• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Poisoning attack detection scheme based on data integrity sampling audit algorithm in neural network

    2023-12-05 07:36:40ZhaoNingningJiangRui

    Zhao Ningning Jiang Rui

    (School of Cyber Science and Engineering,Southeast University,Nanjing 210096,China)

    Abstract:To address the issue that most existing detection and defense methods can only detect known poisoning attacks but cannot defend against other types of poisoning attacks,a poisoning attack detecting scheme with data recovery (PAD-DR) is proposed to effectively detect the poisoning attack and recover the poisoned data in a neural network.First,the PAD-DR scheme can detect all types of poisoning attacks.The data sampling detection algorithm is combined with a real-time data detection method for input layer nodes using a neural network so that the system can ensure the integrity and availability of the training data to avoid being changed or corrupted.Second,the PAD-DR scheme can recover corrupted or poisoned training data from poisoning attacks.Cauchy Reed-Solomon (CRS) code technology can encode training data and store them separately.Once the poisoning attack is detected,the original training data is recovered,and the system may get data from any k nodes from all n stores to recover the original training data.Finally,the security objectives of the PAD-DR scheme to withstand poisoning attacks,resist forgery and tampering attacks,and recover the data accurately are formally proved.

    Key words:poisoning attack; neural network; deep learning; data integrity sampling audit

    Deep learning (DL)[1]is the foundation for several modern artificial intelligence applications.It has rapidly matured and entered safety-critical applications such as self-driving cars[2-3],drones,and robots[4-5].Deep neural network (DNN)[6]is a machine learning technique that tries to imitate the neurons of the human brain to transmit information and interpret data.

    Unfortunately,the defense methods against poisoning attacks are not systematic enough.Zhang et al.[14]designed a strong defense scheme called DUTI to deal with the label-flipping attack.Given a small portion of the trusted items,the DUTI scheme could learn the difference between the distribution of trusted items and training samples to find the potentially corrupted labels and then get the corrupted labels to a domain expert for further examination.To defend against tool command language (TCL) attacks[12],Peri et al.[15]proposed a scheme named Deep-kNN to remove poisoning samples.In Ref.[15],the authors compared the class labels of each testing sample with itskneighbors.If most neighbor samples differed from the testing sample,this testing sample should be removed.Using the cooperative deep learning system,Shen et al.[16]proposed a defense method called AUROR to defend against poisoning attacks.The AUROR scheme could automatically identify and display the process of abnormal distribution features and then detect malicious users in the system according to the abnormal features.Based on a prior observation that poisoned samples may exploit spare capacity in the neural network,Liu et al.[17]proposed a fine-pruning technology as a defense method to enhance the security of deep neural networks by eliminating some dormant neurons to turn off poisoning behaviors.

    Considering that the previous schemes[14-17]can only defend against specific attacks,Diakonikolas et al.[18]proposed a robust algorithm named Server that could defend against poisoning attacks in classification and regression models.Chen et al.[19]proposed a generic and attack-agnostic defense approach called De-Pois.The key idea of De-Pois was to train a mimic model to imitate the behavior of the target model with clean samples.

    In this study,we proposed a poisoning attack-detecting scheme with data recovery (PAD-DR).First,we designed a data sampling audit algorithm and combined it with a real-time data detection method to detect all kinds of poisoning attacks.Second,we applied Cauchy Reed-Solomon (CRS) code technology to encode training data and store them on multiple servers to recover the corrupted training data.Finally,we formally proved the security goals of our PAD-DR scheme to withstand poisoning attacks and to recover the data accurately.

    1 Preliminaries

    1.1 Bilinear mapping

    Definition1LetG1andG2be multiplicative cyclic groups of a large prime orderp; a pairing is a bilinear mape:G1×G1→G2.It satisfies the following properties:

    1) Bilinear.e(ua,vb)=e(u,v)ab,?u,v∈G1;a,b∈Zp.

    2) Non-degeneracy.?u,v∈G1,thuse(u,v)≠1∈G1.

    3) Computability.?u,v∈G1; there is a polynomial time algorithm to calculatee(u,v).

    4) Safety.It is difficult to calculate the discrete logarithm problem inG1andG2.

    1.2 Discrete logarithm problem (DLP)

    1.3 Computational Diffie-Hellman problem

    1.4 Co-computational bilinear Diffie-Hellman problem (CO-CDH)

    2 Proposed PAD-DR Scheme

    2.1 System model

    In our PAD-DR scheme,as shown in Fig.1,the system consists of five types of entities: system administrator (SA),third party auditor (TPA),coded data stores (CDSi),training data store (TDS),and nodes of the neural network for input layer (NNs).SA is responsible for processing the original training data.TPA is responsible for generating challenges to detect whether poisoning attacks are launched.

    Fig.1 System model for Our PAD-DR scheme

    CDSiare cloud spaces for storing regenerating backup data,where the regenerating backup data are distributed onnmultiple CDSi.TDS stores the original training data with tags and sends them to the NNs.NNs receive the training data and feed them to the neural network.Besides,NNs are responsible for detecting the poisoning attacks in real-time with the data tags.

    2.2 Threat model

    Our PAD-DR scheme defines the threat model in terms of the SA,TPA CDSi,TDS,NNs,and network attackers (NAs).

    The SA is credible.The SA encodes the training data,generates tags for the original data,and collects regenerating data blocks to help recover the poisoned data.

    The TPA is semitrusted.The TPA may run the algorithm and protocol in the system.However,the TPA is curious about the contents of training data and tries to obtain the contents of training data in the verification process.

    The TDS is semitrusted.The TDS may faithfully run the algorithm and protocol in the system.However,to maintain the reputation,they may conceal the truth when poisoning samples attack the training data.At that time,TDS may attempt to forge proofs to cheat TPA for passing the auditing process.CDSiare credible and may store encoded regenerating data for backup.NNs are credible and may run the algorithm and protocol in the system and transmit the training data to the nodes of the next layer.

    NAs are malicious.NAs attempt to launch poisoning sample attacks.Furthermore,to pass the audit by TPA and NNs,NAs may attempt to launch tempering and forgery attacks by forging data and signature proofs.

    3 Construction of PAD-DR Scheme

    We proposed the detailed construction of our PAD-DR scheme.The scheme includes three phases: the setup,detection and recovery phases.Details of each phase are as follows.

    3.1 Setup phase

    The setup phase includes setup,encoding and SigGen algorithms.Among them,the setup algorithm generates system parameters,the encoding algorithm applies CRS code technology to encode the original training data for backup,and the SigGen algorithm generates tags for the original training data.Three algorithms are described in detail as follows.

    3.1.1 Setup algorithm

    3.1.2 Encoding algorithm

    Supposem,k,w∈Z+,a Galois field GF(2w),for data fileF={m1,m2,…,mk},SA utilizes CRS[22]technology to generaten=m+kencoded data blocks by constructing a code matrixC=ΨM,where the encoding matrixΨisn×k,and the message matrixMisk×1.

    Then,the encoding matrixΨis designed as follows:

    Hence,thei-th row ofΨis defined as the encoding vectorΨi(i∈{1,2,…,n}).

    For example,letk=6,m=4,andn=10,the Cauchy matrixGis with dimensions 4×6 on GF(28).LetX={0,1,2,3,4,5},Y={6,7,8,9},the encoding process is shown as follows:

    C=Encode(M)=ΨM=

    3.1.3 SigGen

    3.2 Detection phase

    The detection phase consists of TPA detection and node detection algorithms.With our proposed sampling audit algorithm,the TPA detection algorithm can detect poisoning attacks on the training data stored in TDS.In real-time,a node detection algorithm can detect poisoning attacks on the training data at the input layer for NNs.

    3.2.1 TPA detection

    Having received the response proof from the TDS,the TPA verifies the proof as follows.TPA checks the verification equation as

    (1)

    If Eq.(1) holds,the training data stored on TDS are securely protected.Otherwise,the training data stored on TDS should be changed or corrupted by the poisoning attacks.When the training data is detected to be poisoned,the TPA immediately makes an alarm for the poisoning attack and sends feedback {error} to the SA.Then,the SA performs the recovery operation to recover the poisoned data on TDS.

    3.2.2 Node detection

    After receiving training data with signatures from TDS,NNs run a node detection algorithm to detect poisoning attacks as follows.First,NNs verify the correctness of the signatureStsk(F‖μ′‖σ′) by TDS’s public key according to the RSA signature algorithm.If the verification fails,the NNs abort the message and send {error} to SA.Otherwise,we have to design the real-time data detection method for the NNs to check the verification equation as follows:

    (2)

    If Eq.(2) holds,the training data sent by TDS are complete and correct.Otherwise,the poisoning attacks could change or corrupt the training data.NNs may send error feedback to inform SA that the training data could be attacked and request SA to recover the training data.

    3.3 Recovery phase

    In the recovery phase,there is a data recovery algorithm.Once SA receives error feedback from TPA or NNs,implying that the training data has been poisoned and attacked,SA may execute the data recovery algorithm to recover the original training data.

    With the data recovery algorithm,the original data fileF={m1,m2,…,mk} can be recovered by collecting anyknodes of CDSifor itsciandΨi.Thus,the original data fileFcan be recovered through linear operations on the entries of anykrows of the code matrixC.

    Next,based on the definition in the preliminaries,we provided a theorem indicating that the entire process of the PAD-DR scheme is correct.

    Theorem1Our PAD-DR scheme can correctly run to detect the poisoning attack and recover the original training data accurately.

    4 Security Analysis

    In this section,we formally proved that our PAD-DR scheme can resist tampering and forgery attacks.Also,we proved that the poisoned data can be correctly recovered.

    4.1 Related theorems

    Some theorems formally showed that our PAD-DR scheme can resist tampering and forgery attacks.Furthermore,we showed that the poisoned data can be correctly recovered.

    Theorem2In our PAD-DR scheme,it is computationally infeasible for the TDS and NAs to forge proof for passing the TPA’s auditing.Suppose there is a (t,?)-algorithm to forge a proof.Then,if a (t′,?′) adversary can solve the Co-CDH problem witht′≤t+qcG1and ?′=?/e(1+qs),whereqcG1denotes one exponentiation time inG1,andqsdenotes the number of requests.

    Theorem3In our PAD-DR scheme,NNs can detect poisoned samples in real-time training data received from TDS.

    Theorem4In our PAD-DR scheme,the original data fileFcan be recovered by collectingciandΨifrom anyknodes of CDSi.

    4.2 Security goals comparison

    In this section,the security goals of our PAD-DR scheme are compared with that of DUTI[14],Deep-kNN[15],Server[18]and De-Pois[19].The comparison includes specific poisoning attack detection,arbitrary poisoning attack detection,and poisoned data recovery.In Tab.1,“√” depicts that the security problem has been solved,“×” indicates that the problem has not been solved.

    Tab.1 Security goals comparison

    According to Tab.1,our PAD-DR scheme can realize all the security goals mentioned above,while other schemes cannot.

    5 Experiment and Performance Analysis

    This section begins by describing the experimental setup and the accuracy under different attacks.Then,we analyzed the communication overhead and computation costs in detecting poisoning attacks of training data and evaluated the performance of our PAD-DR scheme.

    5.1 Experiment setup

    5.1.1 Datasets

    The training data used in our scheme are from MNIST,CIFAR-10,and house pricing.MNIST is a database of handwritten digits containing 60 000 training sample sets and 10 000 test sample sets stored in binary form.The width and height of each sample image are 28×28.The CIFAR-10 database contains 32×32 color images in 10 different classes,with 50 000 training and 10 000 testing images.The 10 different classes include cars,dogs,frogs,airplanes,cars,ships,horses,birds,and trucks.The house pricing dataset utilizes predictor variables such as the number of bedrooms and lot square footage.It contains 1 460 houses and 81 features.In the experiment,we randomly split this dataset into training and testing datasets with 70% and 30% of the data,respectively.

    5.1.2 Experimental environment and parameter setting

    We evaluated the process of detecting poisoning samples on NVIDIA 2080Ti GPU and applied Ali Cloud to store training data.The operating system is Windows 10.The RAM size is 8 GB.Matrix multiplication algorithms are implemented with the open-source library Jerasure Version (1.2).Auditing algorithms are implemented onCwith a pairing-based cryptography library.The curve utilized in the experiment is an MNT curve.We set the length ofG1to 175.In our experiment,we adopted a common neural network that applies three full connection layers with ReLU activation and one full connection layer with sigmoid activation,and we applied the cross-entropy loss function to calculate its loss.

    5.1.3 Generation of poisoning training data

    To verify the performance of our PAD-DR scheme,we randomly extracted 10%,15%,20%,25%,and 30% of the training data to generate poisoning samples.To compare the detection rate of poisoned samples for our PAD-DR scheme,TCL[12],LF[8],and R[13]attacks are used to generate poisoning data.For MNIST,the number of iterations is 400,the learning rate is set to 0.1,and the initial value is set to 0.01.For CIFAR-10,the number of iterations is 6 000,the learning rate is 0.01,and the initial value is 0.01.

    5.2 Detection rate for poisoning attacks

    In this section,we evaluated the detection rate of poisoned samples for our PAD-DR scheme compared with that of TRIM[13],DUTI[14],Deep-kNN[15],Server[18],and De-Pois[19].The results are presented in Figs.2,3,and 4,respectively.

    As shown in Fig.2,for TCL attacks,the detection rate of our PAD-DR scheme is always 100%,which is higher than that of Refs.[15,19].There are two reasons for the relatively low detection rate of Ref.[15].One is that the authors only compared the samples with the surroundingksamples,which was not sufficient or accurate.The other reason is that the authors should set an artificial setting threshold to distinguish poisoned samples from clean samples.The main reason for the relatively low detection rate of Ref.[19]is that the authors adopted conditional GAN technology to expand a small part of a trusted dataset as the whole training data,which could not fully reflect the features of the real training data.In our PAD-DR scheme,we could only detect any changed or poisoned samples in the training data by verifying Eqs.(1) and (2).Hence,the detection rate of our PAD-DR scheme is always 100%.

    Fig.2 Detection rate under TCL attacks

    As illustrated in Fig.3,for TF attacks,the detection rate of our PAD-DR scheme is always 100%,which is higher than that of Refs.[14,18-19].In Ref.[14],the main reason for the relatively low detection rate is that the authors required a small piece of completely reliable data,which could not be ensured in the system to detect the TF attack.In Ref.[18],the detection rate decreased rapidly with the increase of the poisoning rate.The main reason to detect the TF attack is that the authors should set an artificial setting threshold,which could not accurately distinguish poisoned samples from clean samples.In Ref.[19],the main reason for the relatively low detection rate is that the authors should train the mimic model,which was ineffective in obtaining accurate prediction results.

    Fig.3 Detection rate under LF attacks

    As depicted in Fig.4,for R attacks,the detection rate of our PAD-DR scheme is always 100%,which is higher than that of Refs.[13-14,19].With the increase of the poisoning rate,the detection rate of Refs.[13-14,19]decreased rapidly.In Ref.[13],to detect R attacks,the authors ignored the influence of poisoned samples in the lowest residual set with iteration,which may cause the failure of R-attack detection.In Ref.[14],the authors required a small piece of completely reliable data to detect an R attack,which could not be ensured in the system.In Ref.[19],the authors should train the mimic model to detect R attacks,which was not effective enough to obtain accurate prediction results.In our PAD-DR scheme,we could only detect any changed or poisoned samples in the training data using verifying Eqs.(1) and (2).Hence,the detection rate of our PAD-DR scheme for R attacks is always 100%.

    Fig.4 Detection rate under R attacks

    5.3 Computation cost

    We evaluated the computation cost for our PAD-DR scheme,whereLdenotes the length of each encoded data block,EGdenotes one exponentiation inG1andG2,EZdenotes one exponentiation inZp,MGindicates a multiplication operation on groupsG1andG2,MZindicates a multiplication operation on the number fieldZp,MFrepresents a matrix multiplication in a finite fieldF(2n),MIrepresents the cost of computing the inverse of the matrixM,AZindicates an addition operation on the number fieldZp,Pedenotes the computation cost of one pairing operatione,andHdenotes the computation cost of an operation of calculating the hash value for a number.Furthermore,|I|represents the number of challenged data blocks.All the statistical results are the averages of 20 trials.

    Tab.2 depicts the computation cost of our PAD-DR scheme in the setup,detection,and recovery phases.

    Tab.2 Computation cost of our PAD-DR scheme

    In the detection phase,the computation cost refers to two parts: TPA detection and node detection.The computation cost of TPA detection is|I|(MZ+H+EG)+(|I|-1)(AZ+MG)+Pe,where|I|(MZ+H)+(|I|-1)AZand|I|EG+(|I|-1)MGare the computation cost of TDS to generate a linear combination of data blocks and an aggregated tag,respectively,wherePeis the computation cost of TPA to verify the proof.The computation cost of node detection is|I|(MZ+H+EG)+(|I|-1)(AZ+MG)+Pe,where|I|(MZ+H)+(|I|-1)AZand|I|EG+(|I|-1)MGare the computation cost of TDS to generate a linear combination of data blocks and an aggregated tag,respectively,Peis the computation cost of NNs to verify the proof.Hence,the computation cost in the detection phase is 2|I|(MZ+H+EG)+2(|I|-1)(AZ+MG)+2P.

    5.4 Communication overhead

    We assessed the communication overhead in the setup,detection,and recovery phases.In this section,|Zp|represents the size ofZp,|G|represents the size of groupG,and|GF|represents the size ofGF(2w).Tab.3 presents the communication overhead for the three phases.

    Tab.3 Communication overhead for our PAD-DR scheme

    In the setup phase,communication overhead mainly includes two parts.The one is SA uploads data and tags {F,Φ} to TDS.The other is SA sends the encoded data {ci}i=1,2,…,nto CDSi.Hence,the communication overhead in the setup phase is sizeof(F)+k|G|+n|GF|.

    In the detection phase,the communication overhead mainly refers to two parts: TPA detection and node detection.The communication overhead for TPA detection includes two parts.One is that TPA sends a challenge chal={(i,vi)} to TDS.The other is that TDS replies as proofP={μ,σ}.Hence,the communication overhead for TPA detection is 2|I||Zp|and|G|+|Zp|.The communication overhead for node detection is sizeof(F)+|G|+(k+1)|Zp|which arises from TDS sending {F,μ′,σ′,Sssk(F‖μ′‖σ′),vi}i∈Ito NNs.Thus,the total communication overhead in the detection phase is sizeof(F)+2|G|+(k+2+2|I|)|Zp|.

    In the recovery phase,the communication overhead is decided by the data size of {ci,Ψi},which arises from theknodes of CDSi.Hence,the communication overhead of our PAD-DR scheme is 2k|GF|.

    6 Conclusions

    1) An algorithm combining data sampling audit and real-time data detection is designed,and experiments show that the algorithm can accurately detect toxic data contained in the data.

    2) A data recovery algorithm based on CRS encoding is designed,and experiments show that it can efficiently restore poisoned data to clean data.

    3) The current algorithm cannot guarantee the security of parameters during transmission.We will conduct further research on improving the integrity and confidentiality of parameters in the future.

    激情 狠狠 欧美| 亚洲国产精品成人久久小说| 欧美成人精品欧美一级黄| 亚洲精华国产精华液的使用体验| 亚洲欧美精品自产自拍| 看非洲黑人一级黄片| 99九九线精品视频在线观看视频| 五月天丁香电影| 久久久久久久久久久丰满| 亚洲国产日韩一区二区| 国产高潮美女av| 色婷婷av一区二区三区视频| 久久99热这里只频精品6学生| 一级黄片播放器| 成年女人在线观看亚洲视频| 日韩,欧美,国产一区二区三区| 2022亚洲国产成人精品| 有码 亚洲区| 99久国产av精品国产电影| 久久久久久人妻| 国产色婷婷99| 十八禁网站网址无遮挡 | 成年女人在线观看亚洲视频| 黄色一级大片看看| 欧美区成人在线视频| 国产极品天堂在线| 亚洲精品日韩av片在线观看| 国产一区二区三区av在线| 中国三级夫妇交换| 国产亚洲午夜精品一区二区久久| 在线观看国产h片| 午夜免费鲁丝| av卡一久久| av不卡在线播放| 久久精品久久久久久久性| 99久久人妻综合| 男人添女人高潮全过程视频| 国产一区二区三区综合在线观看 | 三级国产精品欧美在线观看| 永久网站在线| 黄片无遮挡物在线观看| 免费av中文字幕在线| 在线 av 中文字幕| 精品人妻一区二区三区麻豆| 99国产精品免费福利视频| 只有这里有精品99| 日韩强制内射视频| 国产精品一区www在线观看| 欧美97在线视频| 肉色欧美久久久久久久蜜桃| 日日撸夜夜添| 欧美成人一区二区免费高清观看| 在线亚洲精品国产二区图片欧美 | 免费人成在线观看视频色| 日本免费在线观看一区| 少妇人妻久久综合中文| 91精品国产国语对白视频| 一级黄片播放器| 高清在线视频一区二区三区| 国产色爽女视频免费观看| 国产精品蜜桃在线观看| 久久这里有精品视频免费| 永久免费av网站大全| 在线观看三级黄色| 久久国内精品自在自线图片| 精品亚洲成国产av| 国产精品久久久久久久电影| 久久99热这里只有精品18| 毛片一级片免费看久久久久| 国产v大片淫在线免费观看| 人妻一区二区av| 日韩一本色道免费dvd| 精品久久久久久久久av| 亚洲国产精品成人久久小说| 精品视频人人做人人爽| 交换朋友夫妻互换小说| 大片电影免费在线观看免费| 女性被躁到高潮视频| 亚洲av成人精品一区久久| 国产免费福利视频在线观看| 日韩中文字幕视频在线看片 | 亚洲av国产av综合av卡| 亚洲国产欧美在线一区| 久久国内精品自在自线图片| 国产一区有黄有色的免费视频| av网站免费在线观看视频| 欧美精品国产亚洲| 在线 av 中文字幕| 久久这里有精品视频免费| 午夜福利高清视频| 色婷婷av一区二区三区视频| 亚洲精品国产av成人精品| 极品少妇高潮喷水抽搐| 欧美日韩综合久久久久久| 色婷婷av一区二区三区视频| av卡一久久| av黄色大香蕉| 国产av码专区亚洲av| 十分钟在线观看高清视频www | 精品久久久精品久久久| 乱码一卡2卡4卡精品| 夜夜看夜夜爽夜夜摸| 亚洲精品色激情综合| 久久久色成人| 人妻 亚洲 视频| 亚洲精品自拍成人| 亚洲精品国产色婷婷电影| 国产精品一二三区在线看| 99国产精品免费福利视频| 黄片wwwwww| 91精品国产国语对白视频| 国产在线一区二区三区精| 黑丝袜美女国产一区| 十分钟在线观看高清视频www | 日韩 亚洲 欧美在线| 久久毛片免费看一区二区三区| 人妻夜夜爽99麻豆av| 少妇的逼好多水| 亚洲国产精品成人久久小说| 18+在线观看网站| 日日啪夜夜撸| 偷拍熟女少妇极品色| 91精品国产九色| 国产伦在线观看视频一区| 中文欧美无线码| 深爱激情五月婷婷| 亚洲精品456在线播放app| 国产在线免费精品| 久久国产乱子免费精品| 人人妻人人添人人爽欧美一区卜 | 高清黄色对白视频在线免费看 | 99热全是精品| 国产精品国产av在线观看| 日产精品乱码卡一卡2卡三| 国产综合精华液| 欧美极品一区二区三区四区| 成人亚洲精品一区在线观看 | 麻豆乱淫一区二区| 亚洲欧美日韩东京热| 视频区图区小说| 男男h啪啪无遮挡| 亚洲人成网站高清观看| 1000部很黄的大片| 中国国产av一级| 在线免费观看不下载黄p国产| 80岁老熟妇乱子伦牲交| 久久久午夜欧美精品| 亚洲精品久久午夜乱码| 免费黄网站久久成人精品| 人人妻人人澡人人爽人人夜夜| 最黄视频免费看| 久久国产亚洲av麻豆专区| 国产乱人偷精品视频| 两个人的视频大全免费| 激情 狠狠 欧美| 亚洲成人一二三区av| 免费大片黄手机在线观看| 国产精品av视频在线免费观看| 精品久久久精品久久久| 国产欧美日韩精品一区二区| 一区二区三区精品91| 精品少妇久久久久久888优播| 欧美成人午夜免费资源| 久久国产精品大桥未久av | 国产亚洲精品久久久com| av专区在线播放| 日产精品乱码卡一卡2卡三| 久久精品久久精品一区二区三区| 国产乱人偷精品视频| 我的老师免费观看完整版| 成人特级av手机在线观看| 人妻系列 视频| 成人高潮视频无遮挡免费网站| 九九久久精品国产亚洲av麻豆| 亚洲精品日本国产第一区| 蜜桃在线观看..| 3wmmmm亚洲av在线观看| 王馨瑶露胸无遮挡在线观看| 久久国产精品男人的天堂亚洲 | 91精品国产九色| 熟女电影av网| av一本久久久久| 日韩一区二区三区影片| 成人一区二区视频在线观看| 亚洲经典国产精华液单| 国产午夜精品久久久久久一区二区三区| 久久99热这里只有精品18| 国产成人a∨麻豆精品| 日本欧美视频一区| 交换朋友夫妻互换小说| 天美传媒精品一区二区| av黄色大香蕉| 男女啪啪激烈高潮av片| 国产av国产精品国产| 国产亚洲av片在线观看秒播厂| 日韩一本色道免费dvd| 久久97久久精品| 亚洲国产毛片av蜜桃av| 国产亚洲5aaaaa淫片| 91精品国产国语对白视频| 联通29元200g的流量卡| 汤姆久久久久久久影院中文字幕| 欧美zozozo另类| 99热这里只有是精品50| 久久久午夜欧美精品| 男男h啪啪无遮挡| 一级毛片aaaaaa免费看小| 久久国产乱子免费精品| 夜夜骑夜夜射夜夜干| 18+在线观看网站| 成人国产麻豆网| 五月天丁香电影| 99re6热这里在线精品视频| 我的女老师完整版在线观看| 国产精品一区www在线观看| 18禁动态无遮挡网站| 人体艺术视频欧美日本| 丰满乱子伦码专区| 内地一区二区视频在线| 日韩欧美 国产精品| 一级毛片久久久久久久久女| 丝袜喷水一区| 免费高清在线观看视频在线观看| 天天躁日日操中文字幕| 亚洲三级黄色毛片| 久久国产乱子免费精品| 五月天丁香电影| 久久鲁丝午夜福利片| 久久久久精品久久久久真实原创| 久久 成人 亚洲| 热re99久久精品国产66热6| 亚洲性久久影院| 菩萨蛮人人尽说江南好唐韦庄| 国产精品99久久99久久久不卡 | 成年女人在线观看亚洲视频| 26uuu在线亚洲综合色| av女优亚洲男人天堂| 看免费成人av毛片| 777米奇影视久久| 香蕉精品网在线| 亚洲欧美精品自产自拍| 91久久精品国产一区二区三区| 亚洲婷婷狠狠爱综合网| 一级毛片 在线播放| 观看美女的网站| 秋霞在线观看毛片| 国产又色又爽无遮挡免| 小蜜桃在线观看免费完整版高清| 国产精品国产av在线观看| 亚洲精品aⅴ在线观看| 丰满人妻一区二区三区视频av| 亚洲四区av| 一个人看视频在线观看www免费| 亚洲国产欧美在线一区| 中文字幕制服av| 中文天堂在线官网| 91久久精品国产一区二区成人| 啦啦啦啦在线视频资源| 国产淫语在线视频| av播播在线观看一区| 日本一二三区视频观看| 亚洲国产日韩一区二区| 男女边吃奶边做爰视频| 99久久人妻综合| 亚洲精品自拍成人| 一区二区三区乱码不卡18| 国产伦理片在线播放av一区| 久久久成人免费电影| 三级国产精品片| 亚洲电影在线观看av| 中国国产av一级| 久久久久久久久久久丰满| 婷婷色麻豆天堂久久| 丰满少妇做爰视频| 在线播放无遮挡| 十分钟在线观看高清视频www | 少妇猛男粗大的猛烈进出视频| 久久国产精品男人的天堂亚洲 | 韩国高清视频一区二区三区| 欧美日韩综合久久久久久| 国产综合精华液| 久久国产精品男人的天堂亚洲 | 欧美一级a爱片免费观看看| 久久精品国产自在天天线| 欧美精品亚洲一区二区| 在线天堂最新版资源| 观看美女的网站| 久久这里有精品视频免费| 色婷婷av一区二区三区视频| 国产无遮挡羞羞视频在线观看| 成人毛片60女人毛片免费| 卡戴珊不雅视频在线播放| 欧美日本视频| 国产成人免费观看mmmm| 如何舔出高潮| 亚洲精品久久久久久婷婷小说| 国内精品宾馆在线| 国产精品.久久久| 丰满迷人的少妇在线观看| 夜夜爽夜夜爽视频| 少妇人妻久久综合中文| 国产v大片淫在线免费观看| 91午夜精品亚洲一区二区三区| 婷婷色综合www| 伊人久久精品亚洲午夜| 97在线视频观看| 一个人免费看片子| 久久久久精品久久久久真实原创| 成年免费大片在线观看| 日韩一本色道免费dvd| 亚洲国产最新在线播放| 黄色一级大片看看| 国产精品一区二区在线不卡| 黄色欧美视频在线观看| 亚洲av.av天堂| 久热久热在线精品观看| 国产黄色免费在线视频| 女性被躁到高潮视频| 黑丝袜美女国产一区| 综合色丁香网| 另类亚洲欧美激情| 日韩av免费高清视频| 亚洲精品乱码久久久v下载方式| 久久99精品国语久久久| 国产精品久久久久久精品电影小说 | 国产极品天堂在线| 在线免费十八禁| 插逼视频在线观看| 黄色怎么调成土黄色| 老女人水多毛片| 国产深夜福利视频在线观看| 国产av一区二区精品久久 | 久久久久久久久大av| 青春草国产在线视频| 国产免费福利视频在线观看| 亚洲综合精品二区| 伦理电影大哥的女人| 国产综合精华液| 日日摸夜夜添夜夜添av毛片| 国产精品免费大片| 久久久a久久爽久久v久久| 九九久久精品国产亚洲av麻豆| 亚洲av不卡在线观看| 国产午夜精品久久久久久一区二区三区| 久久久色成人| 插逼视频在线观看| 精品久久久精品久久久| av福利片在线观看| av国产精品久久久久影院| 在线播放无遮挡| 欧美国产精品一级二级三级 | 永久网站在线| 精品久久久精品久久久| 亚洲av二区三区四区| 女人十人毛片免费观看3o分钟| 色5月婷婷丁香| 国国产精品蜜臀av免费| 国产高清三级在线| 成人国产麻豆网| 欧美日韩亚洲高清精品| 深夜a级毛片| 国产精品一二三区在线看| freevideosex欧美| 国产 精品1| av在线蜜桃| 丰满乱子伦码专区| 国产欧美日韩精品一区二区| 国产男人的电影天堂91| av在线老鸭窝| 一本—道久久a久久精品蜜桃钙片| 日日啪夜夜爽| 亚洲伊人久久精品综合| 国产91av在线免费观看| 少妇被粗大猛烈的视频| 91精品国产九色| 一区在线观看完整版| 妹子高潮喷水视频| 日日啪夜夜撸| 亚洲欧美日韩另类电影网站 | 一级毛片我不卡| 久久久久久久久久人人人人人人| 91精品伊人久久大香线蕉| 岛国毛片在线播放| 久久6这里有精品| 亚洲欧美日韩东京热| 丰满迷人的少妇在线观看| 国产伦理片在线播放av一区| 欧美性感艳星| 国产精品99久久久久久久久| 日韩成人av中文字幕在线观看| 在线播放无遮挡| 国产精品一区二区在线不卡| 日韩成人伦理影院| 深爱激情五月婷婷| 欧美激情国产日韩精品一区| 综合色丁香网| 国产成人freesex在线| 日韩成人av中文字幕在线观看| 国产伦理片在线播放av一区| 国产综合精华液| 精品少妇黑人巨大在线播放| 少妇裸体淫交视频免费看高清| 亚洲性久久影院| 青青草视频在线视频观看| 高清视频免费观看一区二区| 欧美一区二区亚洲| 99re6热这里在线精品视频| 天美传媒精品一区二区| 久久鲁丝午夜福利片| 日本爱情动作片www.在线观看| 国产在线视频一区二区| 18禁在线播放成人免费| 91狼人影院| a级毛片免费高清观看在线播放| 在线观看免费视频网站a站| 一边亲一边摸免费视频| 99热这里只有是精品50| 国产亚洲欧美精品永久| 亚洲丝袜综合中文字幕| 亚洲国产欧美人成| 18+在线观看网站| 超碰av人人做人人爽久久| 国产伦在线观看视频一区| 色视频在线一区二区三区| 黄色配什么色好看| 18禁在线无遮挡免费观看视频| 大陆偷拍与自拍| 一区二区三区乱码不卡18| av.在线天堂| 国产精品嫩草影院av在线观看| 两个人的视频大全免费| 狂野欧美白嫩少妇大欣赏| 久久久午夜欧美精品| 欧美丝袜亚洲另类| 日本与韩国留学比较| 91精品国产九色| 搡女人真爽免费视频火全软件| 精品亚洲成国产av| 色哟哟·www| 亚洲欧美成人精品一区二区| 观看美女的网站| 黄色一级大片看看| 亚洲国产最新在线播放| 欧美xxⅹ黑人| 国产成人aa在线观看| 汤姆久久久久久久影院中文字幕| 亚洲av综合色区一区| 精品国产乱码久久久久久小说| 欧美高清性xxxxhd video| 日本vs欧美在线观看视频 | av.在线天堂| 麻豆成人午夜福利视频| freevideosex欧美| 国产精品久久久久久久久免| 视频区图区小说| 老师上课跳d突然被开到最大视频| 亚洲自偷自拍三级| 日韩一区二区视频免费看| 国产亚洲最大av| 国产毛片在线视频| 午夜福利视频精品| 免费观看在线日韩| 亚洲精品第二区| 日本午夜av视频| 国产乱人偷精品视频| 久久人人爽人人爽人人片va| 蜜桃在线观看..| 91在线精品国自产拍蜜月| 国产精品一区二区在线观看99| 日韩强制内射视频| 久久av网站| 一区二区三区四区激情视频| 熟女电影av网| 国产成人aa在线观看| 国产精品福利在线免费观看| 国产久久久一区二区三区| 亚洲国产欧美在线一区| 尾随美女入室| 一区二区三区免费毛片| 日韩欧美 国产精品| 性色av一级| 成人国产麻豆网| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品乱久久久久久| 久久这里有精品视频免费| 国产精品一区二区在线不卡| 三级经典国产精品| 99久国产av精品国产电影| 国产高潮美女av| 免费在线观看成人毛片| 国产精品av视频在线免费观看| 日本欧美视频一区| 天堂8中文在线网| 看十八女毛片水多多多| 国产精品熟女久久久久浪| 这个男人来自地球电影免费观看 | 99久久精品国产国产毛片| 日韩一本色道免费dvd| 极品教师在线视频| 精品久久久久久电影网| 久久婷婷青草| 日本爱情动作片www.在线观看| 黑丝袜美女国产一区| 精品人妻熟女av久视频| 欧美精品人与动牲交sv欧美| 2021少妇久久久久久久久久久| 欧美最新免费一区二区三区| a级毛片免费高清观看在线播放| 国产免费又黄又爽又色| 亚洲av成人精品一二三区| 丝瓜视频免费看黄片| 亚州av有码| 中文资源天堂在线| 欧美成人一区二区免费高清观看| 久久热精品热| 国产91av在线免费观看| 国产精品免费大片| 黄色一级大片看看| a 毛片基地| 91aial.com中文字幕在线观看| 国产在线一区二区三区精| 国产国拍精品亚洲av在线观看| 伦精品一区二区三区| 亚洲婷婷狠狠爱综合网| 久久热精品热| 免费黄网站久久成人精品| 国产亚洲91精品色在线| 久久精品国产亚洲av涩爱| 能在线免费看毛片的网站| 亚洲精品亚洲一区二区| 纯流量卡能插随身wifi吗| 国产精品人妻久久久影院| 91狼人影院| 精品久久久精品久久久| av在线观看视频网站免费| 日日啪夜夜爽| 日韩强制内射视频| av福利片在线观看| 秋霞在线观看毛片| 精品久久久久久电影网| 97超碰精品成人国产| 大片免费播放器 马上看| 国产永久视频网站| 欧美成人午夜免费资源| 多毛熟女@视频| 三级经典国产精品| 国产美女午夜福利| 少妇人妻 视频| 欧美变态另类bdsm刘玥| 好男人视频免费观看在线| 国产乱人视频| 狠狠精品人妻久久久久久综合| 国产亚洲欧美精品永久| 少妇高潮的动态图| 黄色视频在线播放观看不卡| 少妇人妻 视频| 国产伦精品一区二区三区四那| 91精品国产国语对白视频| 在线观看av片永久免费下载| 亚洲精品国产av蜜桃| 在线看a的网站| 女的被弄到高潮叫床怎么办| 有码 亚洲区| 国产精品.久久久| 欧美精品亚洲一区二区| 搡女人真爽免费视频火全软件| 国产伦精品一区二区三区四那| 久久韩国三级中文字幕| 午夜福利高清视频| 老熟女久久久| 日韩av免费高清视频| h日本视频在线播放| 国产精品国产三级国产专区5o| 一级毛片 在线播放| 久久精品国产亚洲av涩爱| 久久久久精品性色| 精品久久久久久电影网| 亚洲性久久影院| 久久久久网色| 国产精品秋霞免费鲁丝片| 久久亚洲国产成人精品v| 99久久精品国产国产毛片| 黄片wwwwww| 午夜免费男女啪啪视频观看| 欧美日韩国产mv在线观看视频 | 中文字幕人妻熟人妻熟丝袜美| 午夜免费鲁丝| 国产高潮美女av| 久久久久久久久久久丰满| 欧美一区二区亚洲| 国产高潮美女av| 高清在线视频一区二区三区| 天堂8中文在线网| 男的添女的下面高潮视频| 尤物成人国产欧美一区二区三区| 国产精品女同一区二区软件| 边亲边吃奶的免费视频| 久久精品国产a三级三级三级| 国产精品女同一区二区软件| 两个人的视频大全免费| 久久精品国产鲁丝片午夜精品| 欧美日韩视频高清一区二区三区二| 我的老师免费观看完整版| 99久久人妻综合| 观看美女的网站| 精品人妻偷拍中文字幕| av在线app专区| 日韩成人av中文字幕在线观看| 国产乱人视频| 少妇精品久久久久久久| 一二三四中文在线观看免费高清| 亚洲精品久久久久久婷婷小说| 久久国产精品男人的天堂亚洲 | 国产永久视频网站| 老师上课跳d突然被开到最大视频|