• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stochastic responses of tumor immune system with periodic treatment?

    2017-08-30 08:25:00DongXiLi李東喜andYingLi李穎
    Chinese Physics B 2017年9期
    關(guān)鍵詞:李穎

    Dong-Xi Li(李東喜)and Ying Li(李穎)

    1 College of Data Science,Taiyuan University of Technology,Taiyuan 030024,China

    2 College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China

    Stochastic responses of tumor immune system with periodic treatment?

    Dong-Xi Li(李東喜)1,?and Ying Li(李穎)2

    1 College of Data Science,Taiyuan University of Technology,Taiyuan 030024,China

    2 College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China

    We investigate the stochastic responses of a tumor–immune system competition model with environmental noise and periodic treatment.Firstly,a mathematical model describing the interaction between tumor cells and immune system under external fluctuations and periodic treatment is established based on the stochastic differential equation.Then,sufficient conditions for extinction and persistence of the tumor cells are derived by constructing Lyapunov functions and Ito’s formula.Finally,numerical simulations are introduced to illustrate and verify the results.The results of this work provide the theoretical basis for designing more effective and precise therapeutic strategies to eliminate cancer cells,especially for combining the immunotherapy and the traditional tools.

    stochastic responses,environmental noise,tumor–immune system,extinction

    1.Introduction

    Cancer is becoming the leading cause of death around the world.Traditional cancer treatments include surgery,radiation therapy,and chemotherapy.Cancer immunotherapy has recently gained exciting progress.Studies of tumor and immune system have largely been inspired by the works in Refs.[1] and[2],the authors showed that the immune system can recognize and eliminate malignant tumors.So immunotherapy, such as the cellular immunotherapy,[3]has been studied by researchers.And a number of tumor–immune system competition models have been proposed,such as Kuznetsov–Taylor model[4]and Kirschner–Panetta model.[5]In fact,tumor mi-croenvironment is inevitably affected by environmental noise in realism.Nowadays,noise dynamics have been widely studied in different fields such as metapopulation system[6]and Van der Pol oscillator.[7]In the last years,researchers have studied stochastic growth models of cancer cells,[8–11]using the Lyapunov exponent method and the Fokker–Planck equation method to investigate the stability of the stochastic model. Moreover,from a biological or a clinical point of view,investigations including treatments such as periodic ones are important for a successful treatment,e.g.,Thibodeaux and Schlittenhard[12]investigated the effect of a periodic treatment in the within-hostdynamics of malaria infection and suggested that synchronization with the intrinsic oscillation of infected erythrocytes takes place,leading to an optimal treatment.Sotolongo et al.[13]investigated the effect of immunotherapy under periodic treatment on a deterministic model of tumor– immune system and considered the possibility of suppression of tumor growth.Ideta et al.[14]considered the intermittent hormonal therapy in a model of prostate cancer and they suggested the existence of an optimal protocol to the intermittent therapy.Up to now,the effect of noise and cyclic treatment in the tumor dynamics has been widely studied.And fluctuations induced extinction and stochastic resonance in a model of tumor growth with periodic treatment have been studied.[15]Aisu and Horita[16]numerically investigated the stochastic extinction of tumor cells due to the synchronization effect through a time periodic treatment in a tumor–immune interaction model.

    The aim of this paper is to explore the dynamics of a simplified Kuznetsov–Taylor model[17]with both environmental noise and periodic treatment,especially the extinction and persistence.One of the advantages of our study is that we make use of the methods of It?o’s stochastic integral and Lyapunov function to derive and analyze the properties of the stochastic tumor–immune system competition model,which is different from the approaches of Fokker–Planck equation and effective potential function used in the existing literature.The other advantage is that the conditions for extinction and strong persistence in the mean of tumor cells are obtained by the strict mathematical proofs.The sufficient conditions for extinction and persistence could provide us a more effective and precise therapeutic schedule to eliminate tumor cells and improve the treatment of cancer.

    This paper is organized as follows.In Section 2,thestochastic tumor–immune model with periodic treatment is derived.In Section 3,we establish the sufficient conditions for extinction and strong persistence in the mean of tumor cells. Numerical simulations are presented in Section 4,which are used to verify and illustrate the theorems of Section 3.In Section 5,we present the conclusion and discuss future directions of this research.

    2.Stochastic tumor–immune system with periodic treatment

    In this section,the Kuznetsov–Taylor model[4]and its modified version by Galach[17]are introduced.The Kuznetsov–Taylor model describes the response of effector cells to the growth of tumor cells and takes into account the penetration of tumor cells by effector cells,which simultaneously causes the inactivation of effector cells.The Kuznetsov–Taylor model reads

    where s is the normal(i.e.,not increased by the presence of the tumor)rate of the flow of adult effector cells into the tumor site in units of cells per day,p and g are positive constants in the function F(E,T)=pE T/(g+T)that describes the accumulation of effector cells in the tumor site,p is in units of day?1and g is in units of cells.m denotes the coefficient of inactivation of effector cells during the formation and decomposition of EC-TC compounds and is in units of day?1·cells?1. d is the coefficient of the destruction and migration of effector cells and is in units of day?1.a is the coefficient of the maximal growth of tumor and is in units of day?1.b?1is the environment capacity,and b is in units of cells?1.n represents the inactivation rate of tumor cells due to the immune system response and is in units of day?1·cells?1.The dimensionless form of the model is

    where x=E/E0,y=T/T0,ε=s/(nE0T0),ρ=p/(nT0), η=g/T0,μ=m/n,δ=d/(nT0),α=a/(nT0),β=bT0,and E0=T0=106cells.

    In 2003,Galach proposed the modified version of model (1),which reads

    where x denotes the dimensionless density of effector cells;y stands for the dimensionless density of the population of tumor cells;ε,δ,α,1/β have the same meanings as those in Eq.(1),and ω represents the immune response to the appearance of the tumor cells(i.e.,immune coefficient).In this paper, we consider the case of ω>0,which means that the immune response is positive.

    System(2)always has the equilibrium

    If ω>0 and αδ<ε,then P0is the unique equilibrium of model(2)and it is globally stable.If ω>0 and αδ>ε,then P0is unstable and there is an equilibrium

    which is globally stable.Here Δ=α2(βδ?ω)2+4αβεω.

    In fact,the growth of tumor cells is influenced by many environmental factors,[18]e.g.,the supply of oxygen and nutrients,the degree of vascularization of tissues,the immunological state of the host,chemical agents,temperature,etc.So, it is inevitable to consider the tumor–immune system competition model with environmental noises.In this paper,taking into account the effect of randomly fluctuating environment, we assume that the fluctuations in the environment mainly affect the immune coefficient ω,

    where B(t)is the standard Brownian motion with B(0)=0, and the intensity of white noise σ2>0.We are interested in the stochastic responses of the tumor immune system driven by a controllable therapy.Here,the influence of the therapeutic factors is studied by considering a periodic treatment (chemo-or radiation-therapy).The treatment scheme[19]can be expressed as

    Here Φ stands for the Heaviside function reflecting the on-off switch of the cyclic treatment performed with the intensity A and frequency f.Now the tumor–immune system competition model with environmental noise and periodic treatment can be rewritten as

    where all the parameters are positive and bounded.For convenience,we define the following notions:

    3.Theoretical analysis of extinction and persistence under periodic treatment

    Our primary interests in tumor dynamics are the extinction and survival of tumors.In order to study the extinction and survival,we need some appropriate definitions about extinction and persistence.Here we adopt the concepts of extinction and strong persistence in the mean.[20]In addition,some of our proofs are motivated by the works of Liu,[20]Mao,[21]and Jiang.[22]Some useful definitions are as follows:

    1)The tumor cells y(t)will go to extinction a.s.if limt→+∞y(t)=0.

    2)The tumor cells y(t)will be strongly persistent in the mean a.s.if〈y(t)〉?>0.

    Next we establish the sufficient conditions of extinction and persistence for our model.

    Lemma 1 For any positive initial value(x0,y0),if 0<x0<1/β,the solution of Eq.(4)obeys

    Proof According to the second equation of model(4),we have

    Firstly,we discuss y for x in different value ranges.

    Consequently,we have proved y(t)≤max{y0,1/β}.Then we will show that x(t)is bounded.Applying the Ito’s formula[23]to the first equation of model(4),

    Integrating both sides from 0 to t,we obtain

    where

    Therefore,

    That is to say if x0<1/β,then x(t)<1/β for all t>0.

    Lemma 2 Let f∈C[[0,∞)×?,(0,∞)]and F(t)∈C([0,∞)×?,R).If there exist positive constants λ0,λ,and T such that

    for all t≥T,and limt→∞F(t)/t=0 a.s.,then

    Proof The proof is similar to that of lemma in Ref.[22]. Note that limt→∞F(t)/t=0 a.s.;then for arbitrary k>0,there exists a T0=T0(ω)>0 and a set ?ksuch that P(?k)≥1?k and F(t)/t≤k for all t≥T0,ω∈?k.LetˉT=max{T,T0} and

    Since f∈C[[0,∞)×?,(0,∞)],then ?(t)is differentiable ona.s.,and

    Taking the limit inferior of both sides and applying L’Hospital’s rule on the right-hand side of this inequality,we obtain

    Letting k→0 yields

    Theorem 1 For any positive initial value(x0,y0),particularly,when x0<1/β,equation(4)has a positive unique global solution(x(t),y(t))on t≥0 a.s.

    Proof To obtain a unique global solution for any given initial value,the coefficients of the equation are generally required to satisfy the linear growth condition and local Lipschitz condition.[24]However,the coefficients of model(4)do not satisfy the linear growth condition,so the solution may explode in a finite time.Since the coefficients of Eq.(4)are locally Lipschitz continuous for any given initial value(x0,y0)∈,there is a unique maximal local solution(x(t),y(t))on t∈[0,τe],where τeis the explosion time.[24]To show that this solution is global,we only need to show τe=∞.To this end,let k0>0 be sufficiently large so that x0,y0all lie within the interval[1/k0,k0].For each integer k≥k0,we define the stopping time τk=inf{t∈[0,τe]:min{x(t),y(t)}≤1/k or max{x(t),y(t)}≥k}.Clearly,τkis increasing as k→∞.Set τ∞=limk→+∞τk,thus τ∞≤τea.s.In other words,we only need to prove τ∞=∞.If this statement is false,there exists constants T>0 and ε∈(0,1)such that P{τ∞<∞}>ε. Thus there is an integer k1>k0such that

    Define a C2-function V:→R+by V(x,y)=(x?1?ln x)+ (y?1?ln y).The nonnegativity of this function can be seen from u?1?ln u≥0,?u>0.Let k≥k0and T>0 be arbitrary.Applying the It?o’s formula,we have

    Here,L is a positive constant and in the proof of the last inequality,we have used Lemma 3(i.e.,for?t≥0,x(t)and y(t) are bounded).The inequality(9)implies

    Taking expectation on both sides of the above inequality,we can obtain

    Let ?k={τk∧T},then by inequality(8),we have P(?k)≥ε. Note that for any ω∈?k,x(τk,ω),y(τk,ω)equals either k or 1/k,hence V(x(τk,ω),y(τk,ω))is no less than min{2(k?1?ln k),2(1/k?1+ln k),k+1/k?2)}.By formula(10)we have

    where 1?kis the indicator function of ?k.Let k→∞,there exists the contradiction∞>V(x0,y0)+LT=∞,which completes the proof.

    Remark 1 In order to guarantee the existence and uniqueness of the solution of model(4),we discuss the extinction and persistence of y(t)under the condition x0<1/β below.

    Theorem 2 Let(x(t),y(t))be the solution of system(4) with positive initial value(x0,y0),if αδ?ε<A/2,then

    Proof An integration of the first equation of model(4) yields

    We compute

    where

    which is a local continuous martingale and N1(0)=0.Moreover

    By strong law of large numbers for local martingales,[24]we obtain

    Taking the limit inferior of both sides of inequality(12),we have

    Applying the It?o’s formula to the second equation of model(4) yields

    Integrating this from 0 to t and dividing by t on both sides,we have

    Taking the limit superior of both sides of inequality(15)and substituting inequality(14)into inequality(15)yield

    If the condition αδ?ε<A/2 is satisfied,then

    which implies

    Applying the It?o’s formula to the first equation of model(4) leads to

    Integrating this from 0 to t,we have

    By virtue of the exponential martingale inequality,[24]for any positive constants T,a,and b,we have

    Choosing T=n,a=1,and b=2ln n,we obtain

    An application of Borel–Cantelli lemma[22]yields that for almost all ω∈?,there is a random integer n0=n0(ω)such that for n≥n0,

    That is to say,

    for all 0≤t≤n,n≥n0a.s.Substituting the above inequality into inequality(17)leads to

    Theorem 3 If δα?ε>A/2,then the tumor cells y(t) will be almost surely strong persistent in the mean.

    Proof An integration of system(4)is

    Substituting Eq.(20)to Eq.(21)yields

    Consequently,we can derive that if δα?ε>A/2,then〈y(t)〉?>0 a.s.

    4.Simulations and discussion

    In this section,we use the Euler–Maruyama numerical algorithm mentioned by Higham[25]to support our results.The parameters in model(4)are chosen as α=1.636,β=0.002, δ=0.3743,ε=0.5181,and ω=0.0115,which are approximated to the experimental values.[4,17]

    Figure 1 shows the simulation results of Theorem 2. Clearly,the parameters satisfy the condition αδ?ε<A/2.In view of Theorem 2,the tumor cells y(t)will go to extinction, and the effector cells x(t)have the property limt→+∞〈x(t)〉= (ε+A/2)/δ=1.785.Figure 1 confirms the results of Theorem 2.

    Fig.1.(color online)Solutions of model(4)with periodic treatment s(t)=A[1?Φ(cos(2π ft))]for A=0.3,σ=0.03,f=0.05,step size Δt=0.01,and initial value(x(0),y(0))=(1.5,25).

    Figure 2 shows the simulation results of Theorem 2.In Fig.2,it is clear that the parameters of the example meet the condition δα?ε>A/2.According to Theorem 2,the tumor cells y(t)will be almost surely strongly persistent in the mean. It can be seen from Fig.2 that the tumor cells will decrease firstly and then exhibit a period-like evolution at a relative low concentration under periodic treatment,but do not tend to zero.This phenomenon implies that the tumor cells could be suppressed by the periodic treatment but not be completely eliminated when the intensity of the treatment is not enough to cure the tumor,i.e.,the tumor cells could be controlled and will not deteriorate in this case.Moreover,it can be seen that as long as the conditions of persistence δα?ε>A/2 are satisfied,the tumor cell will be strongly persistent in the mean almost surely when the model is with noise.And,the tumor cells will also be persistent or survival when the model is without noises.The difference is that the persistence of the former is in the sense of the mean,which is random;while the persistence of the latter is expressed as persistence or survival, which is deterministic.

    Fig.2.(color online)Solutions of model(4)with periodic treatment s(t)=A[1?Φ(cos(2π ft))]for A=0.07,σ=0.03,f=0.05,step size Δt=0.01,and initial value(x(0),y(0))=(1.5,25).

    Figure 3 shows the evolution of tumor cells y(t)as a function of time t for three different values of A=0.07,0.3,3. Clearly,when A is 0.07,it satisfies the condition δα?ε>A/2.According to Theorem 2,the tumor cells y(t)will be strongly persistent in the mean.With increasing strength of the treatment,A is taken as 0.3 or 3,they satisfy the condition αδ?ε<A/2.According to Theorem 2,the tumor cells y(t) will tend to be extinction.Moreover,by comparing curves(ii) and(iii),we find that the tumor cells will be extinct faster with the increase of the treatment intensity A.This behavior indicates that increasing the intensity of the treatment is beneficial to accelerate the extinction of the tumor cells.

    Fig.3.(color online)Solutions of tumor cells for σ=0.03,f=0.05,step size Δt=0.01,and initial value(x(0),y(0))=(2.6,25).

    5.Conclusion

    We study stochastic responses of a tumor–immune system competition model with environmental noise and periodic treatment.Firstly,the environmental noise(Gaussian white noise)is taken into account and the periodic treatment is regarded as a Heaviside function.Then,sufficient conditions for extinction and strong persistence in the mean of tumor cells are derived by constructing Lyapunov functions.The detail results and biological significance are as follows:

    (A)If αδ?ε<A/2,then the effector cells x(t)have property limt→+∞〈x(t)〉=(ε+A/2)/δ,and the tumor cells y(t)will go to extinction a.s.

    (B)If αδ?ε>A/2,then the tumor cells y(t)will be strongly persistent in the mean a.s.

    According to the theorems and figures,the extinction and survival of the tumor cells rely on the strength of the periodic treatment.With the increasing intensity of the periodic treatment,the tumor cells will experience the process from strongly persistence in the mean to extinction.In addition,the synchronization effect between the environmental noises and the periodic treatment on the tumor–immune system competition model is obtained by strict proof and simulation.Our theoretical results will be beneficial to design more effective and feasible treatment therapies.

    Some interesting questions deserve further investigations. For example,in our model,we assume that fluctuations in the environment mainly affect the immune coefficient ω.It is interesting to study what happens if it affects other parameters of the tumor–immune system.Another question of interest is to consider the stability in distribution(e.g.,Refs.[26]and[27]) and time delay(e.g.Ref.[28])of the tumor–immune system.

    [1]Parish C R 2003 Immunol.Cell.Biol 81 106

    [2]Smyth M J,Godfrey D I and Trapani J A 2001 Nat.Immunol.2 293

    [3]Rosenberg S A,Spiess P and Lafreniere R 1986 Science 233 1318

    [4]Kuznetsoz V A,Makalkin I A,Taylor M A and Perelson A S 1994 Bull. Math.Biol 56 295

    [5]Kirschner D and Panetta J C 1998 J.Math.Biol 37 235

    [6]Wang K K and Liu X B 2013 Chin.Phys.Lett 30 070504

    [7]Yang Y G,Xu W,Sun Y H and Gu X D 2016 Chin.Phys.B 25 020201

    [8]Zhong W R,Shao Y Z and He Z H 2006 Phys.Rev.E 73 060902

    [9]Albano G and Giorno V 2006 J.Theor Biol 242 329

    [10]Lenbury Y,Triampo Wannapong,Tang IMand Picha P 2006 J.Korean. Phys.Soc 49 1652

    [11]Ferrante L,Bompadre S,Possati L and Leone L 2000 Biometrics 56 1076

    [12]Thibodeaux J J and Schlittenhardt T P 2011 Bull.Math.Biol.73 2791

    [13]Sotolongo-Costam O,Molina L M,Perez D R,Antranz J C and Reys M C 2003 Physica D 178 242

    [14]Ideta A M,Tanaka G,Takeuchi T and Aihara K 2008 J.Nonlinear Sci. 18 593

    [15]Li D X,Xu W,Guo Y and Xu Y 2011 Phys.Lett.A 375 886

    [16]Aisu R and Horita T 2012 Nonlinear Theory and Its Applications,IEICE 3 191

    [17]Galach M 2003 Int.J.Appl.Math.Comput.Sci.13 395

    [18]Fiasconaro A,Spagnolo B,Ochabmarcinek A and Gudowskanowak E 2006 Phys.Rev.E 74 041904

    [19]Fiasconaro A,Ochab-Marcinek A,Spagnolo B and Gudowska-Nowak E 2008 Eur.Phys.J.B 65 435

    [20]Liu M and Wang K 2011 J.Math.Anal.Appl.375 443

    [21]Mao X,Marion G and Renshaw E 2002 Stoch.Proc.Appl.97 95

    [22]Zhao Y,Jiang D and O’Regan D 2013 Physica A 392 4916

    [23]Evans L C 2013 An Introduction to Stochastic Differential Equations (New York:Amer Mathematical Society)pp.77–79

    [24]Mao X 1997 Stochastic Differential Equations and Applications (Chichester:Horwood)pp.31–84

    [25]Higham D J 2001 SIAM Rev.43 525

    [26]Liu M and Bai C 2016 Appl.Math.Comput.284 308

    [27]Liu M and Bai C 2016 Appl.Math.Comput.276 301

    [28]Jin Y F and Xie W X 2015 Chin.Phys.B 24 110501

    26 February 2017;revised manuscript

    9 May 2017;published online 24 July 2017)

    10.1088/1674-1056/26/9/090203

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.11402157 and 11571009),Shanxi Scholarship Council of China(Grant No.2015-032),Technological Innovation Programs of Higher Education Institutions in Shanxi,China(Grant No.2015121),and Applied Basic Research Programs of Shanxi Province,China(Grant No.2016021013).

    ?Corresponding author.E-mail:dxli0426@126.com

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    李穎
    An overview of quantum error mitigation formulas
    Effect of astrocyte on synchronization of thermosensitive neuron–astrocyte minimum system
    《二次根式》拓展精練
    Assessment of cortical bone fatigue using coded nonlinear ultrasound?
    完形填空專練(三)
    Ultrasonic backscatter characterization of cancellous bone using a general Nakagami statistical model?
    李穎、李鳳華作品
    Human body
    一雉雞翎的傷痛
    小說月刊(2017年8期)2017-08-16 22:34:39
    李穎、李鳳華作品
    在线免费观看不下载黄p国产| 五月伊人婷婷丁香| 三级经典国产精品| 亚洲激情五月婷婷啪啪| 亚洲欧洲国产日韩| 有码 亚洲区| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩另类电影网站 | 99热网站在线观看| 国产精品精品国产色婷婷| 久久97久久精品| 日本欧美国产在线视频| 亚洲欧美日韩另类电影网站 | 伊人久久国产一区二区| 伦精品一区二区三区| 日本免费在线观看一区| 五月伊人婷婷丁香| 一级毛片久久久久久久久女| 国产成人aa在线观看| 精品99又大又爽又粗少妇毛片| 国产淫语在线视频| 熟女电影av网| 国产精品成人在线| 2018国产大陆天天弄谢| 亚洲精品国产av成人精品| 久久99热6这里只有精品| av在线老鸭窝| 人人妻人人澡人人爽人人夜夜| 22中文网久久字幕| 亚洲av免费在线观看| 色视频在线一区二区三区| 男人和女人高潮做爰伦理| 免费看av在线观看网站| 久久久欧美国产精品| 国产男女超爽视频在线观看| 亚洲天堂av无毛| 国产国拍精品亚洲av在线观看| 亚洲精品国产av成人精品| 国产乱人偷精品视频| 久久综合国产亚洲精品| 久久精品综合一区二区三区| 有码 亚洲区| 欧美少妇被猛烈插入视频| 午夜激情久久久久久久| av在线播放精品| 人妻少妇偷人精品九色| 午夜福利视频1000在线观看| 亚洲人成网站在线播| 午夜视频国产福利| .国产精品久久| 99视频精品全部免费 在线| 成人亚洲精品一区在线观看 | 久久精品久久久久久噜噜老黄| 国产一区二区在线观看日韩| 免费播放大片免费观看视频在线观看| 美女主播在线视频| 亚洲精品aⅴ在线观看| 看黄色毛片网站| 日本三级黄在线观看| 日韩亚洲欧美综合| 欧美日韩国产mv在线观看视频 | 国产精品久久久久久精品电影| 欧美bdsm另类| 搡女人真爽免费视频火全软件| 最新中文字幕久久久久| 欧美bdsm另类| 国产乱人视频| av在线观看视频网站免费| 国产 一区精品| 一区二区av电影网| 亚洲精品色激情综合| 精品久久久久久久久av| 少妇被粗大猛烈的视频| 九九爱精品视频在线观看| 久久99热6这里只有精品| 边亲边吃奶的免费视频| 国产精品一及| 熟女电影av网| 国产伦在线观看视频一区| 欧美高清成人免费视频www| 可以在线观看毛片的网站| 免费人成在线观看视频色| 国产在线男女| 国产色爽女视频免费观看| 国产亚洲av片在线观看秒播厂| 精品人妻一区二区三区麻豆| av在线app专区| 成人午夜精彩视频在线观看| 日本熟妇午夜| 身体一侧抽搐| 国产av不卡久久| 性色avwww在线观看| 久久久久久久大尺度免费视频| 久久久欧美国产精品| 日韩欧美 国产精品| 亚洲av中文av极速乱| 中文欧美无线码| 精品久久久噜噜| 亚洲av一区综合| 六月丁香七月| 乱系列少妇在线播放| 国产淫片久久久久久久久| 啦啦啦啦在线视频资源| 观看免费一级毛片| 亚洲成人一二三区av| 免费在线观看成人毛片| 内地一区二区视频在线| 午夜精品一区二区三区免费看| 18+在线观看网站| 女人久久www免费人成看片| 亚洲电影在线观看av| 亚洲精品乱码久久久久久按摩| 日韩欧美 国产精品| 婷婷色综合大香蕉| 亚洲精品国产成人久久av| 亚洲婷婷狠狠爱综合网| 亚洲精品中文字幕在线视频 | 国产在线男女| 欧美日韩一区二区视频在线观看视频在线 | 国产真实伦视频高清在线观看| 亚洲av成人精品一二三区| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美亚洲 丝袜 人妻 在线| 高清日韩中文字幕在线| 日韩强制内射视频| 国产在视频线精品| 极品教师在线视频| 午夜视频国产福利| 在线看a的网站| 欧美日韩精品成人综合77777| 亚洲精品乱久久久久久| 卡戴珊不雅视频在线播放| 免费看日本二区| 日韩在线高清观看一区二区三区| 久久久久久九九精品二区国产| av免费在线看不卡| 大片免费播放器 马上看| 热re99久久精品国产66热6| 联通29元200g的流量卡| 免费观看在线日韩| 久久久久久久久大av| 国产免费一区二区三区四区乱码| 精品久久久久久久末码| 日本av手机在线免费观看| 国产亚洲av嫩草精品影院| 涩涩av久久男人的天堂| 人体艺术视频欧美日本| av免费在线看不卡| 亚洲va在线va天堂va国产| 99久久人妻综合| 免费人成在线观看视频色| 日韩在线高清观看一区二区三区| 99re6热这里在线精品视频| 黄色日韩在线| 国产成人精品久久久久久| 国产永久视频网站| 黄片wwwwww| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 黄色一级大片看看| 欧美日本视频| 在线播放无遮挡| 国产成人freesex在线| 国产一区二区三区综合在线观看 | 在线免费十八禁| 国语对白做爰xxxⅹ性视频网站| 久久午夜福利片| 一区二区三区乱码不卡18| 国产精品蜜桃在线观看| 国产色婷婷99| 大话2 男鬼变身卡| 国产成人福利小说| 成人无遮挡网站| 日本三级黄在线观看| 一个人看的www免费观看视频| 国产真实伦视频高清在线观看| 观看美女的网站| 美女cb高潮喷水在线观看| 国产亚洲av片在线观看秒播厂| av福利片在线观看| 欧美精品一区二区大全| 国产伦精品一区二区三区视频9| 黄色怎么调成土黄色| 青春草国产在线视频| 在线观看一区二区三区激情| 另类亚洲欧美激情| av福利片在线观看| 国产 一区精品| 日韩成人av中文字幕在线观看| 韩国av在线不卡| a级一级毛片免费在线观看| 天天躁夜夜躁狠狠久久av| 一边亲一边摸免费视频| 久久久久九九精品影院| 丝袜喷水一区| 夫妻性生交免费视频一级片| 亚洲真实伦在线观看| 精品久久久久久久久av| 麻豆成人午夜福利视频| 成年女人在线观看亚洲视频 | 欧美激情在线99| 亚洲精品成人av观看孕妇| 欧美老熟妇乱子伦牲交| 午夜福利网站1000一区二区三区| 成人国产麻豆网| av卡一久久| 免费看日本二区| 国产成人精品福利久久| 欧美日韩精品成人综合77777| 男男h啪啪无遮挡| 成年av动漫网址| 免费大片黄手机在线观看| 亚洲精品成人久久久久久| 91久久精品国产一区二区成人| 中文字幕制服av| 99re6热这里在线精品视频| 身体一侧抽搐| 亚洲欧洲国产日韩| 69av精品久久久久久| 国产精品伦人一区二区| 搞女人的毛片| 久久热精品热| 久久久久精品久久久久真实原创| 成人特级av手机在线观看| 国产精品久久久久久精品电影小说 | 狂野欧美激情性xxxx在线观看| 丝瓜视频免费看黄片| 又爽又黄a免费视频| 真实男女啪啪啪动态图| 一个人看视频在线观看www免费| 免费观看在线日韩| 久久久成人免费电影| 亚洲高清免费不卡视频| 日本三级黄在线观看| 欧美日韩一区二区视频在线观看视频在线 | 看免费成人av毛片| 91aial.com中文字幕在线观看| 国产精品人妻久久久影院| 性插视频无遮挡在线免费观看| 欧美成人精品欧美一级黄| 国产探花极品一区二区| 在线天堂最新版资源| 亚洲精品乱久久久久久| 大片免费播放器 马上看| 精品一区二区三卡| 亚洲av国产av综合av卡| 午夜亚洲福利在线播放| 热re99久久精品国产66热6| 中国美白少妇内射xxxbb| 2021天堂中文幕一二区在线观| 午夜亚洲福利在线播放| 中文字幕制服av| 特级一级黄色大片| 精品人妻偷拍中文字幕| av网站免费在线观看视频| 人人妻人人澡人人爽人人夜夜| 日韩av不卡免费在线播放| 亚洲国产欧美在线一区| 久久久久九九精品影院| 韩国高清视频一区二区三区| 国产成人a区在线观看| 小蜜桃在线观看免费完整版高清| 看十八女毛片水多多多| 日产精品乱码卡一卡2卡三| 91久久精品国产一区二区三区| 国产人妻一区二区三区在| 国产午夜精品一二区理论片| 婷婷色综合大香蕉| 丰满少妇做爰视频| 男女那种视频在线观看| 久久热精品热| 色视频在线一区二区三区| 久久精品国产亚洲av天美| 99视频精品全部免费 在线| 国产国拍精品亚洲av在线观看| 99热这里只有是精品在线观看| 免费av观看视频| 中文欧美无线码| 亚洲精品国产成人久久av| 亚洲精品久久久久久婷婷小说| 免费不卡的大黄色大毛片视频在线观看| 国产精品一区www在线观看| 中国美白少妇内射xxxbb| 一区二区av电影网| 亚洲av免费高清在线观看| 国产欧美日韩精品一区二区| 午夜福利在线在线| 天天躁日日操中文字幕| 中文字幕久久专区| 永久网站在线| 又粗又硬又长又爽又黄的视频| 精品一区二区三区视频在线| videos熟女内射| www.av在线官网国产| 欧美日韩精品成人综合77777| 2021少妇久久久久久久久久久| 精品一区二区三卡| 哪个播放器可以免费观看大片| 久久久久久国产a免费观看| 国产 精品1| 国产大屁股一区二区在线视频| 91狼人影院| 3wmmmm亚洲av在线观看| 五月天丁香电影| 国产精品不卡视频一区二区| 国产精品一及| 干丝袜人妻中文字幕| 永久网站在线| 国产黄片视频在线免费观看| 日日啪夜夜爽| 亚洲精品自拍成人| 欧美xxxx黑人xx丫x性爽| 欧美潮喷喷水| 亚洲自拍偷在线| 欧美zozozo另类| 伊人久久国产一区二区| 国产免费福利视频在线观看| 一级毛片 在线播放| 毛片女人毛片| 美女被艹到高潮喷水动态| 国产午夜福利久久久久久| 亚洲伊人久久精品综合| 黄色怎么调成土黄色| 韩国av在线不卡| 99久久精品一区二区三区| 国产午夜福利久久久久久| 亚洲伊人久久精品综合| 一本久久精品| 国产一区有黄有色的免费视频| 亚洲欧美一区二区三区黑人 | 丰满人妻一区二区三区视频av| 日韩欧美精品免费久久| av在线老鸭窝| 国产黄色免费在线视频| 18禁在线无遮挡免费观看视频| 国产成人精品一,二区| 亚洲精品国产色婷婷电影| 一区二区三区精品91| 色播亚洲综合网| 成人美女网站在线观看视频| 亚洲精品视频女| 亚洲国产精品成人综合色| 亚洲三级黄色毛片| 亚洲成人中文字幕在线播放| 一本一本综合久久| 中文资源天堂在线| 免费av毛片视频| 国产中年淑女户外野战色| 99久久九九国产精品国产免费| 久久人人爽人人爽人人片va| 成人二区视频| 大香蕉久久网| 亚洲一级一片aⅴ在线观看| 日韩一区二区三区影片| 日本免费在线观看一区| 久久久久久久精品精品| 一级毛片aaaaaa免费看小| 久久99精品国语久久久| 国产免费视频播放在线视频| 国产乱人偷精品视频| 亚洲成人av在线免费| 久久久久久国产a免费观看| 麻豆精品久久久久久蜜桃| 亚洲性久久影院| 国产一区二区在线观看日韩| 亚洲aⅴ乱码一区二区在线播放| 最近最新中文字幕大全电影3| 欧美三级亚洲精品| 一级片'在线观看视频| 特大巨黑吊av在线直播| 国产乱人视频| 亚洲婷婷狠狠爱综合网| 久久久久久久久久成人| 日韩精品有码人妻一区| 亚洲最大成人手机在线| 久热这里只有精品99| 日产精品乱码卡一卡2卡三| 嫩草影院精品99| 18禁动态无遮挡网站| 一级毛片黄色毛片免费观看视频| 精品一区在线观看国产| 一级av片app| 精品酒店卫生间| 爱豆传媒免费全集在线观看| 99热6这里只有精品| 九九在线视频观看精品| 欧美性猛交╳xxx乱大交人| videos熟女内射| 日本色播在线视频| 国产人妻一区二区三区在| 国产黄片美女视频| 男女国产视频网站| 中文在线观看免费www的网站| 国产亚洲5aaaaa淫片| 国产亚洲av嫩草精品影院| 成人高潮视频无遮挡免费网站| 啦啦啦在线观看免费高清www| 成年av动漫网址| 日韩av在线免费看完整版不卡| 超碰av人人做人人爽久久| 别揉我奶头 嗯啊视频| 大话2 男鬼变身卡| 一区二区三区四区激情视频| 午夜精品一区二区三区免费看| 国产真实伦视频高清在线观看| 在线免费十八禁| av天堂中文字幕网| 欧美成人午夜免费资源| 最近中文字幕2019免费版| 激情 狠狠 欧美| 国产日韩欧美亚洲二区| 深夜a级毛片| 日本一二三区视频观看| 日日摸夜夜添夜夜添av毛片| 久久久久久伊人网av| 99热这里只有是精品在线观看| 国产av码专区亚洲av| 久久人人爽av亚洲精品天堂 | 亚洲成人一二三区av| 91久久精品电影网| 天天躁日日操中文字幕| 国产淫语在线视频| 91午夜精品亚洲一区二区三区| 18禁在线无遮挡免费观看视频| 欧美高清成人免费视频www| 精品午夜福利在线看| 精品亚洲乱码少妇综合久久| 亚洲欧美日韩无卡精品| 久久久久网色| 亚洲成色77777| 欧美一区二区亚洲| 18禁动态无遮挡网站| 亚洲成人精品中文字幕电影| 高清欧美精品videossex| 99久久九九国产精品国产免费| 欧美少妇被猛烈插入视频| 最近最新中文字幕大全电影3| 欧美bdsm另类| 女人被狂操c到高潮| 久久久久久九九精品二区国产| 男人和女人高潮做爰伦理| 插逼视频在线观看| 69人妻影院| 少妇的逼水好多| 美女主播在线视频| 国产乱来视频区| 色网站视频免费| 欧美激情在线99| 欧美激情国产日韩精品一区| 夫妻午夜视频| 99热这里只有是精品50| 日韩中字成人| 色视频www国产| 国产黄色免费在线视频| 老司机影院成人| 国产精品久久久久久久电影| 男男h啪啪无遮挡| 国产成人freesex在线| 搡老乐熟女国产| 午夜视频国产福利| 国产精品一及| 九九爱精品视频在线观看| 国产永久视频网站| 国产精品熟女久久久久浪| 波野结衣二区三区在线| 久久人人爽av亚洲精品天堂 | 麻豆成人av视频| 国产亚洲午夜精品一区二区久久 | 成人国产av品久久久| 欧美xxxx性猛交bbbb| 久久久a久久爽久久v久久| freevideosex欧美| 99久久精品国产国产毛片| 午夜免费男女啪啪视频观看| xxx大片免费视频| 在线观看人妻少妇| 久久99热这里只有精品18| 香蕉精品网在线| 国产午夜精品久久久久久一区二区三区| 亚洲欧美一区二区三区国产| 亚洲国产高清在线一区二区三| 性插视频无遮挡在线免费观看| 国产一区二区三区综合在线观看 | 久久99精品国语久久久| 国产精品成人在线| videossex国产| 成人免费观看视频高清| 69人妻影院| 亚洲在久久综合| 91在线精品国自产拍蜜月| 91精品一卡2卡3卡4卡| 一级片'在线观看视频| 观看免费一级毛片| www.色视频.com| 久久精品国产a三级三级三级| 又大又黄又爽视频免费| 国产一级毛片在线| 午夜日本视频在线| 99久国产av精品国产电影| 一级毛片黄色毛片免费观看视频| 精品久久久久久久末码| 亚洲av二区三区四区| 免费观看无遮挡的男女| 少妇的逼水好多| 日韩强制内射视频| 少妇的逼水好多| 欧美另类一区| 人人妻人人看人人澡| a级毛片免费高清观看在线播放| 成人一区二区视频在线观看| 久久精品久久久久久噜噜老黄| 欧美日韩亚洲高清精品| 看非洲黑人一级黄片| 国产成人aa在线观看| 国产乱人视频| 少妇熟女欧美另类| 日本免费在线观看一区| 高清欧美精品videossex| freevideosex欧美| 精品亚洲乱码少妇综合久久| 91久久精品国产一区二区三区| 内射极品少妇av片p| 日韩欧美精品免费久久| 天堂中文最新版在线下载 | 免费观看av网站的网址| 国产伦精品一区二区三区视频9| 青春草国产在线视频| 久久久亚洲精品成人影院| 男人和女人高潮做爰伦理| 亚洲av二区三区四区| 欧美zozozo另类| 五月开心婷婷网| 国产免费视频播放在线视频| 精品视频人人做人人爽| 国产一区有黄有色的免费视频| 久久99蜜桃精品久久| 成年人午夜在线观看视频| 欧美激情久久久久久爽电影| 内地一区二区视频在线| h日本视频在线播放| 精品国产露脸久久av麻豆| 久久精品国产自在天天线| 春色校园在线视频观看| 欧美三级亚洲精品| 国模一区二区三区四区视频| 精品国产一区二区三区久久久樱花 | 91精品伊人久久大香线蕉| 成人综合一区亚洲| 在线观看一区二区三区| 久久久久久久国产电影| 男女下面进入的视频免费午夜| 国产精品伦人一区二区| 街头女战士在线观看网站| 韩国高清视频一区二区三区| 久久精品人妻少妇| 久久久久性生活片| 91aial.com中文字幕在线观看| 蜜桃亚洲精品一区二区三区| 国产真实伦视频高清在线观看| 亚洲av不卡在线观看| 又大又黄又爽视频免费| 亚洲天堂国产精品一区在线| 国产精品人妻久久久影院| 成人美女网站在线观看视频| 少妇的逼好多水| 美女被艹到高潮喷水动态| 日韩强制内射视频| 在线精品无人区一区二区三 | 亚洲欧美清纯卡通| 麻豆久久精品国产亚洲av| 亚洲国产色片| 免费高清在线观看视频在线观看| 超碰97精品在线观看| 久久久久精品久久久久真实原创| 国产精品久久久久久久久免| 日韩不卡一区二区三区视频在线| 乱码一卡2卡4卡精品| 国产精品人妻久久久影院| 国产在线男女| 91午夜精品亚洲一区二区三区| 欧美性感艳星| 国产伦在线观看视频一区| 偷拍熟女少妇极品色| 日韩人妻高清精品专区| av线在线观看网站| 久久精品国产自在天天线| 99热这里只有精品一区| 中国三级夫妇交换| 日韩欧美一区视频在线观看 | 久久人人爽人人片av| 国产精品一区二区性色av| 美女内射精品一级片tv| 日韩,欧美,国产一区二区三区| 欧美另类一区| 欧美97在线视频| 日日撸夜夜添| 亚洲精品国产av蜜桃| 亚洲精品日韩av片在线观看| 狂野欧美激情性bbbbbb| 制服丝袜香蕉在线| 大片免费播放器 马上看| 国产一区二区三区综合在线观看 | 国产成人a∨麻豆精品| 亚洲在久久综合| 欧美一区二区亚洲| 亚洲精华国产精华液的使用体验| 国国产精品蜜臀av免费| 日本一本二区三区精品| 一边亲一边摸免费视频| 中国美白少妇内射xxxbb| 亚洲精品影视一区二区三区av| 国产女主播在线喷水免费视频网站| 韩国高清视频一区二区三区| 九九久久精品国产亚洲av麻豆| 午夜精品一区二区三区免费看| 免费大片18禁|