• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stochastic responses of tumor immune system with periodic treatment?

    2017-08-30 08:25:00DongXiLi李東喜andYingLi李穎
    Chinese Physics B 2017年9期
    關(guān)鍵詞:李穎

    Dong-Xi Li(李東喜)and Ying Li(李穎)

    1 College of Data Science,Taiyuan University of Technology,Taiyuan 030024,China

    2 College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China

    Stochastic responses of tumor immune system with periodic treatment?

    Dong-Xi Li(李東喜)1,?and Ying Li(李穎)2

    1 College of Data Science,Taiyuan University of Technology,Taiyuan 030024,China

    2 College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China

    We investigate the stochastic responses of a tumor–immune system competition model with environmental noise and periodic treatment.Firstly,a mathematical model describing the interaction between tumor cells and immune system under external fluctuations and periodic treatment is established based on the stochastic differential equation.Then,sufficient conditions for extinction and persistence of the tumor cells are derived by constructing Lyapunov functions and Ito’s formula.Finally,numerical simulations are introduced to illustrate and verify the results.The results of this work provide the theoretical basis for designing more effective and precise therapeutic strategies to eliminate cancer cells,especially for combining the immunotherapy and the traditional tools.

    stochastic responses,environmental noise,tumor–immune system,extinction

    1.Introduction

    Cancer is becoming the leading cause of death around the world.Traditional cancer treatments include surgery,radiation therapy,and chemotherapy.Cancer immunotherapy has recently gained exciting progress.Studies of tumor and immune system have largely been inspired by the works in Refs.[1] and[2],the authors showed that the immune system can recognize and eliminate malignant tumors.So immunotherapy, such as the cellular immunotherapy,[3]has been studied by researchers.And a number of tumor–immune system competition models have been proposed,such as Kuznetsov–Taylor model[4]and Kirschner–Panetta model.[5]In fact,tumor mi-croenvironment is inevitably affected by environmental noise in realism.Nowadays,noise dynamics have been widely studied in different fields such as metapopulation system[6]and Van der Pol oscillator.[7]In the last years,researchers have studied stochastic growth models of cancer cells,[8–11]using the Lyapunov exponent method and the Fokker–Planck equation method to investigate the stability of the stochastic model. Moreover,from a biological or a clinical point of view,investigations including treatments such as periodic ones are important for a successful treatment,e.g.,Thibodeaux and Schlittenhard[12]investigated the effect of a periodic treatment in the within-hostdynamics of malaria infection and suggested that synchronization with the intrinsic oscillation of infected erythrocytes takes place,leading to an optimal treatment.Sotolongo et al.[13]investigated the effect of immunotherapy under periodic treatment on a deterministic model of tumor– immune system and considered the possibility of suppression of tumor growth.Ideta et al.[14]considered the intermittent hormonal therapy in a model of prostate cancer and they suggested the existence of an optimal protocol to the intermittent therapy.Up to now,the effect of noise and cyclic treatment in the tumor dynamics has been widely studied.And fluctuations induced extinction and stochastic resonance in a model of tumor growth with periodic treatment have been studied.[15]Aisu and Horita[16]numerically investigated the stochastic extinction of tumor cells due to the synchronization effect through a time periodic treatment in a tumor–immune interaction model.

    The aim of this paper is to explore the dynamics of a simplified Kuznetsov–Taylor model[17]with both environmental noise and periodic treatment,especially the extinction and persistence.One of the advantages of our study is that we make use of the methods of It?o’s stochastic integral and Lyapunov function to derive and analyze the properties of the stochastic tumor–immune system competition model,which is different from the approaches of Fokker–Planck equation and effective potential function used in the existing literature.The other advantage is that the conditions for extinction and strong persistence in the mean of tumor cells are obtained by the strict mathematical proofs.The sufficient conditions for extinction and persistence could provide us a more effective and precise therapeutic schedule to eliminate tumor cells and improve the treatment of cancer.

    This paper is organized as follows.In Section 2,thestochastic tumor–immune model with periodic treatment is derived.In Section 3,we establish the sufficient conditions for extinction and strong persistence in the mean of tumor cells. Numerical simulations are presented in Section 4,which are used to verify and illustrate the theorems of Section 3.In Section 5,we present the conclusion and discuss future directions of this research.

    2.Stochastic tumor–immune system with periodic treatment

    In this section,the Kuznetsov–Taylor model[4]and its modified version by Galach[17]are introduced.The Kuznetsov–Taylor model describes the response of effector cells to the growth of tumor cells and takes into account the penetration of tumor cells by effector cells,which simultaneously causes the inactivation of effector cells.The Kuznetsov–Taylor model reads

    where s is the normal(i.e.,not increased by the presence of the tumor)rate of the flow of adult effector cells into the tumor site in units of cells per day,p and g are positive constants in the function F(E,T)=pE T/(g+T)that describes the accumulation of effector cells in the tumor site,p is in units of day?1and g is in units of cells.m denotes the coefficient of inactivation of effector cells during the formation and decomposition of EC-TC compounds and is in units of day?1·cells?1. d is the coefficient of the destruction and migration of effector cells and is in units of day?1.a is the coefficient of the maximal growth of tumor and is in units of day?1.b?1is the environment capacity,and b is in units of cells?1.n represents the inactivation rate of tumor cells due to the immune system response and is in units of day?1·cells?1.The dimensionless form of the model is

    where x=E/E0,y=T/T0,ε=s/(nE0T0),ρ=p/(nT0), η=g/T0,μ=m/n,δ=d/(nT0),α=a/(nT0),β=bT0,and E0=T0=106cells.

    In 2003,Galach proposed the modified version of model (1),which reads

    where x denotes the dimensionless density of effector cells;y stands for the dimensionless density of the population of tumor cells;ε,δ,α,1/β have the same meanings as those in Eq.(1),and ω represents the immune response to the appearance of the tumor cells(i.e.,immune coefficient).In this paper, we consider the case of ω>0,which means that the immune response is positive.

    System(2)always has the equilibrium

    If ω>0 and αδ<ε,then P0is the unique equilibrium of model(2)and it is globally stable.If ω>0 and αδ>ε,then P0is unstable and there is an equilibrium

    which is globally stable.Here Δ=α2(βδ?ω)2+4αβεω.

    In fact,the growth of tumor cells is influenced by many environmental factors,[18]e.g.,the supply of oxygen and nutrients,the degree of vascularization of tissues,the immunological state of the host,chemical agents,temperature,etc.So, it is inevitable to consider the tumor–immune system competition model with environmental noises.In this paper,taking into account the effect of randomly fluctuating environment, we assume that the fluctuations in the environment mainly affect the immune coefficient ω,

    where B(t)is the standard Brownian motion with B(0)=0, and the intensity of white noise σ2>0.We are interested in the stochastic responses of the tumor immune system driven by a controllable therapy.Here,the influence of the therapeutic factors is studied by considering a periodic treatment (chemo-or radiation-therapy).The treatment scheme[19]can be expressed as

    Here Φ stands for the Heaviside function reflecting the on-off switch of the cyclic treatment performed with the intensity A and frequency f.Now the tumor–immune system competition model with environmental noise and periodic treatment can be rewritten as

    where all the parameters are positive and bounded.For convenience,we define the following notions:

    3.Theoretical analysis of extinction and persistence under periodic treatment

    Our primary interests in tumor dynamics are the extinction and survival of tumors.In order to study the extinction and survival,we need some appropriate definitions about extinction and persistence.Here we adopt the concepts of extinction and strong persistence in the mean.[20]In addition,some of our proofs are motivated by the works of Liu,[20]Mao,[21]and Jiang.[22]Some useful definitions are as follows:

    1)The tumor cells y(t)will go to extinction a.s.if limt→+∞y(t)=0.

    2)The tumor cells y(t)will be strongly persistent in the mean a.s.if〈y(t)〉?>0.

    Next we establish the sufficient conditions of extinction and persistence for our model.

    Lemma 1 For any positive initial value(x0,y0),if 0<x0<1/β,the solution of Eq.(4)obeys

    Proof According to the second equation of model(4),we have

    Firstly,we discuss y for x in different value ranges.

    Consequently,we have proved y(t)≤max{y0,1/β}.Then we will show that x(t)is bounded.Applying the Ito’s formula[23]to the first equation of model(4),

    Integrating both sides from 0 to t,we obtain

    where

    Therefore,

    That is to say if x0<1/β,then x(t)<1/β for all t>0.

    Lemma 2 Let f∈C[[0,∞)×?,(0,∞)]and F(t)∈C([0,∞)×?,R).If there exist positive constants λ0,λ,and T such that

    for all t≥T,and limt→∞F(t)/t=0 a.s.,then

    Proof The proof is similar to that of lemma in Ref.[22]. Note that limt→∞F(t)/t=0 a.s.;then for arbitrary k>0,there exists a T0=T0(ω)>0 and a set ?ksuch that P(?k)≥1?k and F(t)/t≤k for all t≥T0,ω∈?k.LetˉT=max{T,T0} and

    Since f∈C[[0,∞)×?,(0,∞)],then ?(t)is differentiable ona.s.,and

    Taking the limit inferior of both sides and applying L’Hospital’s rule on the right-hand side of this inequality,we obtain

    Letting k→0 yields

    Theorem 1 For any positive initial value(x0,y0),particularly,when x0<1/β,equation(4)has a positive unique global solution(x(t),y(t))on t≥0 a.s.

    Proof To obtain a unique global solution for any given initial value,the coefficients of the equation are generally required to satisfy the linear growth condition and local Lipschitz condition.[24]However,the coefficients of model(4)do not satisfy the linear growth condition,so the solution may explode in a finite time.Since the coefficients of Eq.(4)are locally Lipschitz continuous for any given initial value(x0,y0)∈,there is a unique maximal local solution(x(t),y(t))on t∈[0,τe],where τeis the explosion time.[24]To show that this solution is global,we only need to show τe=∞.To this end,let k0>0 be sufficiently large so that x0,y0all lie within the interval[1/k0,k0].For each integer k≥k0,we define the stopping time τk=inf{t∈[0,τe]:min{x(t),y(t)}≤1/k or max{x(t),y(t)}≥k}.Clearly,τkis increasing as k→∞.Set τ∞=limk→+∞τk,thus τ∞≤τea.s.In other words,we only need to prove τ∞=∞.If this statement is false,there exists constants T>0 and ε∈(0,1)such that P{τ∞<∞}>ε. Thus there is an integer k1>k0such that

    Define a C2-function V:→R+by V(x,y)=(x?1?ln x)+ (y?1?ln y).The nonnegativity of this function can be seen from u?1?ln u≥0,?u>0.Let k≥k0and T>0 be arbitrary.Applying the It?o’s formula,we have

    Here,L is a positive constant and in the proof of the last inequality,we have used Lemma 3(i.e.,for?t≥0,x(t)and y(t) are bounded).The inequality(9)implies

    Taking expectation on both sides of the above inequality,we can obtain

    Let ?k={τk∧T},then by inequality(8),we have P(?k)≥ε. Note that for any ω∈?k,x(τk,ω),y(τk,ω)equals either k or 1/k,hence V(x(τk,ω),y(τk,ω))is no less than min{2(k?1?ln k),2(1/k?1+ln k),k+1/k?2)}.By formula(10)we have

    where 1?kis the indicator function of ?k.Let k→∞,there exists the contradiction∞>V(x0,y0)+LT=∞,which completes the proof.

    Remark 1 In order to guarantee the existence and uniqueness of the solution of model(4),we discuss the extinction and persistence of y(t)under the condition x0<1/β below.

    Theorem 2 Let(x(t),y(t))be the solution of system(4) with positive initial value(x0,y0),if αδ?ε<A/2,then

    Proof An integration of the first equation of model(4) yields

    We compute

    where

    which is a local continuous martingale and N1(0)=0.Moreover

    By strong law of large numbers for local martingales,[24]we obtain

    Taking the limit inferior of both sides of inequality(12),we have

    Applying the It?o’s formula to the second equation of model(4) yields

    Integrating this from 0 to t and dividing by t on both sides,we have

    Taking the limit superior of both sides of inequality(15)and substituting inequality(14)into inequality(15)yield

    If the condition αδ?ε<A/2 is satisfied,then

    which implies

    Applying the It?o’s formula to the first equation of model(4) leads to

    Integrating this from 0 to t,we have

    By virtue of the exponential martingale inequality,[24]for any positive constants T,a,and b,we have

    Choosing T=n,a=1,and b=2ln n,we obtain

    An application of Borel–Cantelli lemma[22]yields that for almost all ω∈?,there is a random integer n0=n0(ω)such that for n≥n0,

    That is to say,

    for all 0≤t≤n,n≥n0a.s.Substituting the above inequality into inequality(17)leads to

    Theorem 3 If δα?ε>A/2,then the tumor cells y(t) will be almost surely strong persistent in the mean.

    Proof An integration of system(4)is

    Substituting Eq.(20)to Eq.(21)yields

    Consequently,we can derive that if δα?ε>A/2,then〈y(t)〉?>0 a.s.

    4.Simulations and discussion

    In this section,we use the Euler–Maruyama numerical algorithm mentioned by Higham[25]to support our results.The parameters in model(4)are chosen as α=1.636,β=0.002, δ=0.3743,ε=0.5181,and ω=0.0115,which are approximated to the experimental values.[4,17]

    Figure 1 shows the simulation results of Theorem 2. Clearly,the parameters satisfy the condition αδ?ε<A/2.In view of Theorem 2,the tumor cells y(t)will go to extinction, and the effector cells x(t)have the property limt→+∞〈x(t)〉= (ε+A/2)/δ=1.785.Figure 1 confirms the results of Theorem 2.

    Fig.1.(color online)Solutions of model(4)with periodic treatment s(t)=A[1?Φ(cos(2π ft))]for A=0.3,σ=0.03,f=0.05,step size Δt=0.01,and initial value(x(0),y(0))=(1.5,25).

    Figure 2 shows the simulation results of Theorem 2.In Fig.2,it is clear that the parameters of the example meet the condition δα?ε>A/2.According to Theorem 2,the tumor cells y(t)will be almost surely strongly persistent in the mean. It can be seen from Fig.2 that the tumor cells will decrease firstly and then exhibit a period-like evolution at a relative low concentration under periodic treatment,but do not tend to zero.This phenomenon implies that the tumor cells could be suppressed by the periodic treatment but not be completely eliminated when the intensity of the treatment is not enough to cure the tumor,i.e.,the tumor cells could be controlled and will not deteriorate in this case.Moreover,it can be seen that as long as the conditions of persistence δα?ε>A/2 are satisfied,the tumor cell will be strongly persistent in the mean almost surely when the model is with noise.And,the tumor cells will also be persistent or survival when the model is without noises.The difference is that the persistence of the former is in the sense of the mean,which is random;while the persistence of the latter is expressed as persistence or survival, which is deterministic.

    Fig.2.(color online)Solutions of model(4)with periodic treatment s(t)=A[1?Φ(cos(2π ft))]for A=0.07,σ=0.03,f=0.05,step size Δt=0.01,and initial value(x(0),y(0))=(1.5,25).

    Figure 3 shows the evolution of tumor cells y(t)as a function of time t for three different values of A=0.07,0.3,3. Clearly,when A is 0.07,it satisfies the condition δα?ε>A/2.According to Theorem 2,the tumor cells y(t)will be strongly persistent in the mean.With increasing strength of the treatment,A is taken as 0.3 or 3,they satisfy the condition αδ?ε<A/2.According to Theorem 2,the tumor cells y(t) will tend to be extinction.Moreover,by comparing curves(ii) and(iii),we find that the tumor cells will be extinct faster with the increase of the treatment intensity A.This behavior indicates that increasing the intensity of the treatment is beneficial to accelerate the extinction of the tumor cells.

    Fig.3.(color online)Solutions of tumor cells for σ=0.03,f=0.05,step size Δt=0.01,and initial value(x(0),y(0))=(2.6,25).

    5.Conclusion

    We study stochastic responses of a tumor–immune system competition model with environmental noise and periodic treatment.Firstly,the environmental noise(Gaussian white noise)is taken into account and the periodic treatment is regarded as a Heaviside function.Then,sufficient conditions for extinction and strong persistence in the mean of tumor cells are derived by constructing Lyapunov functions.The detail results and biological significance are as follows:

    (A)If αδ?ε<A/2,then the effector cells x(t)have property limt→+∞〈x(t)〉=(ε+A/2)/δ,and the tumor cells y(t)will go to extinction a.s.

    (B)If αδ?ε>A/2,then the tumor cells y(t)will be strongly persistent in the mean a.s.

    According to the theorems and figures,the extinction and survival of the tumor cells rely on the strength of the periodic treatment.With the increasing intensity of the periodic treatment,the tumor cells will experience the process from strongly persistence in the mean to extinction.In addition,the synchronization effect between the environmental noises and the periodic treatment on the tumor–immune system competition model is obtained by strict proof and simulation.Our theoretical results will be beneficial to design more effective and feasible treatment therapies.

    Some interesting questions deserve further investigations. For example,in our model,we assume that fluctuations in the environment mainly affect the immune coefficient ω.It is interesting to study what happens if it affects other parameters of the tumor–immune system.Another question of interest is to consider the stability in distribution(e.g.,Refs.[26]and[27]) and time delay(e.g.Ref.[28])of the tumor–immune system.

    [1]Parish C R 2003 Immunol.Cell.Biol 81 106

    [2]Smyth M J,Godfrey D I and Trapani J A 2001 Nat.Immunol.2 293

    [3]Rosenberg S A,Spiess P and Lafreniere R 1986 Science 233 1318

    [4]Kuznetsoz V A,Makalkin I A,Taylor M A and Perelson A S 1994 Bull. Math.Biol 56 295

    [5]Kirschner D and Panetta J C 1998 J.Math.Biol 37 235

    [6]Wang K K and Liu X B 2013 Chin.Phys.Lett 30 070504

    [7]Yang Y G,Xu W,Sun Y H and Gu X D 2016 Chin.Phys.B 25 020201

    [8]Zhong W R,Shao Y Z and He Z H 2006 Phys.Rev.E 73 060902

    [9]Albano G and Giorno V 2006 J.Theor Biol 242 329

    [10]Lenbury Y,Triampo Wannapong,Tang IMand Picha P 2006 J.Korean. Phys.Soc 49 1652

    [11]Ferrante L,Bompadre S,Possati L and Leone L 2000 Biometrics 56 1076

    [12]Thibodeaux J J and Schlittenhardt T P 2011 Bull.Math.Biol.73 2791

    [13]Sotolongo-Costam O,Molina L M,Perez D R,Antranz J C and Reys M C 2003 Physica D 178 242

    [14]Ideta A M,Tanaka G,Takeuchi T and Aihara K 2008 J.Nonlinear Sci. 18 593

    [15]Li D X,Xu W,Guo Y and Xu Y 2011 Phys.Lett.A 375 886

    [16]Aisu R and Horita T 2012 Nonlinear Theory and Its Applications,IEICE 3 191

    [17]Galach M 2003 Int.J.Appl.Math.Comput.Sci.13 395

    [18]Fiasconaro A,Spagnolo B,Ochabmarcinek A and Gudowskanowak E 2006 Phys.Rev.E 74 041904

    [19]Fiasconaro A,Ochab-Marcinek A,Spagnolo B and Gudowska-Nowak E 2008 Eur.Phys.J.B 65 435

    [20]Liu M and Wang K 2011 J.Math.Anal.Appl.375 443

    [21]Mao X,Marion G and Renshaw E 2002 Stoch.Proc.Appl.97 95

    [22]Zhao Y,Jiang D and O’Regan D 2013 Physica A 392 4916

    [23]Evans L C 2013 An Introduction to Stochastic Differential Equations (New York:Amer Mathematical Society)pp.77–79

    [24]Mao X 1997 Stochastic Differential Equations and Applications (Chichester:Horwood)pp.31–84

    [25]Higham D J 2001 SIAM Rev.43 525

    [26]Liu M and Bai C 2016 Appl.Math.Comput.284 308

    [27]Liu M and Bai C 2016 Appl.Math.Comput.276 301

    [28]Jin Y F and Xie W X 2015 Chin.Phys.B 24 110501

    26 February 2017;revised manuscript

    9 May 2017;published online 24 July 2017)

    10.1088/1674-1056/26/9/090203

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.11402157 and 11571009),Shanxi Scholarship Council of China(Grant No.2015-032),Technological Innovation Programs of Higher Education Institutions in Shanxi,China(Grant No.2015121),and Applied Basic Research Programs of Shanxi Province,China(Grant No.2016021013).

    ?Corresponding author.E-mail:dxli0426@126.com

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    李穎
    An overview of quantum error mitigation formulas
    Effect of astrocyte on synchronization of thermosensitive neuron–astrocyte minimum system
    《二次根式》拓展精練
    Assessment of cortical bone fatigue using coded nonlinear ultrasound?
    完形填空專練(三)
    Ultrasonic backscatter characterization of cancellous bone using a general Nakagami statistical model?
    李穎、李鳳華作品
    Human body
    一雉雞翎的傷痛
    小說月刊(2017年8期)2017-08-16 22:34:39
    李穎、李鳳華作品
    亚洲综合色网址| 国产成人精品久久二区二区免费| 国产不卡一卡二| 欧美日韩精品网址| 一级毛片精品| 国产av国产精品国产| 免费人妻精品一区二区三区视频| 国产精品二区激情视频| tube8黄色片| 国产高清视频在线播放一区| 麻豆乱淫一区二区| 国产单亲对白刺激| 午夜福利免费观看在线| 亚洲成人国产一区在线观看| 国产欧美日韩一区二区三区在线| 手机成人av网站| 亚洲国产欧美网| 最新在线观看一区二区三区| 99riav亚洲国产免费| 国产精品九九99| 1024香蕉在线观看| 高清欧美精品videossex| 国产亚洲午夜精品一区二区久久| 久久久精品国产亚洲av高清涩受| 少妇裸体淫交视频免费看高清 | 欧美日韩亚洲综合一区二区三区_| 国产高清视频在线播放一区| 9热在线视频观看99| 少妇猛男粗大的猛烈进出视频| 亚洲精品国产一区二区精华液| 亚洲成国产人片在线观看| 国产成人影院久久av| 51午夜福利影视在线观看| 亚洲熟妇熟女久久| 精品乱码久久久久久99久播| 91成人精品电影| 超碰97精品在线观看| 无限看片的www在线观看| 久久青草综合色| 免费久久久久久久精品成人欧美视频| 亚洲人成伊人成综合网2020| 久久精品亚洲av国产电影网| 69av精品久久久久久 | 国产欧美日韩综合在线一区二区| 一边摸一边抽搐一进一小说 | 人人妻人人爽人人添夜夜欢视频| 99久久人妻综合| 亚洲精品国产区一区二| 91九色精品人成在线观看| 精品少妇内射三级| 啦啦啦在线免费观看视频4| 欧美久久黑人一区二区| 亚洲色图综合在线观看| 在线av久久热| 亚洲精品中文字幕一二三四区 | 精品久久久久久电影网| 国产色视频综合| 亚洲精品中文字幕一二三四区 | 国产精品免费大片| 国产成人欧美在线观看 | 亚洲av国产av综合av卡| 18禁美女被吸乳视频| 天堂动漫精品| 丁香欧美五月| 免费看a级黄色片| 老熟妇仑乱视频hdxx| 国产精品久久久久久精品古装| av不卡在线播放| 无限看片的www在线观看| 国产精品欧美亚洲77777| 最黄视频免费看| 最近最新中文字幕大全免费视频| 国产在线免费精品| 亚洲美女黄片视频| 热re99久久精品国产66热6| 亚洲一区中文字幕在线| 国产aⅴ精品一区二区三区波| 在线观看免费午夜福利视频| 电影成人av| 亚洲av日韩在线播放| 中文字幕另类日韩欧美亚洲嫩草| 国产在线免费精品| 99精品欧美一区二区三区四区| av视频免费观看在线观看| 精品亚洲成国产av| 午夜福利视频在线观看免费| 大型黄色视频在线免费观看| 另类精品久久| 亚洲色图av天堂| 欧美精品啪啪一区二区三区| 五月天丁香电影| 精品卡一卡二卡四卡免费| 色综合婷婷激情| 国精品久久久久久国模美| 青青草视频在线视频观看| 成人18禁高潮啪啪吃奶动态图| 女人精品久久久久毛片| 久久这里只有精品19| 老司机午夜福利在线观看视频 | 一区二区av电影网| 18在线观看网站| 成人手机av| a在线观看视频网站| 少妇 在线观看| 日本一区二区免费在线视频| 麻豆av在线久日| a级毛片在线看网站| 1024视频免费在线观看| 中文欧美无线码| 18禁黄网站禁片午夜丰满| 久久久精品国产亚洲av高清涩受| 国产精品美女特级片免费视频播放器 | 亚洲人成77777在线视频| 91精品三级在线观看| 十八禁网站免费在线| kizo精华| 美女高潮到喷水免费观看| 亚洲av日韩精品久久久久久密| 俄罗斯特黄特色一大片| 视频区欧美日本亚洲| 精品免费久久久久久久清纯 | 搡老岳熟女国产| 天天影视国产精品| 国产精品麻豆人妻色哟哟久久| 久久久国产欧美日韩av| av在线播放免费不卡| 国产高清激情床上av| 亚洲精品一二三| 国产在线免费精品| 少妇裸体淫交视频免费看高清 | 亚洲精品在线观看二区| 亚洲三区欧美一区| 亚洲va日本ⅴa欧美va伊人久久| 超碰成人久久| 亚洲成人手机| 日日爽夜夜爽网站| 久久人妻av系列| 亚洲精品国产色婷婷电影| 久久久精品国产亚洲av高清涩受| 欧美精品一区二区大全| 欧美日韩亚洲综合一区二区三区_| 狠狠精品人妻久久久久久综合| 在线观看免费高清a一片| 久久香蕉激情| 一区在线观看完整版| 在线观看免费午夜福利视频| 国产精品美女特级片免费视频播放器 | 国产免费av片在线观看野外av| 国产精品久久久久久精品古装| 女人被躁到高潮嗷嗷叫费观| 亚洲国产欧美日韩在线播放| 又紧又爽又黄一区二区| 欧美人与性动交α欧美软件| 国产成人免费无遮挡视频| 国精品久久久久久国模美| 国产精品电影一区二区三区 | 欧美日本中文国产一区发布| videos熟女内射| 精品一区二区三区视频在线观看免费 | 一夜夜www| 在线永久观看黄色视频| 91成人精品电影| 国产精品免费一区二区三区在线 | 国产1区2区3区精品| 亚洲国产欧美网| 欧美精品亚洲一区二区| 亚洲精品中文字幕在线视频| 国产无遮挡羞羞视频在线观看| 悠悠久久av| 亚洲 国产 在线| 国产一区有黄有色的免费视频| 日本五十路高清| 亚洲成人免费av在线播放| 国产欧美亚洲国产| 丁香欧美五月| 老汉色av国产亚洲站长工具| 久久久久久久国产电影| 美女视频免费永久观看网站| 午夜视频精品福利| 精品亚洲成a人片在线观看| 国产精品香港三级国产av潘金莲| 久久毛片免费看一区二区三区| 亚洲精品国产精品久久久不卡| 成在线人永久免费视频| 俄罗斯特黄特色一大片| 一级片免费观看大全| 麻豆av在线久日| 99精品久久久久人妻精品| 国产成人欧美在线观看 | 99国产精品一区二区蜜桃av | 国产免费现黄频在线看| 人人妻人人澡人人爽人人夜夜| www.999成人在线观看| 国产欧美亚洲国产| 叶爱在线成人免费视频播放| 日韩熟女老妇一区二区性免费视频| 露出奶头的视频| 大型av网站在线播放| 天天操日日干夜夜撸| 亚洲国产精品一区二区三区在线| 亚洲精华国产精华精| av网站免费在线观看视频| 中亚洲国语对白在线视频| 午夜福利在线观看吧| 母亲3免费完整高清在线观看| 99国产精品一区二区蜜桃av | 亚洲第一av免费看| 国产成人系列免费观看| 久久亚洲精品不卡| 亚洲熟女毛片儿| 侵犯人妻中文字幕一二三四区| 亚洲精品在线美女| 亚洲欧美色中文字幕在线| 一区二区日韩欧美中文字幕| 男女之事视频高清在线观看| 成年人黄色毛片网站| 久久这里只有精品19| 日韩大片免费观看网站| 精品久久蜜臀av无| 高清av免费在线| 一级片'在线观看视频| 国产高清videossex| 脱女人内裤的视频| 中文字幕高清在线视频| 欧美精品啪啪一区二区三区| 亚洲中文字幕日韩| 国产精品1区2区在线观看. | 人人澡人人妻人| 欧美激情 高清一区二区三区| 丁香六月天网| 午夜激情av网站| 国产视频一区二区在线看| 成人国产一区最新在线观看| 男女午夜视频在线观看| 精品一品国产午夜福利视频| 国产精品九九99| 交换朋友夫妻互换小说| 成年人黄色毛片网站| 操出白浆在线播放| 色综合欧美亚洲国产小说| 国产成人av激情在线播放| 国产在视频线精品| 又紧又爽又黄一区二区| 少妇精品久久久久久久| 国产在线视频一区二区| 叶爱在线成人免费视频播放| 99香蕉大伊视频| 免费久久久久久久精品成人欧美视频| 免费一级毛片在线播放高清视频 | 黄色a级毛片大全视频| 精品久久久精品久久久| 精品少妇一区二区三区视频日本电影| 国产一区二区三区视频了| videos熟女内射| 欧美黑人欧美精品刺激| 天堂中文最新版在线下载| 久久午夜亚洲精品久久| 亚洲avbb在线观看| 9191精品国产免费久久| 美女视频免费永久观看网站| 国产av一区二区精品久久| 精品免费久久久久久久清纯 | 俄罗斯特黄特色一大片| 中文字幕人妻丝袜制服| 亚洲五月婷婷丁香| 午夜久久久在线观看| 欧美人与性动交α欧美软件| 18禁观看日本| a级片在线免费高清观看视频| 日韩欧美免费精品| 两性夫妻黄色片| 中文字幕最新亚洲高清| 欧美激情久久久久久爽电影 | 少妇 在线观看| 精品亚洲成国产av| 久久精品人人爽人人爽视色| 久久香蕉激情| 亚洲欧美日韩高清在线视频 | 视频在线观看一区二区三区| 婷婷丁香在线五月| 咕卡用的链子| 成人av一区二区三区在线看| 在线永久观看黄色视频| 欧美精品人与动牲交sv欧美| 国产成人欧美在线观看 | 久久人妻av系列| 国产日韩欧美视频二区| 一区二区日韩欧美中文字幕| 欧美精品一区二区大全| 亚洲国产av新网站| 久久99热这里只频精品6学生| 亚洲精品在线美女| 国产伦理片在线播放av一区| a级毛片在线看网站| av片东京热男人的天堂| 男男h啪啪无遮挡| 亚洲全国av大片| 国产三级黄色录像| 男人操女人黄网站| 我的亚洲天堂| 亚洲精品中文字幕在线视频| 中文字幕人妻丝袜一区二区| 成人黄色视频免费在线看| 国产人伦9x9x在线观看| 手机成人av网站| 日韩视频在线欧美| 国产亚洲精品久久久久5区| 99热国产这里只有精品6| 精品国内亚洲2022精品成人 | 在线观看免费高清a一片| av天堂在线播放| 精品国产一区二区三区久久久樱花| 久久久精品国产亚洲av高清涩受| 看免费av毛片| 久久久精品区二区三区| 日韩视频一区二区在线观看| 热99re8久久精品国产| 男女高潮啪啪啪动态图| 久久久久网色| 国产高清激情床上av| 老鸭窝网址在线观看| 成人三级做爰电影| 成人永久免费在线观看视频 | 视频在线观看一区二区三区| svipshipincom国产片| 97人妻天天添夜夜摸| 热99久久久久精品小说推荐| 亚洲一区二区三区欧美精品| 午夜久久久在线观看| 不卡av一区二区三区| 啦啦啦免费观看视频1| 狠狠狠狠99中文字幕| 中文字幕色久视频| 夜夜骑夜夜射夜夜干| 亚洲国产毛片av蜜桃av| 亚洲av第一区精品v没综合| 夫妻午夜视频| 又紧又爽又黄一区二区| 久久久精品免费免费高清| 天堂中文最新版在线下载| 免费不卡黄色视频| 午夜福利影视在线免费观看| 在线观看人妻少妇| 99国产综合亚洲精品| 99热网站在线观看| 一本久久精品| 亚洲第一av免费看| a级毛片在线看网站| 国产高清国产精品国产三级| 丰满饥渴人妻一区二区三| 91麻豆精品激情在线观看国产 | 亚洲av片天天在线观看| 97在线人人人人妻| 亚洲精品中文字幕一二三四区 | 国产深夜福利视频在线观看| 人人妻人人澡人人爽人人夜夜| 色婷婷av一区二区三区视频| 欧美性长视频在线观看| av欧美777| 一级,二级,三级黄色视频| 色尼玛亚洲综合影院| 侵犯人妻中文字幕一二三四区| kizo精华| 麻豆国产av国片精品| 免费一级毛片在线播放高清视频 | 每晚都被弄得嗷嗷叫到高潮| 成人亚洲精品一区在线观看| e午夜精品久久久久久久| 热99国产精品久久久久久7| 国产淫语在线视频| 亚洲精品自拍成人| 黄片播放在线免费| 黄色 视频免费看| 成人免费观看视频高清| 久久精品国产99精品国产亚洲性色 | 在线天堂中文资源库| 亚洲天堂av无毛| 咕卡用的链子| 国产欧美日韩一区二区三| 国产色视频综合| 久久 成人 亚洲| 国产在线一区二区三区精| 亚洲国产精品一区二区三区在线| 大片电影免费在线观看免费| 在线观看免费视频日本深夜| 国产激情久久老熟女| 成年版毛片免费区| 考比视频在线观看| 99香蕉大伊视频| 一本综合久久免费| 日韩精品免费视频一区二区三区| 亚洲一区二区三区欧美精品| 天堂8中文在线网| 亚洲伊人色综图| 国产精品久久久久久人妻精品电影 | www.熟女人妻精品国产| 欧美亚洲日本最大视频资源| 亚洲中文av在线| 精品久久蜜臀av无| 国产视频一区二区在线看| 十八禁网站免费在线| 精品国产一区二区久久| 亚洲午夜理论影院| 日韩 欧美 亚洲 中文字幕| 亚洲一区二区三区欧美精品| 黄色a级毛片大全视频| 日韩欧美国产一区二区入口| 精品免费久久久久久久清纯 | 亚洲综合色网址| 国产精品久久久久久精品电影小说| 国产一卡二卡三卡精品| 久久久国产成人免费| 亚洲中文日韩欧美视频| 国产日韩欧美亚洲二区| 中文字幕人妻丝袜制服| 国产精品欧美亚洲77777| 超碰97精品在线观看| 黑丝袜美女国产一区| 成人18禁在线播放| 飞空精品影院首页| 精品国产乱码久久久久久男人| 首页视频小说图片口味搜索| 97人妻天天添夜夜摸| 19禁男女啪啪无遮挡网站| 亚洲成a人片在线一区二区| 我要看黄色一级片免费的| 久久精品熟女亚洲av麻豆精品| 制服诱惑二区| av电影中文网址| 一进一出好大好爽视频| 后天国语完整版免费观看| 国产精品电影一区二区三区 | 午夜激情av网站| 美女高潮到喷水免费观看| 老司机福利观看| 黑人巨大精品欧美一区二区mp4| 成人免费观看视频高清| 久久久久视频综合| 久久国产精品影院| 露出奶头的视频| 午夜久久久在线观看| 无遮挡黄片免费观看| 久久人妻熟女aⅴ| 亚洲精品在线美女| 少妇精品久久久久久久| 色精品久久人妻99蜜桃| 久久99热这里只频精品6学生| 精品国产一区二区三区四区第35| 中文字幕人妻熟女乱码| 九色亚洲精品在线播放| 国产男女超爽视频在线观看| 最近最新中文字幕大全电影3 | 老鸭窝网址在线观看| 美女福利国产在线| 久久久欧美国产精品| 在线av久久热| 蜜桃国产av成人99| 亚洲黑人精品在线| 啦啦啦中文免费视频观看日本| 国产xxxxx性猛交| 午夜老司机福利片| 侵犯人妻中文字幕一二三四区| 久久人妻福利社区极品人妻图片| 最近最新中文字幕大全电影3 | 国产成人av教育| 国产亚洲av高清不卡| 丝袜美腿诱惑在线| xxxhd国产人妻xxx| 精品一品国产午夜福利视频| 亚洲人成伊人成综合网2020| 国产精品亚洲一级av第二区| 黄频高清免费视频| 国产成人精品久久二区二区免费| 久久天堂一区二区三区四区| 欧美黄色淫秽网站| 在线亚洲精品国产二区图片欧美| 99riav亚洲国产免费| 国产精品熟女久久久久浪| 国产亚洲欧美在线一区二区| 久久ye,这里只有精品| 99re在线观看精品视频| 极品人妻少妇av视频| 少妇粗大呻吟视频| 欧美亚洲 丝袜 人妻 在线| 亚洲自偷自拍图片 自拍| 亚洲中文av在线| 国产一区二区 视频在线| 国产精品香港三级国产av潘金莲| 极品人妻少妇av视频| 悠悠久久av| 久久久久国内视频| 亚洲va日本ⅴa欧美va伊人久久| 90打野战视频偷拍视频| 天堂8中文在线网| 久久精品aⅴ一区二区三区四区| av片东京热男人的天堂| 欧美亚洲日本最大视频资源| 亚洲精品自拍成人| 亚洲自偷自拍图片 自拍| 女性生殖器流出的白浆| 精品少妇久久久久久888优播| 欧美午夜高清在线| 人妻久久中文字幕网| 极品少妇高潮喷水抽搐| 后天国语完整版免费观看| 亚洲精品成人av观看孕妇| 狠狠狠狠99中文字幕| 又黄又粗又硬又大视频| 欧美日韩中文字幕国产精品一区二区三区 | 一进一出好大好爽视频| 777米奇影视久久| 老熟女久久久| 久9热在线精品视频| 精品国产亚洲在线| 视频在线观看一区二区三区| 国产老妇伦熟女老妇高清| 91av网站免费观看| 亚洲午夜理论影院| 国产精品麻豆人妻色哟哟久久| 两性夫妻黄色片| 久热爱精品视频在线9| 亚洲黑人精品在线| 在线 av 中文字幕| 51午夜福利影视在线观看| 咕卡用的链子| 黑丝袜美女国产一区| 啦啦啦在线免费观看视频4| 人妻一区二区av| av天堂久久9| 1024香蕉在线观看| 正在播放国产对白刺激| 国产精品香港三级国产av潘金莲| 狂野欧美激情性xxxx| 97在线人人人人妻| 三级毛片av免费| 亚洲av成人不卡在线观看播放网| 三级毛片av免费| 亚洲全国av大片| 精品熟女少妇八av免费久了| 久久婷婷成人综合色麻豆| 黄片大片在线免费观看| 久久国产精品影院| 亚洲av国产av综合av卡| 手机成人av网站| 国产精品 国内视频| 在线十欧美十亚洲十日本专区| 色94色欧美一区二区| 久久 成人 亚洲| 久久久国产精品麻豆| 丁香六月欧美| 国产一区二区激情短视频| 色视频在线一区二区三区| 欧美变态另类bdsm刘玥| 夫妻午夜视频| 午夜福利乱码中文字幕| 国产成人啪精品午夜网站| 日韩精品免费视频一区二区三区| 熟女少妇亚洲综合色aaa.| 日本欧美视频一区| 一本色道久久久久久精品综合| 自线自在国产av| 菩萨蛮人人尽说江南好唐韦庄| 老熟妇仑乱视频hdxx| 日韩有码中文字幕| 天天躁夜夜躁狠狠躁躁| 视频区图区小说| 久久久久久人人人人人| 视频区图区小说| 日韩制服丝袜自拍偷拍| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av成人不卡在线观看播放网| 国产精品美女特级片免费视频播放器 | av有码第一页| 国产av国产精品国产| 成人免费观看视频高清| 亚洲午夜理论影院| 99精国产麻豆久久婷婷| 国产亚洲精品一区二区www | 精品国产乱码久久久久久男人| 国产在视频线精品| 18禁美女被吸乳视频| 久久久久网色| 色精品久久人妻99蜜桃| 一级黄色大片毛片| 一区二区三区精品91| 丝袜在线中文字幕| 免费在线观看黄色视频的| 嫩草影视91久久| 亚洲人成伊人成综合网2020| 国产日韩欧美亚洲二区| 久久久久国产一级毛片高清牌| 国产主播在线观看一区二区| 亚洲情色 制服丝袜| a级片在线免费高清观看视频| 国产高清国产精品国产三级| 99精品欧美一区二区三区四区| 国产av国产精品国产| 91成年电影在线观看| 亚洲自偷自拍图片 自拍| 69av精品久久久久久 | 91av网站免费观看| 国产精品熟女久久久久浪| 亚洲av欧美aⅴ国产| 建设人人有责人人尽责人人享有的| 香蕉国产在线看| 丝瓜视频免费看黄片| 十分钟在线观看高清视频www| 99re在线观看精品视频| 法律面前人人平等表现在哪些方面| 两个人免费观看高清视频| av天堂久久9| 啦啦啦 在线观看视频| 99久久99久久久精品蜜桃| 国产精品自产拍在线观看55亚洲 | 一区二区三区乱码不卡18|