a 9×9×1k-mesh.To avoid interactions between adjacent layers,a vacuum space of 20 ?A is applied along thez-axis [001] direction.The convergence criteria for the energy and residual force on each atom are 1×10-8eV and 0.001 eV/?A.The phonon calculations are carried out by using density-functional perturbation theory as implemented in the PHONOPY code[37]combined with VASP.Theab initiomolecular dynamics(AIMD)[38]simulation is performed with a 4×4×1 supercell at 100 K temperature.The van der Waals(vdW)[39,40]is employed and a vacuum space greater than 30 ?A or 40 ?A is applied for the bilayer or three-layer heterostructures.The VASPKIT code is used to process some of the VASP data.[41]The Curie temperature is estimated by using the Monte Carlo simulation package MCSOLVER code[42]based on the Wolff algorithm.

    3.Result and discussion

    The PdX2(X=F, Cl, Br, I) monolayers share two possible phases,which are similar to classical 2D material PbBr2and PbI2,[43-52]namely,T(Fig.1(a))and H(Fig.1(b))phases.The Pd atomic layer is sandwiched by the upper and lower F/Cl/Br/I atomic layers, with atoms in each layer forming a 2D hexagonal lattice.In order to study more optimal configurations in terms of energy, the energy difference is calculated between the T and H configurations (?ET-H).The lattice constant (a) and the ?ET-Hof PdX2monolayers are shown in Table S1.The optimized lattice constants (T/H) of PdF2, PdCl2, PdBr2, and PdI2monolayers are 3.30/3.38 ?A,3.70/3.54 ?A,3.87/3.72 ?A,and 4.11/3.97 ?A,respectively.With the increase of theXatomic order, the lattice constant is increasing,meeting the positive correlation between lattice constants and atomic radius.All ?ET-Hof the PdX2monolayers are negative, which indicates that the PdX2monolayers tend to form in the 1T configuration.Our works only consider the PdX2(X=F, Cl, Br, I) monolayers that are formed in the T phases.

    Before confirming the magnetic and electronic properties of PdX2,we explore their stabilities(including dynamic stability,thermal stability,and mechanical stability).The formation energyEformis evaluated as

    whereμPdis the chemical potential of the Pd bulk andμX2is the energy of theXmolecule.The calculated formation energies are listed in Table S1.The positive values demonstrate that the iodination is an exothermal process,suggesting the feasibility of the experimental synthesis of these materials.The phonon dispersion curves are calculated with a 5×5×1 supercell using the PHONOPY package through the density functional perturbation theory.[53]As indicated in Fig.S1,all the phonon frequencies of PdX2monolayers are positive in the first Brillouin zone,which proves the excellent dynamic stabilities of PdX2monolayers.To examine the thermal stabilities of the PdX2monolayer,the AIMD simulations are evaluated in the canonical ensemble on a 5×5×1 supercell.Four images of Fig.S2 indicate the total energies of PdF2, PdCl2, PdBr2,and PdI2monolayers, respectively.It can be seen that total energies have slightly fluctuated around the equilibrium value during the simulations and there is no destruction for the materials after 10000 fs, indicating the thermal stabilities of the PdF2, PdCl2, PdBr2, and PdI2monolayers under 100 K.Because of thepˉ3m1 space group, by using Voigt symbols, the elastic tensor of PdX2can be reduced to[54]

    The independentC11,C12, andC11-C12of PdX2are shown in Table S1.It can be found that the PdX2(X= F, Cl,Br, I) monolayers satisfy the Born-Huang criterion for twodimensional hexagonal planes(C11>0 andC11-C12>0),[56]which means that the PdX2monolayers are mechanically stable.

    Fig.1.The crystal structures of PdX2 (X =F,Cl,Br,I)monolayers in T(a)and H(b)phases: top and side views.The electron localization functions for PdF2 (c),PdCl2 (d),PdBr2 (e),and PdI2 (f).Pd,F,Cl,Br,and I atoms are annotated accordingly.

    To determine the magnetic ground states of the PdX2monolayers,the total energy differences(Table S1),including the ferromagnetic (FM) and three antiferromagnetic (AFM)states (Fig.S3(a)), are compared by using the supercell.Table S1 shows that the calculated total energies of the AFM are higher than that of the FM state for PdF2, PdCl2, PdBr2, and PdI2monolayers, which indicates the magnetic ground states of the PdX2monolayers are FM state.While PbBr2is an inherently nonmagnetic semiconductor,[52]this is due to the different electronic configurations of the Pd and Pb atoms.We track the physical originations of FM coupling in PdX2monolayers by the super-exchange interactions,which can be comprehended by the Pd-X-Pd bond angleθ(Table 1).The values ofθare 97.88?, 93.49?, 92.64?, and 92.56?for PdF2, PdCl2,PdBr2, and PdI2, respectively, closed to 90?.According to the Goodenough-Kanamori-Anderson(GKA)rules,[55]PdX2monolayers possess FM coupling.

    The electron localization functions(ELF)[56-58]are plotted to investigate the bonding character of PdF2,PdCl2,PdBr2,and PdI2monolayers in Fig.1.The(001)section of the ELF confirms that electrons are highly localized around the Pd and F/Cl/Br/I atoms and that electrons are absent between them,indicating the typical ionic character between the Pd-Xbonds.Our Bader charge analyses[59]further reveal that the significant electrons respectively transfer 1.2, 0.74, 0.53, and 0.20 electrons from the Pd to F/Cl/Br/I atoms(Table 1),which fall with the electronegativity of F,CI,Br,and I reduced.

    Table 1.The Pd-X-Pd bond angle θ and charge transfer number(?e-)per unit cell for PdX2 (X =F,Cl,Br,I)monolayers.

    We used the PBE+Umethod for the calculations of the electronic structures (Fig.2).The VBs of the PdF2, PdCl2,PdBr2, and PdI2monolayers possess spin-up polarization when they approachEF, while their CBs possess spin-down polarization when they approachEF.The PdF2monolayer is a direct bandgap semiconductor with a value of 2.14 eV(Fig.2(a)).The PdCl2, PdBr2, and PdI2monolayers are the indirect bandgap semiconductors,and their band gaps are 1.33 eV,0.88 eV,and 0.34 eV,respectively(Figs.2(b)-2(d)).The above results show that the PdF2,PdCl2,PdBr2,and PdI2monolayers are BMS.To confirm the results, the more accurate HSE06 calculations (Figs.S4(a) and S4(b)) further display that although the band gaps increase to 3.56 eV,2.24 eV,1.65 eV, and 1.01 eV for PdF2, PdCl2, PdBr2, and PdI2, respectively, the VBs and the CBs have opposite spin polarizations near theEF,indicating that the BMS remains in the four systems.

    Fig.2.The electronic band structures based on the PBE+U functional for PdF2 (a),PdCl2 (b),PdBr2 (c),and PdI2 (d).

    After having demonstrated the bipolar magnetic properties, we now turn to the formation mechanism of BMS for PdX2monolayers by crystal field theory.Under the octahedral crystal fields of PdX2(Fig.3(a)),the d orbitals of Pd split into t2g(dxy/dyz/dxz) and eg(dx2-y2/dz2) with a splitting gap(?c).According to the electronegativity and nominal valence state Pd2+, the t2gorbitals and the egorbitals of the spin-up channel are occupied by six electrons and two electrons, respectively, consistent with the calculated magnetic moment 2μB.Here, the spin splitting exchange interactions lead the electronic states of the magnetic atom in VBMs and CBMs to belong to different spin channels.It can be attested by their density of states(DOS;Fig.S4(b)).The DOS shows that the spin-exchange splitting (?s) of them are the primary causes of bandgap and the CBM and VBM of PdX2are mainly contributed by Pd atoms.The BMSs in PdX2are derived from the strength of on-site Coulomb repulsion and the crystal field effect,which are coincident with the report.[60]The d electronic states of the PdX2monolayer near the Fermi surface, which usually leads to ferromagnetism, verifying the FM ground state.

    The influence of temperature on magnetism is crucial for the practical application of spin electronic devices.Based on the following formulas,the spin Hamiltonian can be described as

    whereJ,Si,D, andSZiare the nearest magnetic exchange interaction parameter, the spin vector of each atom, the anisotropy energy parameter,and theZcomponent of the spin vector,respectively.The positive and negative values ofJdepend on the FM and AFM orders,respectively,

    Fig.3.(a)The schematic diagram of the d-orbital electron occupation of Pd atoms.(b)-(e) The density of states (DOS) for PdF2, PdCl2, PdBr2 and PdI2.The gray,orange,and green solid lines represent the total DOS rotated up or down, the DOS contributed by Pd-4d, and the DOS contributed by X-p orbitals,respectively.

    where theEFMandEAFMrepresent the total energy of systems with FM and AFM ordering.The values ofJcan be estimated as

    The computedJfor 2D PdX2(X=F,Cl,Br,I)are 0.67 meV,8.67 meV, 10.30 meV, and 13.10 meV, respectively.Then their magnetic anisotropy energies(MAE)are calculated.The MAE is defined as the energy difference MAE=E001-E100between the out-of-plane (001) and the in-plane (100) magnetization directions by incorporating the SOC effect.The MAE are 61 μeV, 77 μeV, 60 μeV,-982 μeV for the PdF2,PdCl2,PdBr2,and PdI2monolayers,respectively.It indicates that there are the Berezinskii-Kosterlitz-Thouless (BKT)[61]magnetic transition at a critical temperature (TC) for PdF2,PdCl2, and PdBr2monolayers, which can be estimated asTC=0.89J/kB.HerekBis the Boltzmann constant.We get that theTCfor PdF2,PdCl2,and PdBr2monolayers are around 7 K, 90 K, and 106 K with theirJ, above the boiling point of liquid nitrogen (77 K) for PdCl2and PdBr2monolayers.Figure S4(b)shows that the PdI2monolayer has an estimated Curie temperature of 503 K, notably far above room temperature (300 K).Overall, except for PdF2, all others are apparently outstanding candidates for spintronic materials.The PdCl2,PdBr2,and PdI2monolayers will be studied in the following.

    Having evaluated the magnetic properties of PdCl2,PdBr2, and PdI2monolayers, we further turn to whether spin polarization can be controlled through electron/hole doping since introducing an FE gate to control the spin polarization of BMS is equivalent to carrier doping,as shown in Fig.S5.We take Fig.S5(a)for example,when 0.1-0.5 electrons are doped,the CBs of PdCl2are crossed by the Fermi energy level, and the material becomes an HM with the spin-up channel.Doping 0.1-0.5 holes will drive theEFto transverse with VBs,and become the HM of the spin-down channel.The introduction of a FE gate is expected to realize the control of spin polarization.

    In device fabrication, it is likely to introduce strain due to the lattice mismatch between the 2D material and the substrate,and there may be the electric interference from the environment or neighboring electric device.Therefore,we rationalize the robustness of PdCl2, PdBr2, and PdI2monolayers under the electric fields and strains.Firstly,the biaxial strains are applied to PdCl2, PdBr2, and PdI2monolayers (Fig.S6).Strains are defined asε=(a1-a0)/a0, wherea1anda0are lattice constants of PdX2with and without deformation, respectively.The negatively and positively valuedεrepresent compression and tension, respectively.The BMS characteristics are well preserved at-10%<ε<10% for PdCl2and PdBr2(Figs.S7(a) and S7(b)).With 2%-10% compressive strain, the semiconductor PdI2firstly changes to HM, then metallic,but that remains unchanged with tensile strain.Secondly, we investigate the robustness of the BMS property to electrical interference from the environment or a neighboring electrical device.Figures S7(a)-S7(c)displays the band structures of PdCl2,PdBr2,and PdI2under the electric field of 0.1-0.5 V/?A, respectively.Clearly, under the strong electric field of 0.5 V/?A, the Fermi energy levels of PdCl2and PdBr2are vibrated between the VBM and the CBM.The semiconductor changes to metal for PdI2under the electric fields(Fig.S7(c)).Moreover,the calculation of the value of ?EFM-AFM(Fig.S8)is performed to check the magnetic ground states of PdCl2,PdBr2,and PdI2monolayers,and we find that the energetically favorable magnetic configurations are still the FM coupling in the cases of the electric fields and strains.In short,only PdCl2and PdBr2monolayers exhibit robustness under the electric fields and strains and are likely to become the experimentally achievable devices.Therefore, we have only conducted research on nonvolatile electric control of spin polarization for PdCl2and PdBr2structures below.

    We screen Ga2S3and Ga2Se3from the family of 2D FE III2-VI3 materials[62]by comparing the lattice mismatch.The optimized lattice constant of the Ga2S3and Ga2Se3with vdW corrections are 3.70 ?A and 3.88 ?A,respectively.Subsequently, we construct two multiferroic vdW heterostructures(PdCl2/Ga2S3and PdBr2/Ga2Se3),whose lattice mismatch are 0.02%and 0.36%.Three possible stacking patterns are investigated as shown in Fig.4,denoted as configurations I-III.Our calculations show that configuration-III(Figs.4(c)and 4(f))is energetically the most favorable configuration for both upward polarization(P↑)and downward polarization(P↓), this stacking pattern will be researched in the following sections.The binding energy of multiferroic vdW heterostructure is defined as

    whereEBMS/FE,EBMSandEFErepresent the energies of the BMS/FE heterostructure, BMS layer and the FE layer,respectively.The cohesive energies of PdCl2/Ga2S3(P↑),PdCl2/Ga2S3(P↓),PdBr2/Ga2Se3(P↑),and PdBr2/Ga2Se3(P↓)are about-1.89 eV,-1.25 eV,-2.14 eV, and-1.41 eV, respectively, indicating that the heterostructure can be feasible to explore experimentally and stably exist.

    Fig.4.Three possible stacking modes with upward polarization (a)-(c)and downward polarization (d)-(f) for PdCl2/Ga2S3 and PdBr2/Ga2Se3 heterostructures.

    Then we discuss the density of states (DOS) of the PdCl2/Ga2S3and PdBr2/Ga2Se3heterostructures.Here red and blue symbols denote the contributions from spin-up and spin-down electronic states of PdCl2, PdBr2, Ga2S3, and Ga2Se3, respectively.Figures 5(a) and 5(c) display that theEFcrosses the minority spin-down bands of the PdCl2and PdBr2for PdCl2/Ga2S3(P↑) and PdBr2/Ga2Se3(P↑), respectively, leading to a half-metal behavior in PdCl2and PdBr2.Figures 5(b) and 5(d) show that the semiconductor natures of PdCl2and PdBr2are retained for PdCl2/Ga2S3(P↓) and PdBr2/Ga2Se3(P↓),respectively.

    Fig.5.DOS of PdCl2/Ga2S3 and PdBr2/Ga2Se3 for P↑and P↓.The solid red and blue lines represent the DOS contributed by BMS and FE,respectively.

    Next, the plane-average potential and the charge density difference of different heterointerfaces are calculated for understanding the mechanism of the electrically controlled semiconductor/half-metal transition.For the P↑,the potential energies of the BMS layer PdCl2and PdBr2are lower than that of the FE layer Ga2S3and Ga2Se3,respectively(Figs.6(a)and 6(c)), which can generate that the spin-down CBM of PdCl2and PdBr2is lower than the VBM of Ga2S3and Ga2Se3, respectively,meaning that there are electrons transfer at the heterostructure interface.

    The charge density difference suggests that electron transfer occurs only at the interface between Ga2Se3(P↑)and PdBr2(Fig.S9(c)), while there are almost no electrons accumulating around the interface between Ga2S3(P↑) and PdCl2(Fig.S9(a)).This is consistent with the DOS(Fig.5(a))showing that theEFcrosses minority spin-down bands of PdCl2.On the contrary,although the potential energies of the BMS layer PdCl2and PdBr2are lower(Figs.6(b)and 6(d)),the CBMs of Ga2S3and Ga2Se3are still slightly higher than the spin-down VBM of PdCl2and PdBr2, respectively.This can hinder the spontaneous diffusion of holes for the P↓.The charge density difference suggests that a small number of holes is still insufficient to make theEFof PdCl2and PdBr2cross the spinup bands (Figs.S9(b) and S9(d)).Hence, the realizations of the half-metallicity are dependent upon the polarization fields of the FE layer Ga2S3and Ga2Se3and the charge transfer at the interface between the FE and BMS layers for PdCl2and PdBr2.

    Fig.6.Plane-averaged potential of PdCl2/Ga2S3 and PdBr2/Ga2Se3 bilayer heterostructures along the z-direction for P↑and P↓.

    In a word, the generated electric polarizations for Ga2S3(P↓) and Ga2Se3(P↓) can drive the downward shift of theEFof PdCl2and PdBr2, which offers an opportunity to achieve nonvolatile electrical control of spin polarization in PdCl2and PdBr2by enhancing polarization field.[63,64]Then we add the Ga2S3and Ga2Se3to the bottom of PdCl2/Ga2S3and PdBr2/Ga2Se3(Figs.7(a)and 7(b)),respectively.The vdW heterostructures are named PdCl2/bi-Ga2S3and PdBr2/bi-Ga2Se3, respectively.Two different polar configurations are taken into account for bi-Ga2S3and bi-Ga2Se3,i.e.,the polarization directions of FE layers were both pointing upward(P↑↑)or downward(P↓↓).

    Fig.7.The vdW heterostructures of PdCl2/bi-Ga2S3 and PdBr2/bi-Ga2Se3 for P↑↑and P↓↓.

    The binding energies of PdCl2/bi-Ga2S3(P↑↑),PdCl2/bi-Ga2S3(P↓↓), PdBr2/bi-Ga2Se3(P↑↑), and PdBr2/bi-Ga2Se3(P↓↓) are-2.71 eV,-2.64 eV,-2.97 eV, and-2.88 eV, respectively, testifying that they are stable.As expected, the DOS of PdCl2/bi-Ga2S3and PdBr2/bi-Ga2Se3trilayer heterostructures(Fig.8)show that the BMS PdCl2and PdBr2become the spin-up (spin-down) HM for P↑↑(P↓↓),manifested that the nonvolatile spin polarization regulation of PdCl2and PdBr2can be achieved by introducing the bilayer FE gates.

    After the above discussion,we find that the PdCl2/Ga2S3and PdBr2/Ga2Se3heterostructures possess the capacity to control the HM,and the PdCl2/bi-Ga2S3and PdBr2/bi-Ga2Se3possess the capacity of controlling the spin polarization of BMS.

    Fig.8.DOS of PdCl2/bi-Ga2S3 or PdBr2/bi-Ga2Se3 for P↑and P↓.The solid red and blue lines represent the DOS contributed by BMS and FE,respectively.

    Therefore,the multiferroic memory device(Figs.9(a)and 9(b)) are designed for the bilayer heterostructures.The P↑is equivalent to the“1”state(Fig.9(a)),while the P↓is equivalent to the“0”state(Fig.9(b)).In this context,the data reading process is accessible by detecting the electrical signals,and the data reading process is accessible by switching the FE polarized states, thus avoiding the destructive effect caused by detecting the polarized state.Then the spin filter device(Figs.9(c)and 9(d))is constructed for the trilayer heterostructures.The electron would travel through the BMS layer, becoming the HM with 100%spin-down polarization at the P↑↑,which is n-type doped.Conversely, the spin-up electrons can pass through the BMS layer at the P↓↓.In short,the manipulation of spin-polarized current can be achieved in this device.

    4.Conclusion

    In summary, we predict that the PdX2(X= F, Cl, Br,I) monolayers are 2D FM BMS with dynamic stability, thermal stability, and mechanical stability by first-principles calculations.The critical temperatures of both PdCl2and PdBr2monolayers are higher than the boiling point of liquid nitrogen (77 K).Moreover, the BMS characteristics of PdCl2and PdBr2are robust against external strains and strong electric fields, which is conducive to their applications.The carrier doping can induce the change between the semiconductor and half metal.Furthermore, we manipulate the spin polarization of PdCl2and PdBr2by introducing the FE gate to enable magnetic half-metal/semiconductor switching and spin-up/down polarization switching control.Finally, based on this, we realize two kinds of spin devices(multiferroic memory and spin filter).As well as proposing two novel BMS materials: PdCl2and PdBr2, this study provides a theoretical basis for the development of spin devices.

    Acknowledgments

    Project supported by the Taishan Scholar Program of Shandong Province, China (Grant No.ts20190939), the Independent Cultivation Program of Innovation Team of Jinan City (Grant No.2021GXRC043), the National Natural Science Foundation of China (Grant No.52173283), and the Natural Science Foundation of Shandong Province (Grant No.ZR2020QA052).

    猜你喜歡
    苗苗
    Tunable terahertz acoustic-phonon emission from monolayer molybdenum disulfide
    《重拾》
    春暖花開
    我又不是好苗苗
    皮卡丹、余苗苗國(guó)畫作品
    愛幫忙的蠟燭
    小種子
    月亮面包
    年的傳說(shuō)
    My Dream
    亚洲av五月六月丁香网| 最近最新免费中文字幕在线| 99视频精品全部免费 在线| 级片在线观看| 在线看三级毛片| 国产真实乱freesex| 亚洲欧美日韩卡通动漫| 成人特级av手机在线观看| 88av欧美| 久久国产乱子免费精品| 窝窝影院91人妻| 精品欧美国产一区二区三| 亚洲精品粉嫩美女一区| 在线免费观看不下载黄p国产 | 欧美性猛交╳xxx乱大交人| 在线观看免费视频日本深夜| 久久人人爽人人爽人人片va | 中文字幕高清在线视频| 18禁裸乳无遮挡免费网站照片| www.色视频.com| 免费在线观看影片大全网站| 首页视频小说图片口味搜索| 国产精品精品国产色婷婷| 亚洲中文字幕一区二区三区有码在线看| 欧洲精品卡2卡3卡4卡5卡区| 超碰av人人做人人爽久久| 一级a爱片免费观看的视频| 亚洲经典国产精华液单 | 哪里可以看免费的av片| 国产老妇女一区| 99久久精品国产亚洲精品| 俄罗斯特黄特色一大片| 男人舔奶头视频| 91九色精品人成在线观看| 男人和女人高潮做爰伦理| 深夜精品福利| 麻豆成人av在线观看| 中文字幕久久专区| 1024手机看黄色片| 国产一区二区激情短视频| 婷婷精品国产亚洲av| 久9热在线精品视频| 午夜福利在线观看免费完整高清在 | 久久久久久久亚洲中文字幕 | 日韩欧美在线乱码| 三级毛片av免费| 久久久久国内视频| 69人妻影院| 淫秽高清视频在线观看| 亚州av有码| 88av欧美| 亚洲国产欧美人成| 美女黄网站色视频| 免费电影在线观看免费观看| 久久久成人免费电影| 少妇人妻一区二区三区视频| 亚洲真实伦在线观看| 日韩欧美国产一区二区入口| 亚洲人成网站在线播放欧美日韩| 国产精品乱码一区二三区的特点| 国产在线精品亚洲第一网站| 丰满人妻熟妇乱又伦精品不卡| 午夜激情欧美在线| 欧美成狂野欧美在线观看| 性色av乱码一区二区三区2| 欧美日韩中文字幕国产精品一区二区三区| 一a级毛片在线观看| 美女免费视频网站| eeuss影院久久| 中文字幕人成人乱码亚洲影| 色噜噜av男人的天堂激情| 国产精品综合久久久久久久免费| 日韩中文字幕欧美一区二区| 日本黄色视频三级网站网址| 在线a可以看的网站| 黄色配什么色好看| 亚洲av五月六月丁香网| 少妇熟女aⅴ在线视频| 麻豆一二三区av精品| 赤兔流量卡办理| 国产成人a区在线观看| 免费人成在线观看视频色| 中文字幕人妻熟人妻熟丝袜美| 日本在线视频免费播放| 国产精品久久久久久久久免 | 久久久久久久亚洲中文字幕 | 亚洲精品成人久久久久久| 色在线成人网| 神马国产精品三级电影在线观看| 三级国产精品欧美在线观看| 国产高潮美女av| 色哟哟哟哟哟哟| 在线观看av片永久免费下载| 日韩国内少妇激情av| 美女 人体艺术 gogo| 婷婷色综合大香蕉| 国产白丝娇喘喷水9色精品| 久久精品国产亚洲av天美| 很黄的视频免费| 熟女人妻精品中文字幕| 日韩有码中文字幕| 国产真实乱freesex| 国产精品伦人一区二区| 亚洲人成网站高清观看| 亚洲第一电影网av| 色av中文字幕| 一本精品99久久精品77| 国产久久久一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 老司机午夜福利在线观看视频| 非洲黑人性xxxx精品又粗又长| 麻豆国产av国片精品| 亚洲最大成人手机在线| 国产成人aa在线观看| 国产成人aa在线观看| 亚洲国产色片| 亚洲成av人片免费观看| 日日干狠狠操夜夜爽| 琪琪午夜伦伦电影理论片6080| 亚洲美女视频黄频| 中文亚洲av片在线观看爽| 色综合婷婷激情| 亚洲无线观看免费| 搡老熟女国产l中国老女人| 国产伦在线观看视频一区| 久久久久国产精品人妻aⅴ院| 在线观看66精品国产| 小说图片视频综合网站| 精品福利观看| 日本成人三级电影网站| 欧美日韩综合久久久久久 | 免费看日本二区| 欧美成人免费av一区二区三区| 婷婷丁香在线五月| 人妻久久中文字幕网| 欧美国产日韩亚洲一区| 成人美女网站在线观看视频| 男女那种视频在线观看| 中文字幕av在线有码专区| 在线国产一区二区在线| 国产精品99久久久久久久久| 亚洲国产日韩欧美精品在线观看| 日韩精品中文字幕看吧| 亚洲中文日韩欧美视频| 亚洲成av人片在线播放无| 色5月婷婷丁香| 亚洲在线自拍视频| 亚洲第一电影网av| 男女那种视频在线观看| 免费av观看视频| 老司机深夜福利视频在线观看| 国产精品国产高清国产av| 亚洲专区国产一区二区| 99久久久亚洲精品蜜臀av| 国产真实伦视频高清在线观看 | 日本一本二区三区精品| 亚洲人成网站高清观看| 成人美女网站在线观看视频| 尤物成人国产欧美一区二区三区| www.熟女人妻精品国产| 国内精品久久久久精免费| 观看免费一级毛片| 久久久久精品国产欧美久久久| 国产精品一区二区免费欧美| 九色国产91popny在线| av在线老鸭窝| 免费在线观看日本一区| 国产探花在线观看一区二区| 国产探花在线观看一区二区| 免费在线观看日本一区| 国产欧美日韩精品一区二区| 国产熟女xx| 国产午夜精品论理片| 国产亚洲精品综合一区在线观看| 啦啦啦观看免费观看视频高清| 亚洲成av人片在线播放无| 757午夜福利合集在线观看| 久久久久国产精品人妻aⅴ院| 国产精品99久久久久久久久| 日韩精品中文字幕看吧| 免费无遮挡裸体视频| 亚洲精品一卡2卡三卡4卡5卡| 又紧又爽又黄一区二区| 动漫黄色视频在线观看| 国产精品1区2区在线观看.| 天天一区二区日本电影三级| 少妇的逼水好多| 一级作爱视频免费观看| 一本久久中文字幕| 三级毛片av免费| 精品午夜福利视频在线观看一区| 中出人妻视频一区二区| 内地一区二区视频在线| 亚洲不卡免费看| 国产久久久一区二区三区| 丁香六月欧美| 成人永久免费在线观看视频| 99久久九九国产精品国产免费| 每晚都被弄得嗷嗷叫到高潮| 国产真实伦视频高清在线观看 | 国产不卡一卡二| 日韩成人在线观看一区二区三区| 日韩欧美精品v在线| 亚洲熟妇熟女久久| 欧美xxxx性猛交bbbb| 别揉我奶头 嗯啊视频| av中文乱码字幕在线| 伦理电影大哥的女人| 波多野结衣高清作品| 亚洲成人精品中文字幕电影| 精品一区二区三区视频在线观看免费| av在线观看视频网站免费| 成人三级黄色视频| 国产私拍福利视频在线观看| 亚洲欧美日韩卡通动漫| 国产亚洲欧美98| 窝窝影院91人妻| 国产精品1区2区在线观看.| 久久国产乱子免费精品| 精品久久久久久久久av| 丝袜美腿在线中文| 在线免费观看不下载黄p国产 | 久久午夜亚洲精品久久| 99久久精品国产亚洲精品| 亚洲天堂国产精品一区在线| 18+在线观看网站| 中文亚洲av片在线观看爽| 午夜福利欧美成人| 90打野战视频偷拍视频| 美女cb高潮喷水在线观看| 一级av片app| 午夜日韩欧美国产| 在线观看免费视频日本深夜| 此物有八面人人有两片| 97超视频在线观看视频| 国产精品爽爽va在线观看网站| 亚洲欧美日韩高清专用| 国产精品久久电影中文字幕| 人人妻人人看人人澡| 国产精品亚洲一级av第二区| 国产乱人视频| avwww免费| 国产精品女同一区二区软件 | 别揉我奶头~嗯~啊~动态视频| 精品99又大又爽又粗少妇毛片 | 99久久99久久久精品蜜桃| 亚洲中文字幕一区二区三区有码在线看| avwww免费| 久久久久久大精品| 久久性视频一级片| 如何舔出高潮| 欧美高清成人免费视频www| 亚洲色图av天堂| 精品一区二区三区人妻视频| 国内揄拍国产精品人妻在线| 国产一区二区亚洲精品在线观看| 我要搜黄色片| 久久99热6这里只有精品| av黄色大香蕉| 国产黄片美女视频| 日韩成人在线观看一区二区三区| 精品乱码久久久久久99久播| 少妇裸体淫交视频免费看高清| 熟女人妻精品中文字幕| 久久人妻av系列| 亚洲成人免费电影在线观看| 日韩成人在线观看一区二区三区| 亚洲av电影在线进入| av女优亚洲男人天堂| 九色国产91popny在线| 网址你懂的国产日韩在线| 亚洲欧美日韩无卡精品| 亚洲av电影在线进入| 免费在线观看亚洲国产| 韩国av一区二区三区四区| 久久精品人妻少妇| 男女床上黄色一级片免费看| 国产高清有码在线观看视频| 国产亚洲欧美98| 欧美+日韩+精品| 亚洲av成人不卡在线观看播放网| 国产精品一区二区三区四区久久| 免费搜索国产男女视频| 国产v大片淫在线免费观看| 国产亚洲精品综合一区在线观看| 一进一出抽搐gif免费好疼| 国产成年人精品一区二区| 最近最新免费中文字幕在线| 亚洲av不卡在线观看| 人人妻人人看人人澡| 不卡一级毛片| 色吧在线观看| 国产亚洲av嫩草精品影院| 久久久久精品国产欧美久久久| 网址你懂的国产日韩在线| 色精品久久人妻99蜜桃| 一个人免费在线观看电影| 国内精品久久久久久久电影| 亚洲中文日韩欧美视频| 91午夜精品亚洲一区二区三区 | 国产一区二区亚洲精品在线观看| 欧美乱妇无乱码| 日本一本二区三区精品| 中文亚洲av片在线观看爽| 88av欧美| 成人av在线播放网站| 国产在线男女| 国产野战对白在线观看| 99国产综合亚洲精品| 在线免费观看不下载黄p国产 | 人人妻人人看人人澡| 人人妻,人人澡人人爽秒播| 丰满人妻一区二区三区视频av| 亚洲五月天丁香| 老司机午夜福利在线观看视频| 波野结衣二区三区在线| www.色视频.com| 桃红色精品国产亚洲av| 高潮久久久久久久久久久不卡| 全区人妻精品视频| 99在线人妻在线中文字幕| 国产淫片久久久久久久久 | 亚洲色图av天堂| 男女下面进入的视频免费午夜| 免费人成视频x8x8入口观看| 91麻豆av在线| 韩国av一区二区三区四区| 亚洲美女黄片视频| 亚洲七黄色美女视频| 亚洲男人的天堂狠狠| 女同久久另类99精品国产91| 草草在线视频免费看| a级毛片a级免费在线| 国产精华一区二区三区| 日韩大尺度精品在线看网址| 日本熟妇午夜| 熟女电影av网| 亚洲av美国av| 乱人视频在线观看| 久久久色成人| 又黄又爽又刺激的免费视频.| 国产一级毛片七仙女欲春2| 亚洲国产欧洲综合997久久,| 熟女人妻精品中文字幕| 免费一级毛片在线播放高清视频| 一进一出抽搐gif免费好疼| 亚洲熟妇中文字幕五十中出| 真人一进一出gif抽搐免费| 国产伦精品一区二区三区四那| 国产高潮美女av| 舔av片在线| 麻豆av噜噜一区二区三区| 人妻制服诱惑在线中文字幕| 欧美bdsm另类| 久久久久久久精品吃奶| 婷婷丁香在线五月| 国产精品98久久久久久宅男小说| 国产私拍福利视频在线观看| 欧美成狂野欧美在线观看| 又黄又爽又刺激的免费视频.| 一进一出抽搐gif免费好疼| 久久久久久久午夜电影| 97超级碰碰碰精品色视频在线观看| 搡老熟女国产l中国老女人| 国产午夜精品久久久久久一区二区三区 | 欧美日本亚洲视频在线播放| 欧美zozozo另类| 日本三级黄在线观看| 欧美区成人在线视频| 亚洲无线在线观看| 又爽又黄无遮挡网站| 国产精品一区二区三区四区免费观看 | 国产欧美日韩精品亚洲av| 三级毛片av免费| 国产毛片a区久久久久| 色噜噜av男人的天堂激情| a在线观看视频网站| 午夜精品一区二区三区免费看| 日本五十路高清| 99国产精品一区二区蜜桃av| 国产精品永久免费网站| 国产免费一级a男人的天堂| 90打野战视频偷拍视频| 中文字幕免费在线视频6| 身体一侧抽搐| 黄色视频,在线免费观看| 亚洲av电影不卡..在线观看| 永久网站在线| 国产精品日韩av在线免费观看| 亚洲成a人片在线一区二区| 一级黄色大片毛片| 亚洲熟妇熟女久久| 91麻豆av在线| 久久香蕉精品热| 亚洲精品粉嫩美女一区| 女人被狂操c到高潮| 熟女电影av网| 最近视频中文字幕2019在线8| 日本三级黄在线观看| 日韩人妻高清精品专区| 嫩草影院新地址| 又黄又爽又刺激的免费视频.| 日本五十路高清| 亚洲五月天丁香| 国内精品久久久久精免费| av天堂在线播放| 日本 欧美在线| 精品久久久久久久人妻蜜臀av| 97人妻精品一区二区三区麻豆| 最后的刺客免费高清国语| 国产欧美日韩精品一区二区| 亚洲精品成人久久久久久| 青草久久国产| netflix在线观看网站| 亚洲国产精品sss在线观看| 久久久久国内视频| a级一级毛片免费在线观看| 欧美bdsm另类| 精品一区二区三区视频在线| 久久久久久久久久成人| 日韩欧美三级三区| 热99re8久久精品国产| 少妇熟女aⅴ在线视频| 天堂√8在线中文| 老司机午夜福利在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 丰满的人妻完整版| 日韩 亚洲 欧美在线| 精品不卡国产一区二区三区| 女生性感内裤真人,穿戴方法视频| 女人被狂操c到高潮| 午夜两性在线视频| a级毛片免费高清观看在线播放| 免费黄网站久久成人精品 | 亚洲五月婷婷丁香| 国产精品亚洲美女久久久| 欧美午夜高清在线| 色视频www国产| 身体一侧抽搐| 免费看美女性在线毛片视频| 最近最新中文字幕大全电影3| 国产野战对白在线观看| 久久久色成人| 国语自产精品视频在线第100页| 三级男女做爰猛烈吃奶摸视频| a级毛片a级免费在线| 国产v大片淫在线免费观看| 一区二区三区激情视频| 欧美性猛交╳xxx乱大交人| 国内久久婷婷六月综合欲色啪| 精品人妻偷拍中文字幕| 欧美zozozo另类| 丰满人妻熟妇乱又伦精品不卡| 91九色精品人成在线观看| 村上凉子中文字幕在线| 色播亚洲综合网| 久久久久久久亚洲中文字幕 | 日韩有码中文字幕| 伦理电影大哥的女人| 少妇的逼好多水| 日本在线视频免费播放| 成人国产一区最新在线观看| 俄罗斯特黄特色一大片| 人妻丰满熟妇av一区二区三区| 亚洲国产精品sss在线观看| 1024手机看黄色片| 亚洲,欧美,日韩| 一进一出好大好爽视频| 老司机午夜十八禁免费视频| 亚洲av二区三区四区| a级毛片a级免费在线| 亚洲人成网站高清观看| 日韩中字成人| 1024手机看黄色片| 色5月婷婷丁香| 亚洲18禁久久av| 亚洲av不卡在线观看| 日韩精品青青久久久久久| 女人十人毛片免费观看3o分钟| a级一级毛片免费在线观看| 色综合亚洲欧美另类图片| 亚洲一区高清亚洲精品| 国内少妇人妻偷人精品xxx网站| 性色av乱码一区二区三区2| 亚洲三级黄色毛片| 久久精品久久久久久噜噜老黄 | 国产精品久久久久久精品电影| 97超级碰碰碰精品色视频在线观看| 欧美三级亚洲精品| 日日干狠狠操夜夜爽| 国产色婷婷99| 日本 av在线| 国产中年淑女户外野战色| 九九在线视频观看精品| 我要搜黄色片| 久久久久久久久中文| 黄片小视频在线播放| 蜜桃亚洲精品一区二区三区| ponron亚洲| 亚洲七黄色美女视频| 成人一区二区视频在线观看| av欧美777| 国产麻豆成人av免费视频| 欧美精品啪啪一区二区三区| 国产三级黄色录像| 中文在线观看免费www的网站| avwww免费| 在线看三级毛片| 两个人的视频大全免费| 国产亚洲av嫩草精品影院| 波野结衣二区三区在线| 日日干狠狠操夜夜爽| 国产熟女xx| 欧美性感艳星| 赤兔流量卡办理| 亚洲精品粉嫩美女一区| 乱码一卡2卡4卡精品| 亚洲精品成人久久久久久| 非洲黑人性xxxx精品又粗又长| 91久久精品电影网| 亚洲av免费高清在线观看| 欧美最新免费一区二区三区 | 日韩 亚洲 欧美在线| 熟女电影av网| av在线天堂中文字幕| 真人做人爱边吃奶动态| 久久人人爽人人爽人人片va | 亚洲最大成人中文| or卡值多少钱| 波多野结衣巨乳人妻| 国产精品三级大全| 精品人妻一区二区三区麻豆 | 久久性视频一级片| 欧美日韩国产亚洲二区| 亚洲18禁久久av| 国产色爽女视频免费观看| 美女免费视频网站| 别揉我奶头~嗯~啊~动态视频| 在线天堂最新版资源| 久久久久国内视频| 亚洲经典国产精华液单 | 欧美激情国产日韩精品一区| 长腿黑丝高跟| 啦啦啦观看免费观看视频高清| 久久久久久久久大av| 首页视频小说图片口味搜索| 免费看a级黄色片| 久9热在线精品视频| 悠悠久久av| 在现免费观看毛片| 成年女人看的毛片在线观看| 十八禁人妻一区二区| 免费av不卡在线播放| 一区二区三区免费毛片| 国产毛片a区久久久久| 国产高清有码在线观看视频| 一本综合久久免费| 一夜夜www| 国产探花极品一区二区| 一级毛片久久久久久久久女| 亚洲国产日韩欧美精品在线观看| 舔av片在线| 中文字幕av在线有码专区| 99riav亚洲国产免费| 九九在线视频观看精品| 最近最新免费中文字幕在线| 亚洲最大成人中文| 少妇裸体淫交视频免费看高清| 天堂av国产一区二区熟女人妻| 97超视频在线观看视频| 真实男女啪啪啪动态图| 国产免费av片在线观看野外av| 欧洲精品卡2卡3卡4卡5卡区| 欧美午夜高清在线| 99久久成人亚洲精品观看| 他把我摸到了高潮在线观看| 久久国产精品人妻蜜桃| 亚洲精品色激情综合| 淫妇啪啪啪对白视频| 日韩欧美三级三区| 国产高清三级在线| 亚洲av成人av| 国产av麻豆久久久久久久| 精品午夜福利在线看| 直男gayav资源| 日本免费一区二区三区高清不卡| 成人无遮挡网站| 免费无遮挡裸体视频| 亚洲欧美日韩卡通动漫| 成人永久免费在线观看视频| 琪琪午夜伦伦电影理论片6080| 天堂影院成人在线观看| 亚洲成人精品中文字幕电影| 精品人妻熟女av久视频| 亚洲精品一卡2卡三卡4卡5卡| 一级毛片久久久久久久久女| 日日摸夜夜添夜夜添小说| 国产精品久久久久久精品电影| 又黄又爽又刺激的免费视频.| 久久精品影院6| 免费在线观看日本一区| 亚洲国产欧美人成| 午夜日韩欧美国产| 性色av乱码一区二区三区2| 免费无遮挡裸体视频| 嫁个100分男人电影在线观看| 亚洲 欧美 日韩 在线 免费| 亚洲国产色片| 午夜福利高清视频| 桃红色精品国产亚洲av| 少妇高潮的动态图| 性插视频无遮挡在线免费观看| 国语自产精品视频在线第100页| 男女之事视频高清在线观看| 看黄色毛片网站|