• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of mineral admixtures on the mechanical property and durability of waste oyster shell mortar

    2023-12-05 07:36:56LiaoYingdiWangXinFengJiaruiMengYantingChenDaDaBo

    Liao Yingdi Wang Xin Feng Jiarui,4 Meng Yanting Chen Da Da Bo

    (1College of Harbour,Coastal and Offshore Engineering,Hohai University,Nanjing 210098,China)(2Key Laboratory of Coastal Disaster and Defence of Ministry of Education,Hohai University,Nanjing 210098,China)(3Yangtze Institute for Conservation and Development,Hohai University,Nanjing 210098,China)(4Nanjing R&D High-Tech Co.Ltd.,Nanjing 210024,China)

    Abstract:To mitigate the environmental pollution caused by aquatic waste,crushed waste oyster shell (WOS) was added as an aggregate to the mortar.The impact of varying dosages (0%,20%,30%,and 40%) of fly ash (FA)/slag powder (SG) and curing periods on the workability,mechanical properties,and durability of the resulting mixtures were investigated.Furthermore,the ecological and economic benefits of WOS mortars were examined.The findings reveal that the compressive strength and static modulus of elasticity in WOS mortar decreased moderately after adding the mineral admixture during the initial curing phase.However,the mechanical properties of WOS mortar improved upon extending the curing period.Additionally,the partial replacement of cement with FA/SG promoted the migration ability of chloride and minimized the drying shrinkage in WOS mortars.In scenarios where engineering application requirements are satisfied,the utilization of WOS mortar could reduce CO2 emissions by 29%.

    Key words:crushed waste oyster shell (WOS) mortar; workability; mechanical property; durability; ecological and economic benefits

    Globally,cementitious material has become a ubiquitous component in construction,with the annual consumption of cement-based materials projected to escalate to approximately 1.8×1010t by 2050[1].Consequently,the pervasive application of these materials can exert a considerable impact on the environment[2].Considering the increasing utilization of cement-based construction,the necessity to develop ecofriendly,affordable,and high-performance alternatives for natural aggregates is imminent for addressing the continual depletion of natural resources and protecting the environment against pollution.The waste oyster shells (WOS) generated in the aquaculture sector,known for their high calcium carbonate content,have created a substantial environmental dilemma owing to their large-scale disposal.Nonetheless,WOS is a promising substitute for natural river sand,attributed to its similar physical and chemical properties[3].

    Numerous studies have explored the application of WOS in mortar or concrete.Mortars comprising 20%crushed WOS fine aggregate possess higher compressive strengths and reduced water absorption than full-river-sand mortar[4].Owing to the filling function of WOS fine aggregate,its integration with fine particles has been recommended within construction materials; these materials demonstrate elevated compressive strength when paired with fine WOS,as opposed to coarse WOS[5].Thus,WOS exhibits substantial potential for the partial replacement of natural river sand.

    Previous research on standard concrete reported that the judicious application of supplementary cementitious materials such as fly ash (FA) or slag powder (SG) for partial cement replacement can enhance the workability of fresh concrete[6],in addition to the strength and durability of hardened concrete.Regrettably,studies investigating the influence of FA and SG as supplementary cementitious materials on the fresh and engineering properties of WOS mortars are scarce.

    This study employed two industrial byproducts (FA and SG) as supplementary cementitious materials for partial cement replacement and formulated WOS mortars with four substitution ratios (0%,20%,30%,and 40%).Initially,we examined the workability of WOS mortars with varying FA and SG replacements.Subsequently,the mechanical properties were assessed,and the durability was ascertained.Finally,the ecological and economic benefits of WOS mortars were analyzed.

    1 Experiment

    1.1 Materials

    This study employed ordinary Portland cement (OPC) according to the standard ASTM C 150.The chemical composition of the OPC was determined in accordance with BS EN 197-1,and its mineral composition is delineated in Tab.1.The specific gravity and surface area of the OPC were measured to be 3.01 g/cm3and 3 520 cm2/g,respectively.The FA and SG were used as supplementary cementitious materials.The FA,in compliance with ASTM C 618,was sourced from a coal-fired power plant,while the SG was supplied by a cast-iron factory in China.The chemical compositions of both FA and SG are presented in Tab.1.

    Tab.1 Chemical and mineral composition of the cementitious materials

    River sand (fineness modulus 1.63,saturated surface-dry water absorption 0.87%,apparent density 2 620 kg/cm3,bulk density 1 540 kg/cm3,and void fraction 41%) derived from China,and crushed WOS (fineness modulus 3.66,saturated surface-dry water absorption 6.84%,apparent density 2 411 kg/cm3,bulk density 1 354 kg/cm3,and void fraction 44%) obtained from the northern coast of China were used as fine aggregates (see Fig.1).In this mixture,a naphthalene-based superplasticizer was used as a water reducer.

    (a)

    1.2 Mixture proportions

    In this study,the content of cementitious materials (cement,FA,and SG) within the mortar was uniformly set at 608 kg/m3,and the water-cement ratio was maintained at 0.45.Furthermore,WOS served as a substitution for 30% of river sand[7-8].During the mortar mixing process,the replacement rates by FA or SG for cement were segmented into four stages: 0%,20%,30%,and 40% (with FA-20 and SG-20 symbolizing mortars containing 20% FA and 20% SG,respectively).The dosage of the water reducer was set at 0.25% of the total cementitious materials.Tab.2 provides a comprehensive outline of the mixed proportions for the mortar specimens.

    Tab.2 Mix proportions of the mortar specimens

    1.3 Testing procedures

    1.3.1 Workability

    Workability assessments of the mortars were conducted according to BS EN 1015-3 to measure the initial slump flow by averaging the diameters of fresh mortar on the flow table in two vertical directions.Subsequent inspection of the slump flow value of the mortar was conducted at intervals of 30,60,90,and 120 min after the initial test.

    When this was over the slaves escorted him to the outer gate, and took leave of him with every mark of esteem73 and politeness, to which it is to be feared he responded but indifferently, since the gate was no sooner opened than he took to his heels, and fled away with all his might, his one idea being to put as much space as possible between himself and the dreary74 place into which he had ventured so rashly, just to consult a tedious Oracle who after all had told him nothing

    1.3.2 Mechanical property

    Considering the mechanical properties,the mortars were analyzed for compressive strength following ASTM C 349 and static modulus of elasticity (E) following ASTM C 469.The mortar samples for compressive strength testing were machined at dimensions of 40 mm×40 mm×160 mm.The value ofEwas gaged using servocontrolled uniaxial testing equipment on mortar cylinders measuringΦ50 mm×100 mm (see Fig.2).The value ofEwas extracted from the slope of the stress-strain curve at 1/3 of the peak stress.

    (a)

    1.3.3 Durability

    The mortar durability was evaluated based on factors such as drying shrinkage (in line with ASTM C 157) and chloride migration coefficient (compliant with NT BUILD 492).The samples designated for drying shrinkage tests comprised separate sections of mortar,each subjected to individual testing.These drying shrinkage tests were conducted across 1,4,7,14,28,56,and 90 d after the initial length measurements of the demolded samples using a length comparator.

    Furthermore,cylinder samples (Φ100 mm×50 mm) prepared for the chloride migration test were positioned within a standard curing box,regulated at a temperature of (20±3)℃ and relative humidity of (95±5)%,and cured until the required age of 28 and 90 d was reached.

    2 Results and Discussion

    2.1 Workability

    The variations in the slump flow of WOS mortars with FA and SG are depicted in Fig.3.The observations confirmed that the incorporation of WOS tends to adversely affect the workability of the mortar.This can be ascribed to the elevated water absorption of crushed WOS under the dry conditions of the saturated surface compared to the river sand.Concurrently,the nonuniform shape of the crushed WOS within the mortar intensified the friction at the aggregate-mortar interface.For WOS mortars,consistent reductions in the slump flow were recorded over time,whereas the initial slump flow ascended in response to the increased substitution ratios of both FA and SG.The peak slump flow values were achieved with a 40% substitution ratio for FA and SG.In contrast,to control mortars,the growth rates of initial slump flow values are approximately 2.75%,5.29%,7.03% for FA and 1.74%,3.22%,5.76% for SG,at substitution ratios of 20%,30%,and 40%,respectively.Laskar et al.[9]interpreted this phenomenon as a result of the spherical shape of FA,which enlarges the mortar’s surface area,diminishes fine aggregate-to-mortar friction,and improves lubrication,thus enhancing mortar liquidity.Zhang et al.[10]posited that the dissolution of OH-ions from cement particles during early hydration imparts an electrical charge to the mortar,producing a flocculation structure and entrapping water.The addition of SG to the surface of cement,along with certain superfine SG particles,disrupts the flocculation structure,liberates the entrapped moisture,fosters a dispersion effect,and consequently improves fluidity.Notably,the fluidity of mortar with FA surpasses that with SG.

    (a)

    2.2 Mechanical property

    2.2.1 Compressive strength

    Fig.4 portrays the variations in the compressive strength of WOS mortars with FA and SG.As observed,the WOS mortars displayed a lower compressive strength than the OPC mortars (without WOS).This may be attributed to the needle-like particle structure of crushed WOS that offers high friction resistance,resulting in small slump and expansion.Moreover,owing to the low strength of the WOS,the WOS mortar displays a lower strength than the OPC mortar.Additionally,the increasing substitution ratios of FA and SG contribute to a decline in the compressive strength of the WOS mortars,specifically at the initial curing stage.For instance,WOS mortars with 40% FA at 28 and 90 d achieved approximately 60% and 83% strength of the control mortars,similar to that in WOS mortars with SG.In contrast,the WOS mortar with 20% FA displayed 32% and 4%,and that with 20% SG exhibited 19% and 3% strength of the WOS mortar at 3 and 90 d,respectively.The data revealed that the strength of WOS mortars with FA and SG accelerates more rapidly than that of WOS mortars without FA and SG,and this disparity in strength decreases as the curing period extends.The constructive impact of SG on compressive strength surpasses that of FA,owing to the slower pozzolanic reaction activities of FA and SG during the early curing phase,thereby relatively decreasing the compressive strength.However,at the later stages,FA and SG react with Ca(OH)2emanating from primary hydration[11-12].Both these trends can be explained based on the delay in the formation of calcium-silicate-hydrate (C-S-H) because the pozzolanic reaction emerges as the major reaction with the increasing replacement of the cement content[13].Consequently,the difference in the compressive strength between the control mortar and the WOS mortar with FA/SG decreased with the curing age.

    (a)

    2.2.2 Static modulus of elasticity

    Fig.5 displays the variation of the static modulus of elasticity of WOS mortars in relation to FA and SG.As observed,the incorporation of WOS marginally decreased theEvalue of the mortar samples.However,this reduction inEfor WOS mortar can be mitigated by extending the curing period,a phenomenon that aligns with the compressive strength,given its inherently low nature.Moreover,the WOS mortars with FA and SG demonstrate a lowerEcompared to the WOS-Control mortar.As FA and SG increased,theEof WOS mortars declined correspondingly.Relative to the WOS-Control mortar,the 90-dEof WOS mortars with FA at 20%,30%,and 40% decreased by 7.69%,10.00%,and 11.54%,respectively,whereas that of WOS mortars with SG at 20%,30%,and 40% decreased by 2.07%,3.64%,and 4.43%,respectively.Notably,under identical conditions,the WOS mortar with FA consistently exhibited a lowerEthan the WOS mortar with SG.These findings suggest that WOS mortars with 20% SG can attain nearly the sameEas the control mortar during the later stages of curing.

    (a)

    2.3 Durability

    2.3.1 Drying shrinkage

    The variations in the drying shrinkage of WOS mortars with FA and SG are presented in Fig.6.The evidence confirms that the integration of WOS improved the drying shrinkage of the mortar samples.This phenomenon may be attributed to the water absorption capacity of the crushed WOS (6.84%),which is considerably higher than that of natural river sand (0.87%),resulting in elevated moisture content within the internal pores of the mortar.Additionally,the reduced hardness of crushed WOS[14]may contribute to the greater drying shrinkage of WOS mortars.At the commencement of curing,the drying shrinkage of WOS mortars across various groups appears remarkably similar.Furthermore,the drying shrinkage proliferates with the progression of curing time,yet the growth rate of drying shrinkage diminishes as curing time extends.

    (a)

    The incorporation of FA and SG serves to curtail the hydration degree of cement,contract the pore volume of WOS mortar,and increase the deformation resistance of WOS mortar.Conversely,the powder functions directly as a microfiller,abating voids and furnishing skeletal support to counteract deformation.Additionally,the hydration and pozzolanic reactions consume substantial amounts of free water,leading to a decrease in evaporative water content,which ultimately diminishes the drying shrinkage.Consequently,by employing FA and SG in suitable proportions,the shrinkage of WOS mortar can be effectively reduced,and the occurrence of shrinkage cracking in WOS mortar can be averted during the hardening process.

    2.3.2 Chloride migration coefficient

    Fig.7 elucidates the variation in the chloride migration coefficient of WOS mortars in association with FA and SG.The findings reveal that the introduction of crushed WOS into the mortar enhances the likelihood of chloride migration.This implies that as the content of WOS is augmented,the resistance to chloride ion penetration correspondingly diminishes.This phenomenon might be attributed to the presence of crushed WOS,which results in an increment in the porosity of the mortar.Moreover,the data demonstrates that the chloride migration coefficient diminishes as the curing time progresses.This reduction can primarily be ascribed to the sufficient hydration reaction,leading to the heightened internal compactness of WOS mortar and an enhanced antierosion capability[15].

    (a)

    Simultaneously,Fig.7 indicates that the optimal FA and SG content rests at 30%,and any further elevation in the substitution ratio yields minimal enhancement of chloride diffusion resistance.This observation underscores the robust efficiency of FA and SG in thwarting chloride migration into the mortar[16].Based on these results,SG is more conducive than FA for reducing the chloride migration coefficient of WOS mortar.

    2.4 Ecological and economic benefits

    Concerning environmental implications,CO2exhibits the most rapid growth rate as the principal greenhouse gas,and its incessant escalation impacts the climatic conditions of the environment.The sustainability of cementitious materials is principally contingent upon the energy consumption and CO2emitted during the manufacturing process.In the present study,the ecological and economic benefits of WOS mortars are assessed by evaluating the energy consumption (Ee) and CO2emission (ECO2),with the values of the raw materials summarized in Tab.3[17-18].Fig.8 depicts the aggregateEeconsumed andECO2released for WOS mortars.As observed,the totalEeandECO2for WOS mortars with FA/SG were remarkably lower in comparison to WOS-Control mortar.This reduction can predominantly be attributed to the substitution of cement with mineral admixtures,which considerably decreases both theEeandECO2of the WOS mortar.Furthermore,WOS mortar with 40% FA emerges as the most ecologically friendly mixture,with theEeandECO2decreasing by approximately 36.61% and 38.61%,respectively,compared to WOS-control mortar.Moreover,WOS mortar with 40% FA emits the least CO2,suggesting that the per unit CO2emissions for FA are less than those for SG.Consequently,when 30% of cement is replaced by FA/SG,CO2emissions can be curtailed by up to 29% (see Fig.8).Therefore,WOS mortar with 30% FA/SG may be regarded as a more ecofriendly alternative.

    Fig.8 Total Ee consumed and ECO2 released of WOS mortar

    Tab.3 Ee and ECO2 for the raw materials

    3 Conclusions

    1) Corresponding to the escalation of FA/SG content,there was an augmentation in the initial slump flow of WOS mortar.This trend signifies that the inclusion of FA/SG considerably enhances the workability of WOS mortars.Consequently,the advised substitution ratio of FA stands at 40%.

    2) In terms of mechanical properties,the WOS mortars with FA/SG were inferior to the control mortars at the 28-d interval.However,concurrent with the increasing curing period,the WOS mortars infused with FA/SG exhibited a more pronounced growth rate for compressive strength.Additionally,the mechanical attributes of the WOS mortar with the SG surpassed those with FA,implying that the recommended substitution ratio for both FA and SG is 30%.

    3) The examination of chloride diffusion resistance reveals that as the FA/SG substitution ratio amplifies,there is an increase in the resistance of WOS mortar to chloride diffusion,coupled with a diminution in drying shrinkage.Simultaneously,SG was found to be more efficacious in augmenting durability than FA.This observation further underscores that a 30% replacement of FA/SG results in a substantial improvement.

    4) Regarding the environmental footprint,the CO2emissions from WOS mortars combined with FA and SG were remarkably less than those of the control mortars.Considering the workability,mechanical properties,and durability of WOS mortars,we can conclude that a 30% FA/SG substitution ratio is an appropriate and advantageous alternative.

    国产爱豆传媒在线观看 | 中文亚洲av片在线观看爽| 在线看三级毛片| 国产精品精品国产色婷婷| 黑丝袜美女国产一区| 亚洲国产高清在线一区二区三 | 在线十欧美十亚洲十日本专区| 亚洲av成人一区二区三| 免费观看精品视频网站| 丝袜美腿诱惑在线| 亚洲欧美一区二区三区黑人| 99在线人妻在线中文字幕| 一a级毛片在线观看| 波多野结衣av一区二区av| 久久国产乱子伦精品免费另类| 此物有八面人人有两片| 欧美一级a爱片免费观看看 | 亚洲av电影不卡..在线观看| 亚洲av电影不卡..在线观看| 精品久久久久久久久久久久久 | 婷婷丁香在线五月| 亚洲精品中文字幕一二三四区| 国产伦人伦偷精品视频| 狠狠狠狠99中文字幕| 90打野战视频偷拍视频| 亚洲人成77777在线视频| 日日干狠狠操夜夜爽| 亚洲黑人精品在线| 久久久久国内视频| 久久中文字幕一级| 搡老熟女国产l中国老女人| 亚洲一区二区三区不卡视频| 精品卡一卡二卡四卡免费| 99国产精品99久久久久| 精品国产国语对白av| 国产伦一二天堂av在线观看| 国产伦在线观看视频一区| 搞女人的毛片| 婷婷精品国产亚洲av| 丝袜在线中文字幕| 在线播放国产精品三级| 正在播放国产对白刺激| 级片在线观看| 精品久久蜜臀av无| 欧美日韩福利视频一区二区| 久久亚洲真实| 国产高清有码在线观看视频 | 日韩精品免费视频一区二区三区| 黄色女人牲交| 久久中文看片网| 天堂√8在线中文| 午夜福利免费观看在线| 亚洲七黄色美女视频| 一个人观看的视频www高清免费观看 | 亚洲真实伦在线观看| 亚洲第一av免费看| 欧美黑人精品巨大| 日韩欧美一区视频在线观看| 日韩欧美一区二区三区在线观看| 亚洲,欧美精品.| 波多野结衣高清作品| 欧美激情极品国产一区二区三区| 女生性感内裤真人,穿戴方法视频| 国产一区二区激情短视频| 国产一区二区激情短视频| 琪琪午夜伦伦电影理论片6080| 国产三级黄色录像| 19禁男女啪啪无遮挡网站| 亚洲中文av在线| 叶爱在线成人免费视频播放| 黄频高清免费视频| 国产精品久久久久久人妻精品电影| 欧美zozozo另类| 国产精品久久久久久人妻精品电影| 欧美成人性av电影在线观看| 麻豆国产av国片精品| 欧美丝袜亚洲另类 | 国产精品电影一区二区三区| 欧美乱码精品一区二区三区| 99久久99久久久精品蜜桃| 无限看片的www在线观看| xxx96com| 久久久国产欧美日韩av| 麻豆av在线久日| 欧洲精品卡2卡3卡4卡5卡区| 亚洲专区国产一区二区| 窝窝影院91人妻| 日日摸夜夜添夜夜添小说| 香蕉久久夜色| 日本成人三级电影网站| 精品福利观看| 亚洲精品在线美女| 999久久久国产精品视频| 色哟哟哟哟哟哟| 午夜福利高清视频| 人人妻人人澡欧美一区二区| 亚洲成人精品中文字幕电影| 国产私拍福利视频在线观看| 亚洲激情在线av| 美女高潮喷水抽搐中文字幕| 国产三级黄色录像| 欧美性猛交╳xxx乱大交人| 大型av网站在线播放| 1024视频免费在线观看| 女警被强在线播放| 精品久久蜜臀av无| 可以在线观看毛片的网站| 国产精品乱码一区二三区的特点| 女同久久另类99精品国产91| 亚洲专区中文字幕在线| 国产主播在线观看一区二区| 久久久久久久久久黄片| 国产精品精品国产色婷婷| 午夜福利在线观看吧| 国产日本99.免费观看| 成熟少妇高潮喷水视频| 精品久久久久久久久久久久久 | 久久婷婷成人综合色麻豆| 亚洲自拍偷在线| 国产91精品成人一区二区三区| 美女高潮到喷水免费观看| 九色国产91popny在线| 一级毛片精品| 久久精品国产综合久久久| 午夜两性在线视频| 亚洲自拍偷在线| 国产成年人精品一区二区| 精品久久久久久久毛片微露脸| 日日干狠狠操夜夜爽| 俺也久久电影网| av福利片在线| 97超级碰碰碰精品色视频在线观看| www.精华液| 91老司机精品| 中文资源天堂在线| 一级a爱视频在线免费观看| 久久精品91蜜桃| 99国产极品粉嫩在线观看| 啦啦啦免费观看视频1| 亚洲成av片中文字幕在线观看| 免费看美女性在线毛片视频| 亚洲国产欧美一区二区综合| 一区二区三区精品91| 精品一区二区三区四区五区乱码| 国产激情久久老熟女| 99精品在免费线老司机午夜| 在线十欧美十亚洲十日本专区| 不卡一级毛片| 亚洲美女黄片视频| 久久天堂一区二区三区四区| 老汉色av国产亚洲站长工具| 免费女性裸体啪啪无遮挡网站| 一本一本综合久久| x7x7x7水蜜桃| 亚洲人成网站高清观看| 中文字幕精品免费在线观看视频| 精品不卡国产一区二区三区| 少妇粗大呻吟视频| 一a级毛片在线观看| 日本精品一区二区三区蜜桃| av在线天堂中文字幕| 视频在线观看一区二区三区| bbb黄色大片| 黄色丝袜av网址大全| 黑人操中国人逼视频| 国语自产精品视频在线第100页| 悠悠久久av| 欧美av亚洲av综合av国产av| 久久精品aⅴ一区二区三区四区| 久久精品影院6| 欧美日韩乱码在线| 成年人黄色毛片网站| 成人三级做爰电影| 丁香六月欧美| 女性被躁到高潮视频| 丝袜在线中文字幕| 久久狼人影院| 国内毛片毛片毛片毛片毛片| a级毛片在线看网站| 成年免费大片在线观看| 亚洲第一电影网av| 精品高清国产在线一区| 免费无遮挡裸体视频| 嫩草影视91久久| 国产私拍福利视频在线观看| 91av网站免费观看| 国产欧美日韩一区二区精品| 熟女少妇亚洲综合色aaa.| 亚洲av成人一区二区三| 亚洲成人免费电影在线观看| 男女午夜视频在线观看| 欧美黄色片欧美黄色片| 亚洲一码二码三码区别大吗| 午夜激情福利司机影院| aaaaa片日本免费| 国产av一区在线观看免费| 老司机深夜福利视频在线观看| 久久久久久九九精品二区国产 | 亚洲国产毛片av蜜桃av| 国产91精品成人一区二区三区| 国产亚洲精品久久久久5区| 中文字幕人妻熟女乱码| 午夜成年电影在线免费观看| www日本在线高清视频| 好男人电影高清在线观看| 日韩欧美三级三区| 夜夜爽天天搞| 日韩一卡2卡3卡4卡2021年| 精品第一国产精品| 麻豆成人av在线观看| 18禁观看日本| 欧美午夜高清在线| 亚洲av熟女| 欧美黄色淫秽网站| 看片在线看免费视频| 日韩中文字幕欧美一区二区| 国产高清激情床上av| 国内揄拍国产精品人妻在线 | 久久久久久亚洲精品国产蜜桃av| 黄色a级毛片大全视频| 欧美日韩精品网址| 国内揄拍国产精品人妻在线 | 一卡2卡三卡四卡精品乱码亚洲| 99久久99久久久精品蜜桃| 国产精品久久久久久亚洲av鲁大| 久久香蕉国产精品| 欧美乱妇无乱码| 亚洲人成网站高清观看| 日本黄色视频三级网站网址| 欧美午夜高清在线| 欧美黑人巨大hd| 欧洲精品卡2卡3卡4卡5卡区| 欧美性长视频在线观看| 久久久国产欧美日韩av| 免费在线观看影片大全网站| 午夜a级毛片| 欧美日韩乱码在线| 欧美一级毛片孕妇| 超碰成人久久| 色哟哟哟哟哟哟| 国产三级黄色录像| 午夜精品久久久久久毛片777| 高潮久久久久久久久久久不卡| 99久久久亚洲精品蜜臀av| 国产91精品成人一区二区三区| 人成视频在线观看免费观看| 亚洲一区高清亚洲精品| 看片在线看免费视频| 精品一区二区三区视频在线观看免费| 欧美黑人精品巨大| 99国产精品一区二区蜜桃av| 人妻久久中文字幕网| 久久久久免费精品人妻一区二区 | 国产一区二区激情短视频| 制服诱惑二区| 黄片播放在线免费| 国产精品99久久99久久久不卡| 日韩成人在线观看一区二区三区| 露出奶头的视频| 日韩一卡2卡3卡4卡2021年| 怎么达到女性高潮| 国产成人欧美| 在线免费观看的www视频| 老鸭窝网址在线观看| 欧美中文日本在线观看视频| 美国免费a级毛片| 天天躁狠狠躁夜夜躁狠狠躁| av在线天堂中文字幕| 99久久精品国产亚洲精品| 一级毛片高清免费大全| 成人av一区二区三区在线看| 亚洲精品美女久久久久99蜜臀| 日韩av在线大香蕉| 少妇的丰满在线观看| 一本大道久久a久久精品| 91成人精品电影| 满18在线观看网站| 亚洲男人的天堂狠狠| 国产黄片美女视频| 午夜福利欧美成人| 在线观看午夜福利视频| 成人18禁在线播放| 麻豆成人av在线观看| 免费电影在线观看免费观看| 色精品久久人妻99蜜桃| 人妻久久中文字幕网| 激情在线观看视频在线高清| 国产精品久久久av美女十八| 亚洲av第一区精品v没综合| 久久久久国产一级毛片高清牌| 成人精品一区二区免费| 一区二区三区高清视频在线| 欧美黄色片欧美黄色片| 成人手机av| 精品一区二区三区av网在线观看| 亚洲中文字幕一区二区三区有码在线看 | 欧美zozozo另类| 制服人妻中文乱码| 老司机靠b影院| 亚洲中文av在线| 欧美色欧美亚洲另类二区| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品一区av在线观看| 欧美日韩乱码在线| 国产v大片淫在线免费观看| 不卡av一区二区三区| 国产欧美日韩一区二区三| 在线观看午夜福利视频| 亚洲人成网站高清观看| 亚洲成人久久性| 听说在线观看完整版免费高清| 一级作爱视频免费观看| 看黄色毛片网站| 亚洲成人久久性| 国产亚洲欧美在线一区二区| 国产成人av教育| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美一区视频在线观看| 青草久久国产| 夜夜躁狠狠躁天天躁| 午夜福利高清视频| 丝袜美腿诱惑在线| 国产成人啪精品午夜网站| 侵犯人妻中文字幕一二三四区| 在线免费观看的www视频| 三级毛片av免费| 岛国在线观看网站| 精品乱码久久久久久99久播| 中文字幕人妻熟女乱码| 国产亚洲精品av在线| av欧美777| 两性夫妻黄色片| 精品国产国语对白av| www日本黄色视频网| 欧美成人一区二区免费高清观看 | 国产在线观看jvid| 满18在线观看网站| 我的亚洲天堂| 午夜免费成人在线视频| 男女视频在线观看网站免费 | 丁香六月欧美| 日韩 欧美 亚洲 中文字幕| 在线观看午夜福利视频| 高潮久久久久久久久久久不卡| 天天躁夜夜躁狠狠躁躁| 99国产精品一区二区蜜桃av| 熟女少妇亚洲综合色aaa.| 久久香蕉精品热| 亚洲精品粉嫩美女一区| 国产成人欧美在线观看| 国产精品一区二区精品视频观看| www.999成人在线观看| 国产97色在线日韩免费| 一级a爱视频在线免费观看| 日本精品一区二区三区蜜桃| 三级毛片av免费| 日韩精品中文字幕看吧| 一区福利在线观看| 男人操女人黄网站| 香蕉久久夜色| 宅男免费午夜| 久久这里只有精品19| 女性被躁到高潮视频| 91麻豆精品激情在线观看国产| 午夜福利一区二区在线看| 麻豆av在线久日| 看片在线看免费视频| 男女下面进入的视频免费午夜 | 国内精品久久久久精免费| 久久久国产欧美日韩av| 麻豆av在线久日| 国产精品一区二区免费欧美| 亚洲 国产 在线| 亚洲aⅴ乱码一区二区在线播放 | 精品国内亚洲2022精品成人| 2021天堂中文幕一二区在线观 | 老司机在亚洲福利影院| 久久久水蜜桃国产精品网| 91麻豆av在线| 亚洲 欧美 日韩 在线 免费| 淫秽高清视频在线观看| 久久草成人影院| 国产午夜福利久久久久久| 俄罗斯特黄特色一大片| 午夜福利成人在线免费观看| 久久精品91蜜桃| 日韩欧美免费精品| 午夜久久久久精精品| 亚洲精品在线观看二区| 色精品久久人妻99蜜桃| 我的亚洲天堂| 女人高潮潮喷娇喘18禁视频| a级毛片在线看网站| 日日夜夜操网爽| 久热这里只有精品99| 欧美日韩福利视频一区二区| 亚洲色图av天堂| 19禁男女啪啪无遮挡网站| 国产久久久一区二区三区| 婷婷精品国产亚洲av在线| 久久天躁狠狠躁夜夜2o2o| 中文字幕av电影在线播放| 搡老岳熟女国产| 人人妻人人澡人人看| 少妇 在线观看| 天天添夜夜摸| 国产人伦9x9x在线观看| 亚洲av成人不卡在线观看播放网| 日本免费a在线| 亚洲在线自拍视频| 久久国产精品男人的天堂亚洲| 制服诱惑二区| 亚洲一区中文字幕在线| 亚洲熟妇熟女久久| 成熟少妇高潮喷水视频| 欧美一区二区精品小视频在线| 母亲3免费完整高清在线观看| 国产激情偷乱视频一区二区| 男女下面进入的视频免费午夜 | 99国产精品99久久久久| 久久亚洲精品不卡| 国产欧美日韩一区二区精品| 欧美性长视频在线观看| 老汉色av国产亚洲站长工具| 精品久久久久久成人av| 日本五十路高清| 在线观看日韩欧美| 曰老女人黄片| 嫩草影院精品99| 一本精品99久久精品77| 国产野战对白在线观看| 日韩高清综合在线| 欧美 亚洲 国产 日韩一| 亚洲男人天堂网一区| 99热这里只有精品一区 | 最近最新中文字幕大全免费视频| 国产精品野战在线观看| 两个人免费观看高清视频| 中文字幕精品亚洲无线码一区 | 色综合亚洲欧美另类图片| 国产单亲对白刺激| 亚洲成人久久性| 俺也久久电影网| 国产精品乱码一区二三区的特点| 亚洲熟妇熟女久久| 欧美大码av| 国产在线观看jvid| 免费在线观看成人毛片| 老汉色∧v一级毛片| 人成视频在线观看免费观看| 91九色精品人成在线观看| 天堂动漫精品| 国产久久久一区二区三区| 国产男靠女视频免费网站| 亚洲精品粉嫩美女一区| 自线自在国产av| av视频在线观看入口| 久久青草综合色| 黄片小视频在线播放| 精品欧美一区二区三区在线| 2021天堂中文幕一二区在线观 | 亚洲中文字幕日韩| 黄频高清免费视频| 看片在线看免费视频| 免费电影在线观看免费观看| 成年免费大片在线观看| 少妇粗大呻吟视频| 亚洲精华国产精华精| 女性被躁到高潮视频| 国产精品精品国产色婷婷| 久久人妻av系列| av欧美777| 久久久国产成人精品二区| 自线自在国产av| 99在线视频只有这里精品首页| 国产亚洲av高清不卡| 男女之事视频高清在线观看| 男男h啪啪无遮挡| 国产精品一区二区三区四区久久 | 国产精品亚洲一级av第二区| 亚洲黑人精品在线| 国产亚洲精品av在线| 欧美激情极品国产一区二区三区| 成人18禁在线播放| 国产成人系列免费观看| 日本撒尿小便嘘嘘汇集6| 少妇粗大呻吟视频| 国产精华一区二区三区| 侵犯人妻中文字幕一二三四区| 日本免费a在线| 国产熟女xx| 久久久久久国产a免费观看| 久久久久久久久免费视频了| 久久精品国产亚洲av香蕉五月| 夜夜夜夜夜久久久久| 好男人电影高清在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲中文字幕日韩| 亚洲第一欧美日韩一区二区三区| 一区二区三区激情视频| 麻豆av在线久日| 成人国产综合亚洲| 免费观看人在逋| 热re99久久国产66热| 一进一出好大好爽视频| 成人三级做爰电影| 精品国产一区二区三区四区第35| 久久这里只有精品19| 久久久久久免费高清国产稀缺| 国产伦人伦偷精品视频| 国产精品野战在线观看| 美女高潮喷水抽搐中文字幕| 亚洲avbb在线观看| 精品国产一区二区三区四区第35| 成年免费大片在线观看| 亚洲av成人不卡在线观看播放网| 国产真实乱freesex| 黑人巨大精品欧美一区二区mp4| 日韩av在线大香蕉| 国产伦一二天堂av在线观看| 琪琪午夜伦伦电影理论片6080| 国内精品久久久久精免费| 国产精品免费一区二区三区在线| 亚洲第一电影网av| 国产主播在线观看一区二区| 欧美日韩亚洲国产一区二区在线观看| 免费看a级黄色片| 国产亚洲欧美98| 男人舔奶头视频| 精品一区二区三区四区五区乱码| 12—13女人毛片做爰片一| 久久久久九九精品影院| 免费无遮挡裸体视频| 亚洲一码二码三码区别大吗| 又黄又粗又硬又大视频| 俄罗斯特黄特色一大片| 波多野结衣巨乳人妻| 亚洲av日韩精品久久久久久密| 亚洲精品av麻豆狂野| 亚洲精品粉嫩美女一区| 人人澡人人妻人| 免费在线观看完整版高清| 午夜久久久久精精品| 国产av一区二区精品久久| 久久伊人香网站| 男女下面进入的视频免费午夜 | 韩国av一区二区三区四区| 露出奶头的视频| 中文资源天堂在线| 一夜夜www| 美女国产高潮福利片在线看| 69av精品久久久久久| 色老头精品视频在线观看| 人成视频在线观看免费观看| 欧美激情久久久久久爽电影| 欧美zozozo另类| 黑人巨大精品欧美一区二区mp4| 十八禁人妻一区二区| 动漫黄色视频在线观看| 1024手机看黄色片| 午夜福利高清视频| bbb黄色大片| 国产野战对白在线观看| 日韩欧美在线二视频| 亚洲男人天堂网一区| 啦啦啦韩国在线观看视频| 午夜福利免费观看在线| 亚洲国产日韩欧美精品在线观看 | 很黄的视频免费| 国产男靠女视频免费网站| 在线av久久热| 亚洲片人在线观看| 日韩欧美国产在线观看| 久久久久久久久久黄片| 啦啦啦韩国在线观看视频| 成人亚洲精品一区在线观看| 精品卡一卡二卡四卡免费| 色综合站精品国产| 久久精品亚洲精品国产色婷小说| 狠狠狠狠99中文字幕| 老熟妇乱子伦视频在线观看| 人成视频在线观看免费观看| 国产精品免费视频内射| 嫁个100分男人电影在线观看| 国产午夜福利久久久久久| 欧美日韩福利视频一区二区| 国产精品影院久久| 婷婷丁香在线五月| 他把我摸到了高潮在线观看| 黑人欧美特级aaaaaa片| 国产av不卡久久| 91在线观看av| 两个人视频免费观看高清| 亚洲专区国产一区二区| 两性夫妻黄色片| ponron亚洲| 欧美黄色淫秽网站| 日韩精品免费视频一区二区三区| 国产片内射在线| 天堂√8在线中文| 韩国av一区二区三区四区| 男女之事视频高清在线观看| 一二三四在线观看免费中文在| 久久性视频一级片| 亚洲专区中文字幕在线| 首页视频小说图片口味搜索| 午夜福利欧美成人| 午夜久久久久精精品| 长腿黑丝高跟| 在线国产一区二区在线| 日韩欧美免费精品| 黄色成人免费大全| 国产熟女午夜一区二区三区| 免费看a级黄色片| 日本三级黄在线观看|