• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vibration analysis of circular Janus MoSSe plates

    2023-12-05 07:23:32LiuXinjieWangLifeng

    Liu Xinjie Wang Lifeng

    (State Key Laboratory of Mechanics and Control for Aerospace Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)

    Abstract:The vibration behavior of Janus monolayer molybdenum sulfoselenide (MoSSe) was studied based on molecular dynamics (MD) simulations and the finite element method (FEM).MoSSe plates were simulated by FEM through the incorporation of intrinsic strain caused by lattice mismatch to the double-layer plate model.The vibrations of circular MoSSe plates with free boundaries and a clamped edge were determined by MD simulations and FEM.In addition,the effects of plate size,strain,and pressure on the natural frequency of the plates were investigated.The results showed that the natural frequency of the circular MoSSe plate with free boundaries gradually decreased with increasing plate size.Furthermore,a significant discontinuity in frequency was observed due to bowl and tube warpage when the diameter reached 8.6 nm.The MD simulation and FEM calculation results were consistent in terms of the natural frequencies of the circular MoSSe plates of different sizes.In addition,the effects of strain and pressure on the natural frequency determined by the two methods were consistent for small deformations.The vibration of the MoSSe plate could be well predicted by the double-layer plate model.

    Key words:Janus monolayer molybdenum sulfoselenide (MoSSe); molecular dynamics (MD); warpage; natural frequency

    Since the discovery of graphene,two-dimensional (2D) materials have attracted considerable research attention owing to their remarkable mechanical,electronic,and thermal properties[1-8].In addition to graphene,2D transition-metal dichalcogenides (TMDs)[9-12]have garnered considerable attention owing to their unique physical and chemical properties.The mechanical,electrical,optical,and thermal properties of molybdenum disulfide (MoS2),a typical TMD material,have been extensively explored[13-16].In recent years,2D heterostructures composed of vertically stacked 2D materials with distinct properties have exhibited novel characteristics[17-18].Molybdenum sulfoselenide (MoSSe) possesses a structure similar to heterostructures,even though it is composed of a single material.In a recent study,Lu et al.[19]completely replaced the top-layer S atoms in MoS2with Se atoms.The Janus structure of MoSSe was confirmed through scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy.The presence of vertical dipoles was confirmed through second harmonic generation and piezoresponse force microscopy measurements.Zhang et al.[20]controlled the sulfide action to replace the top Se atoms of monolayer molybdenum diselenide (MoSe2) with S atoms,while the bottom layer of Se atoms remained unaffected.Through this method,a Janus monolayer MoSSe structure was formed,comprising three layers of atoms from top to bottom,namely sulfur,molybdenum,and selenium.Idrews et al.[21]used hybrid density-functional theory calculations to investigate Janus monolayers and their associated van der Waals heterojunctions.They discovered that MoSSe is a direct-bandgap semiconductor.Indirect-bandgap semiconductors can be converted into direct-bandgap counterparts using external electric fields.In direct-bandgap semiconductors,electrons can directly excite or de-excite by the absorption or emission of photons with no involvement of phonons in the processes.This property renders them more suitable for manufacturing optoelectronic devices.Dong et al.[22]investigated the planar and vertical piezoelectric properties of monolayer and multilayer MXY structures (where M=Mo or W,and X/Y=S,Se,or Te) based on ab initio calculations.Under substrate influence,uniaxially strained MXY structures exhibited high in-plane piezoelectric polarization but significantly weaker out-of-plane piezoelectric polarization.Conversely,laterally strained multilayer MXY structures exhibited substantial out-of-plane piezoelectric polarization.These studies highlighted the applicability of MXY structures in smart nanodevice applications.Kandemir et al.[23]employed first-principle computations to investigate the structural and phononic properties of MoSSe monolayers.They utilized out-of-plane anisotropy to demonstrate the unique vertical pressure effect on the vibrational characteristics of Janus materials due to the asymmetric structure of Janus MoSSe monolayers.Pham et al.[24]developed ultrathin graphene/MoSeS and graphene/MoSSe heterostructures and studied their structural and electrical properties and the effect of vertical electric fields on these heterostructures.These designed heterostructures were intended for applications in nanoelectronic and optoelectronic devices.

    Studying the vibration of nanoscale structures is imperative owing to the crucial role of vibration behavior in the functionality of smart nanodevices.Jiang et al.[25]investigated the nanomechanics and vibration behavior of graphene sheets,employing a 2D plate model that accounted for varying sizes and boundary conditions.The simulation results highlighted the accuracy and efficiency of the 2D plate model,demonstrating its potential as a promising alternative for modeling nanomechanics and analyzing the vibration of graphene sheets when compared with several well-established experiments and equivalent theoretical models.Akg?z et al.[26]investigated the free vibration of a single-layered graphene sheet positioned on an elastic matrix.They derived the governing equation of motion using the thin plate theory in conjunction with Hamilton’s principle.Kitipornchai et al.[27]employed a continuum model to assess the vibration of multilayered graphene sheets,revealing that varying the number of layers can lead to various resonance modes.Zhang et al.[28]explored the vibration frequency of rippled single-layered graphene sheets and identified that introducing functional groups,defects,carbon nanotubes,and surface wrinkles can induce significant frequency shifts in pristine single-layered graphene sheets.Zhang et al.[29]investigated the thermal vibration of rectangular monolayer black phosphorus based on an orthotropic plate model and molecular dynamics (MD) simulations.MD simulations and the orthotropic plate model,combined with the law of energy equipartition,provided insights into the root-mean-square amplitude of rectangular monolayer black phosphorus.Through MD simulations and a continuous plate model,Yi et al.[30]investigated the vibration behavior of single-layered hexagonal boron nitride and explored the effect of an electric field on the intrinsic frequency.Zhang et al.[31]employed the circular Mindlin plate model to analyze the vibration of circular single-layered MoS2.The findings indicated that for very small plate sizes,particularly at higher-order frequencies,the natural frequencies computed by the Mindlin plate model aligned more closely with those determined by the MD method than those computed by the Kirchhoff plate model.Thus,it is necessary to reveal the dynamic behavior of the Janus monolayer MoSSe structure.

    To the best of our knowledge,the vibration behavior of Janus MoSSe has not been studied yet.Therefore,MD simulations and the finite element method (FEM) are employed to investigate the vibrations of Janus monolayer MoSSe,considering free-boundary and clamped-edge conditions.In addition,the effects of size and the initial stress are studied.

    1 Vibration Analysis of the MoSSe Plate with MD Simulation

    The atomic structure of Janus monolayer MoSSe features a sandwich-like arrangement with selenium,molybdenum,and sulfur atoms spanning from the upper to lower layers (see Fig.1).The Stillinger-Weber (SW) potential,recently formulated for various MX2structures (M=Mo,W; X=S,Se,Mo) and their alloys and lateral heterostructures,is adopted here[32].Thus,the interatomic interactions within the Janus monolayer MoSSe are described using the SW potential function.

    (a)

    The mechanical properties of the monolayer in the zigzag and armchair directions are determined through MD simulations using a square sheet under periodic boundary conditions; the monolayer thickness is set at 0.324 nm.The model is subjected to stretching along a single direction,and during this process,stresses in the tensile direction and strains in the nontensile direction are recorded.The resulting stress-strain curves for the armchair and zigzag directions are shown in Fig.2(a).The red solid line represents the stress-strain curve for stretching along the armchair direction,while the black dashed line corresponds to stretching along the zigzag direction.The relationship between strains along the armchair and zigzag directions during uniaxial tension is shown in Fig.2(b).The red curve shows the relationship between the zigzag-direction strain (vertical coordinate) and armchair-direction strain (horizontal coordinate) during stretching along the armchair direction.Furthermore,the black curve shows the relationship between the armchair-direction strain (vertical coordinate) and zigzag-direction strain (horizontal coordinate) during stretching along the zigzag direction.Within the linear range,stresses in both directions exhibit nearly identical behavior at equal strains.For small tensile strains,Poisson’s ratio values are almost identical for both directions.For simplicity,the material can be treated as isotropic.Young’s modulus is taken as the average of the two directions,yielding 230.4 GPa,and Poisson’s ratio is similarly averaged at 0.23.

    (a)

    The natural frequencies of the circular MoSSe plate with a clamped edge and free boundaries can be determined using the MD software Large-scale Atomic/Molecular Massively Parallel Simulator[33].Initially,the boundaries of the MoSSe plate are set as free boundaries.The equilibrium state of the structure is achieved by the steepest descent method combined with the conjugate gradient approach for energy minimization.Thereafter,MD simulations are performed using the NVT ensemble,and a temperature of 300 K is maintained using a Nose-Hoover thermostat with a time step of 1 fs for 5 ns.During the calculation related to the free-boundary case,the linear and angular momentums of the model are constrained to zero to avoid rigid-body displacements.The positions of the selected MoSSe atoms are recorded at every 100 steps.Subsequently,vibrational frequencies are computed by fast Fourier transformation (FFT).Fig.3(a) shows the out-of-plane displacement of a sulfur atom selected from the MoSSe circular plate with a clamped edge.The thermal vibrational spectrum corresponding to the atom’s displacement derived by FFT is shown in Fig.3(b).Each peak in the spectrum represents a natural frequency of the MoSSe plate.In addition,the figure shows the vibration modes obtained by MD simulation.A periodic force is applied to the MoSSe plate with a frequency similar to the plate’s natural frequency.Once a steady state is reached,vibration modes corresponding to the natural frequency can be observed.

    (a)

    During computations with free-boundary conditions,with the increasing diameter of the circular plate,the natural frequencies of each order gradually decrease while maintaining a relatively continuous trend.However,a discontinuity arises when the diameter reaches 8.6 nm (see Fig.4).The MD simulation reveals alterations in the morphology of the MoSSe plate after relaxation.As the model size increases,the warping transforms from a uniformly curved bowl shape into a tubular structure with warped ends,and the extent of warping intensifies.The MD simulation results indicate that at a diameter of 8.6 nm,a shift from bowl-like warping to tubular warping occurs.For diameters greater than 9.0 nm,a complete transition to tubular warping occurs.To validate the rationality of this outcome,a continuous medium model is employed to simulate the MoSSe plate,and its vibration frequency is computed for comparison with the MD simulation results.

    Fig.4 First-to fourth-order natural frequencies of molybdenum sulfoselenide circular plates with different diameters

    2 Continuum Mechanics Model for Vibration of the MoSSe plate

    From the calculations discussed in the previous section,a discontinuity is observed in the natural frequencies of the MoSSe circular plate with free boundaries.Furthermore,two distinct warping morphologies,bowl and tubular warping,are identified.FEM analysis is conducted to investigate the vibration behavior of the MoSSe plates.For meshing,a free tetrahedral mesh is used.Convergence results are achieved with regular or high meshing densities,where the minimum cell size is set to 0.04 nm,maximum cell size to 0.55 nm,and maximum cell growth rate to 1.4.A circular composite plate comprising of two sublayers is used to analyze the warpage of the Janus monolayer MoSSe structure.These two sublayers are closely integrated,forming a unified structure.The upper layer represents the molybdenum-selenide structure,with a thickness of 0.171 nm,while the lower layer represents the molybdenum-sulfur structure,with a thickness of 0.153 nm.The strains due to lattice mismatch (εMo-S=(αMoS2-αMoSSe)/αMoS2,εMo-Se=(αMoSe2-αMoSSe)/αMoSe2) are incorporated into the corresponding sublayer as the initial state[34-39],whereεMo-SandεMo-Serepresent the strains in the Mo-S layer and Mo-Se layers,respectively,andαMoSSe,αMoS2,andαMoSe2represent the lattice constants of monolayers MoSSe,MoS2,and MoSe2,respectively; the relevant parameters are listed in Tab.1.After warpage,the natural frequencies of the plates with different boundary conditions are calculated.The FEM calculation results show identical transformations of the warpage morphology (see Fig.5).Both methods yield the same warpage patterns and dimensions of warpage-pattern changes,which verifies the rationality of the model.The natural frequencies of the plates with free boundaries calculated by these two methods are shown in Fig.6.The first four natural frequencies obtained by both methods decrease with increasing plate size.When the diameter of the MoSSe circular plate reaches 7 nm,the second-and third-order frequencies obtained by FEM overlap.

    Tab.1 Material parameters

    (a)

    Fig.6 First-to fourth-order natural frequencies of the molybdenum sulfoselenide shallow spherical shell with free boundaries

    The warpage morphologies change when the diameter of the circular plate reaches 8.6 nm,similar to the calculation results with free-boundary conditions.To analyze circular plates with clamped edges,the diameter is maintained at <8.6 nm to ensure the persistence of bowl-like warping.The calculation results of the first eight natural frequencies of the shallow spherical shell,which is formed by warping a circular plate with a diameter of 7.5 nm,are shown in Fig.7.The frequencies obtained by the two methods are consistent.Furthermore,the vibration modes are obtained by FEM.

    Fig.7 First eight natural frequencies and modes of the shallow spherical shell formed by warping the circular plate of the Janus MoSSe structure with a diameter of 7.5 nm

    To further investigate the effect of plate size on the vibration frequency,circular plate models of MoSSe with diameters of 4.5 to 8.1 nm are established.The natural frequencies of the MoSSe plates with clamped edges are shown in Fig.8.The natural frequency decreases with the increasing diameter of the shallow spherical shell.Furthermore,the discrepancy between the results obtained by the two methods decreases with increasing plate size.Overall,the two methods provide consistent results,and the double-layer plate model can well predict the warpage and natural frequency of the MoSSe circular plate.

    Fig.8 First-to fourth-order natural frequencies of the molybdenum sulfoselenide shallow spherical shell with a clamped edge

    3 Vibration Analysis of the Circular MoSSe Plate with Initial Stress

    In this section,the effect of the initial stress on the natural frequency of the MoSSe circular plate after the warpage is investigated.

    To analyze the effect of tension on the vibration of the Janus MoSSe structure,a MoSSe plate model with a diameter of 7.5 nm under different strains was established.Thereafter,uniaxial and radial stretching cases were investigated.Uniaxial stretching was performed along the armchair and zigzag directions (see Fig.9(a)).The natural frequencies of the MoSSe plate with a clamped edge after uniaxial stretching are shown in Fig.9(b).A new frequency emerges from the original second-order frequency due to the asymmetry introduced by the strain in the two orthogonal directions.In the unstretched case,the properties along the zigzag and armchair directions exhibit similarity.Therefore,the second-order frequencies corresponding to the zigzag and armchair directions are the same.However,stretching induces an asymmetry between these orthogonal directions,leading to differences in natural frequencies.Thus,the original second-order frequency splits into a lower and higher natural frequency.The difference between the second-and third-order frequencies gradually increases with increasing strain.Furthermore,the fourth-order frequency also gradually increases,but the first-order frequency decreases until the strain reaches 0.04 and then gradually increases.Stretching along the armchair and zigzag directions yields the same effects on the natural frequency.Fig.10 shows the effect of radial stretching on the natural frequency.The first-order frequency decreases until the strain reaches 0.15 and then gradually increases,and higher-order frequencies increase as the strain increases.Although the same trend is observed in the FEM calculations,the consistency between the two results is predominantly maintained only when the strain is small.For larger strains,the frequencies determined by FEM increase at a higher rate than that determined by MD,and when the strain reaches 0.03,a substantial discrepancy exists between the two results.

    (a)

    Fig. 10 Effect of radial stretching on the natural frequency

    Fig. 11 First three natural frequencies of the molybdenum sulfoselenide shallow spherical shell with z-directional pressure

    Finally,the effect of pressure on the natural frequency is investigated.The boundary of the plate is fixed after sufficient warping before pressure application.The frequency obtained by the MD simulation dramatically increases in the pressure range of-0.073 to 0.146 GPa and slowly increases for pressure greater than 0.146 GPa (see Fig.11).When the pressure value is positive,the pressure aligns with the upward direction in Fig.11,and when the value is negative,the pressure aligns with the downward direction.Under low pressure values,the results obtained by the two methods are consistent,and under large pressure values,a substantial discrepancy occurs between the two results.

    4 Conclusions

    1) The analysis of vibrations in the MoSSe circular plate with free boundaries reveals a distinct frequency discontinuity.This phenomenon is associated with the presence of two warpage patterns,a finding that is successfully reproduced in FEM calculations.

    2) The natural frequencies of the MoSSe circular plate with a clamped edge obtained by the MD method and FEM are consistent.The discrepancies between the results of these two methods decrease with the increasing size of the MoSSe structure.The comparison reveals that the vibrations of the circular MoSSe plate are well predicted by the double-layer model.

    3) The effects of strain and pressure on the natural frequency are also investigated.The frequencies obtained by FEM and the MD simulation are consistent under sufficiently small deformations.However,under larger deformations,the frequencies determined by FEM are higher than those determined by the MD simulation.

    精品久久久久久久人妻蜜臀av | 日韩高清综合在线| 在线av久久热| 欧美日本视频| 纯流量卡能插随身wifi吗| 亚洲av美国av| 国产精华一区二区三区| 国产aⅴ精品一区二区三区波| 啦啦啦观看免费观看视频高清 | 欧美色视频一区免费| 亚洲九九香蕉| 婷婷丁香在线五月| 中文字幕人妻熟女乱码| 99久久国产精品久久久| 国产伦人伦偷精品视频| 久久久精品欧美日韩精品| 岛国视频午夜一区免费看| 国产一区二区在线av高清观看| 国产精品国产高清国产av| 熟妇人妻久久中文字幕3abv| 黄色a级毛片大全视频| 怎么达到女性高潮| 黑人欧美特级aaaaaa片| 精品一区二区三区四区五区乱码| 亚洲欧美日韩高清在线视频| 欧美一级a爱片免费观看看 | 怎么达到女性高潮| 成人国产一区最新在线观看| 黄色视频,在线免费观看| 黄色片一级片一级黄色片| 国产99久久九九免费精品| 亚洲中文字幕日韩| 久久精品影院6| 制服诱惑二区| 国产1区2区3区精品| 亚洲成人久久性| 中文字幕人妻丝袜一区二区| 日韩有码中文字幕| 色综合婷婷激情| 久久人人97超碰香蕉20202| 国产一区二区三区综合在线观看| 久久久精品国产亚洲av高清涩受| 国产伦一二天堂av在线观看| 男女下面进入的视频免费午夜 | 91国产中文字幕| 国产精品一区二区在线不卡| 亚洲精品中文字幕在线视频| 国产精品日韩av在线免费观看 | 日本欧美视频一区| 母亲3免费完整高清在线观看| 国产亚洲欧美精品永久| 一边摸一边抽搐一进一出视频| 天天躁狠狠躁夜夜躁狠狠躁| 欧美在线一区亚洲| 国产片内射在线| 变态另类成人亚洲欧美熟女 | 成人欧美大片| 最好的美女福利视频网| 51午夜福利影视在线观看| 久久草成人影院| 老司机深夜福利视频在线观看| 波多野结衣av一区二区av| 欧美激情高清一区二区三区| www.精华液| 亚洲国产精品合色在线| 久久狼人影院| 午夜福利在线观看吧| www.熟女人妻精品国产| 精品一区二区三区视频在线观看免费| 欧美黑人欧美精品刺激| 一进一出抽搐动态| 国产伦一二天堂av在线观看| 婷婷六月久久综合丁香| 制服诱惑二区| 国产熟女xx| 亚洲av成人不卡在线观看播放网| 性色av乱码一区二区三区2| www国产在线视频色| 美女国产高潮福利片在线看| 国产一卡二卡三卡精品| 一级作爱视频免费观看| 一区二区三区国产精品乱码| av中文乱码字幕在线| 国产精品精品国产色婷婷| 日本vs欧美在线观看视频| 午夜福利影视在线免费观看| 久久精品国产亚洲av香蕉五月| 视频在线观看一区二区三区| 黄色a级毛片大全视频| 久久久久久人人人人人| 精品久久久久久久毛片微露脸| 老司机午夜十八禁免费视频| 亚洲专区字幕在线| 精品国产美女av久久久久小说| 高清毛片免费观看视频网站| 国产精品野战在线观看| 日本五十路高清| 久久人妻福利社区极品人妻图片| 午夜成年电影在线免费观看| 欧美亚洲日本最大视频资源| 欧美激情极品国产一区二区三区| 97超级碰碰碰精品色视频在线观看| 熟妇人妻久久中文字幕3abv| 免费在线观看完整版高清| 后天国语完整版免费观看| 国产激情欧美一区二区| 村上凉子中文字幕在线| 欧美成人一区二区免费高清观看 | 国产成人精品在线电影| 成熟少妇高潮喷水视频| 不卡一级毛片| 精品国产乱码久久久久久男人| 久久久久国产一级毛片高清牌| 一边摸一边抽搐一进一出视频| 一进一出好大好爽视频| 久久香蕉激情| 中文字幕精品免费在线观看视频| 午夜免费观看网址| av福利片在线| 老司机深夜福利视频在线观看| av欧美777| 日韩大码丰满熟妇| 麻豆一二三区av精品| 人人妻,人人澡人人爽秒播| 中文字幕另类日韩欧美亚洲嫩草| 精品久久蜜臀av无| 女同久久另类99精品国产91| 国产成人精品在线电影| 在线播放国产精品三级| 每晚都被弄得嗷嗷叫到高潮| 黄频高清免费视频| 国产在线精品亚洲第一网站| 午夜福利18| 国产伦人伦偷精品视频| 国产国语露脸激情在线看| 91大片在线观看| 亚洲第一欧美日韩一区二区三区| 在线观看日韩欧美| 日本在线视频免费播放| 免费观看精品视频网站| 在线十欧美十亚洲十日本专区| 亚洲成人久久性| 日韩 欧美 亚洲 中文字幕| 少妇裸体淫交视频免费看高清 | 国产精品,欧美在线| 一边摸一边抽搐一进一小说| 久99久视频精品免费| 很黄的视频免费| 最新美女视频免费是黄的| 熟妇人妻久久中文字幕3abv| 亚洲精品一区av在线观看| 亚洲第一青青草原| av天堂在线播放| 亚洲av电影在线进入| 中出人妻视频一区二区| 国产成人欧美| 人成视频在线观看免费观看| 亚洲中文日韩欧美视频| 久久婷婷人人爽人人干人人爱 | 亚洲成人精品中文字幕电影| 中亚洲国语对白在线视频| 中文字幕久久专区| 午夜a级毛片| 波多野结衣一区麻豆| 国产熟女xx| 国产蜜桃级精品一区二区三区| 一区在线观看完整版| 在线观看舔阴道视频| 日韩精品免费视频一区二区三区| 可以在线观看的亚洲视频| 国产精品乱码一区二三区的特点 | 日本欧美视频一区| 在线观看免费日韩欧美大片| 欧美绝顶高潮抽搐喷水| 亚洲久久久国产精品| 亚洲免费av在线视频| 国产精品99久久99久久久不卡| 99国产精品免费福利视频| e午夜精品久久久久久久| 欧美激情久久久久久爽电影 | 热re99久久国产66热| 国产xxxxx性猛交| 久久精品成人免费网站| 亚洲自偷自拍图片 自拍| 91麻豆精品激情在线观看国产| 日韩有码中文字幕| 一边摸一边做爽爽视频免费| 国产伦人伦偷精品视频| 久久 成人 亚洲| 美女大奶头视频| 大香蕉久久成人网| 在线十欧美十亚洲十日本专区| 日韩欧美三级三区| 亚洲第一欧美日韩一区二区三区| 男人舔女人的私密视频| 一本久久中文字幕| 咕卡用的链子| 国产一卡二卡三卡精品| 成人三级做爰电影| 人人妻,人人澡人人爽秒播| 欧美成人一区二区免费高清观看 | 嫩草影院精品99| 亚洲熟妇中文字幕五十中出| 亚洲熟妇熟女久久| 99国产综合亚洲精品| 少妇的丰满在线观看| 99国产精品一区二区三区| 丁香欧美五月| 亚洲九九香蕉| 最新在线观看一区二区三区| 亚洲av片天天在线观看| 99re在线观看精品视频| 在线观看免费日韩欧美大片| 久久热在线av| 麻豆成人av在线观看| 国产91精品成人一区二区三区| 久久性视频一级片| 我的亚洲天堂| 亚洲精品国产区一区二| 午夜福利,免费看| 一区在线观看完整版| 精品久久久久久久人妻蜜臀av | 99国产综合亚洲精品| 女人被狂操c到高潮| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品美女特级片免费视频播放器 | 法律面前人人平等表现在哪些方面| 精品久久久精品久久久| 欧美日本亚洲视频在线播放| 男女之事视频高清在线观看| 欧美乱妇无乱码| 国产成人精品无人区| 美女扒开内裤让男人捅视频| 国产乱人伦免费视频| 丁香欧美五月| 成人亚洲精品一区在线观看| 日本撒尿小便嘘嘘汇集6| 黑丝袜美女国产一区| 国产蜜桃级精品一区二区三区| 啪啪无遮挡十八禁网站| 国产97色在线日韩免费| 啦啦啦韩国在线观看视频| 国产精品98久久久久久宅男小说| 日韩免费av在线播放| 国产亚洲欧美在线一区二区| 91国产中文字幕| 精品日产1卡2卡| 日韩国内少妇激情av| 亚洲国产毛片av蜜桃av| 日日干狠狠操夜夜爽| 中出人妻视频一区二区| 一级毛片精品| 国产精品秋霞免费鲁丝片| 一本综合久久免费| 亚洲av电影在线进入| 两个人看的免费小视频| 午夜a级毛片| 18禁黄网站禁片午夜丰满| 黑人巨大精品欧美一区二区mp4| 91av网站免费观看| 成人精品一区二区免费| 99国产精品免费福利视频| 亚洲精品国产一区二区精华液| 日韩精品青青久久久久久| 午夜福利视频1000在线观看 | 嫩草影院精品99| 我的亚洲天堂| 午夜福利,免费看| 熟女少妇亚洲综合色aaa.| 此物有八面人人有两片| 99精品久久久久人妻精品| 黑人巨大精品欧美一区二区mp4| 少妇裸体淫交视频免费看高清 | 精品国产一区二区久久| 日韩免费av在线播放| a在线观看视频网站| 亚洲国产精品合色在线| 制服丝袜大香蕉在线| 久久国产亚洲av麻豆专区| 黄片小视频在线播放| 老司机福利观看| 婷婷精品国产亚洲av在线| 99在线视频只有这里精品首页| 成人国产综合亚洲| 精品乱码久久久久久99久播| 久久国产乱子伦精品免费另类| 日韩成人在线观看一区二区三区| 亚洲中文av在线| 国产亚洲精品久久久久5区| bbb黄色大片| 亚洲国产精品久久男人天堂| 欧美精品啪啪一区二区三区| 亚洲激情在线av| 久久精品成人免费网站| 久久人人爽av亚洲精品天堂| 动漫黄色视频在线观看| 岛国视频午夜一区免费看| 色老头精品视频在线观看| 亚洲成人精品中文字幕电影| 俄罗斯特黄特色一大片| 桃色一区二区三区在线观看| 亚洲国产日韩欧美精品在线观看 | 国产精品乱码一区二三区的特点 | 精品国产乱子伦一区二区三区| 国产一级毛片七仙女欲春2 | 我的亚洲天堂| 伊人久久大香线蕉亚洲五| 免费高清在线观看日韩| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲欧美激情综合另类| 曰老女人黄片| 亚洲熟妇熟女久久| 午夜老司机福利片| 国产精品国产高清国产av| 国产午夜精品久久久久久| 在线av久久热| 黄网站色视频无遮挡免费观看| 亚洲片人在线观看| 久久九九热精品免费| 亚洲av成人一区二区三| 村上凉子中文字幕在线| 香蕉丝袜av| 97超级碰碰碰精品色视频在线观看| 国产精品免费视频内射| 在线永久观看黄色视频| 久9热在线精品视频| 精品卡一卡二卡四卡免费| 亚洲国产毛片av蜜桃av| 亚洲黑人精品在线| 久久人妻av系列| 成人国产一区最新在线观看| 亚洲无线在线观看| 成人国语在线视频| 女性被躁到高潮视频| 国产精品久久久久久精品电影 | 婷婷丁香在线五月| 91字幕亚洲| 久9热在线精品视频| 精品国产超薄肉色丝袜足j| 18禁裸乳无遮挡免费网站照片 | 久久久久久人人人人人| 18禁黄网站禁片午夜丰满| 一区二区三区高清视频在线| 免费在线观看黄色视频的| 亚洲一区二区三区色噜噜| 禁无遮挡网站| 亚洲精品国产区一区二| 久久午夜亚洲精品久久| 国产高清视频在线播放一区| 亚洲国产欧美一区二区综合| 日本三级黄在线观看| www国产在线视频色| 一边摸一边做爽爽视频免费| 91成年电影在线观看| 国产成人欧美在线观看| 99久久国产精品久久久| 欧美激情久久久久久爽电影 | 欧美日韩亚洲国产一区二区在线观看| 一进一出抽搐gif免费好疼| 亚洲五月天丁香| 女人爽到高潮嗷嗷叫在线视频| 日本精品一区二区三区蜜桃| 久久精品国产99精品国产亚洲性色 | 91成人精品电影| 如日韩欧美国产精品一区二区三区| 国产免费男女视频| 免费高清视频大片| 高清在线国产一区| 国产在线观看jvid| av网站免费在线观看视频| 亚洲情色 制服丝袜| 无遮挡黄片免费观看| 亚洲人成电影免费在线| 欧美精品啪啪一区二区三区| 亚洲av成人av| 精品第一国产精品| 精品国产美女av久久久久小说| 女人精品久久久久毛片| 999久久久国产精品视频| 大香蕉久久成人网| 成年版毛片免费区| 91av网站免费观看| 亚洲国产欧美网| 国产私拍福利视频在线观看| 国产单亲对白刺激| 国产av在哪里看| 在线观看免费视频网站a站| 国产成人影院久久av| 美女国产高潮福利片在线看| 久久香蕉国产精品| 国产精品久久电影中文字幕| 12—13女人毛片做爰片一| 亚洲av电影在线进入| 天堂影院成人在线观看| 无遮挡黄片免费观看| 欧美乱妇无乱码| 亚洲午夜精品一区,二区,三区| 亚洲国产看品久久| 久久香蕉激情| 91精品国产国语对白视频| 男女下面进入的视频免费午夜 | 99在线人妻在线中文字幕| 日本在线视频免费播放| 男女午夜视频在线观看| 波多野结衣一区麻豆| 一级a爱视频在线免费观看| 亚洲人成77777在线视频| 欧美久久黑人一区二区| 午夜a级毛片| 女人被狂操c到高潮| 999久久久国产精品视频| 大香蕉久久成人网| 欧美日韩精品网址| 亚洲九九香蕉| 国产1区2区3区精品| 99国产精品免费福利视频| 黄色丝袜av网址大全| 美女免费视频网站| 两人在一起打扑克的视频| 黄色 视频免费看| 亚洲精品久久国产高清桃花| 亚洲国产精品合色在线| 免费少妇av软件| 国内毛片毛片毛片毛片毛片| 国产日韩一区二区三区精品不卡| 国产高清激情床上av| www.精华液| 午夜视频精品福利| 搡老妇女老女人老熟妇| av电影中文网址| 大陆偷拍与自拍| 欧美最黄视频在线播放免费| 久久精品国产清高在天天线| 精品久久久久久成人av| 不卡一级毛片| 制服诱惑二区| 夜夜看夜夜爽夜夜摸| 51午夜福利影视在线观看| 国产亚洲精品久久久久久毛片| 日日夜夜操网爽| 精品国产美女av久久久久小说| 91麻豆av在线| 乱人伦中国视频| 久久午夜亚洲精品久久| 女同久久另类99精品国产91| 大型av网站在线播放| 9191精品国产免费久久| 变态另类丝袜制服| 午夜免费鲁丝| 欧美老熟妇乱子伦牲交| 亚洲男人的天堂狠狠| 国产精品久久久av美女十八| 夜夜夜夜夜久久久久| 成人av一区二区三区在线看| 国产精华一区二区三区| 国产精品免费视频内射| 精品久久久久久久毛片微露脸| 免费观看精品视频网站| 美女高潮喷水抽搐中文字幕| av天堂久久9| 国产精品久久久久久精品电影 | 日本一区二区免费在线视频| 亚洲精品中文字幕在线视频| 91国产中文字幕| 999久久久精品免费观看国产| 真人一进一出gif抽搐免费| 99久久久亚洲精品蜜臀av| 亚洲一卡2卡3卡4卡5卡精品中文| 女人被躁到高潮嗷嗷叫费观| 精品熟女少妇八av免费久了| 亚洲中文字幕一区二区三区有码在线看 | 满18在线观看网站| 亚洲专区字幕在线| 亚洲九九香蕉| 国产成+人综合+亚洲专区| 日本免费a在线| 中文字幕精品免费在线观看视频| 久久精品国产亚洲av高清一级| 亚洲国产精品合色在线| 亚洲aⅴ乱码一区二区在线播放 | 午夜精品在线福利| 中文亚洲av片在线观看爽| 亚洲精品久久国产高清桃花| 日韩精品中文字幕看吧| 欧美日韩亚洲综合一区二区三区_| 99精品在免费线老司机午夜| 日韩欧美三级三区| 天堂影院成人在线观看| 国产在线观看jvid| 日韩一卡2卡3卡4卡2021年| www.自偷自拍.com| 日本一区二区免费在线视频| 好男人电影高清在线观看| 操出白浆在线播放| 亚洲成人久久性| 99精品久久久久人妻精品| 国产高清视频在线播放一区| 麻豆国产av国片精品| 悠悠久久av| 国产熟女午夜一区二区三区| 国产午夜福利久久久久久| 大香蕉久久成人网| 亚洲中文字幕一区二区三区有码在线看 | 最近最新中文字幕大全免费视频| 国产区一区二久久| 欧美日韩瑟瑟在线播放| 琪琪午夜伦伦电影理论片6080| 午夜日韩欧美国产| 美女高潮喷水抽搐中文字幕| 久久人妻av系列| 亚洲精品国产精品久久久不卡| 看黄色毛片网站| 黄色视频,在线免费观看| 精品久久久精品久久久| 亚洲九九香蕉| 欧美乱色亚洲激情| 欧美成人性av电影在线观看| 一本综合久久免费| 亚洲精品粉嫩美女一区| 50天的宝宝边吃奶边哭怎么回事| 国产精品二区激情视频| 国产在线精品亚洲第一网站| 女同久久另类99精品国产91| 女生性感内裤真人,穿戴方法视频| 精品卡一卡二卡四卡免费| 黄色视频,在线免费观看| 香蕉久久夜色| 精品免费久久久久久久清纯| 国产成+人综合+亚洲专区| 欧美日韩亚洲综合一区二区三区_| 精品卡一卡二卡四卡免费| 日韩视频一区二区在线观看| 看片在线看免费视频| 免费无遮挡裸体视频| 色播亚洲综合网| 黄网站色视频无遮挡免费观看| 成年人黄色毛片网站| 亚洲电影在线观看av| 免费在线观看黄色视频的| 丁香欧美五月| 国产欧美日韩综合在线一区二区| 乱人伦中国视频| 精品久久蜜臀av无| 在线观看一区二区三区| 最近最新中文字幕大全电影3 | 久久久久久免费高清国产稀缺| 亚洲五月天丁香| 国语自产精品视频在线第100页| 一本久久中文字幕| 午夜精品国产一区二区电影| 97超级碰碰碰精品色视频在线观看| 亚洲第一av免费看| 精品久久久久久成人av| 99热只有精品国产| 啦啦啦观看免费观看视频高清 | 精品国内亚洲2022精品成人| 啦啦啦 在线观看视频| 亚洲国产日韩欧美精品在线观看 | 一a级毛片在线观看| 高清在线国产一区| 国产免费av片在线观看野外av| 级片在线观看| 国产91精品成人一区二区三区| 亚洲欧美日韩高清在线视频| 国产黄a三级三级三级人| 看黄色毛片网站| 宅男免费午夜| 国产精品久久电影中文字幕| 精品国产美女av久久久久小说| 最新美女视频免费是黄的| 日韩成人在线观看一区二区三区| 国产单亲对白刺激| 亚洲自拍偷在线| 久久久久国产一级毛片高清牌| 涩涩av久久男人的天堂| 十分钟在线观看高清视频www| 97人妻精品一区二区三区麻豆 | 电影成人av| 精品国产亚洲在线| 99精品久久久久人妻精品| 妹子高潮喷水视频| 久久这里只有精品19| 国产又色又爽无遮挡免费看| svipshipincom国产片| АⅤ资源中文在线天堂| 又黄又粗又硬又大视频| 一级,二级,三级黄色视频| 动漫黄色视频在线观看| 国产三级黄色录像| 成人亚洲精品av一区二区| 日韩精品免费视频一区二区三区| 伦理电影免费视频| 精品乱码久久久久久99久播| 一区二区三区国产精品乱码| 免费女性裸体啪啪无遮挡网站| 国产精品一区二区精品视频观看| 大香蕉久久成人网| 18禁观看日本| 亚洲avbb在线观看| 欧美黄色片欧美黄色片| 精品日产1卡2卡| 啦啦啦 在线观看视频| 色老头精品视频在线观看| 久久午夜亚洲精品久久| 97人妻精品一区二区三区麻豆 | 宅男免费午夜| 看黄色毛片网站| 麻豆av在线久日| 精品人妻1区二区| 多毛熟女@视频| 国产不卡一卡二| 九色国产91popny在线| 叶爱在线成人免费视频播放| 成年版毛片免费区| 一区在线观看完整版|