• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Database-based error analysis of calculation methods for shear capacity of FRP-reinforced concrete beams without web reinforcement

    2023-12-05 07:23:40WangTaoFanXiangqianGaoChangshengQuChiyuLiuJueding

    Wang Tao Fan Xiangqian,2 Gao Changsheng Qu Chiyu Liu Jueding

    (1State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute,Nanjing 210024,China)(2Cooperative Innovation Center for Water Safety and Hydro Science,Hohai University,Nanjing 210098,China)

    Abstract:A comprehensive database consisting of 461 samples was established considering the shear capacity experimental data from the literature.The effects of six factors,namely the concrete compressive strength,beam width,effective depth,shear span-to-depth ratio,reinforcement ratio,and elastic modulus of fiber-reinforced polymer bars,on shear capacity were analyzed.Furthermore,the prediction performance of each calculation method was evaluated.The results revealed inconsistencies among the calculation methods regarding the consideration of the size effect and the shear span-to-depth ratio,with varying degrees of conservatism in their predictions.Strong correlations existed between the factors and the shear capacity.Among the design provisions recommended by different countries,CSA/CAN-S806-2012 exhibited the most accurate prediction,while ACI440.1R-2015 demonstrated the highest level of conservatism,and CNR-DT203-2006 exhibited the lowest safety margin.Regarding the calculation models proposed by scholars,Ahmed-2021 reported the most accurate prediction,Alam-2013 was the most conservative,and Mari-2014 exhibited the lowest safety level.

    Key words:database; fiber-reinforced polymer(FRP) bars; concrete beams without web reinforcement; shearing capacity; calculation method; error analysis

    Corrosion of steel bars leads to cracking and spalling of the concrete cover,resulting in a sharp decline in the durability of the structure.Consequently,this leads to high economic losses and even casualties[1-3].Fiber-reinforced polymer (FRP) bars,with their advantages of lightweight,high strength,and corrosion resistance,can fundamentally address the durability issue caused by the corrosion of steel bars in concrete structures[4-6].Therefore,the use of FRP bars as reinforcing bars in concrete structures has a wide range of applications in practical engineering[7-9].Currently,research on the flexural behavior of FRP-reinforced concrete beams is relatively mature,but the research on their shear performance is limited[10-12].

    The shear capacity of beams with web reinforcement,as specified in widely used design provisions,is primarily composed of two components: concrete action and web reinforcement action[13-15].Therefore,it is crucial to study the shear capacity of FRP-reinforced concrete beams without web reinforcement as a basis for understanding the shear performance of concrete beams[16-18].The shear mechanism of FRP-reinforced concrete beams without web reinforcement is complex and consists of five main components: the shear strength of uncracked concrete in the compression zone,the dowel action of the longitudinal reinforcements,aggregate interlock,residual tensile stresses between the cracks,and arching action provided by struts and ties[19-21].Owing to the complexity of the shear problem,different design provisions and calculation models based on various theories have been proposed,resulting in variations in form and predictive accuracy[22-23].Most of these methods are semitheoretical and semiempirical formulas derived from the statistical analysis of data[24-26].In the case of complex research problems,a larger data sample of the research target provides a better reflection of its actual performance,reducing the margin of error in the statistical analysis[27-28].In recent years,there has been an increase in relevant test data for the shear performance of FRP-reinforced concrete beams without web reinforcement[29-30],which helps to address the scarcity of test data to a certain extent.Consequently,both domestic and international scholars have conducted numerous studies to develop a calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement.These studies consider more comprehensive factors and strive for more accurate predictions by establishing a database with a relatively large sample size[31-34].

    In this study,a database comprising of 461 sets of experimental data was established through the collection and organization of published literature from both domestic and international sources.This database serves as a foundation for the application of artificial intelligence-based prediction methods in the field of FRP-reinforced concrete beams.Through the correlation analysis method,this paper explores the relationship between various factors and shear capacity,thus validating the applicability of the multifactor analysis approach in FRP-reinforced concrete beams without web reinforcement.Considering the database,this research analyzes the errors associated with shear capacity calculation methods based on different design provisions and calculation models.Additionally,it elucidates the influence of size effect and shear span ratio on shear capacity.The findings of this study hold a certain reference value for further research on the calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement.

    1 Experimental Database

    1.1 Database overview

    A shear capacity database consisting of 461 samples was established by collecting and organizing shear test data from 47 published literature sources on FRP-reinforced concrete beams without web reinforcement.The following principles were followed during the specimen collection process:

    1) The specimens were loaded under concentrated conditions.

    2) The specimens featured equal rectangular cross sections.

    3) The specimens were supported using a simple method.

    4) The specimens exhibited shear failure.

    5) The specimens were reinforced with FRP bars.

    Fig.1 illustrates the distribution of different longitudinal bar types in the database,including 285 groups of GFRP specimens,128 groups of CFRP specimens,46 groups of BFRP specimens,and 2 groups of AFRP specimens.

    Fig.1 Proportions of specimens with different longitudinal reinforcement types

    Tab.1 presents the factors influencing the shear capacity in the database,which mainly include the beam width,the effective depth of the beam,the shear span-to-depth ratio,the compressive strength of concrete,the elastic modulus of the FRP bar,and the reinforcement ratio of the FRP bars.Moreover,the table provides their minimum,maximum,and average values.

    Tab.1 Database of shear capacity of FRP-reinforced concrete beams without web reinforcement

    Furthermore,Fig.2 illustrates the specific distribution of the beam width,the effective depth,the shear span-to-depth ratio,the compressive strength of concrete,the elastic modulus of the FRP bar,and the reinforcement ratio of the FRP bars within the database.The following conclusions can be drawn from Fig.2:

    (a)

    1) The data for the beam width in the database are mostly concentrated in the range of 100 to 400 mm.

    2) The data for the effective depth of the beam in the database are mostly concentrated in the range of 100 to 300 mm.

    3) There are relatively few samples with a shear span-to-depth ratio of less than 1 in the database (only three groups).

    4) The compressive strengths of concrete samples in the database are mostly concentrated in the range of 30 to 50 MPa.

    5) There are relatively few FRP bar samples in the database with an elastic modulus of 60 to 105 GPa.

    6) The FRP reinforcement ratios of the samples are mostly concentrated in the range of 0.5% to 1.0%.

    1.2 Parameter conversion principle in database

    During data collection,certain conversions were applied when the original literature only provided the compressive strength of the concrete cube.The compressive strength is obtained as follows[34]:

    f′c=0.85fcu

    (1)

    wherefcuis the compressive strength of the concrete cube,MPa.

    When the elastic modulus of concrete is not provided in the original literature,it is derived as follows[31]:

    (2)

    whereEcis the elastic modulus of concrete,MPa.

    When the tensile strength of concrete is not provided in the original literature,it is derived as follows[13]:

    (3)

    whereftis the tensile strength of concrete,MPa.

    2 Calculation Method of Shear Capacity

    2.1 Shear capacity calculating methods in codes

    2.1.1 CSA/CAN-S806-2012

    Existing research results have demonstrated that the shear capacity calculation method proposed in the CSA/CAN-S806-2012[35]design code considers the factors influencing shear capacity more comprehensively than other widely used design provisions and provides a more accurate prediction[32].The shear capacity calculation method provided by CSA/CAN-S806-2012 is shown as follows:

    (4)

    2.1.2 ACI440.1R-2015

    The ACI440.1R-2015[81]calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement considers the influence of the beam section size,compressive strength of concrete,elastic modulus of FRP bars,and reinforcement ratio of FRP bars.The shear capacity calculation method provided by ACI440.1R-2015 is expressed as follows:

    (5)

    2.1.3 JSCE-1997

    The JSCE-1997[83]calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement considers the influences of beam section size,the axial stiffness of FRP bars,size effect,the compressive strength of concrete,and the elastic modulus of steel bars.The shear capacity calculation method provided by JSCE-1997 is as follows:

    Vc=βdβρfvcdbd

    (6)

    whereEsis the elastic modulus of the steel bar,MPa.

    In Eq.(6),an upper limit value is set for the effect of the compressive strength of concrete,while the influence of the shear span-to-depth ratio is not considered.Additionally,the influence of the elastic modulus of the steel bar is considered.However,the shear resistance of plain concrete is neglected; consequently,the calculated shear capacity provided by Eq.(6) is 0 when the reinforcement ratio of FRP bars is 0.

    2.1.4 AASHTO-LRFD-2017

    The AASHTO-LRFD-2017[84]calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement considers the influences of the beam section size,the FRP reinforcement ratio,the shear span-to-depth ratio,and the compressive strength of concrete.The shear capacity calculation method provided by AASHTO-LRFD-2017 is as follows:

    (7)

    whereAsis the total area of the FRP bar section,mm2.

    According to Eq.(7),a linear correlation exists between the FRP reinforcement ratio and shear capacity.Furthermore,Eq.(7) establishes an upper limit value for shear capacity,addressing the problem of excessively high calculated shear capacity due to large FRP reinforcement ratios.However,the influence of the size effect on shear capacity is not considered in the equation.

    2.1.5 CNR-DT203-2006

    In CNR-DT203-2006[85],the calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement considers the influences of the beam section size,the FRP reinforcement ratio,the elastic modulus of FRP bars,the size effect,and the tensile strength of concrete.The shear capacity calculation method provided by CNR-DT203-2006 is as follows:

    (8)

    τr=0.25ft

    ρf≤0.02

    According to Eq.(8),the influence of the shear span-to-depth ratio on the shear capacity is not considered in this calculation method.Additionally,the tensile strength of concrete is used as a parameter to reflect the relationship between concrete strength and shear capacity in Eq.(8),which is different from the aforementioned design provisions.Eq.(8) depicts a linear correlation between shear capacity and the reinforcement ratio of FRP bars; however,it also sets an upper limit for the reinforcement ratio to prevent excessive shear capacity due to large FRP reinforcement ratios.

    2.1.6 BISE-1999

    The BISE-1999[86]calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement considers the influences of factors such as the beam section size,the compressive strength of concrete,the elastic modulus of FRP bar,the reinforcement ratio of FRP bars,and the size effect.The shear capacity calculation method provided by BISE-1999 is as follows:

    (9)

    The influence of the elastic modulus of the steel bar is also considered in Eq.(9),similar to the shear capacity calculation methods proposed in JSCE-1997 and CNR-DT203-2006.However,Eq.(9) does not consider the influence of the shear span-to-depth ratio on shear capacity or the shear resistance of plain concrete.

    2.1.7 GB 50608—2020

    The calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement proposed in GB 50608—2020[87]is similar to that of ACI440.1R-2015.The main factors considered are the section size of the beam,the tensile strength of concrete,the elastic modulus of FRP bars,and the reinforcement ratio of FRP bars.The calculation method of shear capacity provided by GB 50608—2020 is as follows:

    Vc=0.86ftbc

    (10)

    c=kfEd

    The mechanical properties of concrete are represented by its tensile strength in Eq.(10),similar to the shear capacity calculation method suggested in CNR-DT203-2006.However,Eq.(10) does not consider the impact of the shear span-to-depth ratio and the size effect in the calculation method.Furthermore,it does not address the issue of the calculated shear capacity being 0 when the reinforcement ratio of FRP bars is 0.

    2.2 Modified shear capacity calculation methods

    In recent years,the calculation methods for the shear capacity of FRP-reinforced concrete beams without web reinforcement have garnered significant attention from both domestic and foreign scholars.During the research process,scholars have addressed the limitations of shear capacity calculation methods proposed by various design provisions and have proposed alternative methods that offer more comprehensive considerations and more accurate predictions.

    2.2.1 Ahmed-2021

    The calculation method of shear capacity provided by Ahmed et al.[88]is shown depicted as follows:

    (11)

    2.2.2 Jumaa-2018

    The calculation method of shear capacity provided by Jumaa et al.[25]is as follows:

    (12)

    2.2.3 Baghi-2018

    The calculation method of shear capacity provided by Baghi et al.[89]is as follows:

    (13)

    2.2.4 Frosch-2017

    The calculation method of shear capacity provided by Frosch et al.[90]is as follows:

    (14)

    2.2.5 Mari-2014

    The calculation method of shear capacity provided by Mari et al.[91]is as follows:

    (15)

    2.2.6 Alam-2013

    The calculation method of shear capacity provided by Alam et al.[92]is as follows:

    (16)

    2.2.7 Kara-2011

    The calculation method of shear capacity provided by Kara[93]is as follows:

    (17)

    c0=7.696

    c1=7.254

    c2=7.718

    Statistical analysis revealed that an inconsistency exists among the calculation methods of shear capacity proposed by design provisions from different countries and the models suggested by various scholars regarding the consideration of each influencing factor.The statistical results are presented in Tab.2.The variations in calculation methods primarily involve the inclusion of the shear span-to-depth ratio and the size effect as influencing factors.

    Tab.2 Factors considered in the existing calculation methods

    3 Analysis of Factors Based on the Database

    3.1 Analysis of calculation coefficients

    To further examine the extent to which the shear span-to-depth ratio and the size effect are considered in each calculation method,the calculation coefficients for the shear span-to-depth ratio and the size effect are plotted in Fig.3 and Fig.4,respectively.

    Fig.3 Shear span-to-depth ratio for different formulas

    Fig.4 Size effect for different formulas

    Fig.3 displays the relationships between the shear span-to-depth ratio and its calculation coefficient in various calculation methods: CSA/CAN-S806-2012,AASHTO-LRFD-2017,Ahmed-2021,Jumaa-2018,Alam-2013,and Kara-2011.The contribution of the shear span-to-depth ratio to shear capacity is considerably greater in CSA/CAN-S806-2012 than in the other calculation methods.Furthermore,each method shows insensitivity to shear span-to-depth ratios greater than 2.5 and exhibits substantial variation for ratios less than 1.

    Fig.4 illustrates the relationships between the size effect and its calculation coefficient in different calculation methods,including CSA/CAN-S806-2012,JSCE-1997,CNR-DT203-2006,BISE-1999,Ahmed-2021,Jumaa-2018,and Alam-2013.As observed in Fig.4,CSA/CAN-S806-2012 indicates no size effect for specimens with an effective depth of beam less than 300 mm,while CNR-DT203-2006 suggests no size effect for specimens with an effective beam depth of more them 600 mm.Remarkably,Jumaa-2018 and Alam-2013 feature similar considerations regarding the size effect.

    3.2 Correlation analysis

    To comprehensively analyze the relationship between each factor and shear capacity in the database,correlation analysis was conducted using Pearson distribution,Spearman distribution,and Kendall distribution.The results are represented in the heat map illustrated in Fig.5.The correlation coefficient ranges from-1 to 1,where values closer to 1 indicate a stronger positive correlation,values closer to-1 indicate a stronger negative correlation,and values closer to 0 indicate a weaker correlation.

    (a)

    As shown in Fig.5,all factors exhibit varying degrees of correlation with shear capacity.A strong positive correlation exists between section size and shear capacity.The correlation index between the normalized section size and the normalized shear capacity approaches 0,indicating that the normalization method employed in this study is effective.Additionally,a significant negative correlation exists between the shear span ratio and shear capacity,and this negative correlation is further amplified after normalization.These results demonstrate that the correlation analysis method employed is effective in elucidating the relationships between multiple factors and target parameters.

    4 Error Analyses of Calculation Methods

    The trends of the test values and calculated values for shear capacity are illustrated in Fig.6,with the test values plotted on the ordinate and the calculated values on the abscissa.Data points above the 45° line correspond to conservative calculated results.Conversely,data points below the 45° line correspond to over-estimations of the calculated results of the shear capacity of the beam,potentially leading to an unsafe structure.

    (a)

    Fig.6 reveals that the predictions of ACI 440.1R-2015 in various design standards tend to overestimate the shear capacity,suggesting the need for significant reconsideration and revision of the shear capacity evaluation approach.A similar phenomenon is observed in the calculation method proposed by Frosch-2017.This discrepancy is attributable to the fact that the method was originally developed for long shallow beams and may not accurately capture the behavior of typical deep beams,including arching action.This complex behavior is usually converted into an equivalent system of compression and tension rods by more advanced methods,such as compression and tension rod models.

    To further evaluate the prediction accuracy of each calculation method,an error analysis is performed by calculating the ratio of the calculated value to the test value.The analysis includes calculating the mean (MEAN),standard deviation (SD),coefficient of variation (COV),minimum (MIN),and maximum (MAX) values.A MEAN value close to 1 indicates higher prediction accuracy,and smaller values of SD and COV indicate better prediction effects of the calculation method.Additionally,the proportion of data points where the test value exceeds the calculated value is considered as the conservative valueξ.The statistical results are presented in Tab.3.

    Tab.3 Statistical parameters

    According to the findings from Fig.6 and Tab.3,the CSA/CAN-S806-2012 design provision demonstrates higher prediction accuracy,with a MEAN value of 1.11,an SD value of 0.61,and a COV value of 0.55.Among the design provisions of various countries,ACI440.1R-2015,JSCE-1997,AASHTO-LRFD-2017,BISE-1999,and GB 50608—2020 exhibit more conservative predictions,with conservative proportions exceeding 70%.Specifically,ACI440.1R-2015 exhibits a remarkably high conservative proportion of 96.3%.The prediction effect of the CNR-DT203-2006 design provision tends to be unreliable,with a conservative rate of only 15.0%.Among the calculation models proposed by various scholars,Ahmed-2021 demonstrates the best prediction accuracy for shear capacity,with a MEAN value of 1.11,an SD value of 0.39,and a COV value of 0.35.Frosch-2017 and Alam-2013 exhibit more conservative prediction effects among the calculation models proposed by scholars,with conservative proportions exceeding 90%.Notably,Alam-2013 exhibits an exceptionally high conservative proportion of 98.3%.The prediction result of Mari-2014 tends to be unreliable,with a conservative rate of only 24.5%.

    5 Conclusions

    1) A comprehensive database is established according to experimental data from the literature.The database features a large sample size and encompasses a wide range of factors,making it suitable for studying the shear performance of FRP-reinforced concrete beams without web reinforcement.

    2) The calculation methods based on different design provisions and calculation models vary in their considered factors.Furthermore,some methods do not consider the influence of the shear span-to-depth ratio and the size effect on the shear capacity.The analysis of calculation coefficients reveals that the shear span-to-depth ratio significantly influences the shear capacity in CSA/CAN-S806-2012.Additionally,the analysis of the size effect calculation coefficients shows that Jumaa-2018 and Alam-2013 attribute less significance to the size effect.

    3) The correlation analysis based on Pearson distribution,Superman distribution,and Kendall distribution demonstrates that certain correlations exist between the factors and the shear capacity in the database.Notably,the strongest positive correlation exists between the effective depth of the beam and the shear capacity,while the strongest negative correlation exists between the shear span-to-depth ratio and the shear capacity.

    4) The design provisions proposed by different countries and the calculation models proposed by various scholars exhibit varying levels of conservatism in predicting shear capacity.Moreover,among the various design provisions,CSA/CAN-S806-2012 demonstrates the most accurate prediction,ACI440.1R-2015 is the most conservative,and CNR-DT203-2006 shows the lowest safety level.Among the calculation models proposed by scholars,Ahmed-2021 achieves the most accurate predictions,Alam-2013 is the most conservative,and Mari-2014 exhibits the lowest safety level.

    亚洲黑人精品在线| 亚洲av五月六月丁香网| 波多野结衣高清无吗| 久久精品影院6| 亚洲五月天丁香| 久久草成人影院| 日日夜夜操网爽| 超碰成人久久| 亚洲成人精品中文字幕电影| 亚洲狠狠婷婷综合久久图片| 亚洲色图 男人天堂 中文字幕| 亚洲国产中文字幕在线视频| 99国产精品一区二区三区| 日韩欧美国产一区二区入口| 久久久国产精品麻豆| 成人手机av| 在线播放国产精品三级| 在线观看66精品国产| 亚洲国产看品久久| 男女下面插进去视频免费观看| 成人国语在线视频| 午夜福利影视在线免费观看| 亚洲成人精品中文字幕电影| 免费看美女性在线毛片视频| 久久天躁狠狠躁夜夜2o2o| 天天添夜夜摸| 亚洲精品在线美女| 大型黄色视频在线免费观看| 在线观看www视频免费| 欧美另类亚洲清纯唯美| 91国产中文字幕| 精品无人区乱码1区二区| www.精华液| 一区二区三区国产精品乱码| 变态另类成人亚洲欧美熟女 | 精品久久久久久,| 亚洲伊人色综图| 国产精品影院久久| 激情视频va一区二区三区| av免费在线观看网站| 亚洲中文日韩欧美视频| 9191精品国产免费久久| 丝袜美足系列| 欧美国产精品va在线观看不卡| 在线观看66精品国产| 亚洲 欧美 日韩 在线 免费| 亚洲全国av大片| 日本欧美视频一区| 久久精品国产清高在天天线| 琪琪午夜伦伦电影理论片6080| 免费观看人在逋| 桃红色精品国产亚洲av| 日本一区二区免费在线视频| 亚洲第一欧美日韩一区二区三区| 久久草成人影院| 精品久久久久久成人av| 久久人人爽av亚洲精品天堂| 黄色毛片三级朝国网站| 超碰成人久久| 精品福利观看| 亚洲一区二区三区不卡视频| 国产av精品麻豆| 亚洲精品美女久久av网站| 黄色视频不卡| 69av精品久久久久久| 亚洲色图 男人天堂 中文字幕| 久久久国产成人精品二区| 久久国产精品人妻蜜桃| 热re99久久国产66热| 亚洲一区中文字幕在线| 亚洲一区二区三区色噜噜| 欧美日本亚洲视频在线播放| 在线永久观看黄色视频| 女生性感内裤真人,穿戴方法视频| 国产亚洲精品久久久久5区| 男人操女人黄网站| 成人18禁高潮啪啪吃奶动态图| 九色亚洲精品在线播放| 99热只有精品国产| 欧美日韩一级在线毛片| 精品国产国语对白av| 涩涩av久久男人的天堂| 亚洲av熟女| 法律面前人人平等表现在哪些方面| 欧美精品啪啪一区二区三区| 一进一出好大好爽视频| 一本久久中文字幕| 99精品在免费线老司机午夜| 日韩欧美国产一区二区入口| 狠狠狠狠99中文字幕| 欧美另类亚洲清纯唯美| 一区二区三区激情视频| 欧美日本中文国产一区发布| 国产精品秋霞免费鲁丝片| 亚洲午夜理论影院| 亚洲美女黄片视频| 母亲3免费完整高清在线观看| 国产高清videossex| 女同久久另类99精品国产91| 国产黄a三级三级三级人| 久99久视频精品免费| 热re99久久国产66热| 婷婷精品国产亚洲av在线| 欧美激情高清一区二区三区| 欧美一级毛片孕妇| 久久久久久久久中文| 亚洲精品国产一区二区精华液| 村上凉子中文字幕在线| 男女床上黄色一级片免费看| 99国产综合亚洲精品| 麻豆av在线久日| 美女 人体艺术 gogo| 黄片播放在线免费| 日日夜夜操网爽| 激情在线观看视频在线高清| 亚洲色图av天堂| www日本在线高清视频| 在线视频色国产色| 免费高清视频大片| 日本a在线网址| 免费在线观看亚洲国产| 久久人人爽av亚洲精品天堂| 一级毛片高清免费大全| 欧美精品亚洲一区二区| 精品不卡国产一区二区三区| av中文乱码字幕在线| 久久中文看片网| 黄频高清免费视频| 热99re8久久精品国产| 午夜久久久久精精品| 757午夜福利合集在线观看| 久久性视频一级片| 欧美日韩一级在线毛片| 午夜成年电影在线免费观看| 欧美最黄视频在线播放免费| 欧美精品亚洲一区二区| 大型黄色视频在线免费观看| 美女大奶头视频| 少妇被粗大的猛进出69影院| 国产一区二区三区在线臀色熟女| 91国产中文字幕| √禁漫天堂资源中文www| 自线自在国产av| 999精品在线视频| 日韩成人在线观看一区二区三区| 国产一区二区三区综合在线观看| 这个男人来自地球电影免费观看| 亚洲免费av在线视频| 国产aⅴ精品一区二区三区波| 日韩精品中文字幕看吧| 岛国视频午夜一区免费看| 欧美日韩福利视频一区二区| 免费在线观看视频国产中文字幕亚洲| 国产精品久久久人人做人人爽| 国产熟女午夜一区二区三区| 久久精品亚洲熟妇少妇任你| 亚洲av美国av| 欧美丝袜亚洲另类 | 啦啦啦 在线观看视频| 99久久精品国产亚洲精品| 欧美不卡视频在线免费观看 | 久久国产精品男人的天堂亚洲| 18美女黄网站色大片免费观看| 高潮久久久久久久久久久不卡| 神马国产精品三级电影在线观看 | 午夜福利免费观看在线| 午夜成年电影在线免费观看| 欧美+亚洲+日韩+国产| 日日干狠狠操夜夜爽| 91大片在线观看| 国产欧美日韩一区二区三区在线| 国产午夜精品久久久久久| 久久精品人人爽人人爽视色| 国产亚洲精品一区二区www| 久久久久国产精品人妻aⅴ院| 波多野结衣高清无吗| 欧美日本中文国产一区发布| 午夜福利视频1000在线观看 | 久久欧美精品欧美久久欧美| 欧美激情极品国产一区二区三区| 日本免费a在线| 在线免费观看的www视频| 男女下面插进去视频免费观看| 两性夫妻黄色片| 亚洲精品国产一区二区精华液| 看黄色毛片网站| 12—13女人毛片做爰片一| 欧美黑人欧美精品刺激| 亚洲精品久久国产高清桃花| 美女扒开内裤让男人捅视频| 岛国在线观看网站| 亚洲欧美日韩无卡精品| 国产伦人伦偷精品视频| 成人国语在线视频| 99国产精品一区二区三区| 亚洲国产毛片av蜜桃av| 国产av精品麻豆| 操美女的视频在线观看| 国产熟女xx| 男女午夜视频在线观看| 黄频高清免费视频| 一级毛片女人18水好多| 精品一品国产午夜福利视频| 99精品久久久久人妻精品| www日本在线高清视频| 日本精品一区二区三区蜜桃| 成熟少妇高潮喷水视频| 日韩免费av在线播放| 两个人视频免费观看高清| 级片在线观看| 最好的美女福利视频网| 久久午夜亚洲精品久久| 亚洲av五月六月丁香网| 国产精品自产拍在线观看55亚洲| 久久热在线av| 中文字幕人成人乱码亚洲影| 别揉我奶头~嗯~啊~动态视频| 亚洲国产精品合色在线| 亚洲av电影在线进入| www.熟女人妻精品国产| 波多野结衣av一区二区av| 久久九九热精品免费| 亚洲自偷自拍图片 自拍| 人人妻人人爽人人添夜夜欢视频| 欧美日韩亚洲国产一区二区在线观看| 神马国产精品三级电影在线观看 | 免费在线观看完整版高清| 欧美成狂野欧美在线观看| 最新在线观看一区二区三区| 欧美日韩亚洲综合一区二区三区_| 桃红色精品国产亚洲av| 久久草成人影院| 久久青草综合色| 侵犯人妻中文字幕一二三四区| 窝窝影院91人妻| 日韩免费av在线播放| 国产亚洲精品久久久久5区| 热99re8久久精品国产| 不卡av一区二区三区| 宅男免费午夜| 欧美乱妇无乱码| 在线观看舔阴道视频| 一区二区日韩欧美中文字幕| 别揉我奶头~嗯~啊~动态视频| 国产精品亚洲美女久久久| 免费少妇av软件| 亚洲aⅴ乱码一区二区在线播放 | 久久狼人影院| 母亲3免费完整高清在线观看| 久久久久久久久免费视频了| 一进一出抽搐gif免费好疼| 久久香蕉国产精品| 波多野结衣一区麻豆| 国内精品久久久久精免费| 国产99白浆流出| 亚洲av电影在线进入| 精品久久蜜臀av无| 好看av亚洲va欧美ⅴa在| 97人妻精品一区二区三区麻豆 | 国产高清激情床上av| 电影成人av| 国产精品一区二区免费欧美| 欧美成人午夜精品| 99在线人妻在线中文字幕| 9热在线视频观看99| 在线观看www视频免费| 久久精品影院6| 国内精品久久久久久久电影| 在线十欧美十亚洲十日本专区| 久久久国产欧美日韩av| 日本精品一区二区三区蜜桃| 久久九九热精品免费| 真人做人爱边吃奶动态| 美女午夜性视频免费| 成人亚洲精品一区在线观看| 极品人妻少妇av视频| 美国免费a级毛片| 成人国产一区最新在线观看| 国产精品av久久久久免费| 亚洲avbb在线观看| 日韩国内少妇激情av| 一进一出好大好爽视频| 欧美日韩福利视频一区二区| 91在线观看av| 天天躁夜夜躁狠狠躁躁| 在线免费观看的www视频| 制服诱惑二区| 热re99久久国产66热| 免费少妇av软件| 大香蕉久久成人网| 精品国产乱子伦一区二区三区| 自线自在国产av| 欧美日韩乱码在线| e午夜精品久久久久久久| 中文字幕精品免费在线观看视频| av欧美777| 99精品久久久久人妻精品| 一本大道久久a久久精品| 久久亚洲精品不卡| 午夜精品在线福利| 久久久久久久久免费视频了| 国产一级毛片七仙女欲春2 | 热re99久久国产66热| 波多野结衣高清无吗| 99热只有精品国产| 欧美日韩乱码在线| 国产aⅴ精品一区二区三区波| 免费无遮挡裸体视频| 国产一卡二卡三卡精品| 亚洲成a人片在线一区二区| 成年版毛片免费区| 99热只有精品国产| 18禁黄网站禁片午夜丰满| 国产精品1区2区在线观看.| 美女高潮喷水抽搐中文字幕| 久久这里只有精品19| 免费在线观看视频国产中文字幕亚洲| 午夜福利,免费看| 欧美黄色淫秽网站| 久久香蕉精品热| 欧美激情极品国产一区二区三区| 操美女的视频在线观看| 9热在线视频观看99| 国产精品一区二区三区四区久久 | 中文字幕另类日韩欧美亚洲嫩草| 中文字幕色久视频| 激情在线观看视频在线高清| 嫩草影视91久久| 久久中文字幕人妻熟女| 女人精品久久久久毛片| 国产1区2区3区精品| 国产三级在线视频| 免费搜索国产男女视频| 欧美一级a爱片免费观看看 | 制服诱惑二区| 欧美乱色亚洲激情| 亚洲熟妇中文字幕五十中出| 亚洲男人的天堂狠狠| 12—13女人毛片做爰片一| 成人亚洲精品一区在线观看| 午夜久久久在线观看| 亚洲欧美激情在线| 亚洲无线在线观看| 国产97色在线日韩免费| 国产精品国产高清国产av| 亚洲国产看品久久| 色播亚洲综合网| 国产精品久久电影中文字幕| 亚洲av五月六月丁香网| 国产一区在线观看成人免费| 18美女黄网站色大片免费观看| svipshipincom国产片| 亚洲成人久久性| 变态另类丝袜制服| 麻豆国产av国片精品| 精品高清国产在线一区| 嫩草影视91久久| 成人亚洲精品一区在线观看| 亚洲人成伊人成综合网2020| 久久国产精品人妻蜜桃| 在线观看www视频免费| 岛国视频午夜一区免费看| 国产熟女午夜一区二区三区| 天堂影院成人在线观看| 久久国产精品影院| 午夜福利一区二区在线看| 一区二区三区精品91| 搞女人的毛片| 免费av毛片视频| 国产成人精品无人区| 高潮久久久久久久久久久不卡| 久热爱精品视频在线9| 国产精品一区二区三区四区久久 | 丁香欧美五月| 国产精品九九99| 久久草成人影院| 午夜激情av网站| 美女免费视频网站| 一级作爱视频免费观看| 国产亚洲精品一区二区www| 国产在线观看jvid| 色精品久久人妻99蜜桃| 亚洲精品av麻豆狂野| 波多野结衣高清无吗| 亚洲黑人精品在线| 欧美国产日韩亚洲一区| 亚洲熟女毛片儿| 日韩视频一区二区在线观看| 日韩有码中文字幕| 美国免费a级毛片| 久热这里只有精品99| 一区二区三区国产精品乱码| 变态另类成人亚洲欧美熟女 | 操出白浆在线播放| 97人妻天天添夜夜摸| 亚洲中文av在线| 人妻久久中文字幕网| 国产精品综合久久久久久久免费 | 一本久久中文字幕| 99精品在免费线老司机午夜| 欧美日韩黄片免| 亚洲av电影在线进入| 亚洲精品国产一区二区精华液| 夜夜看夜夜爽夜夜摸| 中文字幕人妻丝袜一区二区| 真人一进一出gif抽搐免费| 一边摸一边抽搐一进一出视频| 91精品三级在线观看| 亚洲精品国产色婷婷电影| 美女午夜性视频免费| e午夜精品久久久久久久| 激情视频va一区二区三区| 国产精品精品国产色婷婷| 99精品在免费线老司机午夜| 人人妻人人爽人人添夜夜欢视频| 日本在线视频免费播放| 成人av一区二区三区在线看| 精品久久久久久久毛片微露脸| 中文字幕色久视频| 欧美日韩精品网址| www.999成人在线观看| e午夜精品久久久久久久| 777久久人妻少妇嫩草av网站| 亚洲精品粉嫩美女一区| 法律面前人人平等表现在哪些方面| 此物有八面人人有两片| 桃红色精品国产亚洲av| 曰老女人黄片| 久久人妻福利社区极品人妻图片| 国产精品电影一区二区三区| 男女做爰动态图高潮gif福利片 | 免费在线观看日本一区| 两个人免费观看高清视频| 少妇的丰满在线观看| 日韩精品青青久久久久久| av天堂在线播放| 久久精品影院6| 国产97色在线日韩免费| 曰老女人黄片| 亚洲,欧美精品.| 一二三四社区在线视频社区8| 19禁男女啪啪无遮挡网站| 免费在线观看黄色视频的| 欧美日韩瑟瑟在线播放| 国产91精品成人一区二区三区| 久久天躁狠狠躁夜夜2o2o| 免费在线观看亚洲国产| 亚洲国产欧美网| 久久婷婷人人爽人人干人人爱 | 国产亚洲精品久久久久5区| 91麻豆av在线| 成年版毛片免费区| 在线免费观看的www视频| 性少妇av在线| 老司机靠b影院| 欧美激情高清一区二区三区| 欧美大码av| 亚洲第一青青草原| 在线国产一区二区在线| 国产成人精品久久二区二区91| 精品少妇一区二区三区视频日本电影| 精品熟女少妇八av免费久了| 亚洲国产精品999在线| 国内久久婷婷六月综合欲色啪| 美女高潮喷水抽搐中文字幕| 亚洲av片天天在线观看| 免费人成视频x8x8入口观看| 精品国产亚洲在线| 97超级碰碰碰精品色视频在线观看| 国产又爽黄色视频| 九色国产91popny在线| 女生性感内裤真人,穿戴方法视频| 一本综合久久免费| www.www免费av| 老熟妇仑乱视频hdxx| 国产97色在线日韩免费| 欧美午夜高清在线| 热re99久久国产66热| 国产成人精品久久二区二区91| 中文亚洲av片在线观看爽| 免费在线观看黄色视频的| 欧美av亚洲av综合av国产av| 国产片内射在线| 啦啦啦 在线观看视频| 又黄又粗又硬又大视频| 久久久久国内视频| 此物有八面人人有两片| www.精华液| 久久精品影院6| 无限看片的www在线观看| 18美女黄网站色大片免费观看| 女人被躁到高潮嗷嗷叫费观| 久久草成人影院| 亚洲第一青青草原| netflix在线观看网站| 亚洲黑人精品在线| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美精品综合久久99| 18禁国产床啪视频网站| netflix在线观看网站| 电影成人av| 纯流量卡能插随身wifi吗| www国产在线视频色| 久久精品国产清高在天天线| 色播在线永久视频| 1024视频免费在线观看| 韩国精品一区二区三区| 日本在线视频免费播放| 色综合站精品国产| 777久久人妻少妇嫩草av网站| 国产熟女午夜一区二区三区| 国产又爽黄色视频| 中文字幕久久专区| 精品免费久久久久久久清纯| 妹子高潮喷水视频| 欧美中文日本在线观看视频| 人人妻人人爽人人添夜夜欢视频| 国产精品亚洲美女久久久| 18禁裸乳无遮挡免费网站照片 | 亚洲欧美日韩无卡精品| 亚洲情色 制服丝袜| 国内毛片毛片毛片毛片毛片| 亚洲欧美日韩另类电影网站| 一进一出抽搐动态| 精品一品国产午夜福利视频| 久久 成人 亚洲| 色播亚洲综合网| ponron亚洲| 成人三级做爰电影| 长腿黑丝高跟| 国产精品国产高清国产av| 久久久国产成人免费| 久久国产精品男人的天堂亚洲| 人人澡人人妻人| 91av网站免费观看| 国产午夜福利久久久久久| 亚洲成国产人片在线观看| 99热只有精品国产| 日韩国内少妇激情av| 国产av又大| 美女免费视频网站| 亚洲色图综合在线观看| 色播亚洲综合网| 男人舔女人的私密视频| 日本三级黄在线观看| 琪琪午夜伦伦电影理论片6080| 国语自产精品视频在线第100页| 一进一出抽搐动态| 国产免费av片在线观看野外av| 丝袜美足系列| 亚洲人成电影观看| 亚洲成人精品中文字幕电影| 国产成人av激情在线播放| 亚洲欧美一区二区三区黑人| 一区二区三区高清视频在线| 人妻久久中文字幕网| 亚洲精品国产精品久久久不卡| 亚洲av五月六月丁香网| 国产成人av教育| 国产av一区二区精品久久| 久久久久久久久中文| 又大又爽又粗| 国产激情欧美一区二区| 人成视频在线观看免费观看| 伊人久久大香线蕉亚洲五| 国产av一区在线观看免费| 国产精品精品国产色婷婷| 日本黄色视频三级网站网址| 亚洲第一欧美日韩一区二区三区| 变态另类丝袜制服| 亚洲精品一卡2卡三卡4卡5卡| 非洲黑人性xxxx精品又粗又长| 欧美午夜高清在线| 一本大道久久a久久精品| 国产av又大| 日韩精品免费视频一区二区三区| 一区二区三区国产精品乱码| 人成视频在线观看免费观看| 黑人巨大精品欧美一区二区蜜桃| 正在播放国产对白刺激| 国产亚洲精品久久久久5区| 每晚都被弄得嗷嗷叫到高潮| 午夜成年电影在线免费观看| 日韩视频一区二区在线观看| 国产99白浆流出| 欧美日韩亚洲国产一区二区在线观看| 视频区欧美日本亚洲| 国产精品亚洲一级av第二区| 国产单亲对白刺激| 国产午夜精品久久久久久| 亚洲专区国产一区二区| 女人被狂操c到高潮| 啦啦啦 在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 两人在一起打扑克的视频| 91精品三级在线观看| 精品福利观看| 女人精品久久久久毛片| 久久精品影院6| 一级a爱视频在线免费观看| 国产区一区二久久| 99在线人妻在线中文字幕| 久久国产精品影院| www国产在线视频色| 国产一区二区激情短视频| 一边摸一边做爽爽视频免费| 性欧美人与动物交配| 国产一区二区激情短视频| 亚洲人成网站在线播放欧美日韩| 精品久久蜜臀av无| 久久精品人人爽人人爽视色| 久久精品91蜜桃| 亚洲精品国产一区二区精华液| 国产精品自产拍在线观看55亚洲| 色哟哟哟哟哟哟|