• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vibration analysis of circular Janus MoSSe plates

    2023-12-05 07:23:32LiuXinjieWangLifeng

    Liu Xinjie Wang Lifeng

    (State Key Laboratory of Mechanics and Control for Aerospace Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)

    Abstract:The vibration behavior of Janus monolayer molybdenum sulfoselenide (MoSSe) was studied based on molecular dynamics (MD) simulations and the finite element method (FEM).MoSSe plates were simulated by FEM through the incorporation of intrinsic strain caused by lattice mismatch to the double-layer plate model.The vibrations of circular MoSSe plates with free boundaries and a clamped edge were determined by MD simulations and FEM.In addition,the effects of plate size,strain,and pressure on the natural frequency of the plates were investigated.The results showed that the natural frequency of the circular MoSSe plate with free boundaries gradually decreased with increasing plate size.Furthermore,a significant discontinuity in frequency was observed due to bowl and tube warpage when the diameter reached 8.6 nm.The MD simulation and FEM calculation results were consistent in terms of the natural frequencies of the circular MoSSe plates of different sizes.In addition,the effects of strain and pressure on the natural frequency determined by the two methods were consistent for small deformations.The vibration of the MoSSe plate could be well predicted by the double-layer plate model.

    Key words:Janus monolayer molybdenum sulfoselenide (MoSSe); molecular dynamics (MD); warpage; natural frequency

    Since the discovery of graphene,two-dimensional (2D) materials have attracted considerable research attention owing to their remarkable mechanical,electronic,and thermal properties[1-8].In addition to graphene,2D transition-metal dichalcogenides (TMDs)[9-12]have garnered considerable attention owing to their unique physical and chemical properties.The mechanical,electrical,optical,and thermal properties of molybdenum disulfide (MoS2),a typical TMD material,have been extensively explored[13-16].In recent years,2D heterostructures composed of vertically stacked 2D materials with distinct properties have exhibited novel characteristics[17-18].Molybdenum sulfoselenide (MoSSe) possesses a structure similar to heterostructures,even though it is composed of a single material.In a recent study,Lu et al.[19]completely replaced the top-layer S atoms in MoS2with Se atoms.The Janus structure of MoSSe was confirmed through scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy.The presence of vertical dipoles was confirmed through second harmonic generation and piezoresponse force microscopy measurements.Zhang et al.[20]controlled the sulfide action to replace the top Se atoms of monolayer molybdenum diselenide (MoSe2) with S atoms,while the bottom layer of Se atoms remained unaffected.Through this method,a Janus monolayer MoSSe structure was formed,comprising three layers of atoms from top to bottom,namely sulfur,molybdenum,and selenium.Idrews et al.[21]used hybrid density-functional theory calculations to investigate Janus monolayers and their associated van der Waals heterojunctions.They discovered that MoSSe is a direct-bandgap semiconductor.Indirect-bandgap semiconductors can be converted into direct-bandgap counterparts using external electric fields.In direct-bandgap semiconductors,electrons can directly excite or de-excite by the absorption or emission of photons with no involvement of phonons in the processes.This property renders them more suitable for manufacturing optoelectronic devices.Dong et al.[22]investigated the planar and vertical piezoelectric properties of monolayer and multilayer MXY structures (where M=Mo or W,and X/Y=S,Se,or Te) based on ab initio calculations.Under substrate influence,uniaxially strained MXY structures exhibited high in-plane piezoelectric polarization but significantly weaker out-of-plane piezoelectric polarization.Conversely,laterally strained multilayer MXY structures exhibited substantial out-of-plane piezoelectric polarization.These studies highlighted the applicability of MXY structures in smart nanodevice applications.Kandemir et al.[23]employed first-principle computations to investigate the structural and phononic properties of MoSSe monolayers.They utilized out-of-plane anisotropy to demonstrate the unique vertical pressure effect on the vibrational characteristics of Janus materials due to the asymmetric structure of Janus MoSSe monolayers.Pham et al.[24]developed ultrathin graphene/MoSeS and graphene/MoSSe heterostructures and studied their structural and electrical properties and the effect of vertical electric fields on these heterostructures.These designed heterostructures were intended for applications in nanoelectronic and optoelectronic devices.

    Studying the vibration of nanoscale structures is imperative owing to the crucial role of vibration behavior in the functionality of smart nanodevices.Jiang et al.[25]investigated the nanomechanics and vibration behavior of graphene sheets,employing a 2D plate model that accounted for varying sizes and boundary conditions.The simulation results highlighted the accuracy and efficiency of the 2D plate model,demonstrating its potential as a promising alternative for modeling nanomechanics and analyzing the vibration of graphene sheets when compared with several well-established experiments and equivalent theoretical models.Akg?z et al.[26]investigated the free vibration of a single-layered graphene sheet positioned on an elastic matrix.They derived the governing equation of motion using the thin plate theory in conjunction with Hamilton’s principle.Kitipornchai et al.[27]employed a continuum model to assess the vibration of multilayered graphene sheets,revealing that varying the number of layers can lead to various resonance modes.Zhang et al.[28]explored the vibration frequency of rippled single-layered graphene sheets and identified that introducing functional groups,defects,carbon nanotubes,and surface wrinkles can induce significant frequency shifts in pristine single-layered graphene sheets.Zhang et al.[29]investigated the thermal vibration of rectangular monolayer black phosphorus based on an orthotropic plate model and molecular dynamics (MD) simulations.MD simulations and the orthotropic plate model,combined with the law of energy equipartition,provided insights into the root-mean-square amplitude of rectangular monolayer black phosphorus.Through MD simulations and a continuous plate model,Yi et al.[30]investigated the vibration behavior of single-layered hexagonal boron nitride and explored the effect of an electric field on the intrinsic frequency.Zhang et al.[31]employed the circular Mindlin plate model to analyze the vibration of circular single-layered MoS2.The findings indicated that for very small plate sizes,particularly at higher-order frequencies,the natural frequencies computed by the Mindlin plate model aligned more closely with those determined by the MD method than those computed by the Kirchhoff plate model.Thus,it is necessary to reveal the dynamic behavior of the Janus monolayer MoSSe structure.

    To the best of our knowledge,the vibration behavior of Janus MoSSe has not been studied yet.Therefore,MD simulations and the finite element method (FEM) are employed to investigate the vibrations of Janus monolayer MoSSe,considering free-boundary and clamped-edge conditions.In addition,the effects of size and the initial stress are studied.

    1 Vibration Analysis of the MoSSe Plate with MD Simulation

    The atomic structure of Janus monolayer MoSSe features a sandwich-like arrangement with selenium,molybdenum,and sulfur atoms spanning from the upper to lower layers (see Fig.1).The Stillinger-Weber (SW) potential,recently formulated for various MX2structures (M=Mo,W; X=S,Se,Mo) and their alloys and lateral heterostructures,is adopted here[32].Thus,the interatomic interactions within the Janus monolayer MoSSe are described using the SW potential function.

    (a)

    The mechanical properties of the monolayer in the zigzag and armchair directions are determined through MD simulations using a square sheet under periodic boundary conditions; the monolayer thickness is set at 0.324 nm.The model is subjected to stretching along a single direction,and during this process,stresses in the tensile direction and strains in the nontensile direction are recorded.The resulting stress-strain curves for the armchair and zigzag directions are shown in Fig.2(a).The red solid line represents the stress-strain curve for stretching along the armchair direction,while the black dashed line corresponds to stretching along the zigzag direction.The relationship between strains along the armchair and zigzag directions during uniaxial tension is shown in Fig.2(b).The red curve shows the relationship between the zigzag-direction strain (vertical coordinate) and armchair-direction strain (horizontal coordinate) during stretching along the armchair direction.Furthermore,the black curve shows the relationship between the armchair-direction strain (vertical coordinate) and zigzag-direction strain (horizontal coordinate) during stretching along the zigzag direction.Within the linear range,stresses in both directions exhibit nearly identical behavior at equal strains.For small tensile strains,Poisson’s ratio values are almost identical for both directions.For simplicity,the material can be treated as isotropic.Young’s modulus is taken as the average of the two directions,yielding 230.4 GPa,and Poisson’s ratio is similarly averaged at 0.23.

    (a)

    The natural frequencies of the circular MoSSe plate with a clamped edge and free boundaries can be determined using the MD software Large-scale Atomic/Molecular Massively Parallel Simulator[33].Initially,the boundaries of the MoSSe plate are set as free boundaries.The equilibrium state of the structure is achieved by the steepest descent method combined with the conjugate gradient approach for energy minimization.Thereafter,MD simulations are performed using the NVT ensemble,and a temperature of 300 K is maintained using a Nose-Hoover thermostat with a time step of 1 fs for 5 ns.During the calculation related to the free-boundary case,the linear and angular momentums of the model are constrained to zero to avoid rigid-body displacements.The positions of the selected MoSSe atoms are recorded at every 100 steps.Subsequently,vibrational frequencies are computed by fast Fourier transformation (FFT).Fig.3(a) shows the out-of-plane displacement of a sulfur atom selected from the MoSSe circular plate with a clamped edge.The thermal vibrational spectrum corresponding to the atom’s displacement derived by FFT is shown in Fig.3(b).Each peak in the spectrum represents a natural frequency of the MoSSe plate.In addition,the figure shows the vibration modes obtained by MD simulation.A periodic force is applied to the MoSSe plate with a frequency similar to the plate’s natural frequency.Once a steady state is reached,vibration modes corresponding to the natural frequency can be observed.

    (a)

    During computations with free-boundary conditions,with the increasing diameter of the circular plate,the natural frequencies of each order gradually decrease while maintaining a relatively continuous trend.However,a discontinuity arises when the diameter reaches 8.6 nm (see Fig.4).The MD simulation reveals alterations in the morphology of the MoSSe plate after relaxation.As the model size increases,the warping transforms from a uniformly curved bowl shape into a tubular structure with warped ends,and the extent of warping intensifies.The MD simulation results indicate that at a diameter of 8.6 nm,a shift from bowl-like warping to tubular warping occurs.For diameters greater than 9.0 nm,a complete transition to tubular warping occurs.To validate the rationality of this outcome,a continuous medium model is employed to simulate the MoSSe plate,and its vibration frequency is computed for comparison with the MD simulation results.

    Fig.4 First-to fourth-order natural frequencies of molybdenum sulfoselenide circular plates with different diameters

    2 Continuum Mechanics Model for Vibration of the MoSSe plate

    From the calculations discussed in the previous section,a discontinuity is observed in the natural frequencies of the MoSSe circular plate with free boundaries.Furthermore,two distinct warping morphologies,bowl and tubular warping,are identified.FEM analysis is conducted to investigate the vibration behavior of the MoSSe plates.For meshing,a free tetrahedral mesh is used.Convergence results are achieved with regular or high meshing densities,where the minimum cell size is set to 0.04 nm,maximum cell size to 0.55 nm,and maximum cell growth rate to 1.4.A circular composite plate comprising of two sublayers is used to analyze the warpage of the Janus monolayer MoSSe structure.These two sublayers are closely integrated,forming a unified structure.The upper layer represents the molybdenum-selenide structure,with a thickness of 0.171 nm,while the lower layer represents the molybdenum-sulfur structure,with a thickness of 0.153 nm.The strains due to lattice mismatch (εMo-S=(αMoS2-αMoSSe)/αMoS2,εMo-Se=(αMoSe2-αMoSSe)/αMoSe2) are incorporated into the corresponding sublayer as the initial state[34-39],whereεMo-SandεMo-Serepresent the strains in the Mo-S layer and Mo-Se layers,respectively,andαMoSSe,αMoS2,andαMoSe2represent the lattice constants of monolayers MoSSe,MoS2,and MoSe2,respectively; the relevant parameters are listed in Tab.1.After warpage,the natural frequencies of the plates with different boundary conditions are calculated.The FEM calculation results show identical transformations of the warpage morphology (see Fig.5).Both methods yield the same warpage patterns and dimensions of warpage-pattern changes,which verifies the rationality of the model.The natural frequencies of the plates with free boundaries calculated by these two methods are shown in Fig.6.The first four natural frequencies obtained by both methods decrease with increasing plate size.When the diameter of the MoSSe circular plate reaches 7 nm,the second-and third-order frequencies obtained by FEM overlap.

    Tab.1 Material parameters

    (a)

    Fig.6 First-to fourth-order natural frequencies of the molybdenum sulfoselenide shallow spherical shell with free boundaries

    The warpage morphologies change when the diameter of the circular plate reaches 8.6 nm,similar to the calculation results with free-boundary conditions.To analyze circular plates with clamped edges,the diameter is maintained at <8.6 nm to ensure the persistence of bowl-like warping.The calculation results of the first eight natural frequencies of the shallow spherical shell,which is formed by warping a circular plate with a diameter of 7.5 nm,are shown in Fig.7.The frequencies obtained by the two methods are consistent.Furthermore,the vibration modes are obtained by FEM.

    Fig.7 First eight natural frequencies and modes of the shallow spherical shell formed by warping the circular plate of the Janus MoSSe structure with a diameter of 7.5 nm

    To further investigate the effect of plate size on the vibration frequency,circular plate models of MoSSe with diameters of 4.5 to 8.1 nm are established.The natural frequencies of the MoSSe plates with clamped edges are shown in Fig.8.The natural frequency decreases with the increasing diameter of the shallow spherical shell.Furthermore,the discrepancy between the results obtained by the two methods decreases with increasing plate size.Overall,the two methods provide consistent results,and the double-layer plate model can well predict the warpage and natural frequency of the MoSSe circular plate.

    Fig.8 First-to fourth-order natural frequencies of the molybdenum sulfoselenide shallow spherical shell with a clamped edge

    3 Vibration Analysis of the Circular MoSSe Plate with Initial Stress

    In this section,the effect of the initial stress on the natural frequency of the MoSSe circular plate after the warpage is investigated.

    To analyze the effect of tension on the vibration of the Janus MoSSe structure,a MoSSe plate model with a diameter of 7.5 nm under different strains was established.Thereafter,uniaxial and radial stretching cases were investigated.Uniaxial stretching was performed along the armchair and zigzag directions (see Fig.9(a)).The natural frequencies of the MoSSe plate with a clamped edge after uniaxial stretching are shown in Fig.9(b).A new frequency emerges from the original second-order frequency due to the asymmetry introduced by the strain in the two orthogonal directions.In the unstretched case,the properties along the zigzag and armchair directions exhibit similarity.Therefore,the second-order frequencies corresponding to the zigzag and armchair directions are the same.However,stretching induces an asymmetry between these orthogonal directions,leading to differences in natural frequencies.Thus,the original second-order frequency splits into a lower and higher natural frequency.The difference between the second-and third-order frequencies gradually increases with increasing strain.Furthermore,the fourth-order frequency also gradually increases,but the first-order frequency decreases until the strain reaches 0.04 and then gradually increases.Stretching along the armchair and zigzag directions yields the same effects on the natural frequency.Fig.10 shows the effect of radial stretching on the natural frequency.The first-order frequency decreases until the strain reaches 0.15 and then gradually increases,and higher-order frequencies increase as the strain increases.Although the same trend is observed in the FEM calculations,the consistency between the two results is predominantly maintained only when the strain is small.For larger strains,the frequencies determined by FEM increase at a higher rate than that determined by MD,and when the strain reaches 0.03,a substantial discrepancy exists between the two results.

    (a)

    Fig. 10 Effect of radial stretching on the natural frequency

    Fig. 11 First three natural frequencies of the molybdenum sulfoselenide shallow spherical shell with z-directional pressure

    Finally,the effect of pressure on the natural frequency is investigated.The boundary of the plate is fixed after sufficient warping before pressure application.The frequency obtained by the MD simulation dramatically increases in the pressure range of-0.073 to 0.146 GPa and slowly increases for pressure greater than 0.146 GPa (see Fig.11).When the pressure value is positive,the pressure aligns with the upward direction in Fig.11,and when the value is negative,the pressure aligns with the downward direction.Under low pressure values,the results obtained by the two methods are consistent,and under large pressure values,a substantial discrepancy occurs between the two results.

    4 Conclusions

    1) The analysis of vibrations in the MoSSe circular plate with free boundaries reveals a distinct frequency discontinuity.This phenomenon is associated with the presence of two warpage patterns,a finding that is successfully reproduced in FEM calculations.

    2) The natural frequencies of the MoSSe circular plate with a clamped edge obtained by the MD method and FEM are consistent.The discrepancies between the results of these two methods decrease with the increasing size of the MoSSe structure.The comparison reveals that the vibrations of the circular MoSSe plate are well predicted by the double-layer model.

    3) The effects of strain and pressure on the natural frequency are also investigated.The frequencies obtained by FEM and the MD simulation are consistent under sufficiently small deformations.However,under larger deformations,the frequencies determined by FEM are higher than those determined by the MD simulation.

    免费看美女性在线毛片视频| 女的被弄到高潮叫床怎么办| 久久久久久大精品| 欧美三级亚洲精品| 亚洲国产日韩欧美精品在线观看| 晚上一个人看的免费电影| 麻豆国产av国片精品| 国产精品久久久久久av不卡| 嫩草影院精品99| 黑人高潮一二区| 国产av在哪里看| 我的老师免费观看完整版| 国产毛片a区久久久久| 免费av观看视频| 一级毛片aaaaaa免费看小| 精品久久久久久久久久久久久| 人妻久久中文字幕网| 亚洲国产色片| 成人无遮挡网站| 欧美一区二区亚洲| 最近视频中文字幕2019在线8| 色综合站精品国产| 国产精品一及| 黄片无遮挡物在线观看| 身体一侧抽搐| 天天一区二区日本电影三级| 精品久久久噜噜| 久久久久性生活片| 国产精品久久久久久av不卡| 国产精品国产三级国产av玫瑰| 国产精品一区二区三区四区免费观看| 亚洲在线自拍视频| 亚洲精品乱码久久久v下载方式| 秋霞在线观看毛片| 成人无遮挡网站| 夜夜爽天天搞| 观看美女的网站| 国产亚洲91精品色在线| 热99在线观看视频| 边亲边吃奶的免费视频| 成人亚洲欧美一区二区av| 国产免费男女视频| 国产伦精品一区二区三区四那| 亚洲国产精品久久男人天堂| 午夜爱爱视频在线播放| 免费人成视频x8x8入口观看| 最近中文字幕高清免费大全6| 长腿黑丝高跟| 五月伊人婷婷丁香| 人妻夜夜爽99麻豆av| 日韩国内少妇激情av| 麻豆成人av视频| 成人高潮视频无遮挡免费网站| 99久久精品一区二区三区| av在线老鸭窝| 蜜桃久久精品国产亚洲av| 国产精品一二三区在线看| 欧美色欧美亚洲另类二区| 久久综合国产亚洲精品| 国产精品一区二区三区四区久久| 久久中文看片网| 美女国产视频在线观看| 亚洲av.av天堂| 亚洲国产欧美在线一区| 97超视频在线观看视频| 精品一区二区免费观看| 国产成人91sexporn| 国产精品,欧美在线| 日韩欧美三级三区| 美女黄网站色视频| 久久中文看片网| 国产精品一区二区三区四区久久| 别揉我奶头 嗯啊视频| av黄色大香蕉| 亚洲人成网站高清观看| 亚洲av中文字字幕乱码综合| 日韩一区二区视频免费看| 国内精品久久久久精免费| 欧美最黄视频在线播放免费| 午夜精品一区二区三区免费看| 国产精品野战在线观看| 国产精品99久久久久久久久| 色综合色国产| 在线天堂最新版资源| 亚洲av中文av极速乱| 亚洲精品成人久久久久久| 五月伊人婷婷丁香| 国产伦精品一区二区三区视频9| av免费在线看不卡| 高清日韩中文字幕在线| 99热只有精品国产| 又粗又硬又长又爽又黄的视频 | 99热网站在线观看| 国产一区亚洲一区在线观看| 精品午夜福利在线看| 免费看美女性在线毛片视频| 欧美激情在线99| 亚洲五月天丁香| 男人和女人高潮做爰伦理| 能在线免费观看的黄片| 久久精品夜色国产| 美女 人体艺术 gogo| 亚洲av免费高清在线观看| 国产片特级美女逼逼视频| 女人被狂操c到高潮| 校园春色视频在线观看| 亚洲图色成人| 免费人成在线观看视频色| 午夜免费男女啪啪视频观看| 人妻制服诱惑在线中文字幕| 成人亚洲欧美一区二区av| 日本-黄色视频高清免费观看| 国产亚洲5aaaaa淫片| 五月伊人婷婷丁香| 日韩欧美三级三区| 哪里可以看免费的av片| 搡老妇女老女人老熟妇| 国产精品永久免费网站| 超碰av人人做人人爽久久| 男女视频在线观看网站免费| 欧美日韩一区二区视频在线观看视频在线 | 人妻制服诱惑在线中文字幕| 国产探花极品一区二区| 亚洲色图av天堂| 悠悠久久av| 日本与韩国留学比较| 亚洲美女视频黄频| 有码 亚洲区| 欧美zozozo另类| 成人av在线播放网站| 国产69精品久久久久777片| 在线播放国产精品三级| 99久久精品一区二区三区| 国语自产精品视频在线第100页| 不卡一级毛片| 精品久久久久久久末码| 男人和女人高潮做爰伦理| 嘟嘟电影网在线观看| 亚洲人成网站高清观看| 久久精品国产亚洲av涩爱 | 最近中文字幕高清免费大全6| 欧美成人a在线观看| 日韩 亚洲 欧美在线| 老司机福利观看| 国产精品不卡视频一区二区| 老熟妇乱子伦视频在线观看| 亚洲成人久久性| 久久国产乱子免费精品| 亚州av有码| av视频在线观看入口| 国产老妇伦熟女老妇高清| 午夜精品国产一区二区电影 | 亚洲美女搞黄在线观看| 男女那种视频在线观看| 亚洲无线观看免费| 亚洲成人av在线免费| 国产极品天堂在线| 亚洲一级一片aⅴ在线观看| 亚洲最大成人av| 99国产精品一区二区蜜桃av| 成人av在线播放网站| 女的被弄到高潮叫床怎么办| 美女被艹到高潮喷水动态| 白带黄色成豆腐渣| 亚洲精品久久久久久婷婷小说 | 国产精品一区二区在线观看99 | 搡老妇女老女人老熟妇| 国产人妻一区二区三区在| 国产精品永久免费网站| 97超碰精品成人国产| .国产精品久久| 国产三级中文精品| 男人舔女人下体高潮全视频| 一边亲一边摸免费视频| 久久精品国产清高在天天线| 国产激情偷乱视频一区二区| 日韩成人伦理影院| 欧美日韩国产亚洲二区| 嘟嘟电影网在线观看| 99久久精品国产国产毛片| 亚洲国产精品sss在线观看| 亚洲精品自拍成人| 久久久成人免费电影| 18禁在线播放成人免费| 欧美成人一区二区免费高清观看| 精品无人区乱码1区二区| 黄色欧美视频在线观看| 日韩,欧美,国产一区二区三区 | 国产爱豆传媒在线观看| 一区福利在线观看| 黄色视频,在线免费观看| 国产精品久久久久久精品电影小说 | 成人三级黄色视频| 国产精品一区二区三区四区久久| 午夜亚洲福利在线播放| 可以在线观看的亚洲视频| 国产综合懂色| .国产精品久久| 91aial.com中文字幕在线观看| 99在线人妻在线中文字幕| 男插女下体视频免费在线播放| 国产视频内射| 日韩视频在线欧美| 三级男女做爰猛烈吃奶摸视频| 欧美日韩在线观看h| 亚洲国产欧美人成| 久久久国产成人免费| 亚洲第一电影网av| 搞女人的毛片| 此物有八面人人有两片| АⅤ资源中文在线天堂| 18禁在线无遮挡免费观看视频| 国产69精品久久久久777片| 久久这里有精品视频免费| av在线蜜桃| 国产精品免费一区二区三区在线| 69av精品久久久久久| 婷婷色av中文字幕| 国产欧美日韩精品一区二区| 高清午夜精品一区二区三区 | 特大巨黑吊av在线直播| 欧美高清成人免费视频www| 国产极品精品免费视频能看的| 日韩欧美一区二区三区在线观看| 欧美激情在线99| 老司机福利观看| 国产精品乱码一区二三区的特点| av天堂在线播放| 国产一区二区激情短视频| 最后的刺客免费高清国语| 国产av一区在线观看免费| 免费无遮挡裸体视频| 91aial.com中文字幕在线观看| 综合色av麻豆| 人妻少妇偷人精品九色| av在线老鸭窝| 成年女人看的毛片在线观看| 岛国毛片在线播放| 日韩欧美 国产精品| 床上黄色一级片| 国模一区二区三区四区视频| 国内久久婷婷六月综合欲色啪| 一级黄色大片毛片| 少妇人妻一区二区三区视频| 一级毛片电影观看 | 精品久久久久久久久av| 欧美性猛交黑人性爽| 欧美xxxx黑人xx丫x性爽| 麻豆精品久久久久久蜜桃| 黄色欧美视频在线观看| 亚洲色图av天堂| 五月伊人婷婷丁香| 黄色视频,在线免费观看| 99热这里只有是精品在线观看| 国产精品乱码一区二三区的特点| 长腿黑丝高跟| 国产综合懂色| 国产伦精品一区二区三区视频9| 国产日本99.免费观看| 亚洲国产高清在线一区二区三| 一个人免费在线观看电影| 国产欧美日韩精品一区二区| 亚洲国产欧美在线一区| 国产综合懂色| 欧美bdsm另类| 久久久国产成人精品二区| 1000部很黄的大片| 亚洲精品国产av成人精品| 天天一区二区日本电影三级| 超碰av人人做人人爽久久| 亚洲丝袜综合中文字幕| 国产精品一及| 色尼玛亚洲综合影院| 自拍偷自拍亚洲精品老妇| 国内精品宾馆在线| 国产精品一区二区三区四区免费观看| 99九九线精品视频在线观看视频| 亚洲人成网站高清观看| 久久中文看片网| 校园春色视频在线观看| 自拍偷自拍亚洲精品老妇| 国产真实乱freesex| .国产精品久久| 综合色丁香网| 中文资源天堂在线| 国产精品爽爽va在线观看网站| 久久久久久久亚洲中文字幕| 我的女老师完整版在线观看| 中出人妻视频一区二区| 久久99蜜桃精品久久| 可以在线观看的亚洲视频| 亚洲国产高清在线一区二区三| 91久久精品国产一区二区成人| 中文资源天堂在线| 青春草亚洲视频在线观看| 精品国内亚洲2022精品成人| 美女国产视频在线观看| 直男gayav资源| 91av网一区二区| 国产中年淑女户外野战色| 亚洲一区二区三区色噜噜| 欧美成人一区二区免费高清观看| 欧美最新免费一区二区三区| 欧美在线一区亚洲| 日韩,欧美,国产一区二区三区 | 亚洲一区高清亚洲精品| 亚洲激情五月婷婷啪啪| 午夜爱爱视频在线播放| 国内少妇人妻偷人精品xxx网站| 美女cb高潮喷水在线观看| 欧美人与善性xxx| 久久久久久大精品| 日韩欧美在线乱码| 91久久精品国产一区二区三区| 亚洲av成人精品一区久久| 色综合亚洲欧美另类图片| 女的被弄到高潮叫床怎么办| 五月伊人婷婷丁香| 午夜福利成人在线免费观看| 亚洲成人精品中文字幕电影| 久久精品久久久久久久性| 日本免费一区二区三区高清不卡| 简卡轻食公司| 国产乱人视频| 少妇人妻精品综合一区二区 | 成人无遮挡网站| 大香蕉久久网| 偷拍熟女少妇极品色| 国产午夜精品一二区理论片| 男女边吃奶边做爰视频| 免费人成在线观看视频色| 五月玫瑰六月丁香| 又黄又爽又刺激的免费视频.| 男女做爰动态图高潮gif福利片| 老司机福利观看| 91av网一区二区| 女人被狂操c到高潮| 自拍偷自拍亚洲精品老妇| 在线免费观看不下载黄p国产| 欧美精品一区二区大全| 最近2019中文字幕mv第一页| 国产精品久久久久久亚洲av鲁大| 青春草国产在线视频 | 国内精品宾馆在线| 高清午夜精品一区二区三区 | 亚洲av中文av极速乱| 简卡轻食公司| 此物有八面人人有两片| a级毛色黄片| 欧美又色又爽又黄视频| 色视频www国产| 欧美又色又爽又黄视频| 日本黄色片子视频| 免费观看a级毛片全部| 日本黄色片子视频| 免费观看a级毛片全部| 久久精品国产99精品国产亚洲性色| 2022亚洲国产成人精品| 欧美3d第一页| av国产免费在线观看| 91精品国产九色| 亚洲乱码一区二区免费版| 久久99热6这里只有精品| 久久99精品国语久久久| 亚洲精品456在线播放app| 久久99蜜桃精品久久| 色视频www国产| 亚洲欧美精品专区久久| 女的被弄到高潮叫床怎么办| 久久精品国产亚洲av香蕉五月| 亚洲不卡免费看| 搡女人真爽免费视频火全软件| 精品99又大又爽又粗少妇毛片| 久久精品久久久久久噜噜老黄 | 欧美不卡视频在线免费观看| 国产精品久久视频播放| 免费观看在线日韩| 精品一区二区三区视频在线| 在线观看av片永久免费下载| 国产美女午夜福利| 最好的美女福利视频网| 成人二区视频| 国产不卡一卡二| 亚洲av电影不卡..在线观看| 日韩制服骚丝袜av| 国产大屁股一区二区在线视频| 国产精品免费一区二区三区在线| 青春草视频在线免费观看| 精品久久久久久久久av| 国产亚洲精品av在线| 嫩草影院精品99| 亚洲无线观看免费| 69av精品久久久久久| 一个人看的www免费观看视频| 少妇猛男粗大的猛烈进出视频 | 国产人妻一区二区三区在| 日韩人妻高清精品专区| 国产亚洲欧美98| 91av网一区二区| 亚洲人成网站在线播| 草草在线视频免费看| 天堂影院成人在线观看| 五月玫瑰六月丁香| 赤兔流量卡办理| 黄色视频,在线免费观看| 国产精品99久久久久久久久| 亚洲国产精品成人综合色| 欧美最新免费一区二区三区| 久久午夜亚洲精品久久| 国产三级中文精品| 99久国产av精品| 日韩强制内射视频| 赤兔流量卡办理| 成人漫画全彩无遮挡| 久久久久免费精品人妻一区二区| 嫩草影院新地址| 亚洲色图av天堂| 国产成人影院久久av| 日本黄大片高清| 国产片特级美女逼逼视频| 大型黄色视频在线免费观看| 欧美丝袜亚洲另类| 亚洲自拍偷在线| 99久国产av精品| 哪个播放器可以免费观看大片| 亚洲久久久久久中文字幕| 亚洲av.av天堂| 国内精品久久久久精免费| 97在线视频观看| 国产成人午夜福利电影在线观看| 舔av片在线| 天天一区二区日本电影三级| 一边摸一边抽搐一进一小说| 我的老师免费观看完整版| 国产精品美女特级片免费视频播放器| av在线观看视频网站免费| 极品教师在线视频| 色吧在线观看| 午夜视频国产福利| 综合色丁香网| 国产老妇女一区| 国产精品嫩草影院av在线观看| 国内少妇人妻偷人精品xxx网站| a级毛色黄片| 少妇被粗大猛烈的视频| 又黄又爽又刺激的免费视频.| 国产成人福利小说| 亚洲,欧美,日韩| av卡一久久| 永久网站在线| 久久久久性生活片| 男女下面进入的视频免费午夜| 99热这里只有精品一区| 国产男人的电影天堂91| 中国美白少妇内射xxxbb| 亚洲aⅴ乱码一区二区在线播放| 美女脱内裤让男人舔精品视频 | 久久久久网色| 欧美一区二区精品小视频在线| 久99久视频精品免费| 国产av在哪里看| 99热这里只有精品一区| 国产高清视频在线观看网站| 久久亚洲国产成人精品v| 亚洲欧美日韩卡通动漫| 国产极品精品免费视频能看的| 少妇人妻精品综合一区二区 | 99热全是精品| 精华霜和精华液先用哪个| 日韩欧美国产在线观看| 欧美性猛交黑人性爽| 成人高潮视频无遮挡免费网站| 欧美成人一区二区免费高清观看| 22中文网久久字幕| 嘟嘟电影网在线观看| 亚洲综合色惰| 亚洲人成网站在线观看播放| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产高清在线一区二区三| 欧美xxxx性猛交bbbb| 国产精品无大码| 日本在线视频免费播放| 色哟哟·www| 日本熟妇午夜| 男人的好看免费观看在线视频| 22中文网久久字幕| 成熟少妇高潮喷水视频| 国产亚洲91精品色在线| 搞女人的毛片| 国产亚洲av嫩草精品影院| 神马国产精品三级电影在线观看| 高清毛片免费看| 哪里可以看免费的av片| 日韩,欧美,国产一区二区三区 | 亚洲在线自拍视频| 欧美性猛交╳xxx乱大交人| 亚洲av二区三区四区| 日韩亚洲欧美综合| 欧美日韩在线观看h| 中文在线观看免费www的网站| a级毛片免费高清观看在线播放| 久久久久国产网址| 男人和女人高潮做爰伦理| 久久人人精品亚洲av| 99久久成人亚洲精品观看| 九色成人免费人妻av| 天天一区二区日本电影三级| 在现免费观看毛片| 国产 一区精品| 日本一本二区三区精品| 亚洲av一区综合| 在线天堂最新版资源| 日韩一区二区三区影片| 亚洲av男天堂| 小蜜桃在线观看免费完整版高清| 国产精品久久久久久av不卡| 天天躁夜夜躁狠狠久久av| 欧美极品一区二区三区四区| 国产黄a三级三级三级人| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩高清专用| www日本黄色视频网| 国产在线精品亚洲第一网站| 深爱激情五月婷婷| 久久精品91蜜桃| 欧美3d第一页| av又黄又爽大尺度在线免费看 | 成人特级黄色片久久久久久久| 美女 人体艺术 gogo| 草草在线视频免费看| a级一级毛片免费在线观看| 日韩av在线大香蕉| 一进一出抽搐gif免费好疼| 老司机福利观看| 长腿黑丝高跟| 国产精品国产高清国产av| 成人av在线播放网站| 最新中文字幕久久久久| 麻豆一二三区av精品| 亚洲精品影视一区二区三区av| 一区二区三区高清视频在线| 午夜激情福利司机影院| 日韩欧美精品v在线| 久久精品国产亚洲av天美| 欧美一区二区国产精品久久精品| 熟妇人妻久久中文字幕3abv| 色播亚洲综合网| 女同久久另类99精品国产91| 免费在线观看成人毛片| 久久精品国产清高在天天线| 97超碰精品成人国产| 性色avwww在线观看| 亚洲乱码一区二区免费版| 亚洲av成人精品一区久久| 搡老妇女老女人老熟妇| 日韩欧美 国产精品| 成年av动漫网址| 亚洲精品国产成人久久av| 欧美日韩综合久久久久久| 亚洲成a人片在线一区二区| 丰满人妻一区二区三区视频av| 成人永久免费在线观看视频| 亚洲欧美日韩高清专用| 日韩精品有码人妻一区| 成人午夜精彩视频在线观看| 国模一区二区三区四区视频| 久久人人精品亚洲av| 久久久精品大字幕| 欧美zozozo另类| 一区二区三区高清视频在线| 久久精品国产亚洲av天美| 国产一区二区三区在线臀色熟女| 全区人妻精品视频| 蜜桃亚洲精品一区二区三区| 国产精品三级大全| 欧美日韩综合久久久久久| 久久精品久久久久久久性| 欧美精品国产亚洲| h日本视频在线播放| 午夜激情欧美在线| 亚洲一级一片aⅴ在线观看| 久久精品国产亚洲av涩爱 | av国产免费在线观看| 国产伦精品一区二区三区四那| 一区二区三区免费毛片| 免费看a级黄色片| 亚洲在线观看片| av视频在线观看入口| 亚洲精品自拍成人| 丝袜喷水一区| 搡老妇女老女人老熟妇| 精品人妻偷拍中文字幕| 级片在线观看| 最近中文字幕高清免费大全6| 久久热精品热| 中文字幕人妻熟人妻熟丝袜美| 深爱激情五月婷婷| 12—13女人毛片做爰片一| 亚洲第一电影网av| 观看美女的网站| 国产女主播在线喷水免费视频网站 | 乱人视频在线观看| 国产极品精品免费视频能看的| 中文字幕免费在线视频6| 亚洲精品国产成人久久av| 亚洲第一区二区三区不卡| 女的被弄到高潮叫床怎么办| 国产视频首页在线观看| 亚洲欧美精品自产自拍| 高清毛片免费看| 在线观看美女被高潮喷水网站| 国产爱豆传媒在线观看| 国产亚洲av片在线观看秒播厂 | 婷婷六月久久综合丁香| 国产伦一二天堂av在线观看|