• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of mineral admixtures on the mechanical property and durability of waste oyster shell mortar

    2023-12-05 07:36:56LiaoYingdiWangXinFengJiaruiMengYantingChenDaDaBo

    Liao Yingdi Wang Xin Feng Jiarui,4 Meng Yanting Chen Da Da Bo

    (1College of Harbour,Coastal and Offshore Engineering,Hohai University,Nanjing 210098,China)(2Key Laboratory of Coastal Disaster and Defence of Ministry of Education,Hohai University,Nanjing 210098,China)(3Yangtze Institute for Conservation and Development,Hohai University,Nanjing 210098,China)(4Nanjing R&D High-Tech Co.Ltd.,Nanjing 210024,China)

    Abstract:To mitigate the environmental pollution caused by aquatic waste,crushed waste oyster shell (WOS) was added as an aggregate to the mortar.The impact of varying dosages (0%,20%,30%,and 40%) of fly ash (FA)/slag powder (SG) and curing periods on the workability,mechanical properties,and durability of the resulting mixtures were investigated.Furthermore,the ecological and economic benefits of WOS mortars were examined.The findings reveal that the compressive strength and static modulus of elasticity in WOS mortar decreased moderately after adding the mineral admixture during the initial curing phase.However,the mechanical properties of WOS mortar improved upon extending the curing period.Additionally,the partial replacement of cement with FA/SG promoted the migration ability of chloride and minimized the drying shrinkage in WOS mortars.In scenarios where engineering application requirements are satisfied,the utilization of WOS mortar could reduce CO2 emissions by 29%.

    Key words:crushed waste oyster shell (WOS) mortar; workability; mechanical property; durability; ecological and economic benefits

    Globally,cementitious material has become a ubiquitous component in construction,with the annual consumption of cement-based materials projected to escalate to approximately 1.8×1010t by 2050[1].Consequently,the pervasive application of these materials can exert a considerable impact on the environment[2].Considering the increasing utilization of cement-based construction,the necessity to develop ecofriendly,affordable,and high-performance alternatives for natural aggregates is imminent for addressing the continual depletion of natural resources and protecting the environment against pollution.The waste oyster shells (WOS) generated in the aquaculture sector,known for their high calcium carbonate content,have created a substantial environmental dilemma owing to their large-scale disposal.Nonetheless,WOS is a promising substitute for natural river sand,attributed to its similar physical and chemical properties[3].

    Numerous studies have explored the application of WOS in mortar or concrete.Mortars comprising 20%crushed WOS fine aggregate possess higher compressive strengths and reduced water absorption than full-river-sand mortar[4].Owing to the filling function of WOS fine aggregate,its integration with fine particles has been recommended within construction materials; these materials demonstrate elevated compressive strength when paired with fine WOS,as opposed to coarse WOS[5].Thus,WOS exhibits substantial potential for the partial replacement of natural river sand.

    Previous research on standard concrete reported that the judicious application of supplementary cementitious materials such as fly ash (FA) or slag powder (SG) for partial cement replacement can enhance the workability of fresh concrete[6],in addition to the strength and durability of hardened concrete.Regrettably,studies investigating the influence of FA and SG as supplementary cementitious materials on the fresh and engineering properties of WOS mortars are scarce.

    This study employed two industrial byproducts (FA and SG) as supplementary cementitious materials for partial cement replacement and formulated WOS mortars with four substitution ratios (0%,20%,30%,and 40%).Initially,we examined the workability of WOS mortars with varying FA and SG replacements.Subsequently,the mechanical properties were assessed,and the durability was ascertained.Finally,the ecological and economic benefits of WOS mortars were analyzed.

    1 Experiment

    1.1 Materials

    This study employed ordinary Portland cement (OPC) according to the standard ASTM C 150.The chemical composition of the OPC was determined in accordance with BS EN 197-1,and its mineral composition is delineated in Tab.1.The specific gravity and surface area of the OPC were measured to be 3.01 g/cm3and 3 520 cm2/g,respectively.The FA and SG were used as supplementary cementitious materials.The FA,in compliance with ASTM C 618,was sourced from a coal-fired power plant,while the SG was supplied by a cast-iron factory in China.The chemical compositions of both FA and SG are presented in Tab.1.

    Tab.1 Chemical and mineral composition of the cementitious materials

    River sand (fineness modulus 1.63,saturated surface-dry water absorption 0.87%,apparent density 2 620 kg/cm3,bulk density 1 540 kg/cm3,and void fraction 41%) derived from China,and crushed WOS (fineness modulus 3.66,saturated surface-dry water absorption 6.84%,apparent density 2 411 kg/cm3,bulk density 1 354 kg/cm3,and void fraction 44%) obtained from the northern coast of China were used as fine aggregates (see Fig.1).In this mixture,a naphthalene-based superplasticizer was used as a water reducer.

    (a)

    1.2 Mixture proportions

    In this study,the content of cementitious materials (cement,FA,and SG) within the mortar was uniformly set at 608 kg/m3,and the water-cement ratio was maintained at 0.45.Furthermore,WOS served as a substitution for 30% of river sand[7-8].During the mortar mixing process,the replacement rates by FA or SG for cement were segmented into four stages: 0%,20%,30%,and 40% (with FA-20 and SG-20 symbolizing mortars containing 20% FA and 20% SG,respectively).The dosage of the water reducer was set at 0.25% of the total cementitious materials.Tab.2 provides a comprehensive outline of the mixed proportions for the mortar specimens.

    Tab.2 Mix proportions of the mortar specimens

    1.3 Testing procedures

    1.3.1 Workability

    Workability assessments of the mortars were conducted according to BS EN 1015-3 to measure the initial slump flow by averaging the diameters of fresh mortar on the flow table in two vertical directions.Subsequent inspection of the slump flow value of the mortar was conducted at intervals of 30,60,90,and 120 min after the initial test.

    When this was over the slaves escorted him to the outer gate, and took leave of him with every mark of esteem73 and politeness, to which it is to be feared he responded but indifferently, since the gate was no sooner opened than he took to his heels, and fled away with all his might, his one idea being to put as much space as possible between himself and the dreary74 place into which he had ventured so rashly, just to consult a tedious Oracle who after all had told him nothing

    1.3.2 Mechanical property

    Considering the mechanical properties,the mortars were analyzed for compressive strength following ASTM C 349 and static modulus of elasticity (E) following ASTM C 469.The mortar samples for compressive strength testing were machined at dimensions of 40 mm×40 mm×160 mm.The value ofEwas gaged using servocontrolled uniaxial testing equipment on mortar cylinders measuringΦ50 mm×100 mm (see Fig.2).The value ofEwas extracted from the slope of the stress-strain curve at 1/3 of the peak stress.

    (a)

    1.3.3 Durability

    The mortar durability was evaluated based on factors such as drying shrinkage (in line with ASTM C 157) and chloride migration coefficient (compliant with NT BUILD 492).The samples designated for drying shrinkage tests comprised separate sections of mortar,each subjected to individual testing.These drying shrinkage tests were conducted across 1,4,7,14,28,56,and 90 d after the initial length measurements of the demolded samples using a length comparator.

    Furthermore,cylinder samples (Φ100 mm×50 mm) prepared for the chloride migration test were positioned within a standard curing box,regulated at a temperature of (20±3)℃ and relative humidity of (95±5)%,and cured until the required age of 28 and 90 d was reached.

    2 Results and Discussion

    2.1 Workability

    The variations in the slump flow of WOS mortars with FA and SG are depicted in Fig.3.The observations confirmed that the incorporation of WOS tends to adversely affect the workability of the mortar.This can be ascribed to the elevated water absorption of crushed WOS under the dry conditions of the saturated surface compared to the river sand.Concurrently,the nonuniform shape of the crushed WOS within the mortar intensified the friction at the aggregate-mortar interface.For WOS mortars,consistent reductions in the slump flow were recorded over time,whereas the initial slump flow ascended in response to the increased substitution ratios of both FA and SG.The peak slump flow values were achieved with a 40% substitution ratio for FA and SG.In contrast,to control mortars,the growth rates of initial slump flow values are approximately 2.75%,5.29%,7.03% for FA and 1.74%,3.22%,5.76% for SG,at substitution ratios of 20%,30%,and 40%,respectively.Laskar et al.[9]interpreted this phenomenon as a result of the spherical shape of FA,which enlarges the mortar’s surface area,diminishes fine aggregate-to-mortar friction,and improves lubrication,thus enhancing mortar liquidity.Zhang et al.[10]posited that the dissolution of OH-ions from cement particles during early hydration imparts an electrical charge to the mortar,producing a flocculation structure and entrapping water.The addition of SG to the surface of cement,along with certain superfine SG particles,disrupts the flocculation structure,liberates the entrapped moisture,fosters a dispersion effect,and consequently improves fluidity.Notably,the fluidity of mortar with FA surpasses that with SG.

    (a)

    2.2 Mechanical property

    2.2.1 Compressive strength

    Fig.4 portrays the variations in the compressive strength of WOS mortars with FA and SG.As observed,the WOS mortars displayed a lower compressive strength than the OPC mortars (without WOS).This may be attributed to the needle-like particle structure of crushed WOS that offers high friction resistance,resulting in small slump and expansion.Moreover,owing to the low strength of the WOS,the WOS mortar displays a lower strength than the OPC mortar.Additionally,the increasing substitution ratios of FA and SG contribute to a decline in the compressive strength of the WOS mortars,specifically at the initial curing stage.For instance,WOS mortars with 40% FA at 28 and 90 d achieved approximately 60% and 83% strength of the control mortars,similar to that in WOS mortars with SG.In contrast,the WOS mortar with 20% FA displayed 32% and 4%,and that with 20% SG exhibited 19% and 3% strength of the WOS mortar at 3 and 90 d,respectively.The data revealed that the strength of WOS mortars with FA and SG accelerates more rapidly than that of WOS mortars without FA and SG,and this disparity in strength decreases as the curing period extends.The constructive impact of SG on compressive strength surpasses that of FA,owing to the slower pozzolanic reaction activities of FA and SG during the early curing phase,thereby relatively decreasing the compressive strength.However,at the later stages,FA and SG react with Ca(OH)2emanating from primary hydration[11-12].Both these trends can be explained based on the delay in the formation of calcium-silicate-hydrate (C-S-H) because the pozzolanic reaction emerges as the major reaction with the increasing replacement of the cement content[13].Consequently,the difference in the compressive strength between the control mortar and the WOS mortar with FA/SG decreased with the curing age.

    (a)

    2.2.2 Static modulus of elasticity

    Fig.5 displays the variation of the static modulus of elasticity of WOS mortars in relation to FA and SG.As observed,the incorporation of WOS marginally decreased theEvalue of the mortar samples.However,this reduction inEfor WOS mortar can be mitigated by extending the curing period,a phenomenon that aligns with the compressive strength,given its inherently low nature.Moreover,the WOS mortars with FA and SG demonstrate a lowerEcompared to the WOS-Control mortar.As FA and SG increased,theEof WOS mortars declined correspondingly.Relative to the WOS-Control mortar,the 90-dEof WOS mortars with FA at 20%,30%,and 40% decreased by 7.69%,10.00%,and 11.54%,respectively,whereas that of WOS mortars with SG at 20%,30%,and 40% decreased by 2.07%,3.64%,and 4.43%,respectively.Notably,under identical conditions,the WOS mortar with FA consistently exhibited a lowerEthan the WOS mortar with SG.These findings suggest that WOS mortars with 20% SG can attain nearly the sameEas the control mortar during the later stages of curing.

    (a)

    2.3 Durability

    2.3.1 Drying shrinkage

    The variations in the drying shrinkage of WOS mortars with FA and SG are presented in Fig.6.The evidence confirms that the integration of WOS improved the drying shrinkage of the mortar samples.This phenomenon may be attributed to the water absorption capacity of the crushed WOS (6.84%),which is considerably higher than that of natural river sand (0.87%),resulting in elevated moisture content within the internal pores of the mortar.Additionally,the reduced hardness of crushed WOS[14]may contribute to the greater drying shrinkage of WOS mortars.At the commencement of curing,the drying shrinkage of WOS mortars across various groups appears remarkably similar.Furthermore,the drying shrinkage proliferates with the progression of curing time,yet the growth rate of drying shrinkage diminishes as curing time extends.

    (a)

    The incorporation of FA and SG serves to curtail the hydration degree of cement,contract the pore volume of WOS mortar,and increase the deformation resistance of WOS mortar.Conversely,the powder functions directly as a microfiller,abating voids and furnishing skeletal support to counteract deformation.Additionally,the hydration and pozzolanic reactions consume substantial amounts of free water,leading to a decrease in evaporative water content,which ultimately diminishes the drying shrinkage.Consequently,by employing FA and SG in suitable proportions,the shrinkage of WOS mortar can be effectively reduced,and the occurrence of shrinkage cracking in WOS mortar can be averted during the hardening process.

    2.3.2 Chloride migration coefficient

    Fig.7 elucidates the variation in the chloride migration coefficient of WOS mortars in association with FA and SG.The findings reveal that the introduction of crushed WOS into the mortar enhances the likelihood of chloride migration.This implies that as the content of WOS is augmented,the resistance to chloride ion penetration correspondingly diminishes.This phenomenon might be attributed to the presence of crushed WOS,which results in an increment in the porosity of the mortar.Moreover,the data demonstrates that the chloride migration coefficient diminishes as the curing time progresses.This reduction can primarily be ascribed to the sufficient hydration reaction,leading to the heightened internal compactness of WOS mortar and an enhanced antierosion capability[15].

    (a)

    Simultaneously,Fig.7 indicates that the optimal FA and SG content rests at 30%,and any further elevation in the substitution ratio yields minimal enhancement of chloride diffusion resistance.This observation underscores the robust efficiency of FA and SG in thwarting chloride migration into the mortar[16].Based on these results,SG is more conducive than FA for reducing the chloride migration coefficient of WOS mortar.

    2.4 Ecological and economic benefits

    Concerning environmental implications,CO2exhibits the most rapid growth rate as the principal greenhouse gas,and its incessant escalation impacts the climatic conditions of the environment.The sustainability of cementitious materials is principally contingent upon the energy consumption and CO2emitted during the manufacturing process.In the present study,the ecological and economic benefits of WOS mortars are assessed by evaluating the energy consumption (Ee) and CO2emission (ECO2),with the values of the raw materials summarized in Tab.3[17-18].Fig.8 depicts the aggregateEeconsumed andECO2released for WOS mortars.As observed,the totalEeandECO2for WOS mortars with FA/SG were remarkably lower in comparison to WOS-Control mortar.This reduction can predominantly be attributed to the substitution of cement with mineral admixtures,which considerably decreases both theEeandECO2of the WOS mortar.Furthermore,WOS mortar with 40% FA emerges as the most ecologically friendly mixture,with theEeandECO2decreasing by approximately 36.61% and 38.61%,respectively,compared to WOS-control mortar.Moreover,WOS mortar with 40% FA emits the least CO2,suggesting that the per unit CO2emissions for FA are less than those for SG.Consequently,when 30% of cement is replaced by FA/SG,CO2emissions can be curtailed by up to 29% (see Fig.8).Therefore,WOS mortar with 30% FA/SG may be regarded as a more ecofriendly alternative.

    Fig.8 Total Ee consumed and ECO2 released of WOS mortar

    Tab.3 Ee and ECO2 for the raw materials

    3 Conclusions

    1) Corresponding to the escalation of FA/SG content,there was an augmentation in the initial slump flow of WOS mortar.This trend signifies that the inclusion of FA/SG considerably enhances the workability of WOS mortars.Consequently,the advised substitution ratio of FA stands at 40%.

    2) In terms of mechanical properties,the WOS mortars with FA/SG were inferior to the control mortars at the 28-d interval.However,concurrent with the increasing curing period,the WOS mortars infused with FA/SG exhibited a more pronounced growth rate for compressive strength.Additionally,the mechanical attributes of the WOS mortar with the SG surpassed those with FA,implying that the recommended substitution ratio for both FA and SG is 30%.

    3) The examination of chloride diffusion resistance reveals that as the FA/SG substitution ratio amplifies,there is an increase in the resistance of WOS mortar to chloride diffusion,coupled with a diminution in drying shrinkage.Simultaneously,SG was found to be more efficacious in augmenting durability than FA.This observation further underscores that a 30% replacement of FA/SG results in a substantial improvement.

    4) Regarding the environmental footprint,the CO2emissions from WOS mortars combined with FA and SG were remarkably less than those of the control mortars.Considering the workability,mechanical properties,and durability of WOS mortars,we can conclude that a 30% FA/SG substitution ratio is an appropriate and advantageous alternative.

    看十八女毛片水多多多| 亚洲av福利一区| av在线播放精品| 水蜜桃什么品种好| 男女午夜视频在线观看| 美女脱内裤让男人舔精品视频| 日本av免费视频播放| 多毛熟女@视频| 一本大道久久a久久精品| 韩国精品一区二区三区| 午夜福利,免费看| 天天躁夜夜躁狠狠久久av| 99热国产这里只有精品6| 久久久久久久久免费视频了| 亚洲成人一二三区av| 欧美在线黄色| 99国产综合亚洲精品| 一区在线观看完整版| 男女国产视频网站| 国产亚洲av高清不卡| 久久婷婷青草| 日韩av在线免费看完整版不卡| 色综合欧美亚洲国产小说| 日韩欧美精品免费久久| 99久久人妻综合| 亚洲精品美女久久av网站| 丝袜人妻中文字幕| 久久热在线av| 国产成人欧美| 久久精品国产亚洲av涩爱| 国产黄频视频在线观看| 精品少妇久久久久久888优播| 欧美成人午夜精品| 精品少妇黑人巨大在线播放| 免费在线观看黄色视频的| 天美传媒精品一区二区| 午夜精品国产一区二区电影| av有码第一页| 久久久精品国产亚洲av高清涩受| 一级毛片我不卡| 亚洲精品一区蜜桃| av.在线天堂| 操美女的视频在线观看| 欧美 亚洲 国产 日韩一| 在线观看人妻少妇| 男的添女的下面高潮视频| 777米奇影视久久| 欧美 亚洲 国产 日韩一| 少妇精品久久久久久久| 国产成人精品久久久久久| 桃花免费在线播放| 老司机影院成人| 亚洲第一av免费看| 国产精品 国内视频| 亚洲综合色网址| 免费日韩欧美在线观看| 国产av一区二区精品久久| 男的添女的下面高潮视频| 亚洲精品国产一区二区精华液| 亚洲精品日本国产第一区| 天天影视国产精品| a级毛片在线看网站| 国产亚洲欧美精品永久| 97人妻天天添夜夜摸| 亚洲精品久久成人aⅴ小说| 纵有疾风起免费观看全集完整版| 亚洲av福利一区| 国产片特级美女逼逼视频| 欧美在线黄色| av在线观看视频网站免费| 国产日韩一区二区三区精品不卡| 久久久久久人人人人人| 国产有黄有色有爽视频| 亚洲国产中文字幕在线视频| 亚洲熟女毛片儿| 亚洲成人国产一区在线观看 | 成人黄色视频免费在线看| 久久综合国产亚洲精品| 亚洲精品国产区一区二| 国产精品一区二区在线观看99| 亚洲国产av影院在线观看| 亚洲婷婷狠狠爱综合网| 国产xxxxx性猛交| 成人毛片60女人毛片免费| 亚洲国产中文字幕在线视频| 亚洲精品中文字幕在线视频| 啦啦啦 在线观看视频| 最黄视频免费看| 丁香六月欧美| 国产精品久久久av美女十八| 色精品久久人妻99蜜桃| 看免费av毛片| 日韩制服丝袜自拍偷拍| 中文字幕另类日韩欧美亚洲嫩草| 久久久久视频综合| 欧美成人午夜精品| 黄色视频不卡| 各种免费的搞黄视频| 久久精品亚洲熟妇少妇任你| 亚洲精华国产精华液的使用体验| 99热国产这里只有精品6| 欧美日韩国产mv在线观看视频| 欧美乱码精品一区二区三区| 18禁观看日本| 天堂中文最新版在线下载| 又粗又硬又长又爽又黄的视频| 777久久人妻少妇嫩草av网站| 国产精品久久久人人做人人爽| 欧美日韩成人在线一区二区| 精品卡一卡二卡四卡免费| 亚洲少妇的诱惑av| 51午夜福利影视在线观看| 亚洲综合色网址| 一级a爱视频在线免费观看| 亚洲精华国产精华液的使用体验| 午夜老司机福利片| 老司机在亚洲福利影院| 捣出白浆h1v1| 成年女人毛片免费观看观看9 | 国产精品久久久久久精品古装| www.av在线官网国产| 亚洲美女视频黄频| 黄色视频在线播放观看不卡| 久久鲁丝午夜福利片| 观看av在线不卡| 嫩草影院入口| 精品人妻在线不人妻| 超色免费av| 久久精品久久精品一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 免费观看av网站的网址| 亚洲国产精品一区三区| 97在线人人人人妻| 欧美日韩成人在线一区二区| 人妻人人澡人人爽人人| kizo精华| 色婷婷av一区二区三区视频| 中文乱码字字幕精品一区二区三区| 两个人免费观看高清视频| 在线观看免费日韩欧美大片| 人妻人人澡人人爽人人| 另类亚洲欧美激情| av福利片在线| 成年人午夜在线观看视频| 赤兔流量卡办理| 波多野结衣一区麻豆| 精品卡一卡二卡四卡免费| 久久国产精品男人的天堂亚洲| 日韩av不卡免费在线播放| 黑人欧美特级aaaaaa片| 在线观看人妻少妇| 一区二区三区精品91| 久久国产亚洲av麻豆专区| 丝袜喷水一区| 国产黄色免费在线视频| 9191精品国产免费久久| 午夜免费男女啪啪视频观看| 七月丁香在线播放| 丰满饥渴人妻一区二区三| 国产在线免费精品| 国产成人啪精品午夜网站| 性色av一级| 久久久久久久久久久免费av| av网站在线播放免费| 青春草国产在线视频| 欧美激情极品国产一区二区三区| 啦啦啦在线观看免费高清www| 欧美成人午夜精品| 亚洲第一区二区三区不卡| 国产片内射在线| 欧美成人精品欧美一级黄| 中文字幕人妻丝袜制服| 天美传媒精品一区二区| 午夜影院在线不卡| 欧美人与性动交α欧美精品济南到| 亚洲精品国产av成人精品| 国产午夜精品一二区理论片| 欧美人与性动交α欧美精品济南到| 亚洲精品国产av成人精品| 蜜桃在线观看..| 精品国产乱码久久久久久小说| 久久精品亚洲熟妇少妇任你| 女人久久www免费人成看片| 可以免费在线观看a视频的电影网站 | 精品人妻熟女毛片av久久网站| 精品国产一区二区久久| 日韩中文字幕欧美一区二区 | 精品一区二区免费观看| 亚洲成人一二三区av| 精品国产乱码久久久久久男人| 国产片内射在线| www.自偷自拍.com| 久久免费观看电影| 女人爽到高潮嗷嗷叫在线视频| 一区二区日韩欧美中文字幕| 桃花免费在线播放| 久久久久久久大尺度免费视频| 黄频高清免费视频| 黄色毛片三级朝国网站| 久久精品aⅴ一区二区三区四区| 欧美日韩一级在线毛片| 亚洲欧美精品综合一区二区三区| 国产av码专区亚洲av| 男女高潮啪啪啪动态图| 国产精品久久久av美女十八| 亚洲欧洲国产日韩| 久久久久网色| 亚洲av日韩精品久久久久久密 | 色视频在线一区二区三区| 国产亚洲精品第一综合不卡| 免费人妻精品一区二区三区视频| 亚洲精品日本国产第一区| 久久鲁丝午夜福利片| 一级片'在线观看视频| 国产精品久久久久久精品古装| 肉色欧美久久久久久久蜜桃| 啦啦啦在线免费观看视频4| 精品国产一区二区三区四区第35| 日韩不卡一区二区三区视频在线| 久久久精品区二区三区| 一级片免费观看大全| 久久 成人 亚洲| 午夜福利乱码中文字幕| 亚洲成国产人片在线观看| 一区二区三区激情视频| 亚洲精品aⅴ在线观看| 国产1区2区3区精品| 日韩精品免费视频一区二区三区| 色婷婷av一区二区三区视频| 亚洲精品国产av蜜桃| a级毛片在线看网站| 王馨瑶露胸无遮挡在线观看| 99re6热这里在线精品视频| 在线观看三级黄色| 国产野战对白在线观看| 又大又黄又爽视频免费| 国产精品一区二区精品视频观看| 在线天堂最新版资源| 日韩成人av中文字幕在线观看| 国产成人系列免费观看| 亚洲美女视频黄频| 丰满饥渴人妻一区二区三| 久久精品国产亚洲av高清一级| 最近中文字幕高清免费大全6| 欧美在线黄色| 最新在线观看一区二区三区 | 国产日韩欧美亚洲二区| 久久精品久久久久久噜噜老黄| a 毛片基地| 国产免费现黄频在线看| 免费观看性生交大片5| 美女中出高潮动态图| 高清av免费在线| 黑人巨大精品欧美一区二区蜜桃| 亚洲一卡2卡3卡4卡5卡精品中文| 在现免费观看毛片| 成年人免费黄色播放视频| 国产男女内射视频| 无遮挡黄片免费观看| 男人操女人黄网站| 丰满饥渴人妻一区二区三| 国产成人精品久久二区二区91 | 在线精品无人区一区二区三| 欧美日韩亚洲国产一区二区在线观看 | 狂野欧美激情性bbbbbb| 亚洲七黄色美女视频| 少妇猛男粗大的猛烈进出视频| 亚洲欧美成人精品一区二区| 在线观看三级黄色| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产av影院在线观看| 在线观看www视频免费| 亚洲欧美精品自产自拍| 99九九在线精品视频| 亚洲,欧美,日韩| 国产精品欧美亚洲77777| 伊人久久国产一区二区| 最黄视频免费看| 一级黄片播放器| av.在线天堂| 91精品国产国语对白视频| 1024香蕉在线观看| 亚洲精品国产色婷婷电影| 精品亚洲成国产av| 久久这里只有精品19| 999精品在线视频| 久久久久久久久久久久大奶| 亚洲四区av| 欧美最新免费一区二区三区| 久久韩国三级中文字幕| 国产一区二区激情短视频 | 欧美日韩亚洲国产一区二区在线观看 | 韩国高清视频一区二区三区| 又大又爽又粗| 九色亚洲精品在线播放| 成人毛片60女人毛片免费| 99九九在线精品视频| 黄色视频不卡| 久久99热这里只频精品6学生| 人妻 亚洲 视频| 日韩中文字幕视频在线看片| 久久久久精品久久久久真实原创| 亚洲欧美清纯卡通| 99国产综合亚洲精品| 啦啦啦在线免费观看视频4| 久久亚洲国产成人精品v| 久久久国产一区二区| 亚洲伊人色综图| 午夜av观看不卡| 亚洲熟女毛片儿| 亚洲国产欧美一区二区综合| 中文乱码字字幕精品一区二区三区| 大陆偷拍与自拍| av在线播放精品| 人人妻人人爽人人添夜夜欢视频| 亚洲情色 制服丝袜| 久久毛片免费看一区二区三区| 亚洲av男天堂| 久久久国产欧美日韩av| 最新在线观看一区二区三区 | 悠悠久久av| 久久99精品国语久久久| 97精品久久久久久久久久精品| 男女免费视频国产| 欧美国产精品va在线观看不卡| 久久女婷五月综合色啪小说| 精品卡一卡二卡四卡免费| 国产在线免费精品| 男男h啪啪无遮挡| 在线精品无人区一区二区三| 看免费av毛片| 国产在线免费精品| 中文字幕高清在线视频| 免费高清在线观看日韩| 亚洲国产最新在线播放| 久久女婷五月综合色啪小说| 亚洲国产最新在线播放| 中文字幕人妻丝袜制服| 在现免费观看毛片| 国产精品久久久久久人妻精品电影 | 久久精品国产亚洲av涩爱| 亚洲国产精品一区三区| 99国产精品免费福利视频| 黑人欧美特级aaaaaa片| 精品少妇黑人巨大在线播放| 国产av国产精品国产| 精品人妻熟女毛片av久久网站| 天堂8中文在线网| 国产一卡二卡三卡精品 | 巨乳人妻的诱惑在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲伊人色综图| 亚洲国产av影院在线观看| www.自偷自拍.com| e午夜精品久久久久久久| 乱人伦中国视频| bbb黄色大片| 999久久久国产精品视频| 免费在线观看黄色视频的| 国产欧美日韩一区二区三区在线| 精品国产乱码久久久久久小说| 如何舔出高潮| bbb黄色大片| 亚洲美女搞黄在线观看| 国产成人免费观看mmmm| 国产又爽黄色视频| 美女扒开内裤让男人捅视频| 久久久精品免费免费高清| 欧美中文综合在线视频| 午夜福利一区二区在线看| 欧美另类一区| 80岁老熟妇乱子伦牲交| 亚洲国产精品一区三区| 国产一区二区三区综合在线观看| 午夜福利视频精品| 黑丝袜美女国产一区| 99久久99久久久精品蜜桃| 成人亚洲精品一区在线观看| 最近手机中文字幕大全| 成人毛片60女人毛片免费| 亚洲国产精品成人久久小说| 日韩一本色道免费dvd| 国产精品99久久99久久久不卡 | 婷婷成人精品国产| 观看av在线不卡| 亚洲专区中文字幕在线 | 久久精品aⅴ一区二区三区四区| 国产精品 欧美亚洲| 久热这里只有精品99| 大片电影免费在线观看免费| 精品人妻在线不人妻| 亚洲精品国产色婷婷电影| 宅男免费午夜| 啦啦啦在线免费观看视频4| 女性生殖器流出的白浆| netflix在线观看网站| 国产高清不卡午夜福利| 欧美 亚洲 国产 日韩一| 高清黄色对白视频在线免费看| 美女国产高潮福利片在线看| 国产极品天堂在线| 女的被弄到高潮叫床怎么办| 精品久久久久久电影网| 国产精品麻豆人妻色哟哟久久| 色综合欧美亚洲国产小说| 在线观看免费视频网站a站| 激情五月婷婷亚洲| 国产成人一区二区在线| 人人澡人人妻人| 啦啦啦 在线观看视频| 在线观看免费高清a一片| 久久国产精品大桥未久av| 一区二区三区乱码不卡18| 在线天堂最新版资源| 亚洲精品日本国产第一区| 色精品久久人妻99蜜桃| 婷婷成人精品国产| 性少妇av在线| 免费少妇av软件| 亚洲一码二码三码区别大吗| 少妇 在线观看| 国产精品偷伦视频观看了| 黄色 视频免费看| 国产国语露脸激情在线看| 日日啪夜夜爽| 多毛熟女@视频| 九九爱精品视频在线观看| 国产成人免费观看mmmm| 日韩一区二区视频免费看| 搡老乐熟女国产| 精品少妇黑人巨大在线播放| av国产久精品久网站免费入址| 在线天堂最新版资源| av女优亚洲男人天堂| 丝袜人妻中文字幕| 纯流量卡能插随身wifi吗| 日韩制服骚丝袜av| 国产又爽黄色视频| 亚洲av电影在线观看一区二区三区| 亚洲在久久综合| 成年女人毛片免费观看观看9 | 亚洲成av片中文字幕在线观看| 日日摸夜夜添夜夜爱| 大陆偷拍与自拍| www日本在线高清视频| 一级片免费观看大全| 精品国产超薄肉色丝袜足j| 免费在线观看黄色视频的| 新久久久久国产一级毛片| 国产亚洲欧美精品永久| 高清视频免费观看一区二区| av国产久精品久网站免费入址| 在线看a的网站| 久久人人爽人人片av| 成人黄色视频免费在线看| 亚洲av在线观看美女高潮| 亚洲av福利一区| kizo精华| 男男h啪啪无遮挡| 51午夜福利影视在线观看| 亚洲五月色婷婷综合| 婷婷色综合大香蕉| videos熟女内射| 免费久久久久久久精品成人欧美视频| 亚洲国产精品999| 国产成人a∨麻豆精品| 你懂的网址亚洲精品在线观看| 日韩 亚洲 欧美在线| 青草久久国产| 男女午夜视频在线观看| 男女国产视频网站| 国产精品.久久久| 日韩免费高清中文字幕av| 日韩av不卡免费在线播放| 欧美成人精品欧美一级黄| 十分钟在线观看高清视频www| 午夜免费观看性视频| 天堂8中文在线网| 久久国产精品大桥未久av| 下体分泌物呈黄色| 观看av在线不卡| 少妇精品久久久久久久| 精品第一国产精品| 成人亚洲欧美一区二区av| 亚洲国产精品成人久久小说| 国产熟女午夜一区二区三区| 亚洲成人免费av在线播放| 一边亲一边摸免费视频| 十八禁网站网址无遮挡| 欧美 亚洲 国产 日韩一| 十八禁人妻一区二区| 久久久久久久国产电影| 一级片'在线观看视频| 深夜精品福利| 又黄又粗又硬又大视频| 十八禁人妻一区二区| 亚洲图色成人| av一本久久久久| 女人久久www免费人成看片| 在线 av 中文字幕| 日本午夜av视频| 午夜福利视频在线观看免费| 欧美另类一区| 色94色欧美一区二区| 亚洲精品日本国产第一区| 国产精品一国产av| 午夜影院在线不卡| 我的亚洲天堂| 亚洲欧美一区二区三区黑人| 韩国高清视频一区二区三区| 色吧在线观看| 午夜福利,免费看| 国语对白做爰xxxⅹ性视频网站| 亚洲精品日韩在线中文字幕| 亚洲伊人色综图| av一本久久久久| 亚洲成色77777| a 毛片基地| 国产欧美日韩综合在线一区二区| 久久婷婷青草| 久久韩国三级中文字幕| 日韩人妻精品一区2区三区| 女的被弄到高潮叫床怎么办| 午夜激情久久久久久久| 不卡视频在线观看欧美| 老司机影院成人| 69精品国产乱码久久久| 久久精品熟女亚洲av麻豆精品| 精品少妇久久久久久888优播| 精品免费久久久久久久清纯 | 看免费成人av毛片| 久久久久精品性色| 看非洲黑人一级黄片| 久久精品熟女亚洲av麻豆精品| 一区二区三区四区激情视频| 日本wwww免费看| 国产日韩欧美在线精品| 观看美女的网站| 国产免费福利视频在线观看| 蜜桃国产av成人99| 国产一区亚洲一区在线观看| 亚洲国产日韩一区二区| 男人爽女人下面视频在线观看| 亚洲天堂av无毛| 男人添女人高潮全过程视频| 卡戴珊不雅视频在线播放| 久久久久久久久久久久大奶| 黑人巨大精品欧美一区二区蜜桃| 国产人伦9x9x在线观看| 国产熟女欧美一区二区| 亚洲精品国产区一区二| 大片电影免费在线观看免费| 亚洲中文av在线| 国产 精品1| 亚洲国产av影院在线观看| 国产不卡av网站在线观看| 99久久99久久久精品蜜桃| 国产极品天堂在线| 欧美av亚洲av综合av国产av | 久久人妻熟女aⅴ| 国产成人欧美| 国产亚洲午夜精品一区二区久久| 90打野战视频偷拍视频| 侵犯人妻中文字幕一二三四区| 亚洲av男天堂| 亚洲精品美女久久久久99蜜臀 | 午夜福利一区二区在线看| 亚洲婷婷狠狠爱综合网| 国产精品偷伦视频观看了| 国产日韩欧美在线精品| 黄色毛片三级朝国网站| 午夜日本视频在线| 男女午夜视频在线观看| 校园人妻丝袜中文字幕| 国产成人精品无人区| 狠狠精品人妻久久久久久综合| av一本久久久久| 精品国产乱码久久久久久男人| 国产一级毛片在线| 国产精品欧美亚洲77777| 精品国产一区二区三区久久久樱花| 啦啦啦啦在线视频资源| 自拍欧美九色日韩亚洲蝌蚪91| 伦理电影大哥的女人| 日韩一区二区三区影片| xxx大片免费视频| 性高湖久久久久久久久免费观看| 久热爱精品视频在线9| 日韩大片免费观看网站| 成年人免费黄色播放视频| 一二三四在线观看免费中文在| 日日撸夜夜添| 深夜精品福利| a 毛片基地| 国产成人免费观看mmmm| 亚洲精品美女久久av网站| 一二三四在线观看免费中文在| 中国三级夫妇交换| 不卡视频在线观看欧美| 少妇 在线观看| 中文字幕色久视频| 黄色视频不卡| 国产乱来视频区| 又粗又硬又长又爽又黄的视频| 国产精品一区二区在线观看99| 丰满饥渴人妻一区二区三| 高清av免费在线| 精品国产一区二区三区久久久樱花| 老司机靠b影院| 激情五月婷婷亚洲| 亚洲欧美精品自产自拍| 老熟女久久久| 丝瓜视频免费看黄片| 亚洲av男天堂| 啦啦啦 在线观看视频|