• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Database-based error analysis of calculation methods for shear capacity of FRP-reinforced concrete beams without web reinforcement

    2023-12-05 07:23:40WangTaoFanXiangqianGaoChangshengQuChiyuLiuJueding

    Wang Tao Fan Xiangqian,2 Gao Changsheng Qu Chiyu Liu Jueding

    (1State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute,Nanjing 210024,China)(2Cooperative Innovation Center for Water Safety and Hydro Science,Hohai University,Nanjing 210098,China)

    Abstract:A comprehensive database consisting of 461 samples was established considering the shear capacity experimental data from the literature.The effects of six factors,namely the concrete compressive strength,beam width,effective depth,shear span-to-depth ratio,reinforcement ratio,and elastic modulus of fiber-reinforced polymer bars,on shear capacity were analyzed.Furthermore,the prediction performance of each calculation method was evaluated.The results revealed inconsistencies among the calculation methods regarding the consideration of the size effect and the shear span-to-depth ratio,with varying degrees of conservatism in their predictions.Strong correlations existed between the factors and the shear capacity.Among the design provisions recommended by different countries,CSA/CAN-S806-2012 exhibited the most accurate prediction,while ACI440.1R-2015 demonstrated the highest level of conservatism,and CNR-DT203-2006 exhibited the lowest safety margin.Regarding the calculation models proposed by scholars,Ahmed-2021 reported the most accurate prediction,Alam-2013 was the most conservative,and Mari-2014 exhibited the lowest safety level.

    Key words:database; fiber-reinforced polymer(FRP) bars; concrete beams without web reinforcement; shearing capacity; calculation method; error analysis

    Corrosion of steel bars leads to cracking and spalling of the concrete cover,resulting in a sharp decline in the durability of the structure.Consequently,this leads to high economic losses and even casualties[1-3].Fiber-reinforced polymer (FRP) bars,with their advantages of lightweight,high strength,and corrosion resistance,can fundamentally address the durability issue caused by the corrosion of steel bars in concrete structures[4-6].Therefore,the use of FRP bars as reinforcing bars in concrete structures has a wide range of applications in practical engineering[7-9].Currently,research on the flexural behavior of FRP-reinforced concrete beams is relatively mature,but the research on their shear performance is limited[10-12].

    The shear capacity of beams with web reinforcement,as specified in widely used design provisions,is primarily composed of two components: concrete action and web reinforcement action[13-15].Therefore,it is crucial to study the shear capacity of FRP-reinforced concrete beams without web reinforcement as a basis for understanding the shear performance of concrete beams[16-18].The shear mechanism of FRP-reinforced concrete beams without web reinforcement is complex and consists of five main components: the shear strength of uncracked concrete in the compression zone,the dowel action of the longitudinal reinforcements,aggregate interlock,residual tensile stresses between the cracks,and arching action provided by struts and ties[19-21].Owing to the complexity of the shear problem,different design provisions and calculation models based on various theories have been proposed,resulting in variations in form and predictive accuracy[22-23].Most of these methods are semitheoretical and semiempirical formulas derived from the statistical analysis of data[24-26].In the case of complex research problems,a larger data sample of the research target provides a better reflection of its actual performance,reducing the margin of error in the statistical analysis[27-28].In recent years,there has been an increase in relevant test data for the shear performance of FRP-reinforced concrete beams without web reinforcement[29-30],which helps to address the scarcity of test data to a certain extent.Consequently,both domestic and international scholars have conducted numerous studies to develop a calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement.These studies consider more comprehensive factors and strive for more accurate predictions by establishing a database with a relatively large sample size[31-34].

    In this study,a database comprising of 461 sets of experimental data was established through the collection and organization of published literature from both domestic and international sources.This database serves as a foundation for the application of artificial intelligence-based prediction methods in the field of FRP-reinforced concrete beams.Through the correlation analysis method,this paper explores the relationship between various factors and shear capacity,thus validating the applicability of the multifactor analysis approach in FRP-reinforced concrete beams without web reinforcement.Considering the database,this research analyzes the errors associated with shear capacity calculation methods based on different design provisions and calculation models.Additionally,it elucidates the influence of size effect and shear span ratio on shear capacity.The findings of this study hold a certain reference value for further research on the calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement.

    1 Experimental Database

    1.1 Database overview

    A shear capacity database consisting of 461 samples was established by collecting and organizing shear test data from 47 published literature sources on FRP-reinforced concrete beams without web reinforcement.The following principles were followed during the specimen collection process:

    1) The specimens were loaded under concentrated conditions.

    2) The specimens featured equal rectangular cross sections.

    3) The specimens were supported using a simple method.

    4) The specimens exhibited shear failure.

    5) The specimens were reinforced with FRP bars.

    Fig.1 illustrates the distribution of different longitudinal bar types in the database,including 285 groups of GFRP specimens,128 groups of CFRP specimens,46 groups of BFRP specimens,and 2 groups of AFRP specimens.

    Fig.1 Proportions of specimens with different longitudinal reinforcement types

    Tab.1 presents the factors influencing the shear capacity in the database,which mainly include the beam width,the effective depth of the beam,the shear span-to-depth ratio,the compressive strength of concrete,the elastic modulus of the FRP bar,and the reinforcement ratio of the FRP bars.Moreover,the table provides their minimum,maximum,and average values.

    Tab.1 Database of shear capacity of FRP-reinforced concrete beams without web reinforcement

    Furthermore,Fig.2 illustrates the specific distribution of the beam width,the effective depth,the shear span-to-depth ratio,the compressive strength of concrete,the elastic modulus of the FRP bar,and the reinforcement ratio of the FRP bars within the database.The following conclusions can be drawn from Fig.2:

    (a)

    1) The data for the beam width in the database are mostly concentrated in the range of 100 to 400 mm.

    2) The data for the effective depth of the beam in the database are mostly concentrated in the range of 100 to 300 mm.

    3) There are relatively few samples with a shear span-to-depth ratio of less than 1 in the database (only three groups).

    4) The compressive strengths of concrete samples in the database are mostly concentrated in the range of 30 to 50 MPa.

    5) There are relatively few FRP bar samples in the database with an elastic modulus of 60 to 105 GPa.

    6) The FRP reinforcement ratios of the samples are mostly concentrated in the range of 0.5% to 1.0%.

    1.2 Parameter conversion principle in database

    During data collection,certain conversions were applied when the original literature only provided the compressive strength of the concrete cube.The compressive strength is obtained as follows[34]:

    f′c=0.85fcu

    (1)

    wherefcuis the compressive strength of the concrete cube,MPa.

    When the elastic modulus of concrete is not provided in the original literature,it is derived as follows[31]:

    (2)

    whereEcis the elastic modulus of concrete,MPa.

    When the tensile strength of concrete is not provided in the original literature,it is derived as follows[13]:

    (3)

    whereftis the tensile strength of concrete,MPa.

    2 Calculation Method of Shear Capacity

    2.1 Shear capacity calculating methods in codes

    2.1.1 CSA/CAN-S806-2012

    Existing research results have demonstrated that the shear capacity calculation method proposed in the CSA/CAN-S806-2012[35]design code considers the factors influencing shear capacity more comprehensively than other widely used design provisions and provides a more accurate prediction[32].The shear capacity calculation method provided by CSA/CAN-S806-2012 is shown as follows:

    (4)

    2.1.2 ACI440.1R-2015

    The ACI440.1R-2015[81]calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement considers the influence of the beam section size,compressive strength of concrete,elastic modulus of FRP bars,and reinforcement ratio of FRP bars.The shear capacity calculation method provided by ACI440.1R-2015 is expressed as follows:

    (5)

    2.1.3 JSCE-1997

    The JSCE-1997[83]calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement considers the influences of beam section size,the axial stiffness of FRP bars,size effect,the compressive strength of concrete,and the elastic modulus of steel bars.The shear capacity calculation method provided by JSCE-1997 is as follows:

    Vc=βdβρfvcdbd

    (6)

    whereEsis the elastic modulus of the steel bar,MPa.

    In Eq.(6),an upper limit value is set for the effect of the compressive strength of concrete,while the influence of the shear span-to-depth ratio is not considered.Additionally,the influence of the elastic modulus of the steel bar is considered.However,the shear resistance of plain concrete is neglected; consequently,the calculated shear capacity provided by Eq.(6) is 0 when the reinforcement ratio of FRP bars is 0.

    2.1.4 AASHTO-LRFD-2017

    The AASHTO-LRFD-2017[84]calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement considers the influences of the beam section size,the FRP reinforcement ratio,the shear span-to-depth ratio,and the compressive strength of concrete.The shear capacity calculation method provided by AASHTO-LRFD-2017 is as follows:

    (7)

    whereAsis the total area of the FRP bar section,mm2.

    According to Eq.(7),a linear correlation exists between the FRP reinforcement ratio and shear capacity.Furthermore,Eq.(7) establishes an upper limit value for shear capacity,addressing the problem of excessively high calculated shear capacity due to large FRP reinforcement ratios.However,the influence of the size effect on shear capacity is not considered in the equation.

    2.1.5 CNR-DT203-2006

    In CNR-DT203-2006[85],the calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement considers the influences of the beam section size,the FRP reinforcement ratio,the elastic modulus of FRP bars,the size effect,and the tensile strength of concrete.The shear capacity calculation method provided by CNR-DT203-2006 is as follows:

    (8)

    τr=0.25ft

    ρf≤0.02

    According to Eq.(8),the influence of the shear span-to-depth ratio on the shear capacity is not considered in this calculation method.Additionally,the tensile strength of concrete is used as a parameter to reflect the relationship between concrete strength and shear capacity in Eq.(8),which is different from the aforementioned design provisions.Eq.(8) depicts a linear correlation between shear capacity and the reinforcement ratio of FRP bars; however,it also sets an upper limit for the reinforcement ratio to prevent excessive shear capacity due to large FRP reinforcement ratios.

    2.1.6 BISE-1999

    The BISE-1999[86]calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement considers the influences of factors such as the beam section size,the compressive strength of concrete,the elastic modulus of FRP bar,the reinforcement ratio of FRP bars,and the size effect.The shear capacity calculation method provided by BISE-1999 is as follows:

    (9)

    The influence of the elastic modulus of the steel bar is also considered in Eq.(9),similar to the shear capacity calculation methods proposed in JSCE-1997 and CNR-DT203-2006.However,Eq.(9) does not consider the influence of the shear span-to-depth ratio on shear capacity or the shear resistance of plain concrete.

    2.1.7 GB 50608—2020

    The calculation method for the shear capacity of FRP-reinforced concrete beams without web reinforcement proposed in GB 50608—2020[87]is similar to that of ACI440.1R-2015.The main factors considered are the section size of the beam,the tensile strength of concrete,the elastic modulus of FRP bars,and the reinforcement ratio of FRP bars.The calculation method of shear capacity provided by GB 50608—2020 is as follows:

    Vc=0.86ftbc

    (10)

    c=kfEd

    The mechanical properties of concrete are represented by its tensile strength in Eq.(10),similar to the shear capacity calculation method suggested in CNR-DT203-2006.However,Eq.(10) does not consider the impact of the shear span-to-depth ratio and the size effect in the calculation method.Furthermore,it does not address the issue of the calculated shear capacity being 0 when the reinforcement ratio of FRP bars is 0.

    2.2 Modified shear capacity calculation methods

    In recent years,the calculation methods for the shear capacity of FRP-reinforced concrete beams without web reinforcement have garnered significant attention from both domestic and foreign scholars.During the research process,scholars have addressed the limitations of shear capacity calculation methods proposed by various design provisions and have proposed alternative methods that offer more comprehensive considerations and more accurate predictions.

    2.2.1 Ahmed-2021

    The calculation method of shear capacity provided by Ahmed et al.[88]is shown depicted as follows:

    (11)

    2.2.2 Jumaa-2018

    The calculation method of shear capacity provided by Jumaa et al.[25]is as follows:

    (12)

    2.2.3 Baghi-2018

    The calculation method of shear capacity provided by Baghi et al.[89]is as follows:

    (13)

    2.2.4 Frosch-2017

    The calculation method of shear capacity provided by Frosch et al.[90]is as follows:

    (14)

    2.2.5 Mari-2014

    The calculation method of shear capacity provided by Mari et al.[91]is as follows:

    (15)

    2.2.6 Alam-2013

    The calculation method of shear capacity provided by Alam et al.[92]is as follows:

    (16)

    2.2.7 Kara-2011

    The calculation method of shear capacity provided by Kara[93]is as follows:

    (17)

    c0=7.696

    c1=7.254

    c2=7.718

    Statistical analysis revealed that an inconsistency exists among the calculation methods of shear capacity proposed by design provisions from different countries and the models suggested by various scholars regarding the consideration of each influencing factor.The statistical results are presented in Tab.2.The variations in calculation methods primarily involve the inclusion of the shear span-to-depth ratio and the size effect as influencing factors.

    Tab.2 Factors considered in the existing calculation methods

    3 Analysis of Factors Based on the Database

    3.1 Analysis of calculation coefficients

    To further examine the extent to which the shear span-to-depth ratio and the size effect are considered in each calculation method,the calculation coefficients for the shear span-to-depth ratio and the size effect are plotted in Fig.3 and Fig.4,respectively.

    Fig.3 Shear span-to-depth ratio for different formulas

    Fig.4 Size effect for different formulas

    Fig.3 displays the relationships between the shear span-to-depth ratio and its calculation coefficient in various calculation methods: CSA/CAN-S806-2012,AASHTO-LRFD-2017,Ahmed-2021,Jumaa-2018,Alam-2013,and Kara-2011.The contribution of the shear span-to-depth ratio to shear capacity is considerably greater in CSA/CAN-S806-2012 than in the other calculation methods.Furthermore,each method shows insensitivity to shear span-to-depth ratios greater than 2.5 and exhibits substantial variation for ratios less than 1.

    Fig.4 illustrates the relationships between the size effect and its calculation coefficient in different calculation methods,including CSA/CAN-S806-2012,JSCE-1997,CNR-DT203-2006,BISE-1999,Ahmed-2021,Jumaa-2018,and Alam-2013.As observed in Fig.4,CSA/CAN-S806-2012 indicates no size effect for specimens with an effective depth of beam less than 300 mm,while CNR-DT203-2006 suggests no size effect for specimens with an effective beam depth of more them 600 mm.Remarkably,Jumaa-2018 and Alam-2013 feature similar considerations regarding the size effect.

    3.2 Correlation analysis

    To comprehensively analyze the relationship between each factor and shear capacity in the database,correlation analysis was conducted using Pearson distribution,Spearman distribution,and Kendall distribution.The results are represented in the heat map illustrated in Fig.5.The correlation coefficient ranges from-1 to 1,where values closer to 1 indicate a stronger positive correlation,values closer to-1 indicate a stronger negative correlation,and values closer to 0 indicate a weaker correlation.

    (a)

    As shown in Fig.5,all factors exhibit varying degrees of correlation with shear capacity.A strong positive correlation exists between section size and shear capacity.The correlation index between the normalized section size and the normalized shear capacity approaches 0,indicating that the normalization method employed in this study is effective.Additionally,a significant negative correlation exists between the shear span ratio and shear capacity,and this negative correlation is further amplified after normalization.These results demonstrate that the correlation analysis method employed is effective in elucidating the relationships between multiple factors and target parameters.

    4 Error Analyses of Calculation Methods

    The trends of the test values and calculated values for shear capacity are illustrated in Fig.6,with the test values plotted on the ordinate and the calculated values on the abscissa.Data points above the 45° line correspond to conservative calculated results.Conversely,data points below the 45° line correspond to over-estimations of the calculated results of the shear capacity of the beam,potentially leading to an unsafe structure.

    (a)

    Fig.6 reveals that the predictions of ACI 440.1R-2015 in various design standards tend to overestimate the shear capacity,suggesting the need for significant reconsideration and revision of the shear capacity evaluation approach.A similar phenomenon is observed in the calculation method proposed by Frosch-2017.This discrepancy is attributable to the fact that the method was originally developed for long shallow beams and may not accurately capture the behavior of typical deep beams,including arching action.This complex behavior is usually converted into an equivalent system of compression and tension rods by more advanced methods,such as compression and tension rod models.

    To further evaluate the prediction accuracy of each calculation method,an error analysis is performed by calculating the ratio of the calculated value to the test value.The analysis includes calculating the mean (MEAN),standard deviation (SD),coefficient of variation (COV),minimum (MIN),and maximum (MAX) values.A MEAN value close to 1 indicates higher prediction accuracy,and smaller values of SD and COV indicate better prediction effects of the calculation method.Additionally,the proportion of data points where the test value exceeds the calculated value is considered as the conservative valueξ.The statistical results are presented in Tab.3.

    Tab.3 Statistical parameters

    According to the findings from Fig.6 and Tab.3,the CSA/CAN-S806-2012 design provision demonstrates higher prediction accuracy,with a MEAN value of 1.11,an SD value of 0.61,and a COV value of 0.55.Among the design provisions of various countries,ACI440.1R-2015,JSCE-1997,AASHTO-LRFD-2017,BISE-1999,and GB 50608—2020 exhibit more conservative predictions,with conservative proportions exceeding 70%.Specifically,ACI440.1R-2015 exhibits a remarkably high conservative proportion of 96.3%.The prediction effect of the CNR-DT203-2006 design provision tends to be unreliable,with a conservative rate of only 15.0%.Among the calculation models proposed by various scholars,Ahmed-2021 demonstrates the best prediction accuracy for shear capacity,with a MEAN value of 1.11,an SD value of 0.39,and a COV value of 0.35.Frosch-2017 and Alam-2013 exhibit more conservative prediction effects among the calculation models proposed by scholars,with conservative proportions exceeding 90%.Notably,Alam-2013 exhibits an exceptionally high conservative proportion of 98.3%.The prediction result of Mari-2014 tends to be unreliable,with a conservative rate of only 24.5%.

    5 Conclusions

    1) A comprehensive database is established according to experimental data from the literature.The database features a large sample size and encompasses a wide range of factors,making it suitable for studying the shear performance of FRP-reinforced concrete beams without web reinforcement.

    2) The calculation methods based on different design provisions and calculation models vary in their considered factors.Furthermore,some methods do not consider the influence of the shear span-to-depth ratio and the size effect on the shear capacity.The analysis of calculation coefficients reveals that the shear span-to-depth ratio significantly influences the shear capacity in CSA/CAN-S806-2012.Additionally,the analysis of the size effect calculation coefficients shows that Jumaa-2018 and Alam-2013 attribute less significance to the size effect.

    3) The correlation analysis based on Pearson distribution,Superman distribution,and Kendall distribution demonstrates that certain correlations exist between the factors and the shear capacity in the database.Notably,the strongest positive correlation exists between the effective depth of the beam and the shear capacity,while the strongest negative correlation exists between the shear span-to-depth ratio and the shear capacity.

    4) The design provisions proposed by different countries and the calculation models proposed by various scholars exhibit varying levels of conservatism in predicting shear capacity.Moreover,among the various design provisions,CSA/CAN-S806-2012 demonstrates the most accurate prediction,ACI440.1R-2015 is the most conservative,and CNR-DT203-2006 shows the lowest safety level.Among the calculation models proposed by scholars,Ahmed-2021 achieves the most accurate predictions,Alam-2013 is the most conservative,and Mari-2014 exhibits the lowest safety level.

    欧美 亚洲 国产 日韩一| 又黄又爽又刺激的免费视频.| 精品一区二区三区视频在线| 国产精品久久久久久av不卡| 丝袜美足系列| 丰满乱子伦码专区| 高清av免费在线| 国产麻豆69| 亚洲成国产人片在线观看| 日日撸夜夜添| 2021少妇久久久久久久久久久| 午夜激情久久久久久久| 欧美日韩精品成人综合77777| 国产黄色视频一区二区在线观看| av在线观看视频网站免费| 国产精品国产av在线观看| 水蜜桃什么品种好| 日本vs欧美在线观看视频| videos熟女内射| 午夜福利影视在线免费观看| 国产日韩一区二区三区精品不卡| 国产麻豆69| 大香蕉久久成人网| av.在线天堂| 免费看光身美女| 肉色欧美久久久久久久蜜桃| 亚洲美女视频黄频| 9191精品国产免费久久| 99久久人妻综合| 蜜桃在线观看..| 欧美xxⅹ黑人| 亚洲综合色网址| 亚洲国产最新在线播放| 国产深夜福利视频在线观看| 欧美激情极品国产一区二区三区 | 秋霞在线观看毛片| 亚洲精华国产精华液的使用体验| 亚洲精品久久久久久婷婷小说| 亚洲成国产人片在线观看| 国产精品久久久久久av不卡| 国产成人欧美| 九草在线视频观看| 婷婷色综合大香蕉| 日日摸夜夜添夜夜爱| 激情视频va一区二区三区| 亚洲欧洲日产国产| 国产av一区二区精品久久| 久久97久久精品| 自拍欧美九色日韩亚洲蝌蚪91| 国产欧美日韩综合在线一区二区| 午夜av观看不卡| 久久99精品国语久久久| 国产福利在线免费观看视频| 你懂的网址亚洲精品在线观看| 精品国产一区二区三区久久久樱花| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | kizo精华| 日本av免费视频播放| 在线观看国产h片| 免费黄网站久久成人精品| 欧美激情国产日韩精品一区| 婷婷色综合大香蕉| videossex国产| 日韩制服丝袜自拍偷拍| 狠狠婷婷综合久久久久久88av| 成人国产麻豆网| 亚洲精品久久午夜乱码| 黄网站色视频无遮挡免费观看| 国产精品国产三级国产专区5o| 在线亚洲精品国产二区图片欧美| 精品少妇黑人巨大在线播放| 精品国产乱码久久久久久小说| 黄色怎么调成土黄色| 天堂俺去俺来也www色官网| 午夜免费观看性视频| 亚洲av日韩在线播放| 亚洲一区二区三区欧美精品| 伊人亚洲综合成人网| 母亲3免费完整高清在线观看 | 久久午夜福利片| 一区二区三区四区激情视频| 男女国产视频网站| 久久ye,这里只有精品| 亚洲成国产人片在线观看| 啦啦啦在线观看免费高清www| 国产成人精品无人区| 日本-黄色视频高清免费观看| 久久久国产精品麻豆| 尾随美女入室| 久久这里有精品视频免费| 狠狠精品人妻久久久久久综合| 久久午夜福利片| 2018国产大陆天天弄谢| 精品国产乱码久久久久久小说| 国产免费福利视频在线观看| 老司机影院毛片| 看免费成人av毛片| 两个人免费观看高清视频| 熟妇人妻不卡中文字幕| 国产爽快片一区二区三区| 国产片特级美女逼逼视频| 黑人高潮一二区| 成人国产麻豆网| 男人操女人黄网站| 国产精品无大码| 街头女战士在线观看网站| 日产精品乱码卡一卡2卡三| 精品人妻偷拍中文字幕| 亚洲一区二区三区欧美精品| 亚洲精品,欧美精品| 91国产中文字幕| 国产一区二区在线观看日韩| 日日撸夜夜添| 亚洲国产精品专区欧美| 人人澡人人妻人| 超碰97精品在线观看| 91精品三级在线观看| 国产 一区精品| 久久久久久久精品精品| 精品亚洲乱码少妇综合久久| 久热这里只有精品99| 亚洲欧美色中文字幕在线| 三级国产精品片| 久久久久国产精品人妻一区二区| 欧美精品亚洲一区二区| 亚洲国产色片| 国产精品国产三级国产专区5o| 亚洲精品456在线播放app| 亚洲美女搞黄在线观看| 精品人妻一区二区三区麻豆| 免费少妇av软件| 亚洲欧美成人精品一区二区| 国产精品.久久久| 最近最新中文字幕大全免费视频 | av线在线观看网站| 欧美精品人与动牲交sv欧美| av在线播放精品| 高清在线视频一区二区三区| 18在线观看网站| 亚洲色图综合在线观看| 国产淫语在线视频| 看非洲黑人一级黄片| 一区二区三区乱码不卡18| 精品国产一区二区三区四区第35| 午夜av观看不卡| 嫩草影院入口| 久久久欧美国产精品| 久久青草综合色| 水蜜桃什么品种好| 亚洲经典国产精华液单| www.熟女人妻精品国产 | 日韩三级伦理在线观看| 国产69精品久久久久777片| 大香蕉久久网| www.熟女人妻精品国产 | 18禁裸乳无遮挡动漫免费视频| 黄色视频在线播放观看不卡| 看十八女毛片水多多多| 欧美少妇被猛烈插入视频| 欧美3d第一页| 男女免费视频国产| 观看美女的网站| 国产乱人偷精品视频| 欧美精品一区二区大全| 免费观看无遮挡的男女| 在线观看免费视频网站a站| 国产精品偷伦视频观看了| 免费观看无遮挡的男女| 国产午夜精品一二区理论片| 国产一区二区在线观看av| 在线 av 中文字幕| 五月开心婷婷网| 爱豆传媒免费全集在线观看| 欧美丝袜亚洲另类| 熟女电影av网| 欧美日韩视频高清一区二区三区二| 久久精品国产a三级三级三级| 在线看a的网站| 久久热在线av| 日本欧美视频一区| 丝袜脚勾引网站| 国产伦理片在线播放av一区| 一本色道久久久久久精品综合| 少妇人妻精品综合一区二区| 人体艺术视频欧美日本| 日韩成人av中文字幕在线观看| 丁香六月天网| 成人黄色视频免费在线看| 国语对白做爰xxxⅹ性视频网站| 免费少妇av软件| 国产一区二区三区av在线| 亚洲综合精品二区| 十八禁网站网址无遮挡| 爱豆传媒免费全集在线观看| 亚洲精品国产av蜜桃| 欧美日韩一区二区视频在线观看视频在线| 久久久久久久精品精品| 精品视频人人做人人爽| av片东京热男人的天堂| 999精品在线视频| 制服丝袜香蕉在线| 国产成人a∨麻豆精品| 成年动漫av网址| 欧美日韩精品成人综合77777| 在现免费观看毛片| 女人久久www免费人成看片| 中文精品一卡2卡3卡4更新| 天堂俺去俺来也www色官网| 国产熟女欧美一区二区| 久久久久久久精品精品| 热99久久久久精品小说推荐| 亚洲美女视频黄频| 国产精品久久久久久精品古装| 香蕉丝袜av| 亚洲国产精品一区三区| 美女中出高潮动态图| 99香蕉大伊视频| 老司机影院成人| 捣出白浆h1v1| 久久ye,这里只有精品| 新久久久久国产一级毛片| 一区二区三区精品91| 欧美日韩国产mv在线观看视频| 一区二区日韩欧美中文字幕 | 亚洲精品中文字幕在线视频| 久久免费观看电影| 天美传媒精品一区二区| 老熟女久久久| 国产午夜精品一二区理论片| 蜜桃国产av成人99| 人体艺术视频欧美日本| 草草在线视频免费看| 美女国产高潮福利片在线看| 又黄又爽又刺激的免费视频.| 亚洲av中文av极速乱| 高清不卡的av网站| 久久人人97超碰香蕉20202| 亚洲久久久国产精品| 精品国产露脸久久av麻豆| 亚洲中文av在线| 欧美精品一区二区大全| 黄色毛片三级朝国网站| 国产在线一区二区三区精| 欧美精品一区二区大全| 观看美女的网站| 欧美3d第一页| 十八禁网站网址无遮挡| 亚洲国产av影院在线观看| 一本大道久久a久久精品| 精品视频人人做人人爽| 丝袜人妻中文字幕| 国产成人av激情在线播放| 午夜精品国产一区二区电影| 老司机影院毛片| xxx大片免费视频| 国产 精品1| 日韩在线高清观看一区二区三区| 国产黄频视频在线观看| 看免费av毛片| 久久精品国产鲁丝片午夜精品| 欧美xxⅹ黑人| 国产精品一区二区在线不卡| 婷婷色av中文字幕| 免费大片黄手机在线观看| 亚洲av成人精品一二三区| 丰满少妇做爰视频| 久久国产精品男人的天堂亚洲 | 久久国产亚洲av麻豆专区| 亚洲国产成人一精品久久久| 波野结衣二区三区在线| 一级毛片 在线播放| 国内精品宾馆在线| 午夜视频国产福利| 黄片无遮挡物在线观看| 午夜福利视频精品| 日本91视频免费播放| 男女免费视频国产| 伦理电影免费视频| 999精品在线视频| 免费av不卡在线播放| 777米奇影视久久| 亚洲精品成人av观看孕妇| 中国美白少妇内射xxxbb| 亚洲色图 男人天堂 中文字幕 | 熟妇人妻不卡中文字幕| 肉色欧美久久久久久久蜜桃| 国产亚洲午夜精品一区二区久久| 国产精品国产三级国产专区5o| 成年人免费黄色播放视频| 精品国产一区二区久久| 夜夜骑夜夜射夜夜干| av电影中文网址| 亚洲国产看品久久| 欧美bdsm另类| 一本大道久久a久久精品| 欧美变态另类bdsm刘玥| 哪个播放器可以免费观看大片| 成人无遮挡网站| 国产淫语在线视频| 国产一区二区三区av在线| 成人无遮挡网站| 午夜免费观看性视频| 69精品国产乱码久久久| 一级毛片我不卡| 国产成人午夜福利电影在线观看| 国产一区二区三区av在线| videossex国产| 在线观看免费视频网站a站| 一级片免费观看大全| 国产综合精华液| 韩国精品一区二区三区 | 男人爽女人下面视频在线观看| 国产不卡av网站在线观看| 久久精品国产自在天天线| 婷婷色综合www| 欧美变态另类bdsm刘玥| 看非洲黑人一级黄片| av不卡在线播放| 日韩精品免费视频一区二区三区 | 99久久综合免费| 成年女人在线观看亚洲视频| 欧美日韩视频精品一区| 亚洲欧美清纯卡通| 国产午夜精品一二区理论片| 日韩不卡一区二区三区视频在线| 在现免费观看毛片| 尾随美女入室| 亚洲国产精品专区欧美| 在线免费观看不下载黄p国产| www.av在线官网国产| 亚洲精品乱码久久久久久按摩| 午夜福利视频在线观看免费| 制服诱惑二区| 国产精品嫩草影院av在线观看| 精品人妻在线不人妻| 亚洲av男天堂| 国产精品国产三级国产专区5o| 国产精品久久久久久久电影| 亚洲欧洲精品一区二区精品久久久 | 赤兔流量卡办理| 婷婷色综合大香蕉| 2021少妇久久久久久久久久久| 午夜免费男女啪啪视频观看| 欧美日韩成人在线一区二区| 一二三四中文在线观看免费高清| 国产一区有黄有色的免费视频| 国产一区二区三区av在线| 国产成人a∨麻豆精品| 高清不卡的av网站| 天天躁夜夜躁狠狠躁躁| 午夜福利在线观看免费完整高清在| 久久影院123| 国产乱来视频区| 久久国产精品大桥未久av| 中文字幕最新亚洲高清| 欧美日韩亚洲高清精品| 视频在线观看一区二区三区| 国产免费一区二区三区四区乱码| 久久久欧美国产精品| 亚洲av成人精品一二三区| 侵犯人妻中文字幕一二三四区| 亚洲成人av在线免费| 国产亚洲最大av| av在线app专区| 欧美日韩成人在线一区二区| 婷婷色综合www| 久久久久精品人妻al黑| 高清av免费在线| 内地一区二区视频在线| 满18在线观看网站| 久久97久久精品| 午夜免费观看性视频| 亚洲美女视频黄频| 亚洲欧美日韩另类电影网站| 久久精品人人爽人人爽视色| 男女国产视频网站| 丁香六月天网| 亚洲熟女精品中文字幕| av女优亚洲男人天堂| 少妇高潮的动态图| 一级毛片电影观看| 日本91视频免费播放| 欧美日韩视频精品一区| a 毛片基地| 欧美最新免费一区二区三区| 久久影院123| 天天影视国产精品| 精品一区二区三区四区五区乱码 | 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91| 青春草视频在线免费观看| 国产国拍精品亚洲av在线观看| 免费人成在线观看视频色| 国产精品免费大片| 国产又色又爽无遮挡免| 综合色丁香网| 精品酒店卫生间| 美女内射精品一级片tv| 日本-黄色视频高清免费观看| 热re99久久国产66热| 久久av网站| 2018国产大陆天天弄谢| 晚上一个人看的免费电影| 你懂的网址亚洲精品在线观看| 国产成人av激情在线播放| 巨乳人妻的诱惑在线观看| 最黄视频免费看| 韩国av在线不卡| 欧美日韩一区二区视频在线观看视频在线| 看免费av毛片| 午夜免费观看性视频| 亚洲成国产人片在线观看| 九九爱精品视频在线观看| 欧美精品一区二区大全| 免费观看无遮挡的男女| 丁香六月天网| 精品久久久久久电影网| 一本久久精品| 亚洲欧美成人精品一区二区| 亚洲精品色激情综合| 欧美国产精品va在线观看不卡| 国产xxxxx性猛交| 菩萨蛮人人尽说江南好唐韦庄| 国产无遮挡羞羞视频在线观看| 国产永久视频网站| 性色avwww在线观看| 亚洲在久久综合| 中国国产av一级| 美女中出高潮动态图| 欧美人与性动交α欧美精品济南到 | av.在线天堂| 国产精品久久久久久av不卡| 欧美人与善性xxx| 多毛熟女@视频| 又黄又爽又刺激的免费视频.| 免费观看a级毛片全部| 久久精品夜色国产| 日本免费在线观看一区| 男男h啪啪无遮挡| 色5月婷婷丁香| 校园人妻丝袜中文字幕| 亚洲第一av免费看| 极品人妻少妇av视频| 黄色 视频免费看| 欧美亚洲 丝袜 人妻 在线| 国产精品嫩草影院av在线观看| 免费女性裸体啪啪无遮挡网站| 嫩草影院入口| 看免费成人av毛片| 黑人欧美特级aaaaaa片| 80岁老熟妇乱子伦牲交| 亚洲av福利一区| 91成人精品电影| 一区二区av电影网| 在线亚洲精品国产二区图片欧美| 国产一区二区三区av在线| 国产 精品1| 制服丝袜香蕉在线| 美国免费a级毛片| 国产成人精品在线电影| 人人妻人人爽人人添夜夜欢视频| 各种免费的搞黄视频| 亚洲伊人色综图| 免费观看a级毛片全部| 天堂俺去俺来也www色官网| 亚洲激情五月婷婷啪啪| 丝袜脚勾引网站| 亚洲av欧美aⅴ国产| 中文乱码字字幕精品一区二区三区| 美女脱内裤让男人舔精品视频| 少妇猛男粗大的猛烈进出视频| 十八禁网站网址无遮挡| 久久人人爽av亚洲精品天堂| 久久久精品免费免费高清| 大片电影免费在线观看免费| 亚洲国产毛片av蜜桃av| 99热网站在线观看| 日韩制服丝袜自拍偷拍| 久久精品国产自在天天线| 婷婷成人精品国产| 中文欧美无线码| 国产无遮挡羞羞视频在线观看| 免费高清在线观看视频在线观看| 亚洲人与动物交配视频| 国产精品 国内视频| 国产免费一区二区三区四区乱码| 亚洲人与动物交配视频| 亚洲av日韩在线播放| 热99国产精品久久久久久7| 国产免费一级a男人的天堂| 欧美性感艳星| 欧美激情极品国产一区二区三区 | 18+在线观看网站| av天堂久久9| 亚洲国产精品999| 国产精品一区二区在线不卡| 国产精品人妻久久久久久| 美女xxoo啪啪120秒动态图| 老女人水多毛片| 又粗又硬又长又爽又黄的视频| 精品人妻在线不人妻| 国产男人的电影天堂91| 国产午夜精品一二区理论片| av天堂久久9| 国产精品人妻久久久久久| 久久人人爽av亚洲精品天堂| 精品少妇黑人巨大在线播放| 91在线精品国自产拍蜜月| 黄色配什么色好看| 精品少妇久久久久久888优播| 性高湖久久久久久久久免费观看| 99九九在线精品视频| 成人午夜精彩视频在线观看| 国产视频首页在线观看| 人妻一区二区av| 午夜免费鲁丝| 老司机影院毛片| 久久久久网色| 91国产中文字幕| 成年av动漫网址| 国产精品国产三级国产av玫瑰| 成年动漫av网址| 国产日韩一区二区三区精品不卡| 欧美日本中文国产一区发布| 国产免费视频播放在线视频| 久久国产精品大桥未久av| 性色avwww在线观看| 一级毛片黄色毛片免费观看视频| 久久精品久久精品一区二区三区| 免费看光身美女| 久久精品国产综合久久久 | 中文乱码字字幕精品一区二区三区| 日韩一本色道免费dvd| 性色av一级| 少妇被粗大猛烈的视频| 三上悠亚av全集在线观看| 国产欧美日韩综合在线一区二区| 精品人妻一区二区三区麻豆| 女人精品久久久久毛片| 免费少妇av软件| 精品久久国产蜜桃| a级片在线免费高清观看视频| 国产高清国产精品国产三级| 欧美老熟妇乱子伦牲交| 成人18禁高潮啪啪吃奶动态图| 国产无遮挡羞羞视频在线观看| 免费在线观看完整版高清| 中国国产av一级| 久久婷婷青草| 一级毛片黄色毛片免费观看视频| 国产片特级美女逼逼视频| 久久久亚洲精品成人影院| 在线免费观看不下载黄p国产| 午夜av观看不卡| 精品亚洲乱码少妇综合久久| 成人国产麻豆网| 国产亚洲av片在线观看秒播厂| 有码 亚洲区| 免费在线观看完整版高清| xxxhd国产人妻xxx| videosex国产| 热re99久久国产66热| 国产男女超爽视频在线观看| 一本大道久久a久久精品| 中文字幕另类日韩欧美亚洲嫩草| 春色校园在线视频观看| 国产熟女欧美一区二区| 欧美日韩av久久| 这个男人来自地球电影免费观看 | 波野结衣二区三区在线| 亚洲欧美清纯卡通| 肉色欧美久久久久久久蜜桃| 五月天丁香电影| 国产永久视频网站| 久久久精品区二区三区| 久久精品久久久久久噜噜老黄| 精品亚洲乱码少妇综合久久| 亚洲国产欧美在线一区| 国产色爽女视频免费观看| 国产激情久久老熟女| 天天影视国产精品| 一级a做视频免费观看| 午夜福利乱码中文字幕| 有码 亚洲区| 欧美老熟妇乱子伦牲交| 日本爱情动作片www.在线观看| www.av在线官网国产| 亚洲成人手机| av.在线天堂| 一二三四在线观看免费中文在 | 久久ye,这里只有精品| 亚洲精品美女久久久久99蜜臀 | 狂野欧美激情性bbbbbb| 免费人妻精品一区二区三区视频| 水蜜桃什么品种好| 观看av在线不卡| 精品人妻一区二区三区麻豆| 国产欧美另类精品又又久久亚洲欧美| 午夜福利乱码中文字幕| 青青草视频在线视频观看| 欧美日韩综合久久久久久| 下体分泌物呈黄色| 成人黄色视频免费在线看| 成年av动漫网址| 国产老妇伦熟女老妇高清| 国产精品偷伦视频观看了| 伊人久久国产一区二区| 日本猛色少妇xxxxx猛交久久| 国产探花极品一区二区| 日韩免费高清中文字幕av| 最新的欧美精品一区二区| 天天躁夜夜躁狠狠躁躁| 一级片'在线观看视频| 捣出白浆h1v1| 欧美国产精品va在线观看不卡|