• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Database-based error analysis of calculation methods for shear capacity of FRP-reinforced concrete beams without web reinforcement

    2023-12-05 07:23:40WangTaoFanXiangqianGaoChangshengQuChiyuLiuJueding

    Wang Tao Fan Xiangqian,2 Gao Changsheng Qu Chiyu Liu Jueding

    (1State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute,Nanjing 210024,China)(2Cooperative Innovation Center for Water Safety and Hydro Science,Hohai University,Nanjing 210098,China)

    Abstract:A comprehensive database consisting of 461 samples was established considering the shear capacity experimental data from the literature.The effects of six factors,namely the concrete compressive strength,beam width,effective depth,shear span-to-depth ratio,reinforcement ratio,and elastic modulus of fiber-reinforced polymer bars,on shear capacity were analyzed.Furthermore,the prediction performance of each calculation method was evaluated.The results revealed inconsistencies among the calculation methods regarding the consideration of the size effect and the shear span-to-depth ratio,with varying degrees of conservatism in their predictions.Strong correlations existed between the factors and the shear capacity.Among the design provisions recommended by different countries,CSA/CAN-S806-2012 exhibited the most accurate prediction,while ACI440.1R-2015 demonstrated the highest level of conservatism,and CNR-DT203-2006 exhibited the lowest safety margin.Regarding the calculation models proposed by scholars,Ahmed-2021 reported the most accurate prediction,Alam-2013 was the most conservative,and Mari-2014 exhibited the lowest safety level.

    Key words:database; fiber-reinforced polymer(FRP) bars; concrete beams without web reinforcement; shearing capacity; calculation method; error analysis

    Corrosion of steel bars leads to cracking and spalling of the concrete cover,resulting in a sharp decline in the durability of the structure.Consequently,this leads to high economic losses and even casualties[1-3].Fiber-reinforced polymer (FRP) bars,with their advantages of lightweight,high strength,and corrosion resistance,can fundamentally address the durability issue caused by the corrosion of steel bars in concrete structures[4-6].Therefore,the use of FRP bars as reinforcing bars in concrete structures has a wide range of applications in practical engineering[7-9].Currently,research on the flexural behavior of FRP-reinforced concrete beams is relatively mature,but the research on their shear performance is limited[10-12].

    The shear capacity of beams with web reinforcement,as specified in widely used design provisions,is primarily composed of two components: concrete action and web reinforcement action[13-15].Therefore,it is crucial to study the shear capacity of FRP-reinforced concrete beams without web reinforcement as a basis for understanding the shear performance of concrete beams[16-18].The shear mechanism of FRP-reinforced concrete beams without web reinforcement is complex and consists of five main components: the shear strength of uncracked concrete in the compression zone,the dowel action of the longitudinal reinforcements,aggregate interlock,residual tensile stresses between the cracks,and arching action provided by struts and ties[19-21].Owing to the complexity of the shear problem,different design provisions and calculation models based on various theories have been proposed,resulting in variations in form and predictive accuracy[22-23].Most of these methods are semitheoretical and semiempirical formulas derived from the statistical analysis of data[24-26].In the case of complex research problems,a larger data sample of the research target provides a better reflection of its actual performance,reducing the margin of error in the statistical analysis[27-28].In recent years,there has been an increase in relevant test data for the shear performance of FRP-reinforced concrete beams without web reinforcement[29-30],which helps to address the scarcity of test data to a certain extent.Consequently,both domestic and international scholars have conducted numerous studies to develop a calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement.These studies consider more comprehensive factors and strive for more accurate predictions by establishing a database with a relatively large sample size[31-34].

    In this study,a database comprising of 461 sets of experimental data was established through the collection and organization of published literature from both domestic and international sources.This database serves as a foundation for the application of artificial intelligence-based prediction methods in the field of FRP-reinforced concrete beams.Through the correlation analysis method,this paper explores the relationship between various factors and shear capacity,thus validating the applicability of the multifactor analysis approach in FRP-reinforced concrete beams without web reinforcement.Considering the database,this research analyzes the errors associated with shear capacity calculation methods based on different design provisions and calculation models.Additionally,it elucidates the influence of size effect and shear span ratio on shear capacity.The findings of this study hold a certain reference value for further research on the calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement.

    1 Experimental Database

    1.1 Database overview

    A shear capacity database consisting of 461 samples was established by collecting and organizing shear test data from 47 published literature sources on FRP-reinforced concrete beams without web reinforcement.The following principles were followed during the specimen collection process:

    1) The specimens were loaded under concentrated conditions.

    2) The specimens featured equal rectangular cross sections.

    3) The specimens were supported using a simple method.

    4) The specimens exhibited shear failure.

    5) The specimens were reinforced with FRP bars.

    Fig.1 illustrates the distribution of different longitudinal bar types in the database,including 285 groups of GFRP specimens,128 groups of CFRP specimens,46 groups of BFRP specimens,and 2 groups of AFRP specimens.

    Fig.1 Proportions of specimens with different longitudinal reinforcement types

    Tab.1 presents the factors influencing the shear capacity in the database,which mainly include the beam width,the effective depth of the beam,the shear span-to-depth ratio,the compressive strength of concrete,the elastic modulus of the FRP bar,and the reinforcement ratio of the FRP bars.Moreover,the table provides their minimum,maximum,and average values.

    Tab.1 Database of shear capacity of FRP-reinforced concrete beams without web reinforcement

    Furthermore,Fig.2 illustrates the specific distribution of the beam width,the effective depth,the shear span-to-depth ratio,the compressive strength of concrete,the elastic modulus of the FRP bar,and the reinforcement ratio of the FRP bars within the database.The following conclusions can be drawn from Fig.2:

    (a)

    1) The data for the beam width in the database are mostly concentrated in the range of 100 to 400 mm.

    2) The data for the effective depth of the beam in the database are mostly concentrated in the range of 100 to 300 mm.

    3) There are relatively few samples with a shear span-to-depth ratio of less than 1 in the database (only three groups).

    4) The compressive strengths of concrete samples in the database are mostly concentrated in the range of 30 to 50 MPa.

    5) There are relatively few FRP bar samples in the database with an elastic modulus of 60 to 105 GPa.

    6) The FRP reinforcement ratios of the samples are mostly concentrated in the range of 0.5% to 1.0%.

    1.2 Parameter conversion principle in database

    During data collection,certain conversions were applied when the original literature only provided the compressive strength of the concrete cube.The compressive strength is obtained as follows[34]:

    f′c=0.85fcu

    (1)

    wherefcuis the compressive strength of the concrete cube,MPa.

    When the elastic modulus of concrete is not provided in the original literature,it is derived as follows[31]:

    (2)

    whereEcis the elastic modulus of concrete,MPa.

    When the tensile strength of concrete is not provided in the original literature,it is derived as follows[13]:

    (3)

    whereftis the tensile strength of concrete,MPa.

    2 Calculation Method of Shear Capacity

    2.1 Shear capacity calculating methods in codes

    2.1.1 CSA/CAN-S806-2012

    Existing research results have demonstrated that the shear capacity calculation method proposed in the CSA/CAN-S806-2012[35]design code considers the factors influencing shear capacity more comprehensively than other widely used design provisions and provides a more accurate prediction[32].The shear capacity calculation method provided by CSA/CAN-S806-2012 is shown as follows:

    (4)

    2.1.2 ACI440.1R-2015

    The ACI440.1R-2015[81]calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement considers the influence of the beam section size,compressive strength of concrete,elastic modulus of FRP bars,and reinforcement ratio of FRP bars.The shear capacity calculation method provided by ACI440.1R-2015 is expressed as follows:

    (5)

    2.1.3 JSCE-1997

    The JSCE-1997[83]calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement considers the influences of beam section size,the axial stiffness of FRP bars,size effect,the compressive strength of concrete,and the elastic modulus of steel bars.The shear capacity calculation method provided by JSCE-1997 is as follows:

    Vc=βdβρfvcdbd

    (6)

    whereEsis the elastic modulus of the steel bar,MPa.

    In Eq.(6),an upper limit value is set for the effect of the compressive strength of concrete,while the influence of the shear span-to-depth ratio is not considered.Additionally,the influence of the elastic modulus of the steel bar is considered.However,the shear resistance of plain concrete is neglected; consequently,the calculated shear capacity provided by Eq.(6) is 0 when the reinforcement ratio of FRP bars is 0.

    2.1.4 AASHTO-LRFD-2017

    The AASHTO-LRFD-2017[84]calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement considers the influences of the beam section size,the FRP reinforcement ratio,the shear span-to-depth ratio,and the compressive strength of concrete.The shear capacity calculation method provided by AASHTO-LRFD-2017 is as follows:

    (7)

    whereAsis the total area of the FRP bar section,mm2.

    According to Eq.(7),a linear correlation exists between the FRP reinforcement ratio and shear capacity.Furthermore,Eq.(7) establishes an upper limit value for shear capacity,addressing the problem of excessively high calculated shear capacity due to large FRP reinforcement ratios.However,the influence of the size effect on shear capacity is not considered in the equation.

    2.1.5 CNR-DT203-2006

    In CNR-DT203-2006[85],the calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement considers the influences of the beam section size,the FRP reinforcement ratio,the elastic modulus of FRP bars,the size effect,and the tensile strength of concrete.The shear capacity calculation method provided by CNR-DT203-2006 is as follows:

    (8)

    τr=0.25ft

    ρf≤0.02

    According to Eq.(8),the influence of the shear span-to-depth ratio on the shear capacity is not considered in this calculation method.Additionally,the tensile strength of concrete is used as a parameter to reflect the relationship between concrete strength and shear capacity in Eq.(8),which is different from the aforementioned design provisions.Eq.(8) depicts a linear correlation between shear capacity and the reinforcement ratio of FRP bars; however,it also sets an upper limit for the reinforcement ratio to prevent excessive shear capacity due to large FRP reinforcement ratios.

    2.1.6 BISE-1999

    The BISE-1999[86]calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement considers the influences of factors such as the beam section size,the compressive strength of concrete,the elastic modulus of FRP bar,the reinforcement ratio of FRP bars,and the size effect.The shear capacity calculation method provided by BISE-1999 is as follows:

    (9)

    The influence of the elastic modulus of the steel bar is also considered in Eq.(9),similar to the shear capacity calculation methods proposed in JSCE-1997 and CNR-DT203-2006.However,Eq.(9) does not consider the influence of the shear span-to-depth ratio on shear capacity or the shear resistance of plain concrete.

    2.1.7 GB 50608—2020

    The calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement proposed in GB 50608—2020[87]is similar to that of ACI440.1R-2015.The main factors considered are the section size of the beam,the tensile strength of concrete,the elastic modulus of FRP bars,and the reinforcement ratio of FRP bars.The calculation method of shear capacity provided by GB 50608—2020 is as follows:

    Vc=0.86ftbc

    (10)

    c=kfEd

    The mechanical properties of concrete are represented by its tensile strength in Eq.(10),similar to the shear capacity calculation method suggested in CNR-DT203-2006.However,Eq.(10) does not consider the impact of the shear span-to-depth ratio and the size effect in the calculation method.Furthermore,it does not address the issue of the calculated shear capacity being 0 when the reinforcement ratio of FRP bars is 0.

    2.2 Modified shear capacity calculation methods

    In recent years,the calculation methods for the shear capacity of FRP-reinforced concrete beams without web reinforcement have garnered significant attention from both domestic and foreign scholars.During the research process,scholars have addressed the limitations of shear capacity calculation methods proposed by various design provisions and have proposed alternative methods that offer more comprehensive considerations and more accurate predictions.

    2.2.1 Ahmed-2021

    The calculation method of shear capacity provided by Ahmed et al.[88]is shown depicted as follows:

    (11)

    2.2.2 Jumaa-2018

    The calculation method of shear capacity provided by Jumaa et al.[25]is as follows:

    (12)

    2.2.3 Baghi-2018

    The calculation method of shear capacity provided by Baghi et al.[89]is as follows:

    (13)

    2.2.4 Frosch-2017

    The calculation method of shear capacity provided by Frosch et al.[90]is as follows:

    (14)

    2.2.5 Mari-2014

    The calculation method of shear capacity provided by Mari et al.[91]is as follows:

    (15)

    2.2.6 Alam-2013

    The calculation method of shear capacity provided by Alam et al.[92]is as follows:

    (16)

    2.2.7 Kara-2011

    The calculation method of shear capacity provided by Kara[93]is as follows:

    (17)

    c0=7.696

    c1=7.254

    c2=7.718

    Statistical analysis revealed that an inconsistency exists among the calculation methods of shear capacity proposed by design provisions from different countries and the models suggested by various scholars regarding the consideration of each influencing factor.The statistical results are presented in Tab.2.The variations in calculation methods primarily involve the inclusion of the shear span-to-depth ratio and the size effect as influencing factors.

    Tab.2 Factors considered in the existing calculation methods

    3 Analysis of Factors Based on the Database

    3.1 Analysis of calculation coefficients

    To further examine the extent to which the shear span-to-depth ratio and the size effect are considered in each calculation method,the calculation coefficients for the shear span-to-depth ratio and the size effect are plotted in Fig.3 and Fig.4,respectively.

    Fig.3 Shear span-to-depth ratio for different formulas

    Fig.4 Size effect for different formulas

    Fig.3 displays the relationships between the shear span-to-depth ratio and its calculation coefficient in various calculation methods: CSA/CAN-S806-2012,AASHTO-LRFD-2017,Ahmed-2021,Jumaa-2018,Alam-2013,and Kara-2011.The contribution of the shear span-to-depth ratio to shear capacity is considerably greater in CSA/CAN-S806-2012 than in the other calculation methods.Furthermore,each method shows insensitivity to shear span-to-depth ratios greater than 2.5 and exhibits substantial variation for ratios less than 1.

    Fig.4 illustrates the relationships between the size effect and its calculation coefficient in different calculation methods,including CSA/CAN-S806-2012,JSCE-1997,CNR-DT203-2006,BISE-1999,Ahmed-2021,Jumaa-2018,and Alam-2013.As observed in Fig.4,CSA/CAN-S806-2012 indicates no size effect for specimens with an effective depth of beam less than 300 mm,while CNR-DT203-2006 suggests no size effect for specimens with an effective beam depth of more them 600 mm.Remarkably,Jumaa-2018 and Alam-2013 feature similar considerations regarding the size effect.

    3.2 Correlation analysis

    To comprehensively analyze the relationship between each factor and shear capacity in the database,correlation analysis was conducted using Pearson distribution,Spearman distribution,and Kendall distribution.The results are represented in the heat map illustrated in Fig.5.The correlation coefficient ranges from-1 to 1,where values closer to 1 indicate a stronger positive correlation,values closer to-1 indicate a stronger negative correlation,and values closer to 0 indicate a weaker correlation.

    (a)

    As shown in Fig.5,all factors exhibit varying degrees of correlation with shear capacity.A strong positive correlation exists between section size and shear capacity.The correlation index between the normalized section size and the normalized shear capacity approaches 0,indicating that the normalization method employed in this study is effective.Additionally,a significant negative correlation exists between the shear span ratio and shear capacity,and this negative correlation is further amplified after normalization.These results demonstrate that the correlation analysis method employed is effective in elucidating the relationships between multiple factors and target parameters.

    4 Error Analyses of Calculation Methods

    The trends of the test values and calculated values for shear capacity are illustrated in Fig.6,with the test values plotted on the ordinate and the calculated values on the abscissa.Data points above the 45° line correspond to conservative calculated results.Conversely,data points below the 45° line correspond to over-estimations of the calculated results of the shear capacity of the beam,potentially leading to an unsafe structure.

    (a)

    Fig.6 reveals that the predictions of ACI 440.1R-2015 in various design standards tend to overestimate the shear capacity,suggesting the need for significant reconsideration and revision of the shear capacity evaluation approach.A similar phenomenon is observed in the calculation method proposed by Frosch-2017.This discrepancy is attributable to the fact that the method was originally developed for long shallow beams and may not accurately capture the behavior of typical deep beams,including arching action.This complex behavior is usually converted into an equivalent system of compression and tension rods by more advanced methods,such as compression and tension rod models.

    To further evaluate the prediction accuracy of each calculation method,an error analysis is performed by calculating the ratio of the calculated value to the test value.The analysis includes calculating the mean (MEAN),standard deviation (SD),coefficient of variation (COV),minimum (MIN),and maximum (MAX) values.A MEAN value close to 1 indicates higher prediction accuracy,and smaller values of SD and COV indicate better prediction effects of the calculation method.Additionally,the proportion of data points where the test value exceeds the calculated value is considered as the conservative valueξ.The statistical results are presented in Tab.3.

    Tab.3 Statistical parameters

    According to the findings from Fig.6 and Tab.3,the CSA/CAN-S806-2012 design provision demonstrates higher prediction accuracy,with a MEAN value of 1.11,an SD value of 0.61,and a COV value of 0.55.Among the design provisions of various countries,ACI440.1R-2015,JSCE-1997,AASHTO-LRFD-2017,BISE-1999,and GB 50608—2020 exhibit more conservative predictions,with conservative proportions exceeding 70%.Specifically,ACI440.1R-2015 exhibits a remarkably high conservative proportion of 96.3%.The prediction effect of the CNR-DT203-2006 design provision tends to be unreliable,with a conservative rate of only 15.0%.Among the calculation models proposed by various scholars,Ahmed-2021 demonstrates the best prediction accuracy for shear capacity,with a MEAN value of 1.11,an SD value of 0.39,and a COV value of 0.35.Frosch-2017 and Alam-2013 exhibit more conservative prediction effects among the calculation models proposed by scholars,with conservative proportions exceeding 90%.Notably,Alam-2013 exhibits an exceptionally high conservative proportion of 98.3%.The prediction result of Mari-2014 tends to be unreliable,with a conservative rate of only 24.5%.

    5 Conclusions

    1) A comprehensive database is established according to experimental data from the literature.The database features a large sample size and encompasses a wide range of factors,making it suitable for studying the shear performance of FRP-reinforced concrete beams without web reinforcement.

    2) The calculation methods based on different design provisions and calculation models vary in their considered factors.Furthermore,some methods do not consider the influence of the shear span-to-depth ratio and the size effect on the shear capacity.The analysis of calculation coefficients reveals that the shear span-to-depth ratio significantly influences the shear capacity in CSA/CAN-S806-2012.Additionally,the analysis of the size effect calculation coefficients shows that Jumaa-2018 and Alam-2013 attribute less significance to the size effect.

    3) The correlation analysis based on Pearson distribution,Superman distribution,and Kendall distribution demonstrates that certain correlations exist between the factors and the shear capacity in the database.Notably,the strongest positive correlation exists between the effective depth of the beam and the shear capacity,while the strongest negative correlation exists between the shear span-to-depth ratio and the shear capacity.

    4) The design provisions proposed by different countries and the calculation models proposed by various scholars exhibit varying levels of conservatism in predicting shear capacity.Moreover,among the various design provisions,CSA/CAN-S806-2012 demonstrates the most accurate prediction,ACI440.1R-2015 is the most conservative,and CNR-DT203-2006 shows the lowest safety level.Among the calculation models proposed by scholars,Ahmed-2021 achieves the most accurate predictions,Alam-2013 is the most conservative,and Mari-2014 exhibits the lowest safety level.

    美女xxoo啪啪120秒动态图| 国产片特级美女逼逼视频| 国产av在哪里看| 一个人看视频在线观看www免费| 精品久久久久久成人av| 亚洲精品影视一区二区三区av| 久久久久久久午夜电影| 亚洲欧美成人综合另类久久久| av福利片在线观看| 波多野结衣巨乳人妻| 国产乱人偷精品视频| 三级国产精品片| 99久国产av精品国产电影| 淫秽高清视频在线观看| 日本wwww免费看| 亚洲精品自拍成人| 91久久精品电影网| 久久鲁丝午夜福利片| 看免费成人av毛片| 精品久久久久久久人妻蜜臀av| 男女那种视频在线观看| 国产精品蜜桃在线观看| 三级国产精品片| 亚洲婷婷狠狠爱综合网| 最近中文字幕高清免费大全6| 久久久久久国产a免费观看| 久久99精品国语久久久| 国内少妇人妻偷人精品xxx网站| 九九爱精品视频在线观看| 能在线免费看毛片的网站| 欧美性猛交╳xxx乱大交人| 亚州av有码| 久久精品人妻少妇| 国产成人aa在线观看| 一级片'在线观看视频| 国产不卡一卡二| 午夜福利高清视频| 亚洲无线观看免费| 十八禁国产超污无遮挡网站| 啦啦啦啦在线视频资源| 高清欧美精品videossex| 激情 狠狠 欧美| 精品一区二区免费观看| 久久99精品国语久久久| 精品国产露脸久久av麻豆 | 国产久久久一区二区三区| 久久久久久久国产电影| 免费黄色在线免费观看| 国产高清有码在线观看视频| 天堂√8在线中文| eeuss影院久久| 日韩人妻高清精品专区| 看免费成人av毛片| 色网站视频免费| 老司机影院毛片| 日韩av在线免费看完整版不卡| 神马国产精品三级电影在线观看| 网址你懂的国产日韩在线| 久久这里有精品视频免费| 亚洲人成网站在线播| 最近的中文字幕免费完整| 美女xxoo啪啪120秒动态图| 777米奇影视久久| 国产三级在线视频| 神马国产精品三级电影在线观看| 高清午夜精品一区二区三区| 天天一区二区日本电影三级| 日韩在线高清观看一区二区三区| 可以在线观看毛片的网站| 高清毛片免费看| 一级av片app| 三级毛片av免费| 在现免费观看毛片| 亚洲高清免费不卡视频| 综合色丁香网| 最近中文字幕高清免费大全6| 亚州av有码| 亚洲av免费在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人中文字幕在线播放| 亚洲乱码一区二区免费版| 亚洲激情五月婷婷啪啪| 欧美精品一区二区大全| 永久网站在线| 纵有疾风起免费观看全集完整版 | 国产黄色免费在线视频| 亚洲av日韩在线播放| 人体艺术视频欧美日本| 免费看光身美女| 特级一级黄色大片| a级一级毛片免费在线观看| 国产大屁股一区二区在线视频| av在线老鸭窝| 日本一本二区三区精品| 日韩欧美国产在线观看| 少妇人妻精品综合一区二区| 欧美日韩国产mv在线观看视频 | 免费观看精品视频网站| 色尼玛亚洲综合影院| 欧美成人精品欧美一级黄| av女优亚洲男人天堂| 日韩亚洲欧美综合| 大香蕉97超碰在线| 亚洲欧美清纯卡通| 18禁在线无遮挡免费观看视频| 国精品久久久久久国模美| 嫩草影院入口| 99九九线精品视频在线观看视频| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品视频女| 男女边摸边吃奶| 国产极品天堂在线| 麻豆久久精品国产亚洲av| 日本免费在线观看一区| 一级毛片黄色毛片免费观看视频| 精品国产一区二区三区久久久樱花 | 又爽又黄a免费视频| 国产人妻一区二区三区在| 熟女人妻精品中文字幕| 国产黄色视频一区二区在线观看| 日本欧美国产在线视频| 国产精品嫩草影院av在线观看| 国产在视频线精品| 国产精品熟女久久久久浪| 久久久色成人| 成人av在线播放网站| 在线免费观看不下载黄p国产| 麻豆乱淫一区二区| 久久精品久久久久久久性| 久久久久久久久久久丰满| 丝瓜视频免费看黄片| 国产色爽女视频免费观看| 在线播放无遮挡| 精品久久久噜噜| 国产欧美日韩精品一区二区| 观看免费一级毛片| 亚洲人成网站在线观看播放| 成人综合一区亚洲| 免费黄色在线免费观看| 国产淫片久久久久久久久| 一级毛片我不卡| 亚洲欧美清纯卡通| 亚洲欧美一区二区三区国产| 亚洲人与动物交配视频| 久久精品久久久久久久性| 国产色爽女视频免费观看| 久久精品国产鲁丝片午夜精品| 又黄又爽又刺激的免费视频.| videos熟女内射| 男女那种视频在线观看| 日韩在线高清观看一区二区三区| 97超碰精品成人国产| 久久鲁丝午夜福利片| 天堂中文最新版在线下载 | 久热久热在线精品观看| 最近最新中文字幕大全电影3| 日韩欧美一区视频在线观看 | 在线a可以看的网站| 两个人的视频大全免费| 精华霜和精华液先用哪个| 国产成人精品婷婷| 国产一区二区亚洲精品在线观看| 99九九线精品视频在线观看视频| 国精品久久久久久国模美| 午夜老司机福利剧场| 简卡轻食公司| 中文字幕免费在线视频6| 国产亚洲av片在线观看秒播厂 | 美女脱内裤让男人舔精品视频| 久久热精品热| 国产一区二区在线观看日韩| 日韩三级伦理在线观看| 狂野欧美激情性xxxx在线观看| 青春草亚洲视频在线观看| 一级二级三级毛片免费看| 午夜亚洲福利在线播放| 最后的刺客免费高清国语| 国产精品一区www在线观看| 久久精品国产亚洲网站| 中文字幕亚洲精品专区| av线在线观看网站| 亚洲在线观看片| 午夜福利视频1000在线观看| 亚洲精品国产av成人精品| 一级毛片我不卡| 丰满少妇做爰视频| 男插女下体视频免费在线播放| 99热这里只有是精品在线观看| 极品教师在线视频| 老女人水多毛片| 啦啦啦韩国在线观看视频| 午夜免费男女啪啪视频观看| 女人久久www免费人成看片| 一级毛片黄色毛片免费观看视频| 久久久午夜欧美精品| 日韩不卡一区二区三区视频在线| 国产精品人妻久久久影院| 国产亚洲最大av| 国产免费视频播放在线视频 | 国产成人a区在线观看| 亚洲在线观看片| 亚洲,欧美,日韩| 成人亚洲欧美一区二区av| 男女边摸边吃奶| 国产精品一及| 深爱激情五月婷婷| 18禁裸乳无遮挡免费网站照片| 少妇人妻精品综合一区二区| 晚上一个人看的免费电影| 国产成人a区在线观看| 国产伦一二天堂av在线观看| 三级男女做爰猛烈吃奶摸视频| 99视频精品全部免费 在线| 三级国产精品欧美在线观看| 国产精品福利在线免费观看| 国产成人91sexporn| 亚洲内射少妇av| 免费观看无遮挡的男女| 午夜福利视频1000在线观看| 免费在线观看成人毛片| 欧美成人午夜免费资源| 国产高清三级在线| 免费观看精品视频网站| 免费大片黄手机在线观看| 你懂的网址亚洲精品在线观看| 亚洲av国产av综合av卡| 天天躁夜夜躁狠狠久久av| 国产不卡一卡二| 丰满乱子伦码专区| 亚洲欧美日韩卡通动漫| 免费在线观看成人毛片| 国产 一区 欧美 日韩| 伊人久久精品亚洲午夜| 永久免费av网站大全| 亚洲精品乱久久久久久| 最近视频中文字幕2019在线8| 成人无遮挡网站| 国产精品伦人一区二区| 亚洲精华国产精华液的使用体验| 91午夜精品亚洲一区二区三区| 日本午夜av视频| 欧美精品国产亚洲| 免费观看无遮挡的男女| 免费在线观看成人毛片| 丝袜喷水一区| 久久久久国产网址| 亚洲精品自拍成人| 在线免费观看的www视频| 男女视频在线观看网站免费| 国产精品美女特级片免费视频播放器| 亚洲天堂国产精品一区在线| 欧美日本视频| 国产午夜福利久久久久久| 久久精品国产自在天天线| 日本爱情动作片www.在线观看| 日韩 亚洲 欧美在线| 欧美高清性xxxxhd video| 亚洲精品一二三| 三级国产精品欧美在线观看| 又大又黄又爽视频免费| 午夜亚洲福利在线播放| 国产精品伦人一区二区| 小蜜桃在线观看免费完整版高清| 人体艺术视频欧美日本| 国产伦精品一区二区三区视频9| 男女国产视频网站| 午夜爱爱视频在线播放| 亚洲图色成人| 精品少妇黑人巨大在线播放| 男的添女的下面高潮视频| 亚洲一级一片aⅴ在线观看| 超碰av人人做人人爽久久| 最近的中文字幕免费完整| 午夜福利视频精品| 免费观看性生交大片5| 国产精品嫩草影院av在线观看| 亚洲精品456在线播放app| 日韩一区二区视频免费看| 老司机影院毛片| 美女大奶头视频| 亚洲欧洲日产国产| 国模一区二区三区四区视频| 青春草国产在线视频| 国产免费又黄又爽又色| 三级经典国产精品| 国产精品福利在线免费观看| 亚洲av成人av| 毛片一级片免费看久久久久| 国产中年淑女户外野战色| 国产精品麻豆人妻色哟哟久久 | 七月丁香在线播放| 国产高清有码在线观看视频| 亚洲美女搞黄在线观看| 国产成人精品一,二区| 99久久九九国产精品国产免费| 久久久午夜欧美精品| 丰满乱子伦码专区| 国产精品嫩草影院av在线观看| 久久久久久久久久久丰满| 色综合色国产| 2021天堂中文幕一二区在线观| 中国国产av一级| 日韩一区二区三区影片| 亚洲国产日韩欧美精品在线观看| 天堂中文最新版在线下载 | 少妇熟女aⅴ在线视频| 人人妻人人澡欧美一区二区| 精品一区二区免费观看| 国产av国产精品国产| 天堂俺去俺来也www色官网 | 亚洲成人av在线免费| 日韩一本色道免费dvd| 丰满人妻一区二区三区视频av| 69av精品久久久久久| 天堂俺去俺来也www色官网 | 免费观看在线日韩| 日韩av免费高清视频| 国产成人a∨麻豆精品| 晚上一个人看的免费电影| 久久亚洲国产成人精品v| 在线观看av片永久免费下载| 欧美精品国产亚洲| 毛片女人毛片| 十八禁国产超污无遮挡网站| av福利片在线观看| 精品国产三级普通话版| 六月丁香七月| 十八禁国产超污无遮挡网站| 亚洲成色77777| 久久精品夜夜夜夜夜久久蜜豆| 国产黄片视频在线免费观看| 麻豆av噜噜一区二区三区| 国产成人freesex在线| 日韩不卡一区二区三区视频在线| 美女内射精品一级片tv| 国产精品蜜桃在线观看| 久久久久久久久久成人| 亚洲熟女精品中文字幕| 久久久精品欧美日韩精品| 亚洲精品中文字幕在线视频 | 韩国av在线不卡| 中国美白少妇内射xxxbb| 国产精品国产三级专区第一集| 麻豆国产97在线/欧美| 国产淫片久久久久久久久| 国产探花在线观看一区二区| 熟女电影av网| 亚洲av.av天堂| 日韩欧美精品免费久久| av线在线观看网站| 免费av不卡在线播放| 亚洲国产av新网站| 国产精品熟女久久久久浪| 午夜精品一区二区三区免费看| 夫妻性生交免费视频一级片| 亚洲自偷自拍三级| 精品一区二区三区视频在线| 成人综合一区亚洲| freevideosex欧美| 一个人免费在线观看电影| 免费看日本二区| 成人高潮视频无遮挡免费网站| 精华霜和精华液先用哪个| 国产免费视频播放在线视频 | 自拍偷自拍亚洲精品老妇| 日韩欧美三级三区| 精品欧美国产一区二区三| 国产免费又黄又爽又色| 成人毛片a级毛片在线播放| 激情 狠狠 欧美| 免费看av在线观看网站| 国产成人一区二区在线| 哪个播放器可以免费观看大片| 一二三四中文在线观看免费高清| 99久久人妻综合| 国产一级毛片七仙女欲春2| 国产精品三级大全| 日韩一区二区三区影片| 欧美人与善性xxx| 欧美bdsm另类| 一区二区三区免费毛片| 精品99又大又爽又粗少妇毛片| 成年版毛片免费区| 最近最新中文字幕免费大全7| 国内精品宾馆在线| av专区在线播放| 自拍偷自拍亚洲精品老妇| 嫩草影院新地址| 蜜桃久久精品国产亚洲av| 欧美日韩一区二区视频在线观看视频在线 | 国产精品国产三级国产专区5o| 国产精品.久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩中字成人| 一区二区三区免费毛片| 成人一区二区视频在线观看| 亚洲av中文av极速乱| 日韩成人av中文字幕在线观看| 精品99又大又爽又粗少妇毛片| 欧美日韩综合久久久久久| 又粗又硬又长又爽又黄的视频| 天堂俺去俺来也www色官网 | 日日啪夜夜撸| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久中文| 黄片wwwwww| 国内精品宾馆在线| 不卡视频在线观看欧美| 最近最新中文字幕免费大全7| 欧美xxxx性猛交bbbb| 成年版毛片免费区| 麻豆国产97在线/欧美| 亚洲av不卡在线观看| 国产成人精品久久久久久| 国产视频首页在线观看| 成人亚洲精品av一区二区| 欧美日韩亚洲高清精品| 免费无遮挡裸体视频| 亚洲国产欧美人成| 午夜福利成人在线免费观看| 午夜福利在线观看免费完整高清在| 丰满乱子伦码专区| 美女高潮的动态| 精品酒店卫生间| 国产精品三级大全| 超碰97精品在线观看| 一个人看的www免费观看视频| 少妇的逼好多水| 国产精品一二三区在线看| 一级毛片黄色毛片免费观看视频| 97在线视频观看| 99久国产av精品| 人体艺术视频欧美日本| 成人漫画全彩无遮挡| 久久久a久久爽久久v久久| 久久99精品国语久久久| 国模一区二区三区四区视频| 小蜜桃在线观看免费完整版高清| 日韩制服骚丝袜av| 国产精品一区www在线观看| 黄色一级大片看看| 青青草视频在线视频观看| 精品久久久噜噜| 国产一区二区三区av在线| 欧美xxxx性猛交bbbb| 人人妻人人看人人澡| 免费播放大片免费观看视频在线观看| 日本一二三区视频观看| 看黄色毛片网站| 日韩精品有码人妻一区| 国产精品嫩草影院av在线观看| 精品少妇黑人巨大在线播放| 777米奇影视久久| 亚洲精品中文字幕在线视频 | 久久久欧美国产精品| 国产成人91sexporn| 久久99热6这里只有精品| av.在线天堂| 午夜亚洲福利在线播放| 免费观看精品视频网站| 免费观看a级毛片全部| 国产亚洲av嫩草精品影院| 国产成人freesex在线| 男女国产视频网站| 一级爰片在线观看| 免费av毛片视频| 特大巨黑吊av在线直播| 纵有疾风起免费观看全集完整版 | 韩国av在线不卡| 你懂的网址亚洲精品在线观看| 午夜亚洲福利在线播放| 免费观看精品视频网站| 免费播放大片免费观看视频在线观看| 欧美xxxx性猛交bbbb| 亚洲成人av在线免费| 欧美一区二区亚洲| 啦啦啦韩国在线观看视频| 草草在线视频免费看| 国产亚洲一区二区精品| 成人毛片60女人毛片免费| 大片免费播放器 马上看| 久久亚洲国产成人精品v| 五月玫瑰六月丁香| 99久久人妻综合| 亚洲欧美日韩无卡精品| 成人性生交大片免费视频hd| 肉色欧美久久久久久久蜜桃 | 一个人免费在线观看电影| 亚洲丝袜综合中文字幕| 色吧在线观看| 亚洲久久久久久中文字幕| 2021天堂中文幕一二区在线观| 成年人午夜在线观看视频 | www.色视频.com| 晚上一个人看的免费电影| 亚洲精品日韩在线中文字幕| 日韩亚洲欧美综合| av福利片在线观看| 久久97久久精品| 国产伦在线观看视频一区| 久久精品综合一区二区三区| 国产探花在线观看一区二区| av免费在线看不卡| 欧美高清性xxxxhd video| av免费观看日本| 99热这里只有是精品在线观看| 精品人妻偷拍中文字幕| 大香蕉97超碰在线| 国产高清不卡午夜福利| 久久97久久精品| 特级一级黄色大片| 搡老乐熟女国产| 日韩一区二区视频免费看| av又黄又爽大尺度在线免费看| 精品人妻一区二区三区麻豆| 最新中文字幕久久久久| 国产精品久久久久久久久免| av播播在线观看一区| 99热全是精品| 男人舔奶头视频| 成人性生交大片免费视频hd| 欧美xxⅹ黑人| 国产在视频线精品| 国产高清不卡午夜福利| 亚洲aⅴ乱码一区二区在线播放| 亚洲在久久综合| 一个人免费在线观看电影| 欧美日本视频| 久久久精品欧美日韩精品| 午夜视频国产福利| 亚洲欧洲日产国产| 大又大粗又爽又黄少妇毛片口| 久久久久久久久大av| 亚洲人成网站在线播| 日本色播在线视频| 久久99热6这里只有精品| 男女啪啪激烈高潮av片| 在现免费观看毛片| 国产有黄有色有爽视频| 欧美成人一区二区免费高清观看| 国产一区二区三区综合在线观看 | 我要看日韩黄色一级片| 午夜免费观看性视频| 亚洲av免费在线观看| 精品人妻一区二区三区麻豆| 热99在线观看视频| 18禁动态无遮挡网站| 黄片wwwwww| 国产v大片淫在线免费观看| av播播在线观看一区| 一级黄片播放器| 亚洲精品自拍成人| 在线免费十八禁| 寂寞人妻少妇视频99o| 禁无遮挡网站| 国产熟女欧美一区二区| 国产精品久久视频播放| 免费无遮挡裸体视频| 美女内射精品一级片tv| 边亲边吃奶的免费视频| 国产精品熟女久久久久浪| 插逼视频在线观看| 一区二区三区乱码不卡18| 国产老妇女一区| 日韩欧美精品免费久久| 夫妻性生交免费视频一级片| 老司机影院成人| 三级经典国产精品| 卡戴珊不雅视频在线播放| 99re6热这里在线精品视频| 综合色丁香网| 久久精品国产亚洲av涩爱| 欧美日韩视频高清一区二区三区二| 日韩成人伦理影院| 亚洲av电影在线观看一区二区三区 | 两个人视频免费观看高清| 久久久久国产网址| 亚洲高清免费不卡视频| 国产午夜福利久久久久久| 麻豆成人午夜福利视频| 中文字幕av成人在线电影| 51国产日韩欧美| 日本与韩国留学比较| 亚洲成人一二三区av| 久久精品久久久久久噜噜老黄| 别揉我奶头 嗯啊视频| 国产成年人精品一区二区| 日韩欧美一区视频在线观看 | 偷拍熟女少妇极品色| 久久久久久久久久成人| 免费观看性生交大片5| 国产黄片美女视频| 能在线免费看毛片的网站| 日本-黄色视频高清免费观看| 麻豆成人午夜福利视频| 久久久亚洲精品成人影院| 国产成人aa在线观看| 国产精品国产三级专区第一集| 麻豆av噜噜一区二区三区| 亚洲国产精品sss在线观看| 国产91av在线免费观看| 99久久精品热视频| 国产综合懂色| 亚洲国产欧美人成| 尾随美女入室| 91久久精品国产一区二区成人| 国产黄片美女视频| 亚洲精品国产av成人精品| 欧美xxⅹ黑人| 国产美女午夜福利| 亚洲精品,欧美精品| 免费看日本二区| 日韩制服骚丝袜av| 天堂网av新在线| 国产精品日韩av在线免费观看|