• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interfacial photoconductivity effect of type-I and type-II Sb2Se3/Si heterojunctions for THz wave modulation

    2023-12-02 09:37:36XueQinCao曹雪芹YuanYuanHuang黃媛媛YaYanXi席亞妍ZhenLei雷珍JingWang王靜HaoNanLiu劉昊楠MingJianShi史明堅(jiān)TaoTaoHan韓濤濤MengEnZhang張蒙恩andXinLongXu徐新龍
    Chinese Physics B 2023年11期
    關(guān)鍵詞:王靜曹雪芹

    Xue-Qin Cao(曹雪芹), Yuan-Yuan Huang(黃媛媛), Ya-Yan Xi(席亞妍), Zhen Lei(雷珍), Jing Wang(王靜),Hao-Nan Liu(劉昊楠), Ming-Jian Shi(史明堅(jiān)), Tao-Tao Han(韓濤濤),Meng-En Zhang(張蒙恩), and Xin-Long Xu(徐新龍)

    Shaanxi Joint Laboratory of Graphene,State Key Laboratory Incubation Base of Photoelectric Technology and Functional Materials,

    International Collaborative Center on Photoelectric Technology,and Nano Functional Materials,Institute of Photonics&Photon-Technology,Northwest University,Xi’an 710069,China

    Keywords: photoconductivity,Sb2Se3/Si heterojunctions,THz-TDS,Drude model

    1.Introduction

    Nobel Prize laureate H.Kroemer once said‘the interface is the device’,since the interface controls the charge transfer,the distribution of quasi-particles and so forth.[1,2]Currently,most studies of interfacial effects and applications usually concentrate on electrical conductivity at interfaces.[3]However,photovoltaic devices and optoelectronic devices are generally utilized under light irradiation, which can be described by the photoconductivity.[4]Hence,a deep comprehensive understanding of the photoconductivity at the interface is necessary to improve the performance of optoelectronic devices.Semiconductor interfaces include three types of heterojunctions according to semiconductor band alignment:[1]type-I,straddling gap; type-II, staggered gap; type-III, broken gap.Transfer and separation of electron–hole pairs between materials are allowed to occur in type-I and type-II heterojunctions, while these processes are hindered in type-III heterojunctions due to the absence of overlapping band gaps.[5,6]Therefore,the study of type-I and type-II heterojunctions currently occupies a key position in the field of optoelectronics.

    The photoconductivity can be reflected by the photocurrent density, but this method introduces surface impurities and a parasitic effect on the measurement due to the external electrodes.[7,8]Terahertz(THz)time-domain spectroscopy(THz-TDS)provides a non-contact, sensitive and direct measurement of the carrier dynamics,refractive index,carrier conductivity, carrier density and, especially, the interface photoconductivity of semiconductors.[9–11]Since the photoconductivity of materials affects the transmission of THz waves, the THz wave modulation performance is proportional to the photoconductivity at the interface.As such, the photoconductivity of BiFeO3/Si is calculated to be 1.2×104S·m-1and BiFeO3/Si demonstrates a modulation depth of 91.13%.[12]Under 1 W·cm-2illumination,the photoconductivity and photogenerated carrier density of TaS2/Si can reach 380 S·m-1and 5.77×1028cm-3, respectively.[13]However, the mechanism of the influence of type-I and type-II heterojunctions on the photoconductivity and photocarrier density is still unknown.

    Antimony selenide(Sb2Se3)possesses a wide adjustable bandgap spanning the range 1.12 eV–1.98 eV,[14,15]allowing for the formation of type-I and type-II heterojunctions with Si.Sb2Se3is nontoxic and inexpensive,[16]and exhibits excellent physical properties such as intrinsic p-type conductivity,[17]a high absorption coefficient(~105cm-1),[18]an excellent carrier density (~1015cm-3)[19]and fast electron trapping.[20]These characteristics make Sb2Se3a promising material for use in solar cells[21–23]and photodetectors.[24,25]In particular,Sb2Se3presents an intriguing interface photoresponse,such as a rise time of 86μs and a fall time of 96μs in type-II Sb2Se3/Si heterojunctions.[25]However, it is still unclear of the interfacial photoconductivity effect between the type-I and type-II Sb2Se3/Si heterojunctions to the THz wave modulation.

    Herein,we have prepared 173 nm Sb2Se3/Si(type-I heterojunction)and 90 nm Sb2Se3/Si(type-II heterojunction)and investigated their photoconductivity and photocarrier density via THz-TDS and the Drude model.For THz wave modulation, 173 nm Sb2Se3/Si and 90 nm Sb2Se3/Si demonstrate modulation depths of 49.4% and 62.0%, respectively.Moreover, the type-II heterojunction exhibits a higher photoconductivity and photocarrier density at the interface than the type-I heterojunction.This is because carrier separation is enhanced at the type-II heterojunction interface whereas carrier recombination is enhanced at the type-I heterojunction interface.This work proposes THz-TDS as an effective tool for studying photoconductivity and provides a potential interfacial engineering method to enhance the THz modulation performance.

    2.Results and discussion

    We prepared the Sb2Se3/Si heterojunctions by the physical vapor deposition method.The bandgaps of the 173 nm Sb2Se3and 90 nm Sb2Se3are 1.5 eV and 1.17 eV, respectively.This finding was also reported by Mamtaet al.[14]and Ghoshet al.,[15]indicating that the bandgap decreases as the thickness of Sb2Se3decreases.Detailed descriptions of the sample characterization and experimental setup are given in the supplementary material.Figure 1(a)shows the THz timedomain transmission of the bare Si under continuous wave(CW) laser excitation from 0 mW to 500 mW.It is obvious that the THz amplitudes decrease after passing through the bare Si with increase in CW laser power.This is caused by the change in photoconductivity of the Si under CW laser excitation,[26,27]which further increases the absorption and reflection of the THz wave.The amplitude of THz transmission begins to saturate with CW laser power after exceeding 300 mW.Figures 1(b)and 1(c)present the THz wave transmission of 173 nm Sb2Se3/Si and 90 nm-Sb2Se3/Si under tunable CW laser power.Both heterojunctions present obvious THz wave modulation under CW laser excitation.On the contrary,the THz wave transmission of the bare sapphire substrate and the Sb2Se3/sapphire are both invariable with increasing CW laser power from 0 mW to 500 mW, indicating no effect on THz amplitude modulation,as shown in Figs.S3(a)and S3(b).These results suggest that the photocarriers are not generated in the insulating sapphire substrate under 405 nm CW laser excitation,[28]and the THz absorption of the Sb2Se3film is negligible.As for pure Sb2Se3, photocarriers are generated under above-band-gap(405 nm, 3.06 eV)CW excitation, but the carrier lifetime in Sb2Se3is very short (~35 ps), which further results in negligible photoconductivity change in pure Sb2Se3.[29]Based on above analysis,the THz amplitude modulation is ascribed to the interface response of the Sb2Se3/Si heterojunctions.

    In order to further compare the modulation performance of the bare Si, 173 nm Sb2Se3/Si and 90 nm Sb2Se3/Si, we extracted the peak-to-valley values of the THz time-domain amplitude to calculate the modulation depth of the THz wave transmission.We define modulation depth aswhere theTpumpandT0are the THz transmission with and without the CW optical pump, respectively.As can be seen in Figs.2(a)and 2(b),the peak-to-valley values and the modulation depths of the 173 nm Sb2Se3/Si and 90 nm Sb2Se3/Si both show linear dependences on the CW pump power,while the peak-to-valley value and the modulation depth of the bare Si show a saturation dependence on the CW laser power and saturate at 300 mW.For bare Si, this saturation is due to the electrostatic field screening formed by the accumulation of holes on the surface.[30,31]According to the surface band bending of bare Si shown in Fig.S4, under CW illumination the electrons and holes are separated by a surface built-in electric field, then the electrons move into the Si and the holes move towards the surface.This movement consequently enhances the photocarrier density and THz absorption.The bare Si, 173 nm Sb2Se3/Si and 90 nm Sb2Se3/Si present modulation depths of 49.3%, 49.4% and 62.0%, respectively.The 90 nm Sb2Se3/Si heterojunction has a larger modulation depth than bare Si.This can be explained by the transport of photogenerated carriers at the Sb2Se3/Si interface,which leads to the enhanced modulation of THz amplitude in the Sb2Se3/Si heterojunction.Since the Sb2Se3layer will absorb the incident light when passing through Sb2Se3,the transmitted optical power at the Sb2Se3/Si interface is low and the small number of photocarriers are unable to form a large built-in interfacial field under a low excitation power.When the excitation power increases to 500 mW, according to the Beer–Lambert law,I=I0e-α0l[whereI0, e,α0andlare intensity of laser excitation, the natural index, absorption coefficient (~0.3 @405 nm[32])and sample thickness,respectively],the transmitted optical power at the Sb2Se3/Si interface is calculated to be as high as~450 mW.Hence,a large built-in electric field can be formed at the interface,which accelerates the separation of photocarriers and prolongs the photocarrier lifetime,resulting in a significant enhancement of THz modulation.

    Fig.2.Transmitted THz time-domain amplitudes of (a) peak-to-valley value and (b) modulation depth of bare Si (purple), 173 nm Sb2Se3/Si(green), and 90 nm Sb2Se3/Si (orange) with CW laser power ranging from 0 mW to 500 mW.Band alignment of (c) 173 nm Sb2Se3/Si and(d)90 nm Sb2Se3/Si under CW light illumination.

    Based on the above analysis, the THz amplitude modulation is ascribed to the interface response of the Sb2Se3/Si heterojunctions according to their band alignments,as we will now discuss.Based on the bandgap of Sb2Se3with different thicknesses (Figs.S2(b) and S2(d)), 173 nm Sb2Se3/Si and 90 nm Sb2Se3/Si form type-I and type-II heterojunctions, respectively.[14,15]As shown in Fig.2(c), for 173 nm Sb2Se3/Si,the electrons and holes would both transport to the Si due to the band alignment of the type-I heterojunction.[1]On the one hand, the simultaneous transfer of electrons and holes to Si will enhance the recombination of photocarriers and reduce the concentration of photogenerated carriers.[33]This property presents promising potential in light-emitting devices.[1]On the other hand, the photoconductivity of Si is described as[13,34]σ=e(neμe+nhμh),where thenh(ne)andμh (μe) represent the carrier density and mobility of holes(electrons), respectively.Since Si is an n-type semiconductor, its photoconductivity is mainly determined by the electrons.For 173 nm Sb2Se3/Si, the mobility of the photocarrier in Si (1400 cm2·V-1·S-1) is larger than that in Sb2Se3(14.2 cm2·V-1·S-1),[35] and the effect of Sb2Se3 on the photoconductivity of the Sb2Se3/Si heterojunction is negligible.This is the reason why the THz wave modulation depth of 173 nm Sb2Se3/Si is comparable to that of bare Si under 500 mW excitation.For 90 nm Sb2Se3/Si, due to the band alignment of the type-II heterojunction,[1]the electrons would transport to the Si and the holes would transport to the Sb2Se3.This consequently forms a large internal electric field (Ed) at the 90 nm Sb2Se3/Si interface, which reduces the recombination of photogenerated carriers,thereby prolonging the carrier lifetime and increasing the carrier concentration.Hence,90 nm Sb2Se3/Si has a greater modulation depth than bare Si and 173 nm Sb2Se3/Si.

    Since the plasmon model[39]and quantum plasmon model[40]are suitable for micro/nanostructural materials with sizes smaller than the THz wavelength the damped harmonic oscillator and scattering rates should be considered.However, the size of continuous multilayer Sb2Se3films is larger than the THz wavelength,which makes the samples similar to bulk materials (e.g., bulk Si).The photoconductivity of bulk Si (above 0.4 THz) is also consistent with the Drude model.Thus, herein, we have utilized the Drude model to describe the photoconductivity as[12]σ(?ω)=(γω2p

    )/(π(ω2+γ2)),whereis the plasma frequency (N,e,ε0andmrepresent the photocarrier density, electronic charge,free-space permittivity and carrier effective mass, respectively)andγis the damping coefficient.Hence,the photocarrier density is described asN=σ(?ω)(ω2+γ2)ε0mπ/(γe2).Based on the Drude model and Figs.4(a)–4(c), the extracted photocarrier densities of bare Si,173 nm Sb2Se3/Si,and 90 nm Sb2Se3/Si increase significantly with increasing CW power,as shown in Figs.4(d)–4(f).Herein, the photoconductivity and photocarrier density are directly correlated,thus THz wave absorption will be enhanced under a high photocarrier density,resulting in a high modulation depth.According to the values at 1.8 THz,the photocarrier density of 173 nm Sb2Se3/Si(0.8×1015cm-3) is~1.1 times larger than that of bare Si(0.7×1015cm-3), while the photocarrier density of 90 nm Sb2Se3/Si(1.5×1015cm-3)is about twice that of bare Si under 500 mW excitation(see detailed comparison in Fig.S6(b)).These results demonstrate that a type-II heterojunction is better than a type-I heterojunction for THz modulation performance.The recombination between electrons and holes causes a slight change in photoconductivity for the type-I Sb2Se3/Si heterojunction, while the separation of electrons and holes leads to a great change in photoconductivity for the type-II Sb2Se3/Si heterojunction.[41]

    3.Conclusion

    In summary, we have prepared 173 nm Sb2Se3/Si (type-I)and 90 nm Sb2Se3/Si(type-II)heterojunctions based on the thickness-dependent-bandgap properties of Sb2Se3.Concerning their THz modulation performance,the modulation depths of bare Si,173 nm Sb2Se3/Si and 90 nm Sb2Se3/Si are 49.3%,49.4% and 62.0%, respectively.The photocarrier density of 90 nm Sb2Se3/Si (1.5×1015cm-3) is about twice that of bare Si, while the photocarrier density of 173 nm Sb2Se3/Si(0.8×1015cm-3) is~1.1 times higher than that of bare Si(0.7×1015cm-3).These results are ascribed to the interfacial photoconductivity effect, since the type-I heterojunction accelerates carrier recombination and the type-II heterojunction accelerates carrier separation.Our work deepens our understanding of interface physics that is beneficial for improving the photoelectronic response at the interface of photoelectronic devices,such as solar cells and photodetectors.We have also unveiled the interfacial photoconductivity effect, including the photocarrier lifetime, the separation of electrons and holes and the interfacial electric field,which could provide the physical basis for highly effective THz modulators.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China (Grant Nos.12261141662, 12074311, and 12004310).

    猜你喜歡
    王靜曹雪芹
    The Management Methods And Thinking Of Personnel Files
    客聯(lián)(2021年9期)2021-11-07 19:21:33
    曹雪芹與史鐵生的生命哲學(xué)比較
    曹雪芹著《紅樓》醫(yī)藥百科
    曹雪芹南游金陵說(shuō)再考辨
    The Development of Contemporary Oil Painting Art
    青年生活(2019年16期)2019-10-21 01:46:49
    敦誠(chéng)的西園與曹雪芹
    王靜博士簡(jiǎn)介
    Income Inequality in Developing Countries
    商情(2017年17期)2017-06-10 12:27:58
    Let it Go隨它吧
    RIGIDITY OF COMPACT SURFACES IN HOMOGENEOUS 3-MANIFOLDS WITH CONSTANT MEAN CURVATURE?
    男人舔女人下体高潮全视频| 国产一区二区三区av在线| 亚洲国产精品sss在线观看| 国产午夜精品一二区理论片| 久久亚洲国产成人精品v| 久久鲁丝午夜福利片| 精品国产一区二区三区久久久樱花 | 中文乱码字字幕精品一区二区三区 | 午夜福利高清视频| 欧美bdsm另类| 自拍偷自拍亚洲精品老妇| 内地一区二区视频在线| 日韩欧美 国产精品| 国产亚洲精品av在线| 久久久久免费精品人妻一区二区| 亚洲欧美成人精品一区二区| 国产又黄又爽又无遮挡在线| 欧美高清性xxxxhd video| 一二三四中文在线观看免费高清| 97热精品久久久久久| 日韩亚洲欧美综合| 国产片特级美女逼逼视频| 午夜精品国产一区二区电影 | 久久久久久久久久久丰满| 欧美成人精品欧美一级黄| 国产精品日韩av在线免费观看| 亚洲av中文av极速乱| 国产精品综合久久久久久久免费| 国产午夜福利久久久久久| 在线a可以看的网站| 波野结衣二区三区在线| 成人午夜高清在线视频| 丰满人妻一区二区三区视频av| 国产精品乱码一区二三区的特点| 亚洲图色成人| 建设人人有责人人尽责人人享有的 | 亚洲欧美一区二区三区国产| 视频中文字幕在线观看| 日韩欧美三级三区| 少妇熟女aⅴ在线视频| 久久久精品大字幕| 亚洲精品乱码久久久v下载方式| 蜜桃亚洲精品一区二区三区| 成人高潮视频无遮挡免费网站| 中文字幕免费在线视频6| 99久国产av精品| 男人狂女人下面高潮的视频| 久久草成人影院| 精品久久久久久成人av| 天堂影院成人在线观看| 国产成人a区在线观看| 中文字幕人妻熟人妻熟丝袜美| 久久久精品大字幕| 国产乱人视频| 国产精品精品国产色婷婷| 成人av在线播放网站| 黄色欧美视频在线观看| 欧美精品一区二区大全| 国产精品日韩av在线免费观看| 好男人在线观看高清免费视频| 亚洲天堂国产精品一区在线| 身体一侧抽搐| 国产一区二区亚洲精品在线观看| 免费黄色在线免费观看| 日韩成人伦理影院| 国产真实伦视频高清在线观看| 久久精品综合一区二区三区| 久久久久性生活片| 熟妇人妻久久中文字幕3abv| 蜜臀久久99精品久久宅男| 久久精品综合一区二区三区| 成年免费大片在线观看| 亚洲最大成人中文| 草草在线视频免费看| 欧美激情在线99| 91精品国产九色| 国产精品99久久久久久久久| 日韩中字成人| 午夜免费激情av| 内地一区二区视频在线| 精品熟女少妇av免费看| 国产精品三级大全| 国产精品国产三级国产专区5o | 高清av免费在线| 国产精品久久久久久精品电影小说 | 国产亚洲5aaaaa淫片| 久久精品综合一区二区三区| 成人二区视频| 男插女下体视频免费在线播放| 午夜精品国产一区二区电影 | 欧美成人免费av一区二区三区| 日韩在线高清观看一区二区三区| eeuss影院久久| 乱人视频在线观看| 中文字幕免费在线视频6| 女人久久www免费人成看片 | 亚洲无线观看免费| 久久精品国产自在天天线| 69人妻影院| 熟女人妻精品中文字幕| 桃色一区二区三区在线观看| 99久久成人亚洲精品观看| 18+在线观看网站| 国产精品一区二区在线观看99 | 久久精品国产亚洲网站| 久久精品久久久久久久性| 99久国产av精品| av线在线观看网站| 国产精品麻豆人妻色哟哟久久 | 欧美变态另类bdsm刘玥| 亚洲欧美成人精品一区二区| 日日摸夜夜添夜夜添av毛片| 国产伦理片在线播放av一区| 欧美激情久久久久久爽电影| 国产女主播在线喷水免费视频网站 | 97在线视频观看| 国产乱来视频区| 91狼人影院| 亚洲欧美日韩无卡精品| 欧美xxxx黑人xx丫x性爽| 高清在线视频一区二区三区 | 女人十人毛片免费观看3o分钟| 中文字幕亚洲精品专区| 久久精品91蜜桃| 少妇的逼好多水| 久久人人爽人人片av| 99久久精品一区二区三区| 永久免费av网站大全| 有码 亚洲区| 久久久久性生活片| 色网站视频免费| 最近最新中文字幕免费大全7| 男插女下体视频免费在线播放| 日本一本二区三区精品| 国产三级中文精品| 一级毛片久久久久久久久女| 亚洲av电影不卡..在线观看| 欧美日韩综合久久久久久| 精品久久久久久电影网 | av天堂中文字幕网| 亚州av有码| 男人和女人高潮做爰伦理| 国产色婷婷99| 日日啪夜夜撸| av视频在线观看入口| 久热久热在线精品观看| 精品国产露脸久久av麻豆 | 日本与韩国留学比较| 我要搜黄色片| 亚洲欧美精品综合久久99| 亚洲人成网站在线播| 国产欧美日韩精品一区二区| 九草在线视频观看| 国产激情偷乱视频一区二区| 大又大粗又爽又黄少妇毛片口| 国产亚洲av片在线观看秒播厂 | 日韩av在线大香蕉| 国产麻豆成人av免费视频| 久久久久久久久久久丰满| 特级一级黄色大片| 久久久亚洲精品成人影院| 亚洲av男天堂| 最近中文字幕高清免费大全6| 建设人人有责人人尽责人人享有的 | 欧美成人精品欧美一级黄| kizo精华| 蜜臀久久99精品久久宅男| 青青草视频在线视频观看| 欧美区成人在线视频| 久久99精品国语久久久| 色吧在线观看| 午夜免费激情av| 国产av一区在线观看免费| 亚洲成av人片在线播放无| 国产成人午夜福利电影在线观看| 国产伦理片在线播放av一区| 一级爰片在线观看| 身体一侧抽搐| 久久精品影院6| 精品久久久久久久末码| 国产在线一区二区三区精 | 日韩精品青青久久久久久| 综合色av麻豆| 在线免费观看不下载黄p国产| 欧美潮喷喷水| 在线天堂最新版资源| 精品久久久久久电影网 | 搞女人的毛片| 神马国产精品三级电影在线观看| 亚洲精品日韩av片在线观看| 久久精品综合一区二区三区| 欧美成人a在线观看| 五月玫瑰六月丁香| 天天躁日日操中文字幕| 美女高潮的动态| 欧美日韩国产亚洲二区| 日本黄色视频三级网站网址| 色综合色国产| 亚洲精品亚洲一区二区| 久久精品综合一区二区三区| 国产精品一区www在线观看| 夜夜爽夜夜爽视频| 亚洲av日韩在线播放| 国产一区亚洲一区在线观看| 久久午夜福利片| 蜜桃久久精品国产亚洲av| 看十八女毛片水多多多| 99热网站在线观看| 1024手机看黄色片| 久久久精品大字幕| 最近中文字幕2019免费版| 国内揄拍国产精品人妻在线| 亚洲国产精品成人久久小说| 小说图片视频综合网站| 一个人免费在线观看电影| 久久久a久久爽久久v久久| 日本黄大片高清| 成人漫画全彩无遮挡| av黄色大香蕉| av播播在线观看一区| 久久午夜福利片| kizo精华| 麻豆国产97在线/欧美| 成年av动漫网址| 91午夜精品亚洲一区二区三区| 亚洲婷婷狠狠爱综合网| 麻豆成人av视频| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品国产av成人精品| 久久亚洲国产成人精品v| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av在线老鸭窝| 成人亚洲欧美一区二区av| 精品国产三级普通话版| 国产视频首页在线观看| 日韩亚洲欧美综合| 欧美一级a爱片免费观看看| 午夜福利在线观看免费完整高清在| 色吧在线观看| 好男人在线观看高清免费视频| 成人欧美大片| 蜜臀久久99精品久久宅男| 中国国产av一级| 欧美丝袜亚洲另类| 日韩成人伦理影院| 欧美又色又爽又黄视频| 舔av片在线| 成年免费大片在线观看| 日韩欧美 国产精品| 哪个播放器可以免费观看大片| 卡戴珊不雅视频在线播放| 亚洲av中文字字幕乱码综合| 久久99热这里只有精品18| 久久精品夜色国产| 永久网站在线| 亚洲aⅴ乱码一区二区在线播放| 天堂av国产一区二区熟女人妻| 精品国产三级普通话版| 婷婷色av中文字幕| 三级国产精品欧美在线观看| 亚洲av一区综合| 日本一本二区三区精品| 亚洲av男天堂| 亚洲久久久久久中文字幕| 三级国产精品欧美在线观看| 久久午夜福利片| 国产伦在线观看视频一区| 色吧在线观看| 在线播放国产精品三级| 成人三级黄色视频| 最近的中文字幕免费完整| 国产白丝娇喘喷水9色精品| 嫩草影院精品99| 国产久久久一区二区三区| 亚洲精品亚洲一区二区| 精品人妻熟女av久视频| 免费观看在线日韩| 一区二区三区免费毛片| 国产精品国产高清国产av| 舔av片在线| 青春草视频在线免费观看| 国产精品久久久久久精品电影| 久久精品国产99精品国产亚洲性色| 国产免费一级a男人的天堂| 一二三四中文在线观看免费高清| 在线播放无遮挡| 亚洲18禁久久av| 成人亚洲精品av一区二区| 2022亚洲国产成人精品| 国产精品美女特级片免费视频播放器| 国产一级毛片七仙女欲春2| 亚洲精品影视一区二区三区av| 色5月婷婷丁香| 国产一区二区亚洲精品在线观看| 一级毛片aaaaaa免费看小| 菩萨蛮人人尽说江南好唐韦庄 | 国产女主播在线喷水免费视频网站 | 亚洲最大成人手机在线| 人人妻人人澡人人爽人人夜夜 | 国模一区二区三区四区视频| 亚洲成色77777| 精品免费久久久久久久清纯| 少妇的逼水好多| 亚洲av免费在线观看| av线在线观看网站| 婷婷六月久久综合丁香| 亚洲图色成人| 精品国产三级普通话版| 免费黄网站久久成人精品| 日本与韩国留学比较| 国产麻豆成人av免费视频| 日本黄大片高清| 日韩高清综合在线| av天堂中文字幕网| 丰满少妇做爰视频| 99视频精品全部免费 在线| 免费观看性生交大片5| 午夜免费男女啪啪视频观看| 久久久久久国产a免费观看| 真实男女啪啪啪动态图| 爱豆传媒免费全集在线观看| 最近最新中文字幕大全电影3| 午夜a级毛片| 国产精品久久久久久久久免| 欧美日韩在线观看h| 国产精品国产三级国产专区5o | 亚洲国产成人一精品久久久| 久久国产乱子免费精品| 干丝袜人妻中文字幕| 久久久午夜欧美精品| 水蜜桃什么品种好| 国内少妇人妻偷人精品xxx网站| 男人和女人高潮做爰伦理| 精品国产露脸久久av麻豆 | 亚洲成人久久爱视频| 久久精品91蜜桃| 亚洲国产最新在线播放| 你懂的网址亚洲精品在线观看 | 欧美精品一区二区大全| 能在线免费观看的黄片| 日韩av不卡免费在线播放| 亚洲国产精品成人久久小说| 在线观看av片永久免费下载| 国产精品美女特级片免费视频播放器| 纵有疾风起免费观看全集完整版 | 国产精品一二三区在线看| 大又大粗又爽又黄少妇毛片口| 菩萨蛮人人尽说江南好唐韦庄 | av播播在线观看一区| 三级国产精品片| 久久久午夜欧美精品| 最近的中文字幕免费完整| 国产女主播在线喷水免费视频网站 | 国产成人aa在线观看| 午夜福利在线观看免费完整高清在| 亚洲综合精品二区| 日本黄色视频三级网站网址| 美女cb高潮喷水在线观看| 国产高清不卡午夜福利| 国产精华一区二区三区| 1000部很黄的大片| 国产麻豆成人av免费视频| 天天躁夜夜躁狠狠久久av| 99在线视频只有这里精品首页| 久久精品91蜜桃| 国产亚洲精品久久久com| 99视频精品全部免费 在线| 亚洲国产最新在线播放| 亚洲第一区二区三区不卡| 能在线免费看毛片的网站| 在线观看66精品国产| 毛片一级片免费看久久久久| 精品国产露脸久久av麻豆 | 久久人人爽人人片av| 在线观看av片永久免费下载| 国产精品国产三级国产专区5o | 亚洲国产精品国产精品| 日日撸夜夜添| 精品久久久噜噜| 亚洲av免费在线观看| 国产日韩欧美在线精品| 又粗又硬又长又爽又黄的视频| 亚洲三级黄色毛片| 亚洲精品国产成人久久av| 免费av观看视频| 18禁在线播放成人免费| www.av在线官网国产| 两个人视频免费观看高清| 伊人久久精品亚洲午夜| 亚洲精品影视一区二区三区av| 夫妻性生交免费视频一级片| 国国产精品蜜臀av免费| 精品久久久久久成人av| 神马国产精品三级电影在线观看| 亚洲欧美日韩卡通动漫| a级一级毛片免费在线观看| 九九久久精品国产亚洲av麻豆| 国产老妇伦熟女老妇高清| 免费看光身美女| 亚洲国产欧美在线一区| 中文字幕免费在线视频6| 午夜日本视频在线| 丰满少妇做爰视频| 国产免费男女视频| 又粗又硬又长又爽又黄的视频| 亚洲久久久久久中文字幕| 日本五十路高清| 亚洲国产色片| 99视频精品全部免费 在线| av视频在线观看入口| 亚洲欧美成人精品一区二区| 亚洲国产欧美在线一区| 九九爱精品视频在线观看| 日韩av在线免费看完整版不卡| 午夜老司机福利剧场| 岛国毛片在线播放| 青青草视频在线视频观看| 亚洲丝袜综合中文字幕| 97超视频在线观看视频| 乱码一卡2卡4卡精品| ponron亚洲| 国产精品嫩草影院av在线观看| 三级国产精品欧美在线观看| 麻豆乱淫一区二区| eeuss影院久久| 九九爱精品视频在线观看| 色吧在线观看| 亚洲av中文字字幕乱码综合| 校园人妻丝袜中文字幕| 欧美日韩综合久久久久久| 在现免费观看毛片| 亚洲精品自拍成人| 18禁动态无遮挡网站| 日韩精品有码人妻一区| 国产日韩欧美在线精品| or卡值多少钱| 国产精品.久久久| videossex国产| 亚洲av日韩在线播放| 非洲黑人性xxxx精品又粗又长| 精品人妻视频免费看| 亚洲国产精品久久男人天堂| 亚州av有码| 少妇的逼水好多| 国产探花在线观看一区二区| 久久久久久久久大av| 成人二区视频| 国产成人免费观看mmmm| 久久这里有精品视频免费| 乱人视频在线观看| 国语自产精品视频在线第100页| 最近手机中文字幕大全| 日韩精品青青久久久久久| 国产亚洲一区二区精品| 深夜a级毛片| 久久精品国产鲁丝片午夜精品| 亚洲精品乱久久久久久| 赤兔流量卡办理| 国产黄片视频在线免费观看| 国产精品久久久久久久电影| 在线免费观看不下载黄p国产| 哪个播放器可以免费观看大片| 国产精品永久免费网站| 精品久久久久久久久av| 国产伦一二天堂av在线观看| 天天躁日日操中文字幕| 欧美精品一区二区大全| 国产精品伦人一区二区| 色综合亚洲欧美另类图片| 精品国内亚洲2022精品成人| 视频中文字幕在线观看| 99视频精品全部免费 在线| 人妻少妇偷人精品九色| 五月伊人婷婷丁香| 内地一区二区视频在线| 亚洲内射少妇av| 中文在线观看免费www的网站| 国产一区二区在线av高清观看| 特级一级黄色大片| 亚洲欧美清纯卡通| 日本五十路高清| 亚洲美女搞黄在线观看| 一边亲一边摸免费视频| 日本熟妇午夜| 在现免费观看毛片| 欧美日韩在线观看h| 又爽又黄a免费视频| 成年女人永久免费观看视频| 黄色一级大片看看| 国产亚洲av嫩草精品影院| 精品人妻偷拍中文字幕| 久久久久久久国产电影| 我的女老师完整版在线观看| 成人午夜精彩视频在线观看| 成人午夜高清在线视频| 三级男女做爰猛烈吃奶摸视频| 国产精品一区www在线观看| 少妇人妻一区二区三区视频| 十八禁国产超污无遮挡网站| 国产视频首页在线观看| .国产精品久久| 国产精品美女特级片免费视频播放器| 少妇被粗大猛烈的视频| 老女人水多毛片| 国产精品,欧美在线| 亚洲丝袜综合中文字幕| 一二三四中文在线观看免费高清| 日韩欧美 国产精品| 国产v大片淫在线免费观看| 久久久久久久久久黄片| 亚洲欧美成人精品一区二区| 亚洲国产最新在线播放| 亚洲精品久久久久久婷婷小说 | 边亲边吃奶的免费视频| 成人二区视频| 精品午夜福利在线看| 国产精品99久久久久久久久| 国产精华一区二区三区| 黄片无遮挡物在线观看| 老师上课跳d突然被开到最大视频| 一边亲一边摸免费视频| 黄色一级大片看看| 午夜爱爱视频在线播放| 亚洲欧洲国产日韩| 国产欧美日韩精品一区二区| 色播亚洲综合网| 我的老师免费观看完整版| 亚洲精品456在线播放app| 久久婷婷人人爽人人干人人爱| 啦啦啦韩国在线观看视频| 成人午夜高清在线视频| ponron亚洲| 亚洲久久久久久中文字幕| 亚洲欧洲日产国产| 看免费成人av毛片| 一本一本综合久久| 欧美日韩精品成人综合77777| 中文字幕久久专区| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美 国产精品| 国产91av在线免费观看| 久久久久久久午夜电影| 网址你懂的国产日韩在线| 简卡轻食公司| 日韩精品有码人妻一区| 国产欧美日韩精品一区二区| 亚洲一区高清亚洲精品| 菩萨蛮人人尽说江南好唐韦庄 | 日韩大片免费观看网站 | 丰满乱子伦码专区| 小说图片视频综合网站| 久久精品久久久久久久性| 亚洲av免费在线观看| 久久精品国产亚洲av涩爱| 亚洲欧美日韩高清专用| 久久精品久久久久久噜噜老黄 | 一二三四中文在线观看免费高清| 一区二区三区高清视频在线| 欧美成人午夜免费资源| 成人特级av手机在线观看| 三级经典国产精品| 亚洲欧美中文字幕日韩二区| 久久这里只有精品中国| 小蜜桃在线观看免费完整版高清| 精品久久久久久久末码| 久久欧美精品欧美久久欧美| 国产 一区 欧美 日韩| 日韩成人av中文字幕在线观看| av在线蜜桃| 国产91av在线免费观看| 国产视频首页在线观看| 日本免费在线观看一区| 99久国产av精品| 亚洲欧洲日产国产| 一级黄色大片毛片| 日韩一区二区三区影片| 亚州av有码| 黄色配什么色好看| 亚洲欧美中文字幕日韩二区| 日韩制服骚丝袜av| 国产精品不卡视频一区二区| 毛片女人毛片| 哪个播放器可以免费观看大片| 亚洲丝袜综合中文字幕| videossex国产| 日韩欧美精品v在线| 夜夜爽夜夜爽视频| 性插视频无遮挡在线免费观看| 日本五十路高清| 天堂网av新在线| 欧美激情在线99| 婷婷色麻豆天堂久久 | 亚洲av电影在线观看一区二区三区 | 国产久久久一区二区三区| 99在线人妻在线中文字幕| 国产亚洲精品av在线| 卡戴珊不雅视频在线播放| 久久久久久久久久久免费av| 男女下面进入的视频免费午夜| 级片在线观看| 黑人高潮一二区| 国产午夜精品论理片| 午夜免费激情av| av在线观看视频网站免费| 亚洲av不卡在线观看| 日本wwww免费看| 国产免费又黄又爽又色| 国产成人精品婷婷| 伊人久久精品亚洲午夜| 国产精品熟女久久久久浪| 日产精品乱码卡一卡2卡三| 亚洲图色成人| 国产成人福利小说| 天天一区二区日本电影三级| 久久久久九九精品影院|