• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Integrity analysis and inverse Deng’s grey relational analysis model

    2023-12-05 07:36:26WangWenpingMaZheng

    Wang Wenping Ma Zheng

    (1School of Economics and Management,Southeast University,Nanjing 211189,China)(2National School of Development and Policy,Southeast University,Nanjing 211189,China)(3Institute of Strategic Development,China Telecom Research Institute,Shanghai 200122,China)

    Abstract:An inverse Deng’s grey relational analysis model is established to identify and quantify the inverse relationships in the system from a holistic perspective.The axiom system containing inverse relationships is constructed based on the four axioms of grey relational analysis.The inverse Deng’s grey relational analysis model is established by introducing the incidence direction vector,and the incidence direction of factors is identified using an agenetic algorithm.The rationality and effectiveness of the proposed model are verified by identifying the key relevant factors of the innovation chain quality in Jiangsu.The case analysis shows that the inverse grey relational analysis model identifies the knowledge innovation link of the process characteristic as the inverse relational factor of Jiangsu innovation chain quality,with a relational degree of-0.815.Compared with the other four typical grey relational analysis models,its incidence direction and strength judgment are more reasonable.The proposed model can effectively identify and quantify inverse relationships while ensuring analysis integrity,which broadens the application scope of Deng’s grey relational analysis model.

    Key words:inverse Deng’s grey relational analysis; grey relational axiom; grey relational degree; genetic algorithm

    Grey relational analysis (GRA) is a method used to quantify and sequence the factors affecting the behavior of a system.GRA is useful for systems lacking data or information.Typically,there is a universal promotional or restrictive relationship between the factors influencing a system and its behavior.The interactions between these promotional and restrictive factors provide the necessary impetus for the evolution and development of system self-organization.However,existing research on GRA theories and applications has mainly focused on system factor promotion and ignored restrictive or inhibitory factors.This limitation has hindered a more comprehensive understanding of system development and evolution.To address this gap,the inverse GRA is gaining attention as a new research direction in the field of GRA theory[1].This approach intends to clarify the development and optimization mechanisms of the system.By considering the role of restrictive or inhibitory factors,the inverse GRA provides a more holistic perspective on system behaviors.As a result,the analysis can enrich the scope and depth of research on system development and evolution.

    Deng[2],the founder of the grey system theory,proposed that the essence of GRA is comparison,which involves a reference system and a measure.The metric space and point set topological space are combined to create an overall comparison with a reference frame and measure.Deng’s GRA model investigates the major and minor factors of system formation and change by comparing the closeness of various data sequence curves.Numerous improved models based on Deng’s GRA model have been proposed.For instance,Liu et al.[3]introduced an absolute GRA model to measure the area between data sequence curves.By examining the similarity of geometric shapes and spatial distance between data sequence curves,Liu et al.[4]presented the similarity and closeness degrees of the grey relational model,respectively.However,Deng’s GRA model calculates the grey relational degree based on relational coefficients of specific points,which,some argue,leads to information loss.To address this point,the concept of grey entropy was introduced,and the grey relational entropy model was proposed[5].Quan et al.[6]employed the maximum entropy method to calculate the weight of relevant factors and proposed a weighted GRA model.Some scholars have also constructed a multivariate grey relational model by controlling the weight of relevant factors and adjusting the sequence of relevant factors to render the shape similar to the system’s behavioral sequence[7].Furthermore,some researchers have extended the application of the GRA model to matrix sequences data[8-9],panel data[10-11],categorical variables[12],and multiperiod variables[13].

    To summarize,recent improvements to Deng’s GRA model exhibit certain characteristics.First,most scholars have focused on improving the metric space measurement method based on various interpretations of a “relation”.Second,some new models have abandoned the point set topological space as a reference system for comparison,leading to the violation of axioms such as integrity and even-pair symmetry.While most models still adhere to the normative axiom,they assume that relevant factors and system behavior exhibit a direct incidence relationship.However,some relevant factors may exhibit an opposing trend to the system behavior,which these models are unable to recognize.

    Recent research has proposed a new stream of analysis called inverse relational analysis to address the issues in existing models,as mentioned in the previous paragraph[1].However,earlier models,such as the grey periodic relational model[14]and the grey dynamic trend relational model[15],have also addressed the issues by breaking the normative axiom to incorporate inverse incidence relationships.These models calculate the grey relational degree based on the relational coefficients of points.The direction of incidence is determined by the increment in relevant factors and the system behavioral sequence at each data point.When the increment in the relevant factor has the same sign as that of the system behavioral sequence,it is considered a direct incidence relationship and an inverse incidence relationship is established otherwise.

    However,these models have two main shortcomings.First,they focus only on the partial incidence direction of each data point,which ignores the holistic idea of GRA and is susceptible to random disturbances,leading to inaccurate judgments on the direction and strength of relevant factors.Second,the measurement method starts from the increment,which does not consider the absolute position of the data point.Consequently,when the incidence relationship of a point is inverse and the relevant factor increment direction is opposite to the system behavior increment,the distance between them may be shortened,making the model fail to satisfy the proximity axiom.In contrast,the bidirectional absolute GRA model recently proposed by Javed and Liu[16]overcomes these shortcomings.In this model,the incidence direction is identified by comparing the absolute grey relational degree of the original sequence with the absolute grey relational degree of the mirror sequence.The model extends the absolute GRA model and measures both the direction and strength of the relationship based on a holistic idea.Liu[17]also proposed a series of negative grey relational models; however,the incidence direction determination is based on the integration between the sequence and the axis without considering the relative trend between the related sequences.As a result,sequences considered to be in the same incidence direction may have completely opposite trends,which is a drawback.

    The objective of this study is to devise a model that can recognize and measure the influence of inverse relevant factors within a system based on Deng’s GRA model.This model can be applied to all previous GRA problems and can recognize and quantify the inverse incidence relationship when it exists.When this relationship does not exist,the model’s calculations are identical to those of Deng’s GRA model.Our innovation lies in recognizing the presence of inverse factors while still preserving the systematic comparison advantages of Deng’s model.Specifically,we first expand the grey relational axiom to accommodate the inverse incidence relationship,then design a GRA model that incorporates these relationships and use the genetic algorithm to solve the model.Finally,we use the factor analysis affecting the quality of the innovation chain in Jiangsu Province,China,as an example to verify the feasibility and effectiveness of the proposed model and algorithm.

    1 Construction of an Inverse Deng’s GRA Model

    This section outlines the development of an inverse Deng’s GRA model,which is based on Deng’s GRA model through the extension of the axiom,model improvements,and algorithm design.The extended model uses an agenetic algorithm to identify the promotion or restriction relationships between the relevant factors and the system behavior.

    1.1 Extension of the grey relational axiom

    In the past,there have been in-depth discussions and analyses of Deng’s four axioms of GRA,including the even-pair symmetry axiom and integrity axiom[18-20].While the normative axiom has received less attention,it implicitly assumes that the incidence relationship in the system is direct.To incorporate the inverse incidence relationship in the axiom system,we propose an extension to the normative axiom that modifies the even-pair symmetry and integrity axioms.

    Xi={xi(1),xi(2),…,xi(n)}

    (1)

    (2)

    whereMiis a constant,and letMi=maxk{xi(k)},k=1,2,…,n.

    Given real numbersγ(x0(k),xi(k)) andγ(x0(k),Mi-xi(k)),if the real numbers

    (3)

    (4)

    satisfy the following four axioms:

    1) Normative axiom.Letγ(X0,Xi) andγ′(X0,Xi) take values in the interval of[-1,1],where

    γ(X0,Xi)∈(0,1],γ(X0,Xi)=1?X0=Xi

    (5)

    (6)

    2) Integrity axiom.LetΓ(Xi,Xj)={γ(Xi,Xj),γ′(Xi,Xj)},Xi,Xj∈X={X0,X1,…,Xm},m≥2,where

    (7)

    3) Even-pair symmetry axiom.For anyXi,Xj∈X={X0,X1,…,Xm},m<2,there is

    X={Xi,Xj}?Γ(Xi,Xj)=Γ(Xj,Xi)

    (8)

    4) Proximity axiom.The smaller the|x0(k)-xi(k)|,the larger theγ(x0(k),xi(k)).The smaller the|x0(k)-(Mi-xi(k))|,the smaller theγ(x0(k),Mi-xi(k)).

    In this case,γ(X0,Xi) is referred to as the direct grey relational degree ofX0andXi,γ(x0(k),xi(k)) as the direct relational coefficient ofX0andXiat pointk.γ′(X0,Xi) is referred to as the inverse grey relational degree ofX0andXi,γ(x0(k),Mi-xi(k)) as the inverse relational coefficient ofX0andXiat pointk.The above four conditions are extended grey relational axioms,which extend the value of the grey relational degree to the interval of[-1,1].

    1.2 Inverse Deng’s GRA model

    Based on the extended grey relational axiom,the grey relational degree including inverse incidence relationships is designed.Let the incidence direction be represented by a vectorP={p1,p2,…,pm},and letpi(i=1,2,…,m) denotes the direct or inverse incidence relationship betweenX0andXi,such that

    (9)

    (10)

    (11)

    (12)

    The grey relational coefficientγ(x0(k),xi(k)) and the grey relational degreeγ(X0,Xi) satisfy the extended grey relational axiom.In other words,the inverse Deng’s GRA model is an extension of Deng’s GRA model that accounts for inverse incidence relationships.

    The main challenge is to determine the values of the elements in the incidence direction vectorP,which corresponds to the direct or inverse relationship between the relevant factors of the system and the system behavioral sequence.The value intervalCof the grey relational coefficient is dependent on vectorP,meaning that a change in the incidence direction of any relevant factor sequence may lead to a corresponding change in the grey relational degree of all sequences.Hence,determining the incidence direction of each relevant factor sequence is critical in accurately assessing the grey relational degree,including inverse incidence relationships.

    (13)

    (14)

    Similar to Javed’s confidence level scale[16],the proposed incidence direction confidence index is expected to be a valuable contribution to the theory of inverse GRA.

    1.3 Model solving based on a genetic algorithm

    The direct solution to the above optimization problem is challenging.The number of possibilities for the values of elements in vectorPincreases exponentially with the increase in the number of relevant factor sequences,making it computationally expensive.To reduce the computational cost,the agenetic algorithm is used.The genetic algorithm simulates the natural evolution process to search for the optimal solution.The algorithm starts with a set of initial solutions generated randomly and iteratively performs operations such as selection,crossover,and mutation to obtain the optimal solution.The computational flow of the genetic algorithm can be summarized as follows.

    Algorithm1Solving inverse Deng’s GRA model based on the genetic algorithm

    Input:X={X0,X1,…,Xm}.

    Output:P={p1,p2,…,pm}.

    ① Individual coding.

    ② Population initialization.

    ③ Fitness evaluation.

    ④ Selection.

    ⑤ Crossover.

    ⑥ Mutation.

    ⑦ Satisfy termination criterion? If the criterion is met then returnP,otherwise back to ③.

    Encoding is a method for converting the feasible solution to a problem from its solution space to a search space that can be handled by the agenetic algorithm.Based on binary coding (Formula 9),the vectorPcan be considered an individual in the genetic algorithm.

    The initial population is a set of individuals.A set of initial vectorsPis randomly generated to form the initial population.Differences between individuals will lead to different levels of fitness.

    The fitness function evaluates the ability of an individual to produce offspring.The higher the fitness,the stronger the ability to produce offspring.In this case,the objective functionf(p1,p2,…,pm) is considered as the fitness function:

    (15)

    The selection operator selects high-quality individuals based on their fitness and discards low-quality individuals,following the principle of “survival of the fittest”.The selection operator uses the roulette algorithm,where the probability of individual inheritance is proportional to its fitness.

    The crossover operator involves exchanging some genes between two chromosomes that intersect each other in a certain way to create two new individuals.It is the primary method used to generate new individuals and determines the global search capability of the genetic algorithm.The crossover operator uses the random paired single-point crossover method,where a crossover point is randomly set in the individual code string,and the genes of the paired individuals are partially exchanged at this point.

    The mutation operator is responsible for replacing genes at specific loci in the individual’s chromosome coding string with other alleles from the same locus,resulting in the creation of a new individual.It serves as an auxiliary method for generating novel individuals and plays a crucial role in the local search capability of the genetic algorithm.In this case,the mutation operator utilizes a single-point mutation approach,randomly selecting a locus within the individual for mutation.

    The termination criterion determines whether the algorithm meets the conditions for calculation termination.In this case,the algorithm terminates when the number of iterations reaches the predetermined number of generations.

    2 Application Case

    In this section,an empirical study is conducted to evaluate the feasibility and effectiveness of the proposed inverse Deng’s GRA model.Specifically,the identification of key factors that affect the quality of the innovation chain in Jiangsu Province is considered an illustrative example.

    2.1 System’s behavior and relevant factors

    We developed a list of the factors that influence the quality of the innovation chain in Jiangsu Province based on two key dimensions: quality characteristics and innovation links.The factors are presented in Tab.1.

    Tab.1 Relevant factors in the Jiangsu innovation chain

    Tab.2 presents the system’s behavioral sequence and the relevant factor sequences of the quality of the innovation chain in Jiangsu Province between 2009 and 2018,expressed in the form of a quality index.

    Tab.2 System’s behavioral sequence and relevant factor sequences

    Fig.1 illustrates the development trend of the system’s behavior and relevant factors of the quality of the Jiangsu innovation chain.

    (a)

    2.2 Inverse Deng’s GRA and comparison with other models

    To investigate the impact of each relevant factor on the quality of the Jiangsu innovation chain,we employed various grey relational analysis models,including Deng’s GRA model,absolute GRA model,bidirectional absolute GRA model[16],negative Deng’s GRA model[17],Pearson correlation coefficient,and the proposed inverse Deng’s GRA model.For these models,the distinguishing coefficientξ=0.5.Note that the Pearson correlation coefficient and the other models,except for Deng’s GRA and Liu’s absolute GRA models,can accurately determine the incidence direction.

    As outlined in Section 1.3,the proposed model can be solved using the genetic algorithm.Fig.2 depicts the changes in best fitness and average fitness of the population in the genetic algorithm of the inverse Deng’s GRA model as the number of iterations increases.The results indicate that the nonlinear constraint optimization problem with objective functionfconverges rapidly (see Fig.2(a)),with all individuals reaching the optimal solution in the ninth generation.Conversely,the objective functionf′ converges after approximately 200 generations (see Fig.2(b)).Furthermore,the optimal solution of the objective functionf′ is significantly higher than that off.

    (a)

    Tab.3 presents the results of the GRA models,as well as the Pearson correlation coefficient,sorted according to their absolute values.In contrast to the first two classical models,the other four models treat the knowledge innovation link of the process characteristicX4as an inverse relevant factor.However,the inverse Deng’s GRA model and Pearson correlation coefficient deem the relationship strength ofX4to be high,while the bidirectional absolute GRA model and negative Deng’s GRA model consider the strength of the relationship to be low.The Pearson correlation coefficient reveals a strong linear correlation of-0.905 betweenX4and the system’s behavioral sequence,raising doubts about the acceptability of the bidirectional absolute GRA model and negative Deng’s GRA model results.

    Tab.3 Comparison of grey relational analysis models

    In addition,the bidirectional absolute GRA model and negative Deng’s GRA model both analyzeX5as an inverse relevant factor.However,the bidirectional absolute GRA model deems this result insignificant (δi=0),while the negative Deng’s GRA model is unable to determine its significance.The inverse Deng’s GRA model,which considersX5as a direct relevant factor,also finds the result insignificant (Ti=0.998).Regardless ofX5’s classification as a direct or inverse relevant factor,its relationship strength is the weakest in any of the three models.

    3 Conclusions

    1) An inverse Deng’s GRA model is constructed along with the genetic algorithm.The model helps identify and quantify the promotion or restriction relationships between the factors and system behavior,thus providing insight into the system’s formation and change process.The proposed model expands the application of grey relational analysis and retains the excellent characteristics of Deng’s GRA model.

    2) The inverse Deng’s GRA model can effectively identify and quantify inverse relationships.In the case analysis of the quality of Jiangsu’s innovation chain,the inverse Deng’s GRA model identifies the knowledge innovation link of the process characteristic as the inverse relational factor of the Jiangsu innovation chain quality,with a relational degree of-0.815.Compared to the existing models,the inverse Deng’s GRA model is more effective in identifying the incidence direction and strength of relevant factors in the grey system.

    3) As a relatively new research direction,there is considerable potential for further development of inverse relational analysis.First,it is necessary to propose additional inverse relational analysis models to expand the application scope.Second,there is a need for uniform judgment criteria for the incidence direction and strength among various models,which is currently a challenge that requires further exploration and solution.

    日韩亚洲欧美综合| 精品人妻偷拍中文字幕| 国产男人的电影天堂91| 男人的好看免费观看在线视频| 啦啦啦啦在线视频资源| 看片在线看免费视频| 午夜福利在线观看免费完整高清在 | 白带黄色成豆腐渣| 久久婷婷人人爽人人干人人爱| 欧美性感艳星| 99热全是精品| 国产免费男女视频| 色在线成人网| 一区二区三区四区激情视频 | 国产亚洲精品综合一区在线观看| 日韩av不卡免费在线播放| av免费在线看不卡| 天天躁日日操中文字幕| 级片在线观看| 精品一区二区三区视频在线观看免费| 国产国拍精品亚洲av在线观看| 春色校园在线视频观看| 日本一本二区三区精品| 人妻夜夜爽99麻豆av| 丰满人妻一区二区三区视频av| 亚洲高清免费不卡视频| 中文在线观看免费www的网站| 国语自产精品视频在线第100页| 亚洲精品成人久久久久久| 国产精品女同一区二区软件| 成人鲁丝片一二三区免费| 中国美白少妇内射xxxbb| 中文字幕av成人在线电影| 亚洲av成人av| 美女 人体艺术 gogo| 国产欧美日韩精品一区二区| 此物有八面人人有两片| 超碰av人人做人人爽久久| 秋霞在线观看毛片| 两性午夜刺激爽爽歪歪视频在线观看| 久久亚洲精品不卡| 男人的好看免费观看在线视频| 乱码一卡2卡4卡精品| 三级男女做爰猛烈吃奶摸视频| 亚洲美女视频黄频| 禁无遮挡网站| 赤兔流量卡办理| 国产乱人视频| 深爱激情五月婷婷| 精品午夜福利视频在线观看一区| 亚洲精品一卡2卡三卡4卡5卡| 男女下面进入的视频免费午夜| av视频在线观看入口| 欧美中文日本在线观看视频| 国产毛片a区久久久久| 亚洲精品成人久久久久久| 日本a在线网址| 蜜桃亚洲精品一区二区三区| 黄色配什么色好看| 最新中文字幕久久久久| 日本一二三区视频观看| 看片在线看免费视频| 男女啪啪激烈高潮av片| 综合色丁香网| 亚洲精品乱码久久久v下载方式| 美女高潮的动态| 91在线观看av| 国产不卡一卡二| 丝袜美腿在线中文| 日本一本二区三区精品| 婷婷精品国产亚洲av在线| 中文字幕熟女人妻在线| 晚上一个人看的免费电影| 亚洲国产精品合色在线| www.色视频.com| 国模一区二区三区四区视频| 亚洲欧美日韩高清在线视频| 亚洲真实伦在线观看| 欧美性猛交╳xxx乱大交人| 久久99热6这里只有精品| 欧美日本视频| 97人妻精品一区二区三区麻豆| 精品免费久久久久久久清纯| 精品久久久久久久久久久久久| 欧美区成人在线视频| 国产精品国产三级国产av玫瑰| 美女cb高潮喷水在线观看| 亚洲av成人精品一区久久| 国产女主播在线喷水免费视频网站 | 国产精品久久电影中文字幕| 亚洲中文字幕一区二区三区有码在线看| 波多野结衣高清作品| 亚洲国产精品成人久久小说 | 波多野结衣高清无吗| 激情 狠狠 欧美| 成人鲁丝片一二三区免费| 人妻制服诱惑在线中文字幕| 久久精品国产亚洲av香蕉五月| videossex国产| 日韩欧美国产在线观看| 欧美一区二区精品小视频在线| 色综合站精品国产| 亚洲成a人片在线一区二区| 国产精品亚洲美女久久久| 18禁黄网站禁片免费观看直播| 99国产精品一区二区蜜桃av| 国产在线精品亚洲第一网站| 人人妻人人澡欧美一区二区| 欧美成人a在线观看| 最近最新中文字幕大全电影3| 国产午夜福利久久久久久| 国产成人a区在线观看| 精品一区二区三区视频在线观看免费| 听说在线观看完整版免费高清| 男人狂女人下面高潮的视频| 免费av不卡在线播放| 丰满人妻一区二区三区视频av| 精品一区二区三区视频在线| 天天一区二区日本电影三级| 97超视频在线观看视频| 99热这里只有是精品在线观看| 亚洲欧美日韩东京热| 久久亚洲精品不卡| 99在线视频只有这里精品首页| 麻豆一二三区av精品| 最好的美女福利视频网| 中国美女看黄片| 日本一本二区三区精品| 日日啪夜夜撸| 久久天躁狠狠躁夜夜2o2o| 国产色爽女视频免费观看| 99久久久亚洲精品蜜臀av| 久久久精品欧美日韩精品| 成熟少妇高潮喷水视频| 1000部很黄的大片| 69人妻影院| 级片在线观看| 亚洲美女黄片视频| 18禁在线无遮挡免费观看视频 | 偷拍熟女少妇极品色| 亚洲av不卡在线观看| 成人亚洲欧美一区二区av| 亚洲18禁久久av| 午夜激情福利司机影院| 一个人看的www免费观看视频| 亚洲av美国av| 久久精品国产99精品国产亚洲性色| 免费无遮挡裸体视频| 久久久久久久久久黄片| 麻豆精品久久久久久蜜桃| 又黄又爽又免费观看的视频| 长腿黑丝高跟| 校园春色视频在线观看| 身体一侧抽搐| 丝袜美腿在线中文| 亚洲人成网站在线观看播放| 久久婷婷人人爽人人干人人爱| 国产片特级美女逼逼视频| 日韩在线高清观看一区二区三区| 亚洲综合色惰| 桃色一区二区三区在线观看| 高清午夜精品一区二区三区 | 一级黄片播放器| 看免费成人av毛片| 国产精品人妻久久久影院| 久久精品夜色国产| 国产老妇女一区| 亚洲无线在线观看| 国产 一区 欧美 日韩| 国产三级中文精品| 一本久久中文字幕| 特级一级黄色大片| 99在线人妻在线中文字幕| aaaaa片日本免费| 老熟妇乱子伦视频在线观看| a级毛片a级免费在线| 校园春色视频在线观看| 国产乱人视频| 男人的好看免费观看在线视频| 国产精品人妻久久久久久| 日韩精品有码人妻一区| 好男人在线观看高清免费视频| 在线播放无遮挡| 久久99热这里只有精品18| 久99久视频精品免费| 成人高潮视频无遮挡免费网站| 国产成年人精品一区二区| 免费在线观看成人毛片| 日本黄色视频三级网站网址| 在线观看美女被高潮喷水网站| 国产精品永久免费网站| 日本五十路高清| 精品久久久久久久末码| 色5月婷婷丁香| 香蕉av资源在线| 韩国av在线不卡| 在线a可以看的网站| 有码 亚洲区| 色av中文字幕| av在线观看视频网站免费| 精品久久久久久久末码| 中文资源天堂在线| 久久精品影院6| 晚上一个人看的免费电影| 三级国产精品欧美在线观看| 六月丁香七月| 一个人看视频在线观看www免费| 国产精品,欧美在线| 97超级碰碰碰精品色视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 九九热线精品视视频播放| 亚洲国产精品国产精品| 亚洲成人中文字幕在线播放| 最近2019中文字幕mv第一页| 亚洲第一区二区三区不卡| 欧美一区二区亚洲| 国产在线男女| 国产一区亚洲一区在线观看| 蜜桃久久精品国产亚洲av| 在线观看av片永久免费下载| 国内精品宾馆在线| 看十八女毛片水多多多| 午夜亚洲福利在线播放| 成人综合一区亚洲| eeuss影院久久| 成人av在线播放网站| 色综合色国产| 欧美性感艳星| 大又大粗又爽又黄少妇毛片口| eeuss影院久久| 精品人妻熟女av久视频| 永久网站在线| 97热精品久久久久久| 亚洲欧美成人精品一区二区| 免费不卡的大黄色大毛片视频在线观看 | 三级国产精品欧美在线观看| 亚洲高清免费不卡视频| 少妇熟女aⅴ在线视频| 国产国拍精品亚洲av在线观看| 精品久久久久久成人av| 国产 一区精品| 国产精品一区www在线观看| h日本视频在线播放| 我要看日韩黄色一级片| 人妻丰满熟妇av一区二区三区| www日本黄色视频网| 亚洲欧美中文字幕日韩二区| 在线观看免费视频日本深夜| 免费人成视频x8x8入口观看| 国产精品99久久久久久久久| 最近视频中文字幕2019在线8| 真实男女啪啪啪动态图| 午夜a级毛片| 韩国av在线不卡| 久久精品91蜜桃| 天美传媒精品一区二区| 午夜日韩欧美国产| 国产黄a三级三级三级人| 国产久久久一区二区三区| 国产精品久久久久久亚洲av鲁大| 午夜爱爱视频在线播放| av在线蜜桃| 夜夜爽天天搞| 特级一级黄色大片| 丰满乱子伦码专区| 青春草视频在线免费观看| 男女做爰动态图高潮gif福利片| 在线免费观看不下载黄p国产| 九九在线视频观看精品| 男女视频在线观看网站免费| 国产av在哪里看| 久久国内精品自在自线图片| 黄色一级大片看看| 乱人视频在线观看| 成人精品一区二区免费| 国产高清视频在线观看网站| 日本三级黄在线观看| 色在线成人网| 色视频www国产| 悠悠久久av| 一级毛片我不卡| 久久久久国产网址| 亚洲七黄色美女视频| 日韩欧美在线乱码| 亚洲精品色激情综合| 亚洲国产精品久久男人天堂| 精品久久久久久久久亚洲| 久久精品夜色国产| 国内少妇人妻偷人精品xxx网站| 亚洲精品久久国产高清桃花| 久久鲁丝午夜福利片| 国产国拍精品亚洲av在线观看| av黄色大香蕉| 香蕉av资源在线| 一卡2卡三卡四卡精品乱码亚洲| 日日啪夜夜撸| 免费在线观看成人毛片| 此物有八面人人有两片| 午夜激情福利司机影院| 日韩精品青青久久久久久| 99久久精品国产国产毛片| 婷婷精品国产亚洲av| 少妇裸体淫交视频免费看高清| 国产欧美日韩精品一区二区| 国产一区二区在线av高清观看| 天堂影院成人在线观看| 久久精品国产清高在天天线| 中文在线观看免费www的网站| 日韩精品有码人妻一区| 极品教师在线视频| 搡老岳熟女国产| 99热6这里只有精品| 国产成人精品久久久久久| 欧美成人一区二区免费高清观看| 在线观看66精品国产| 亚洲aⅴ乱码一区二区在线播放| 国产午夜精品论理片| 久久久久久大精品| 99久久精品一区二区三区| 天堂动漫精品| 亚洲在线观看片| 丰满人妻一区二区三区视频av| 色尼玛亚洲综合影院| 日韩中字成人| 亚洲久久久久久中文字幕| 日韩欧美精品v在线| aaaaa片日本免费| 嫩草影视91久久| 国产片特级美女逼逼视频| 亚洲国产高清在线一区二区三| 亚洲婷婷狠狠爱综合网| 伦理电影大哥的女人| 午夜亚洲福利在线播放| 伦精品一区二区三区| a级毛片a级免费在线| 国产激情偷乱视频一区二区| 成年女人永久免费观看视频| 亚洲中文日韩欧美视频| 听说在线观看完整版免费高清| 中文字幕av在线有码专区| 国产一区二区激情短视频| 国产成人a区在线观看| 99久久中文字幕三级久久日本| 在线播放国产精品三级| 久久婷婷人人爽人人干人人爱| 成年av动漫网址| 国产不卡一卡二| 老司机福利观看| 亚洲精品成人久久久久久| 国产单亲对白刺激| 婷婷色综合大香蕉| 欧洲精品卡2卡3卡4卡5卡区| 婷婷六月久久综合丁香| 久久精品国产亚洲av天美| 看非洲黑人一级黄片| 91精品国产九色| 日本色播在线视频| 成熟少妇高潮喷水视频| 国内揄拍国产精品人妻在线| 亚洲国产精品久久男人天堂| av免费在线看不卡| 亚洲欧美日韩高清在线视频| 女生性感内裤真人,穿戴方法视频| 成人欧美大片| 一级毛片电影观看 | 久久精品国产亚洲网站| 免费看a级黄色片| 桃色一区二区三区在线观看| 97人妻精品一区二区三区麻豆| 蜜桃亚洲精品一区二区三区| avwww免费| 精品99又大又爽又粗少妇毛片| av国产免费在线观看| 一级av片app| 亚洲国产精品sss在线观看| 国产亚洲欧美98| 日本五十路高清| 国产亚洲欧美98| 国产一区二区三区av在线 | 少妇熟女aⅴ在线视频| av在线播放精品| 少妇高潮的动态图| 午夜老司机福利剧场| 国产视频一区二区在线看| 久久久久九九精品影院| 亚洲欧美精品自产自拍| 能在线免费观看的黄片| 婷婷精品国产亚洲av在线| 国产精品一二三区在线看| 国产av在哪里看| 免费看av在线观看网站| 久久精品夜夜夜夜夜久久蜜豆| 成年av动漫网址| 久久久成人免费电影| 老师上课跳d突然被开到最大视频| 高清日韩中文字幕在线| 天堂网av新在线| 久久精品影院6| 国产激情偷乱视频一区二区| 美女xxoo啪啪120秒动态图| av在线亚洲专区| 欧美日韩乱码在线| 亚洲经典国产精华液单| 国产精华一区二区三区| 老熟妇仑乱视频hdxx| 中文字幕精品亚洲无线码一区| 波多野结衣高清无吗| 最新在线观看一区二区三区| 久久精品久久久久久噜噜老黄 | 99久国产av精品| 久久精品久久久久久噜噜老黄 | 特大巨黑吊av在线直播| 草草在线视频免费看| 99久久成人亚洲精品观看| 色吧在线观看| a级一级毛片免费在线观看| 中国国产av一级| 国产精品亚洲美女久久久| 久久久久久久午夜电影| 午夜精品一区二区三区免费看| 久久久久久久久久黄片| 美女被艹到高潮喷水动态| 九九久久精品国产亚洲av麻豆| 国产亚洲欧美98| 精华霜和精华液先用哪个| 高清毛片免费看| 国产精品国产三级国产av玫瑰| 免费观看精品视频网站| 美女xxoo啪啪120秒动态图| 又黄又爽又免费观看的视频| 亚洲精品国产av成人精品 | 欧美成人精品欧美一级黄| 搡女人真爽免费视频火全软件 | 一区福利在线观看| 精品久久久久久久久久免费视频| 亚洲国产欧美人成| 不卡视频在线观看欧美| 97热精品久久久久久| 精品一区二区三区人妻视频| 99热全是精品| 精品国产三级普通话版| 亚洲人成网站高清观看| a级毛片免费高清观看在线播放| 国产午夜精品论理片| 少妇猛男粗大的猛烈进出视频 | 久久精品影院6| 国产精品人妻久久久久久| 日本爱情动作片www.在线观看 | 国产成人精品久久久久久| 国产亚洲精品久久久com| 精品人妻偷拍中文字幕| 99久国产av精品| 日日撸夜夜添| 成人精品一区二区免费| 岛国在线免费视频观看| 精品熟女少妇av免费看| aaaaa片日本免费| 一a级毛片在线观看| 国产色爽女视频免费观看| 久久久久久久午夜电影| 看免费成人av毛片| 欧美xxxx黑人xx丫x性爽| 亚洲第一区二区三区不卡| 51国产日韩欧美| 国产午夜精品久久久久久一区二区三区 | 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品久久国产高清桃花| 中文字幕av成人在线电影| 国产精品伦人一区二区| av免费在线看不卡| 久久久欧美国产精品| 女人十人毛片免费观看3o分钟| av.在线天堂| 少妇人妻精品综合一区二区 | 99久久精品热视频| 日日摸夜夜添夜夜添小说| 免费大片18禁| 中文亚洲av片在线观看爽| 简卡轻食公司| 欧美日韩精品成人综合77777| 又爽又黄a免费视频| 成年女人永久免费观看视频| 亚洲国产精品合色在线| 国产精品嫩草影院av在线观看| 日日啪夜夜撸| 国内久久婷婷六月综合欲色啪| 亚洲av成人av| 国产精品乱码一区二三区的特点| 日本一二三区视频观看| 自拍偷自拍亚洲精品老妇| 欧美国产日韩亚洲一区| 一级毛片电影观看 | 日本在线视频免费播放| 有码 亚洲区| 亚洲最大成人中文| 毛片女人毛片| 国产高清激情床上av| 亚洲在线自拍视频| 免费看美女性在线毛片视频| 国产熟女欧美一区二区| aaaaa片日本免费| 九九久久精品国产亚洲av麻豆| 可以在线观看毛片的网站| 综合色丁香网| 欧美日韩一区二区视频在线观看视频在线 | 午夜免费激情av| 午夜福利在线在线| 久久久久久久久久久丰满| 国产精品日韩av在线免费观看| 天天一区二区日本电影三级| 国产精品嫩草影院av在线观看| 亚洲成人精品中文字幕电影| 观看免费一级毛片| 俄罗斯特黄特色一大片| 插逼视频在线观看| 国产精品一二三区在线看| 一进一出好大好爽视频| 久久久欧美国产精品| 美女内射精品一级片tv| 日韩一本色道免费dvd| 蜜桃久久精品国产亚洲av| 国产一区二区在线av高清观看| 亚洲国产精品合色在线| 成人性生交大片免费视频hd| 久久精品国产自在天天线| 中文字幕久久专区| 日日干狠狠操夜夜爽| 国产一级毛片七仙女欲春2| 国产单亲对白刺激| 国产亚洲91精品色在线| 伊人久久精品亚洲午夜| 精品一区二区三区视频在线| 一a级毛片在线观看| 亚洲丝袜综合中文字幕| 国产成人a∨麻豆精品| 国产乱人视频| 亚洲第一电影网av| 中文字幕熟女人妻在线| 高清午夜精品一区二区三区 | 日本熟妇午夜| 亚洲欧美日韩高清专用| 国产不卡一卡二| 99久久精品一区二区三区| 国产成人a∨麻豆精品| 亚洲激情五月婷婷啪啪| 久久精品国产亚洲av天美| 91久久精品国产一区二区三区| 国产精品1区2区在线观看.| 日韩 亚洲 欧美在线| 婷婷六月久久综合丁香| 亚洲成av人片在线播放无| 高清毛片免费观看视频网站| 午夜福利18| av在线老鸭窝| 日日干狠狠操夜夜爽| 91久久精品电影网| 午夜精品国产一区二区电影 | 六月丁香七月| 蜜臀久久99精品久久宅男| 又爽又黄a免费视频| 美女xxoo啪啪120秒动态图| 日本-黄色视频高清免费观看| 中出人妻视频一区二区| 国产伦精品一区二区三区视频9| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久黄片| 美女被艹到高潮喷水动态| a级毛片免费高清观看在线播放| 国产亚洲精品av在线| 国产黄色小视频在线观看| 成人特级黄色片久久久久久久| 日本黄色片子视频| 国产亚洲91精品色在线| 国产白丝娇喘喷水9色精品| 韩国av在线不卡| 深夜精品福利| 婷婷亚洲欧美| 三级毛片av免费| 久久精品国产清高在天天线| 熟妇人妻久久中文字幕3abv| 简卡轻食公司| 一进一出好大好爽视频| 搞女人的毛片| 能在线免费观看的黄片| 日日撸夜夜添| 日韩,欧美,国产一区二区三区 | 99riav亚洲国产免费| 欧美日韩在线观看h| 99九九线精品视频在线观看视频| 日本熟妇午夜| 久久精品夜色国产| 我的女老师完整版在线观看| 天堂av国产一区二区熟女人妻| 免费大片18禁| 中文亚洲av片在线观看爽| 精品午夜福利视频在线观看一区| 亚洲无线在线观看| 亚洲第一区二区三区不卡| 欧美另类亚洲清纯唯美| 露出奶头的视频| 不卡一级毛片| 亚洲国产精品久久男人天堂| 偷拍熟女少妇极品色| 91久久精品电影网| 亚洲天堂国产精品一区在线| 亚洲七黄色美女视频| 亚洲av中文av极速乱| 成人美女网站在线观看视频| 天天躁日日操中文字幕| 亚洲成人精品中文字幕电影| 国产色爽女视频免费观看| 噜噜噜噜噜久久久久久91| 国产精品99久久久久久久久| 成人特级av手机在线观看| 久久久久国产网址|