• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Integrity analysis and inverse Deng’s grey relational analysis model

    2023-12-05 07:36:26WangWenpingMaZheng

    Wang Wenping Ma Zheng

    (1School of Economics and Management,Southeast University,Nanjing 211189,China)(2National School of Development and Policy,Southeast University,Nanjing 211189,China)(3Institute of Strategic Development,China Telecom Research Institute,Shanghai 200122,China)

    Abstract:An inverse Deng’s grey relational analysis model is established to identify and quantify the inverse relationships in the system from a holistic perspective.The axiom system containing inverse relationships is constructed based on the four axioms of grey relational analysis.The inverse Deng’s grey relational analysis model is established by introducing the incidence direction vector,and the incidence direction of factors is identified using an agenetic algorithm.The rationality and effectiveness of the proposed model are verified by identifying the key relevant factors of the innovation chain quality in Jiangsu.The case analysis shows that the inverse grey relational analysis model identifies the knowledge innovation link of the process characteristic as the inverse relational factor of Jiangsu innovation chain quality,with a relational degree of-0.815.Compared with the other four typical grey relational analysis models,its incidence direction and strength judgment are more reasonable.The proposed model can effectively identify and quantify inverse relationships while ensuring analysis integrity,which broadens the application scope of Deng’s grey relational analysis model.

    Key words:inverse Deng’s grey relational analysis; grey relational axiom; grey relational degree; genetic algorithm

    Grey relational analysis (GRA) is a method used to quantify and sequence the factors affecting the behavior of a system.GRA is useful for systems lacking data or information.Typically,there is a universal promotional or restrictive relationship between the factors influencing a system and its behavior.The interactions between these promotional and restrictive factors provide the necessary impetus for the evolution and development of system self-organization.However,existing research on GRA theories and applications has mainly focused on system factor promotion and ignored restrictive or inhibitory factors.This limitation has hindered a more comprehensive understanding of system development and evolution.To address this gap,the inverse GRA is gaining attention as a new research direction in the field of GRA theory[1].This approach intends to clarify the development and optimization mechanisms of the system.By considering the role of restrictive or inhibitory factors,the inverse GRA provides a more holistic perspective on system behaviors.As a result,the analysis can enrich the scope and depth of research on system development and evolution.

    Deng[2],the founder of the grey system theory,proposed that the essence of GRA is comparison,which involves a reference system and a measure.The metric space and point set topological space are combined to create an overall comparison with a reference frame and measure.Deng’s GRA model investigates the major and minor factors of system formation and change by comparing the closeness of various data sequence curves.Numerous improved models based on Deng’s GRA model have been proposed.For instance,Liu et al.[3]introduced an absolute GRA model to measure the area between data sequence curves.By examining the similarity of geometric shapes and spatial distance between data sequence curves,Liu et al.[4]presented the similarity and closeness degrees of the grey relational model,respectively.However,Deng’s GRA model calculates the grey relational degree based on relational coefficients of specific points,which,some argue,leads to information loss.To address this point,the concept of grey entropy was introduced,and the grey relational entropy model was proposed[5].Quan et al.[6]employed the maximum entropy method to calculate the weight of relevant factors and proposed a weighted GRA model.Some scholars have also constructed a multivariate grey relational model by controlling the weight of relevant factors and adjusting the sequence of relevant factors to render the shape similar to the system’s behavioral sequence[7].Furthermore,some researchers have extended the application of the GRA model to matrix sequences data[8-9],panel data[10-11],categorical variables[12],and multiperiod variables[13].

    To summarize,recent improvements to Deng’s GRA model exhibit certain characteristics.First,most scholars have focused on improving the metric space measurement method based on various interpretations of a “relation”.Second,some new models have abandoned the point set topological space as a reference system for comparison,leading to the violation of axioms such as integrity and even-pair symmetry.While most models still adhere to the normative axiom,they assume that relevant factors and system behavior exhibit a direct incidence relationship.However,some relevant factors may exhibit an opposing trend to the system behavior,which these models are unable to recognize.

    Recent research has proposed a new stream of analysis called inverse relational analysis to address the issues in existing models,as mentioned in the previous paragraph[1].However,earlier models,such as the grey periodic relational model[14]and the grey dynamic trend relational model[15],have also addressed the issues by breaking the normative axiom to incorporate inverse incidence relationships.These models calculate the grey relational degree based on the relational coefficients of points.The direction of incidence is determined by the increment in relevant factors and the system behavioral sequence at each data point.When the increment in the relevant factor has the same sign as that of the system behavioral sequence,it is considered a direct incidence relationship and an inverse incidence relationship is established otherwise.

    However,these models have two main shortcomings.First,they focus only on the partial incidence direction of each data point,which ignores the holistic idea of GRA and is susceptible to random disturbances,leading to inaccurate judgments on the direction and strength of relevant factors.Second,the measurement method starts from the increment,which does not consider the absolute position of the data point.Consequently,when the incidence relationship of a point is inverse and the relevant factor increment direction is opposite to the system behavior increment,the distance between them may be shortened,making the model fail to satisfy the proximity axiom.In contrast,the bidirectional absolute GRA model recently proposed by Javed and Liu[16]overcomes these shortcomings.In this model,the incidence direction is identified by comparing the absolute grey relational degree of the original sequence with the absolute grey relational degree of the mirror sequence.The model extends the absolute GRA model and measures both the direction and strength of the relationship based on a holistic idea.Liu[17]also proposed a series of negative grey relational models; however,the incidence direction determination is based on the integration between the sequence and the axis without considering the relative trend between the related sequences.As a result,sequences considered to be in the same incidence direction may have completely opposite trends,which is a drawback.

    The objective of this study is to devise a model that can recognize and measure the influence of inverse relevant factors within a system based on Deng’s GRA model.This model can be applied to all previous GRA problems and can recognize and quantify the inverse incidence relationship when it exists.When this relationship does not exist,the model’s calculations are identical to those of Deng’s GRA model.Our innovation lies in recognizing the presence of inverse factors while still preserving the systematic comparison advantages of Deng’s model.Specifically,we first expand the grey relational axiom to accommodate the inverse incidence relationship,then design a GRA model that incorporates these relationships and use the genetic algorithm to solve the model.Finally,we use the factor analysis affecting the quality of the innovation chain in Jiangsu Province,China,as an example to verify the feasibility and effectiveness of the proposed model and algorithm.

    1 Construction of an Inverse Deng’s GRA Model

    This section outlines the development of an inverse Deng’s GRA model,which is based on Deng’s GRA model through the extension of the axiom,model improvements,and algorithm design.The extended model uses an agenetic algorithm to identify the promotion or restriction relationships between the relevant factors and the system behavior.

    1.1 Extension of the grey relational axiom

    In the past,there have been in-depth discussions and analyses of Deng’s four axioms of GRA,including the even-pair symmetry axiom and integrity axiom[18-20].While the normative axiom has received less attention,it implicitly assumes that the incidence relationship in the system is direct.To incorporate the inverse incidence relationship in the axiom system,we propose an extension to the normative axiom that modifies the even-pair symmetry and integrity axioms.

    Xi={xi(1),xi(2),…,xi(n)}

    (1)

    (2)

    whereMiis a constant,and letMi=maxk{xi(k)},k=1,2,…,n.

    Given real numbersγ(x0(k),xi(k)) andγ(x0(k),Mi-xi(k)),if the real numbers

    (3)

    (4)

    satisfy the following four axioms:

    1) Normative axiom.Letγ(X0,Xi) andγ′(X0,Xi) take values in the interval of[-1,1],where

    γ(X0,Xi)∈(0,1],γ(X0,Xi)=1?X0=Xi

    (5)

    (6)

    2) Integrity axiom.LetΓ(Xi,Xj)={γ(Xi,Xj),γ′(Xi,Xj)},Xi,Xj∈X={X0,X1,…,Xm},m≥2,where

    (7)

    3) Even-pair symmetry axiom.For anyXi,Xj∈X={X0,X1,…,Xm},m<2,there is

    X={Xi,Xj}?Γ(Xi,Xj)=Γ(Xj,Xi)

    (8)

    4) Proximity axiom.The smaller the|x0(k)-xi(k)|,the larger theγ(x0(k),xi(k)).The smaller the|x0(k)-(Mi-xi(k))|,the smaller theγ(x0(k),Mi-xi(k)).

    In this case,γ(X0,Xi) is referred to as the direct grey relational degree ofX0andXi,γ(x0(k),xi(k)) as the direct relational coefficient ofX0andXiat pointk.γ′(X0,Xi) is referred to as the inverse grey relational degree ofX0andXi,γ(x0(k),Mi-xi(k)) as the inverse relational coefficient ofX0andXiat pointk.The above four conditions are extended grey relational axioms,which extend the value of the grey relational degree to the interval of[-1,1].

    1.2 Inverse Deng’s GRA model

    Based on the extended grey relational axiom,the grey relational degree including inverse incidence relationships is designed.Let the incidence direction be represented by a vectorP={p1,p2,…,pm},and letpi(i=1,2,…,m) denotes the direct or inverse incidence relationship betweenX0andXi,such that

    (9)

    (10)

    (11)

    (12)

    The grey relational coefficientγ(x0(k),xi(k)) and the grey relational degreeγ(X0,Xi) satisfy the extended grey relational axiom.In other words,the inverse Deng’s GRA model is an extension of Deng’s GRA model that accounts for inverse incidence relationships.

    The main challenge is to determine the values of the elements in the incidence direction vectorP,which corresponds to the direct or inverse relationship between the relevant factors of the system and the system behavioral sequence.The value intervalCof the grey relational coefficient is dependent on vectorP,meaning that a change in the incidence direction of any relevant factor sequence may lead to a corresponding change in the grey relational degree of all sequences.Hence,determining the incidence direction of each relevant factor sequence is critical in accurately assessing the grey relational degree,including inverse incidence relationships.

    (13)

    (14)

    Similar to Javed’s confidence level scale[16],the proposed incidence direction confidence index is expected to be a valuable contribution to the theory of inverse GRA.

    1.3 Model solving based on a genetic algorithm

    The direct solution to the above optimization problem is challenging.The number of possibilities for the values of elements in vectorPincreases exponentially with the increase in the number of relevant factor sequences,making it computationally expensive.To reduce the computational cost,the agenetic algorithm is used.The genetic algorithm simulates the natural evolution process to search for the optimal solution.The algorithm starts with a set of initial solutions generated randomly and iteratively performs operations such as selection,crossover,and mutation to obtain the optimal solution.The computational flow of the genetic algorithm can be summarized as follows.

    Algorithm1Solving inverse Deng’s GRA model based on the genetic algorithm

    Input:X={X0,X1,…,Xm}.

    Output:P={p1,p2,…,pm}.

    ① Individual coding.

    ② Population initialization.

    ③ Fitness evaluation.

    ④ Selection.

    ⑤ Crossover.

    ⑥ Mutation.

    ⑦ Satisfy termination criterion? If the criterion is met then returnP,otherwise back to ③.

    Encoding is a method for converting the feasible solution to a problem from its solution space to a search space that can be handled by the agenetic algorithm.Based on binary coding (Formula 9),the vectorPcan be considered an individual in the genetic algorithm.

    The initial population is a set of individuals.A set of initial vectorsPis randomly generated to form the initial population.Differences between individuals will lead to different levels of fitness.

    The fitness function evaluates the ability of an individual to produce offspring.The higher the fitness,the stronger the ability to produce offspring.In this case,the objective functionf(p1,p2,…,pm) is considered as the fitness function:

    (15)

    The selection operator selects high-quality individuals based on their fitness and discards low-quality individuals,following the principle of “survival of the fittest”.The selection operator uses the roulette algorithm,where the probability of individual inheritance is proportional to its fitness.

    The crossover operator involves exchanging some genes between two chromosomes that intersect each other in a certain way to create two new individuals.It is the primary method used to generate new individuals and determines the global search capability of the genetic algorithm.The crossover operator uses the random paired single-point crossover method,where a crossover point is randomly set in the individual code string,and the genes of the paired individuals are partially exchanged at this point.

    The mutation operator is responsible for replacing genes at specific loci in the individual’s chromosome coding string with other alleles from the same locus,resulting in the creation of a new individual.It serves as an auxiliary method for generating novel individuals and plays a crucial role in the local search capability of the genetic algorithm.In this case,the mutation operator utilizes a single-point mutation approach,randomly selecting a locus within the individual for mutation.

    The termination criterion determines whether the algorithm meets the conditions for calculation termination.In this case,the algorithm terminates when the number of iterations reaches the predetermined number of generations.

    2 Application Case

    In this section,an empirical study is conducted to evaluate the feasibility and effectiveness of the proposed inverse Deng’s GRA model.Specifically,the identification of key factors that affect the quality of the innovation chain in Jiangsu Province is considered an illustrative example.

    2.1 System’s behavior and relevant factors

    We developed a list of the factors that influence the quality of the innovation chain in Jiangsu Province based on two key dimensions: quality characteristics and innovation links.The factors are presented in Tab.1.

    Tab.1 Relevant factors in the Jiangsu innovation chain

    Tab.2 presents the system’s behavioral sequence and the relevant factor sequences of the quality of the innovation chain in Jiangsu Province between 2009 and 2018,expressed in the form of a quality index.

    Tab.2 System’s behavioral sequence and relevant factor sequences

    Fig.1 illustrates the development trend of the system’s behavior and relevant factors of the quality of the Jiangsu innovation chain.

    (a)

    2.2 Inverse Deng’s GRA and comparison with other models

    To investigate the impact of each relevant factor on the quality of the Jiangsu innovation chain,we employed various grey relational analysis models,including Deng’s GRA model,absolute GRA model,bidirectional absolute GRA model[16],negative Deng’s GRA model[17],Pearson correlation coefficient,and the proposed inverse Deng’s GRA model.For these models,the distinguishing coefficientξ=0.5.Note that the Pearson correlation coefficient and the other models,except for Deng’s GRA and Liu’s absolute GRA models,can accurately determine the incidence direction.

    As outlined in Section 1.3,the proposed model can be solved using the genetic algorithm.Fig.2 depicts the changes in best fitness and average fitness of the population in the genetic algorithm of the inverse Deng’s GRA model as the number of iterations increases.The results indicate that the nonlinear constraint optimization problem with objective functionfconverges rapidly (see Fig.2(a)),with all individuals reaching the optimal solution in the ninth generation.Conversely,the objective functionf′ converges after approximately 200 generations (see Fig.2(b)).Furthermore,the optimal solution of the objective functionf′ is significantly higher than that off.

    (a)

    Tab.3 presents the results of the GRA models,as well as the Pearson correlation coefficient,sorted according to their absolute values.In contrast to the first two classical models,the other four models treat the knowledge innovation link of the process characteristicX4as an inverse relevant factor.However,the inverse Deng’s GRA model and Pearson correlation coefficient deem the relationship strength ofX4to be high,while the bidirectional absolute GRA model and negative Deng’s GRA model consider the strength of the relationship to be low.The Pearson correlation coefficient reveals a strong linear correlation of-0.905 betweenX4and the system’s behavioral sequence,raising doubts about the acceptability of the bidirectional absolute GRA model and negative Deng’s GRA model results.

    Tab.3 Comparison of grey relational analysis models

    In addition,the bidirectional absolute GRA model and negative Deng’s GRA model both analyzeX5as an inverse relevant factor.However,the bidirectional absolute GRA model deems this result insignificant (δi=0),while the negative Deng’s GRA model is unable to determine its significance.The inverse Deng’s GRA model,which considersX5as a direct relevant factor,also finds the result insignificant (Ti=0.998).Regardless ofX5’s classification as a direct or inverse relevant factor,its relationship strength is the weakest in any of the three models.

    3 Conclusions

    1) An inverse Deng’s GRA model is constructed along with the genetic algorithm.The model helps identify and quantify the promotion or restriction relationships between the factors and system behavior,thus providing insight into the system’s formation and change process.The proposed model expands the application of grey relational analysis and retains the excellent characteristics of Deng’s GRA model.

    2) The inverse Deng’s GRA model can effectively identify and quantify inverse relationships.In the case analysis of the quality of Jiangsu’s innovation chain,the inverse Deng’s GRA model identifies the knowledge innovation link of the process characteristic as the inverse relational factor of the Jiangsu innovation chain quality,with a relational degree of-0.815.Compared to the existing models,the inverse Deng’s GRA model is more effective in identifying the incidence direction and strength of relevant factors in the grey system.

    3) As a relatively new research direction,there is considerable potential for further development of inverse relational analysis.First,it is necessary to propose additional inverse relational analysis models to expand the application scope.Second,there is a need for uniform judgment criteria for the incidence direction and strength among various models,which is currently a challenge that requires further exploration and solution.

    亚洲国产最新在线播放| 久久久国产成人精品二区| 欧美成人a在线观看| 99久久无色码亚洲精品果冻| 欧美丝袜亚洲另类| 少妇的逼水好多| 亚洲成人av在线免费| 日本五十路高清| 黑人高潮一二区| 亚洲高清免费不卡视频| 最后的刺客免费高清国语| 嫩草影院新地址| 嫩草影院精品99| 少妇被粗大猛烈的视频| 美女大奶头视频| 91av网一区二区| 最近最新中文字幕免费大全7| 日本猛色少妇xxxxx猛交久久| 91久久精品国产一区二区成人| 亚洲一级一片aⅴ在线观看| 有码 亚洲区| 偷拍熟女少妇极品色| 国产高清有码在线观看视频| 亚洲av免费高清在线观看| 国产精品国产三级国产专区5o | 国产v大片淫在线免费观看| 欧美成人午夜免费资源| 国产成人午夜福利电影在线观看| 亚洲欧美成人精品一区二区| 日韩欧美国产在线观看| 久热久热在线精品观看| 久久久久久久亚洲中文字幕| 人妻制服诱惑在线中文字幕| 欧美最新免费一区二区三区| 身体一侧抽搐| 国产爱豆传媒在线观看| 天堂中文最新版在线下载 | 99热这里只有精品一区| 免费搜索国产男女视频| 久久99蜜桃精品久久| 天天躁夜夜躁狠狠久久av| 国产精品国产三级专区第一集| 免费播放大片免费观看视频在线观看 | 国产单亲对白刺激| 国产亚洲av嫩草精品影院| 国产免费视频播放在线视频 | 我要看日韩黄色一级片| 精品免费久久久久久久清纯| 午夜精品在线福利| 国产又黄又爽又无遮挡在线| 国产免费福利视频在线观看| 国产精品,欧美在线| 亚洲精品影视一区二区三区av| 午夜精品国产一区二区电影 | 美女cb高潮喷水在线观看| 精品久久久久久久久久久久久| 国产成人freesex在线| 黄色配什么色好看| 国产午夜精品一二区理论片| 欧美日本视频| 尾随美女入室| 久久亚洲国产成人精品v| 天天一区二区日本电影三级| 伦理电影大哥的女人| 久久久欧美国产精品| 亚洲精品一区蜜桃| 亚洲av成人精品一区久久| 少妇的逼水好多| 黄色配什么色好看| 哪个播放器可以免费观看大片| 久久精品夜夜夜夜夜久久蜜豆| 色噜噜av男人的天堂激情| av国产免费在线观看| 久久精品久久久久久噜噜老黄 | 一个人观看的视频www高清免费观看| 亚洲国产欧美在线一区| 长腿黑丝高跟| 欧美性感艳星| 91久久精品国产一区二区成人| 欧美极品一区二区三区四区| 成年版毛片免费区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一区二区三区高清视频在线| 亚洲最大成人中文| 午夜福利高清视频| 亚洲欧美精品自产自拍| 2022亚洲国产成人精品| 亚洲精品久久久久久婷婷小说 | 高清日韩中文字幕在线| 日本一本二区三区精品| 51国产日韩欧美| 99热这里只有是精品在线观看| 成年av动漫网址| 久久人妻av系列| 天堂网av新在线| 亚洲三级黄色毛片| 日韩精品青青久久久久久| 99久久精品一区二区三区| 免费av观看视频| 日本黄色视频三级网站网址| 久久精品人妻少妇| 少妇人妻一区二区三区视频| 国产一区亚洲一区在线观看| 久久久精品94久久精品| 欧美zozozo另类| 欧美一区二区国产精品久久精品| 国产三级中文精品| 搞女人的毛片| 欧美日韩国产亚洲二区| 91精品一卡2卡3卡4卡| 亚洲国产精品国产精品| 久久精品国产鲁丝片午夜精品| 精品久久久久久成人av| 欧美成人免费av一区二区三区| 蜜桃久久精品国产亚洲av| 精品久久久久久成人av| 亚洲久久久久久中文字幕| 蜜桃亚洲精品一区二区三区| 禁无遮挡网站| 最近2019中文字幕mv第一页| 精品一区二区三区视频在线| 大香蕉97超碰在线| 亚洲婷婷狠狠爱综合网| 亚洲欧美中文字幕日韩二区| 亚洲精品乱码久久久v下载方式| 精品久久久久久成人av| 久久久久久久久久成人| 亚洲第一区二区三区不卡| 久久精品国产亚洲av涩爱| 国产成人一区二区在线| 精品久久久久久久人妻蜜臀av| 国产伦在线观看视频一区| 日本免费一区二区三区高清不卡| 精品国产露脸久久av麻豆 | 丰满乱子伦码专区| 亚洲av福利一区| 少妇的逼好多水| 五月玫瑰六月丁香| 麻豆国产97在线/欧美| 国产av不卡久久| 亚洲18禁久久av| 国产一区亚洲一区在线观看| 亚洲一级一片aⅴ在线观看| 亚洲国产欧洲综合997久久,| 一边亲一边摸免费视频| 欧美一区二区国产精品久久精品| 欧美性猛交╳xxx乱大交人| 成年女人永久免费观看视频| АⅤ资源中文在线天堂| 91久久精品国产一区二区三区| 国产高清视频在线观看网站| 日韩欧美三级三区| 又粗又硬又长又爽又黄的视频| 亚洲av成人av| 中文精品一卡2卡3卡4更新| 国产精品日韩av在线免费观看| 欧美一区二区国产精品久久精品| 中国国产av一级| 日韩成人av中文字幕在线观看| 99国产精品一区二区蜜桃av| 国产成人a∨麻豆精品| 能在线免费看毛片的网站| 男人和女人高潮做爰伦理| 男插女下体视频免费在线播放| 能在线免费观看的黄片| 成年免费大片在线观看| 如何舔出高潮| av线在线观看网站| 最近最新中文字幕大全电影3| 黄色欧美视频在线观看| 99热精品在线国产| 成人午夜精彩视频在线观看| 日日摸夜夜添夜夜添av毛片| 在线观看66精品国产| 天天躁夜夜躁狠狠久久av| 国产精品,欧美在线| 亚洲欧美日韩卡通动漫| 好男人在线观看高清免费视频| 搡老妇女老女人老熟妇| 性插视频无遮挡在线免费观看| videossex国产| 能在线免费观看的黄片| 亚洲成人久久爱视频| av线在线观看网站| 亚洲在线自拍视频| 日韩视频在线欧美| 亚洲成人av在线免费| 国产日韩欧美在线精品| av在线天堂中文字幕| av免费在线看不卡| 日韩中字成人| 日本色播在线视频| 国产不卡一卡二| 久久亚洲精品不卡| 色吧在线观看| 九色成人免费人妻av| 免费播放大片免费观看视频在线观看 | 亚洲av中文字字幕乱码综合| 免费看光身美女| 欧美日韩一区二区视频在线观看视频在线 | 免费av观看视频| 国产一级毛片七仙女欲春2| 汤姆久久久久久久影院中文字幕 | 亚洲图色成人| 黄色欧美视频在线观看| 偷拍熟女少妇极品色| 春色校园在线视频观看| 成人鲁丝片一二三区免费| 女的被弄到高潮叫床怎么办| 成人二区视频| 欧美成人精品欧美一级黄| 亚洲人与动物交配视频| 国产精品美女特级片免费视频播放器| 国产黄色视频一区二区在线观看 | 欧美区成人在线视频| 亚洲精品aⅴ在线观看| 夫妻性生交免费视频一级片| 全区人妻精品视频| 在线天堂最新版资源| 22中文网久久字幕| 亚洲成av人片在线播放无| 成人一区二区视频在线观看| 18+在线观看网站| 精品一区二区三区人妻视频| 亚洲怡红院男人天堂| av在线播放精品| 美女高潮的动态| 看片在线看免费视频| 亚洲av二区三区四区| 午夜福利高清视频| 国产精品av视频在线免费观看| 免费看美女性在线毛片视频| 人妻少妇偷人精品九色| 久久久国产成人精品二区| 国产又黄又爽又无遮挡在线| 99久久精品一区二区三区| 国产免费男女视频| 老司机影院毛片| ponron亚洲| 深夜a级毛片| 亚州av有码| 欧美一区二区亚洲| av国产久精品久网站免费入址| 久99久视频精品免费| 久久草成人影院| 观看免费一级毛片| 午夜免费男女啪啪视频观看| 色综合色国产| 午夜福利网站1000一区二区三区| 深夜a级毛片| 亚洲18禁久久av| 天美传媒精品一区二区| 精品久久久久久久末码| 51国产日韩欧美| 精品久久久久久成人av| 一级毛片aaaaaa免费看小| 国产精品一区二区三区四区免费观看| 久久久久久九九精品二区国产| 久久精品久久久久久噜噜老黄 | 中文字幕制服av| 欧美高清成人免费视频www| 久久精品91蜜桃| 久久亚洲精品不卡| 国产精品女同一区二区软件| 在现免费观看毛片| 国产精品蜜桃在线观看| 国产淫语在线视频| av福利片在线观看| 精品久久久久久久久亚洲| 亚洲综合色惰| 观看美女的网站| 国产片特级美女逼逼视频| 免费看日本二区| 少妇的逼水好多| av.在线天堂| 26uuu在线亚洲综合色| 一级毛片电影观看 | 老司机福利观看| 欧美最新免费一区二区三区| 国产成人91sexporn| 久久精品综合一区二区三区| 欧美xxxx黑人xx丫x性爽| 一级av片app| 波多野结衣巨乳人妻| 你懂的网址亚洲精品在线观看 | 中文字幕精品亚洲无线码一区| 国产成人精品一,二区| 国产亚洲一区二区精品| 看片在线看免费视频| 一区二区三区高清视频在线| 黑人高潮一二区| 国模一区二区三区四区视频| 国产精品蜜桃在线观看| 天堂av国产一区二区熟女人妻| 色综合色国产| 国产午夜精品久久久久久一区二区三区| 久久精品影院6| 国产伦理片在线播放av一区| 亚洲欧美精品自产自拍| www.色视频.com| 日韩成人av中文字幕在线观看| 狂野欧美白嫩少妇大欣赏| 国产色爽女视频免费观看| 国产免费福利视频在线观看| 小说图片视频综合网站| 精华霜和精华液先用哪个| 国产高清国产精品国产三级 | 亚洲aⅴ乱码一区二区在线播放| 国产人妻一区二区三区在| 日韩欧美国产在线观看| 黄色配什么色好看| 亚洲成人精品中文字幕电影| 久久精品综合一区二区三区| 久久国内精品自在自线图片| 亚洲精品乱码久久久v下载方式| 91狼人影院| 国产三级中文精品| 亚洲内射少妇av| 禁无遮挡网站| 尤物成人国产欧美一区二区三区| 天天一区二区日本电影三级| 国产精品国产三级专区第一集| 国产高清视频在线观看网站| 午夜精品在线福利| 午夜精品在线福利| 久久久久久久国产电影| 午夜久久久久精精品| 亚洲性久久影院| 国产极品天堂在线| 亚洲欧洲日产国产| 欧美色视频一区免费| av在线老鸭窝| 九九在线视频观看精品| 精华霜和精华液先用哪个| 嫩草影院精品99| 最近的中文字幕免费完整| 久久精品熟女亚洲av麻豆精品 | 久久精品久久久久久久性| 免费人成在线观看视频色| 插逼视频在线观看| 亚洲欧洲国产日韩| 亚洲欧美日韩高清专用| 一级爰片在线观看| 久久精品91蜜桃| 精品久久国产蜜桃| 在线免费十八禁| 啦啦啦观看免费观看视频高清| 22中文网久久字幕| 校园人妻丝袜中文字幕| 国产在视频线在精品| 精品不卡国产一区二区三区| 97超视频在线观看视频| 99在线视频只有这里精品首页| 丝袜喷水一区| 在线观看av片永久免费下载| 免费大片18禁| 18禁动态无遮挡网站| 国产毛片a区久久久久| 亚洲av成人精品一二三区| 99国产精品一区二区蜜桃av| 欧美高清性xxxxhd video| 欧美日韩国产亚洲二区| 村上凉子中文字幕在线| 69av精品久久久久久| 欧美成人精品欧美一级黄| 伊人久久精品亚洲午夜| 国产不卡一卡二| 亚洲精品国产av成人精品| 观看免费一级毛片| 欧美精品一区二区大全| 日韩强制内射视频| 啦啦啦啦在线视频资源| 波野结衣二区三区在线| 麻豆国产97在线/欧美| 美女高潮的动态| 国产精品.久久久| 美女国产视频在线观看| 久久久国产成人免费| 免费人成在线观看视频色| 亚洲欧美精品专区久久| 欧美成人a在线观看| 国产精品麻豆人妻色哟哟久久 | .国产精品久久| 中文精品一卡2卡3卡4更新| 韩国av在线不卡| 岛国毛片在线播放| 狂野欧美激情性xxxx在线观看| 啦啦啦啦在线视频资源| 人体艺术视频欧美日本| 亚洲一级一片aⅴ在线观看| 一本一本综合久久| 成人午夜精彩视频在线观看| 亚洲欧美精品专区久久| 卡戴珊不雅视频在线播放| 又黄又爽又刺激的免费视频.| 国产高潮美女av| 欧美性感艳星| 级片在线观看| 国产精品福利在线免费观看| 性色avwww在线观看| 久久久久免费精品人妻一区二区| 精品久久久久久久久亚洲| 18禁裸乳无遮挡免费网站照片| av专区在线播放| 国产精品福利在线免费观看| 日日摸夜夜添夜夜爱| 老女人水多毛片| 日韩av在线免费看完整版不卡| 一个人免费在线观看电影| 国产大屁股一区二区在线视频| 男女视频在线观看网站免费| 婷婷色av中文字幕| 人体艺术视频欧美日本| 欧美性猛交黑人性爽| 午夜精品国产一区二区电影 | 亚洲美女视频黄频| 免费观看的影片在线观看| 精品久久久久久久人妻蜜臀av| 日韩中字成人| a级毛色黄片| 搞女人的毛片| 国产精品,欧美在线| 国产真实乱freesex| 国产免费男女视频| 亚洲av男天堂| 三级毛片av免费| 免费av不卡在线播放| 成人特级av手机在线观看| av线在线观看网站| 中文字幕av成人在线电影| 99国产精品一区二区蜜桃av| 青春草视频在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 麻豆av噜噜一区二区三区| 在线a可以看的网站| 精品午夜福利在线看| 中文字幕精品亚洲无线码一区| 一个人看视频在线观看www免费| 亚洲美女视频黄频| 天天躁日日操中文字幕| 一级毛片久久久久久久久女| 国产亚洲一区二区精品| 国语自产精品视频在线第100页| 搡女人真爽免费视频火全软件| 好男人在线观看高清免费视频| 精品久久久噜噜| 久久亚洲精品不卡| 1024手机看黄色片| 国产亚洲精品av在线| 免费观看a级毛片全部| 亚洲五月天丁香| 国产免费又黄又爽又色| 日韩精品青青久久久久久| 我要搜黄色片| 久久精品国产亚洲av天美| 成年女人看的毛片在线观看| 亚洲自偷自拍三级| 热99re8久久精品国产| 熟妇人妻久久中文字幕3abv| 亚洲av成人精品一二三区| 国产精品嫩草影院av在线观看| 欧美日韩国产亚洲二区| 久久久久久久久大av| 国产黄色视频一区二区在线观看 | 亚洲成人精品中文字幕电影| 99国产精品一区二区蜜桃av| 观看免费一级毛片| 久久精品人妻少妇| 女人十人毛片免费观看3o分钟| 国产大屁股一区二区在线视频| 日韩av在线免费看完整版不卡| 嫩草影院新地址| videos熟女内射| 亚洲激情五月婷婷啪啪| 搡老妇女老女人老熟妇| 在线播放国产精品三级| 欧美精品一区二区大全| 成人午夜高清在线视频| 99热精品在线国产| av免费观看日本| 国内精品宾馆在线| 高清视频免费观看一区二区 | 国产爱豆传媒在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产免费又黄又爽又色| eeuss影院久久| 国产精品久久久久久精品电影小说 | 国产精品日韩av在线免费观看| 女的被弄到高潮叫床怎么办| 永久免费av网站大全| 狠狠狠狠99中文字幕| 夜夜爽夜夜爽视频| eeuss影院久久| 精品人妻熟女av久视频| 大香蕉久久网| 久久久久久久午夜电影| 色尼玛亚洲综合影院| 人人妻人人澡欧美一区二区| 国产精华一区二区三区| 国产精品99久久久久久久久| 亚洲自偷自拍三级| 欧美成人免费av一区二区三区| 精品人妻偷拍中文字幕| 日韩高清综合在线| 久久鲁丝午夜福利片| 亚洲18禁久久av| 亚洲国产成人一精品久久久| 午夜日本视频在线| 亚洲综合精品二区| 国产午夜精品论理片| 男女边吃奶边做爰视频| 最近最新中文字幕大全电影3| 搡女人真爽免费视频火全软件| 免费黄色在线免费观看| 人人妻人人澡人人爽人人夜夜 | 午夜福利在线观看免费完整高清在| 亚洲va在线va天堂va国产| 欧美+日韩+精品| 在线免费观看的www视频| 18禁动态无遮挡网站| 男女啪啪激烈高潮av片| 日韩高清综合在线| 91狼人影院| 床上黄色一级片| 男女那种视频在线观看| 久久久久久伊人网av| 亚洲欧美精品综合久久99| 日韩精品青青久久久久久| 久久午夜福利片| 国产黄片美女视频| 青春草亚洲视频在线观看| 午夜精品一区二区三区免费看| 看非洲黑人一级黄片| 人妻系列 视频| 大话2 男鬼变身卡| 精品久久久久久久末码| 欧美日韩国产亚洲二区| 亚洲国产欧美人成| 99视频精品全部免费 在线| 97在线视频观看| 久久久久久久亚洲中文字幕| 看非洲黑人一级黄片| 国产亚洲一区二区精品| 国内少妇人妻偷人精品xxx网站| 亚洲国产最新在线播放| 亚洲最大成人中文| 综合色丁香网| 久久久欧美国产精品| 国产成人精品婷婷| 国产亚洲av片在线观看秒播厂 | 国产精品麻豆人妻色哟哟久久 | 久久久久久九九精品二区国产| 亚洲va在线va天堂va国产| 一个人看视频在线观看www免费| 成人特级av手机在线观看| 国产成人a区在线观看| 免费av毛片视频| 亚洲人成网站在线播| 国产真实伦视频高清在线观看| 建设人人有责人人尽责人人享有的 | 色吧在线观看| 欧美成人午夜免费资源| 国产 一区精品| 韩国高清视频一区二区三区| 中文字幕av成人在线电影| 亚洲av免费高清在线观看| 网址你懂的国产日韩在线| 精品免费久久久久久久清纯| 亚洲无线观看免费| 青春草亚洲视频在线观看| 波多野结衣巨乳人妻| 亚洲国产欧美人成| 免费一级毛片在线播放高清视频| 高清日韩中文字幕在线| 成年av动漫网址| 亚洲国产精品sss在线观看| 三级毛片av免费| 久久欧美精品欧美久久欧美| 精品一区二区三区视频在线| 精品国产一区二区三区久久久樱花 | 18禁动态无遮挡网站| 国产 一区精品| 久久精品久久久久久久性| 亚洲精品日韩在线中文字幕| 在线免费十八禁| 精品熟女少妇av免费看| 欧美成人一区二区免费高清观看| 人人妻人人澡人人爽人人夜夜 | 日本黄大片高清| 午夜福利在线观看吧| 成年版毛片免费区| 一二三四中文在线观看免费高清| 久久久久久久久久成人| 亚洲av电影在线观看一区二区三区 | 国产伦理片在线播放av一区| 久久久久久大精品| 天堂av国产一区二区熟女人妻| 国产国拍精品亚洲av在线观看| 成人美女网站在线观看视频| 免费电影在线观看免费观看| 亚洲精品一区蜜桃| 亚洲怡红院男人天堂| 午夜福利成人在线免费观看| 最新中文字幕久久久久| 高清毛片免费看| 欧美精品国产亚洲| 国产成人午夜福利电影在线观看| 免费大片18禁| 三级经典国产精品| 亚洲精品国产av成人精品| 亚洲中文字幕一区二区三区有码在线看| 最近手机中文字幕大全| 我的老师免费观看完整版| 99热6这里只有精品| av国产免费在线观看|