• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interfacial photoconductivity effect of type-I and type-II Sb2Se3/Si heterojunctions for THz wave modulation

    2023-12-02 09:37:36XueQinCao曹雪芹YuanYuanHuang黃媛媛YaYanXi席亞妍ZhenLei雷珍JingWang王靜HaoNanLiu劉昊楠MingJianShi史明堅(jiān)TaoTaoHan韓濤濤MengEnZhang張蒙恩andXinLongXu徐新龍
    Chinese Physics B 2023年11期
    關(guān)鍵詞:王靜曹雪芹

    Xue-Qin Cao(曹雪芹), Yuan-Yuan Huang(黃媛媛), Ya-Yan Xi(席亞妍), Zhen Lei(雷珍), Jing Wang(王靜),Hao-Nan Liu(劉昊楠), Ming-Jian Shi(史明堅(jiān)), Tao-Tao Han(韓濤濤),Meng-En Zhang(張蒙恩), and Xin-Long Xu(徐新龍)

    Shaanxi Joint Laboratory of Graphene,State Key Laboratory Incubation Base of Photoelectric Technology and Functional Materials,

    International Collaborative Center on Photoelectric Technology,and Nano Functional Materials,Institute of Photonics&Photon-Technology,Northwest University,Xi’an 710069,China

    Keywords: photoconductivity,Sb2Se3/Si heterojunctions,THz-TDS,Drude model

    1.Introduction

    Nobel Prize laureate H.Kroemer once said‘the interface is the device’,since the interface controls the charge transfer,the distribution of quasi-particles and so forth.[1,2]Currently,most studies of interfacial effects and applications usually concentrate on electrical conductivity at interfaces.[3]However,photovoltaic devices and optoelectronic devices are generally utilized under light irradiation, which can be described by the photoconductivity.[4]Hence,a deep comprehensive understanding of the photoconductivity at the interface is necessary to improve the performance of optoelectronic devices.Semiconductor interfaces include three types of heterojunctions according to semiconductor band alignment:[1]type-I,straddling gap; type-II, staggered gap; type-III, broken gap.Transfer and separation of electron–hole pairs between materials are allowed to occur in type-I and type-II heterojunctions, while these processes are hindered in type-III heterojunctions due to the absence of overlapping band gaps.[5,6]Therefore,the study of type-I and type-II heterojunctions currently occupies a key position in the field of optoelectronics.

    The photoconductivity can be reflected by the photocurrent density, but this method introduces surface impurities and a parasitic effect on the measurement due to the external electrodes.[7,8]Terahertz(THz)time-domain spectroscopy(THz-TDS)provides a non-contact, sensitive and direct measurement of the carrier dynamics,refractive index,carrier conductivity, carrier density and, especially, the interface photoconductivity of semiconductors.[9–11]Since the photoconductivity of materials affects the transmission of THz waves, the THz wave modulation performance is proportional to the photoconductivity at the interface.As such, the photoconductivity of BiFeO3/Si is calculated to be 1.2×104S·m-1and BiFeO3/Si demonstrates a modulation depth of 91.13%.[12]Under 1 W·cm-2illumination,the photoconductivity and photogenerated carrier density of TaS2/Si can reach 380 S·m-1and 5.77×1028cm-3, respectively.[13]However, the mechanism of the influence of type-I and type-II heterojunctions on the photoconductivity and photocarrier density is still unknown.

    Antimony selenide(Sb2Se3)possesses a wide adjustable bandgap spanning the range 1.12 eV–1.98 eV,[14,15]allowing for the formation of type-I and type-II heterojunctions with Si.Sb2Se3is nontoxic and inexpensive,[16]and exhibits excellent physical properties such as intrinsic p-type conductivity,[17]a high absorption coefficient(~105cm-1),[18]an excellent carrier density (~1015cm-3)[19]and fast electron trapping.[20]These characteristics make Sb2Se3a promising material for use in solar cells[21–23]and photodetectors.[24,25]In particular,Sb2Se3presents an intriguing interface photoresponse,such as a rise time of 86μs and a fall time of 96μs in type-II Sb2Se3/Si heterojunctions.[25]However, it is still unclear of the interfacial photoconductivity effect between the type-I and type-II Sb2Se3/Si heterojunctions to the THz wave modulation.

    Herein,we have prepared 173 nm Sb2Se3/Si(type-I heterojunction)and 90 nm Sb2Se3/Si(type-II heterojunction)and investigated their photoconductivity and photocarrier density via THz-TDS and the Drude model.For THz wave modulation, 173 nm Sb2Se3/Si and 90 nm Sb2Se3/Si demonstrate modulation depths of 49.4% and 62.0%, respectively.Moreover, the type-II heterojunction exhibits a higher photoconductivity and photocarrier density at the interface than the type-I heterojunction.This is because carrier separation is enhanced at the type-II heterojunction interface whereas carrier recombination is enhanced at the type-I heterojunction interface.This work proposes THz-TDS as an effective tool for studying photoconductivity and provides a potential interfacial engineering method to enhance the THz modulation performance.

    2.Results and discussion

    We prepared the Sb2Se3/Si heterojunctions by the physical vapor deposition method.The bandgaps of the 173 nm Sb2Se3and 90 nm Sb2Se3are 1.5 eV and 1.17 eV, respectively.This finding was also reported by Mamtaet al.[14]and Ghoshet al.,[15]indicating that the bandgap decreases as the thickness of Sb2Se3decreases.Detailed descriptions of the sample characterization and experimental setup are given in the supplementary material.Figure 1(a)shows the THz timedomain transmission of the bare Si under continuous wave(CW) laser excitation from 0 mW to 500 mW.It is obvious that the THz amplitudes decrease after passing through the bare Si with increase in CW laser power.This is caused by the change in photoconductivity of the Si under CW laser excitation,[26,27]which further increases the absorption and reflection of the THz wave.The amplitude of THz transmission begins to saturate with CW laser power after exceeding 300 mW.Figures 1(b)and 1(c)present the THz wave transmission of 173 nm Sb2Se3/Si and 90 nm-Sb2Se3/Si under tunable CW laser power.Both heterojunctions present obvious THz wave modulation under CW laser excitation.On the contrary,the THz wave transmission of the bare sapphire substrate and the Sb2Se3/sapphire are both invariable with increasing CW laser power from 0 mW to 500 mW, indicating no effect on THz amplitude modulation,as shown in Figs.S3(a)and S3(b).These results suggest that the photocarriers are not generated in the insulating sapphire substrate under 405 nm CW laser excitation,[28]and the THz absorption of the Sb2Se3film is negligible.As for pure Sb2Se3, photocarriers are generated under above-band-gap(405 nm, 3.06 eV)CW excitation, but the carrier lifetime in Sb2Se3is very short (~35 ps), which further results in negligible photoconductivity change in pure Sb2Se3.[29]Based on above analysis,the THz amplitude modulation is ascribed to the interface response of the Sb2Se3/Si heterojunctions.

    In order to further compare the modulation performance of the bare Si, 173 nm Sb2Se3/Si and 90 nm Sb2Se3/Si, we extracted the peak-to-valley values of the THz time-domain amplitude to calculate the modulation depth of the THz wave transmission.We define modulation depth aswhere theTpumpandT0are the THz transmission with and without the CW optical pump, respectively.As can be seen in Figs.2(a)and 2(b),the peak-to-valley values and the modulation depths of the 173 nm Sb2Se3/Si and 90 nm Sb2Se3/Si both show linear dependences on the CW pump power,while the peak-to-valley value and the modulation depth of the bare Si show a saturation dependence on the CW laser power and saturate at 300 mW.For bare Si, this saturation is due to the electrostatic field screening formed by the accumulation of holes on the surface.[30,31]According to the surface band bending of bare Si shown in Fig.S4, under CW illumination the electrons and holes are separated by a surface built-in electric field, then the electrons move into the Si and the holes move towards the surface.This movement consequently enhances the photocarrier density and THz absorption.The bare Si, 173 nm Sb2Se3/Si and 90 nm Sb2Se3/Si present modulation depths of 49.3%, 49.4% and 62.0%, respectively.The 90 nm Sb2Se3/Si heterojunction has a larger modulation depth than bare Si.This can be explained by the transport of photogenerated carriers at the Sb2Se3/Si interface,which leads to the enhanced modulation of THz amplitude in the Sb2Se3/Si heterojunction.Since the Sb2Se3layer will absorb the incident light when passing through Sb2Se3,the transmitted optical power at the Sb2Se3/Si interface is low and the small number of photocarriers are unable to form a large built-in interfacial field under a low excitation power.When the excitation power increases to 500 mW, according to the Beer–Lambert law,I=I0e-α0l[whereI0, e,α0andlare intensity of laser excitation, the natural index, absorption coefficient (~0.3 @405 nm[32])and sample thickness,respectively],the transmitted optical power at the Sb2Se3/Si interface is calculated to be as high as~450 mW.Hence,a large built-in electric field can be formed at the interface,which accelerates the separation of photocarriers and prolongs the photocarrier lifetime,resulting in a significant enhancement of THz modulation.

    Fig.2.Transmitted THz time-domain amplitudes of (a) peak-to-valley value and (b) modulation depth of bare Si (purple), 173 nm Sb2Se3/Si(green), and 90 nm Sb2Se3/Si (orange) with CW laser power ranging from 0 mW to 500 mW.Band alignment of (c) 173 nm Sb2Se3/Si and(d)90 nm Sb2Se3/Si under CW light illumination.

    Based on the above analysis, the THz amplitude modulation is ascribed to the interface response of the Sb2Se3/Si heterojunctions according to their band alignments,as we will now discuss.Based on the bandgap of Sb2Se3with different thicknesses (Figs.S2(b) and S2(d)), 173 nm Sb2Se3/Si and 90 nm Sb2Se3/Si form type-I and type-II heterojunctions, respectively.[14,15]As shown in Fig.2(c), for 173 nm Sb2Se3/Si,the electrons and holes would both transport to the Si due to the band alignment of the type-I heterojunction.[1]On the one hand, the simultaneous transfer of electrons and holes to Si will enhance the recombination of photocarriers and reduce the concentration of photogenerated carriers.[33]This property presents promising potential in light-emitting devices.[1]On the other hand, the photoconductivity of Si is described as[13,34]σ=e(neμe+nhμh),where thenh(ne)andμh (μe) represent the carrier density and mobility of holes(electrons), respectively.Since Si is an n-type semiconductor, its photoconductivity is mainly determined by the electrons.For 173 nm Sb2Se3/Si, the mobility of the photocarrier in Si (1400 cm2·V-1·S-1) is larger than that in Sb2Se3(14.2 cm2·V-1·S-1),[35] and the effect of Sb2Se3 on the photoconductivity of the Sb2Se3/Si heterojunction is negligible.This is the reason why the THz wave modulation depth of 173 nm Sb2Se3/Si is comparable to that of bare Si under 500 mW excitation.For 90 nm Sb2Se3/Si, due to the band alignment of the type-II heterojunction,[1]the electrons would transport to the Si and the holes would transport to the Sb2Se3.This consequently forms a large internal electric field (Ed) at the 90 nm Sb2Se3/Si interface, which reduces the recombination of photogenerated carriers,thereby prolonging the carrier lifetime and increasing the carrier concentration.Hence,90 nm Sb2Se3/Si has a greater modulation depth than bare Si and 173 nm Sb2Se3/Si.

    Since the plasmon model[39]and quantum plasmon model[40]are suitable for micro/nanostructural materials with sizes smaller than the THz wavelength the damped harmonic oscillator and scattering rates should be considered.However, the size of continuous multilayer Sb2Se3films is larger than the THz wavelength,which makes the samples similar to bulk materials (e.g., bulk Si).The photoconductivity of bulk Si (above 0.4 THz) is also consistent with the Drude model.Thus, herein, we have utilized the Drude model to describe the photoconductivity as[12]σ(?ω)=(γω2p

    )/(π(ω2+γ2)),whereis the plasma frequency (N,e,ε0andmrepresent the photocarrier density, electronic charge,free-space permittivity and carrier effective mass, respectively)andγis the damping coefficient.Hence,the photocarrier density is described asN=σ(?ω)(ω2+γ2)ε0mπ/(γe2).Based on the Drude model and Figs.4(a)–4(c), the extracted photocarrier densities of bare Si,173 nm Sb2Se3/Si,and 90 nm Sb2Se3/Si increase significantly with increasing CW power,as shown in Figs.4(d)–4(f).Herein, the photoconductivity and photocarrier density are directly correlated,thus THz wave absorption will be enhanced under a high photocarrier density,resulting in a high modulation depth.According to the values at 1.8 THz,the photocarrier density of 173 nm Sb2Se3/Si(0.8×1015cm-3) is~1.1 times larger than that of bare Si(0.7×1015cm-3), while the photocarrier density of 90 nm Sb2Se3/Si(1.5×1015cm-3)is about twice that of bare Si under 500 mW excitation(see detailed comparison in Fig.S6(b)).These results demonstrate that a type-II heterojunction is better than a type-I heterojunction for THz modulation performance.The recombination between electrons and holes causes a slight change in photoconductivity for the type-I Sb2Se3/Si heterojunction, while the separation of electrons and holes leads to a great change in photoconductivity for the type-II Sb2Se3/Si heterojunction.[41]

    3.Conclusion

    In summary, we have prepared 173 nm Sb2Se3/Si (type-I)and 90 nm Sb2Se3/Si(type-II)heterojunctions based on the thickness-dependent-bandgap properties of Sb2Se3.Concerning their THz modulation performance,the modulation depths of bare Si,173 nm Sb2Se3/Si and 90 nm Sb2Se3/Si are 49.3%,49.4% and 62.0%, respectively.The photocarrier density of 90 nm Sb2Se3/Si (1.5×1015cm-3) is about twice that of bare Si, while the photocarrier density of 173 nm Sb2Se3/Si(0.8×1015cm-3) is~1.1 times higher than that of bare Si(0.7×1015cm-3).These results are ascribed to the interfacial photoconductivity effect, since the type-I heterojunction accelerates carrier recombination and the type-II heterojunction accelerates carrier separation.Our work deepens our understanding of interface physics that is beneficial for improving the photoelectronic response at the interface of photoelectronic devices,such as solar cells and photodetectors.We have also unveiled the interfacial photoconductivity effect, including the photocarrier lifetime, the separation of electrons and holes and the interfacial electric field,which could provide the physical basis for highly effective THz modulators.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China (Grant Nos.12261141662, 12074311, and 12004310).

    猜你喜歡
    王靜曹雪芹
    The Management Methods And Thinking Of Personnel Files
    客聯(lián)(2021年9期)2021-11-07 19:21:33
    曹雪芹與史鐵生的生命哲學(xué)比較
    曹雪芹著《紅樓》醫(yī)藥百科
    曹雪芹南游金陵說(shuō)再考辨
    The Development of Contemporary Oil Painting Art
    青年生活(2019年16期)2019-10-21 01:46:49
    敦誠(chéng)的西園與曹雪芹
    王靜博士簡(jiǎn)介
    Income Inequality in Developing Countries
    商情(2017年17期)2017-06-10 12:27:58
    Let it Go隨它吧
    RIGIDITY OF COMPACT SURFACES IN HOMOGENEOUS 3-MANIFOLDS WITH CONSTANT MEAN CURVATURE?
    午夜亚洲福利在线播放| 欧美黑人欧美精品刺激| 国产91精品成人一区二区三区| 国产黄a三级三级三级人| eeuss影院久久| 国产国拍精品亚洲av在线观看| 性欧美人与动物交配| 久久久久亚洲av毛片大全| 亚洲精品久久国产高清桃花| 一a级毛片在线观看| 国产精品av视频在线免费观看| 美女高潮喷水抽搐中文字幕| 国产精品精品国产色婷婷| 精品一区二区免费观看| 小说图片视频综合网站| 国产精品自产拍在线观看55亚洲| 亚洲成av人片在线播放无| 成年人黄色毛片网站| 最新中文字幕久久久久| 夜夜爽天天搞| 精品一区二区三区人妻视频| 国产精品一区二区免费欧美| 国产精品亚洲一级av第二区| 国产蜜桃级精品一区二区三区| 亚洲国产欧美人成| 久99久视频精品免费| 最近最新中文字幕大全电影3| 波多野结衣巨乳人妻| 国产精品久久电影中文字幕| 色哟哟·www| 国产人妻一区二区三区在| 久久国产乱子伦精品免费另类| 欧美日韩瑟瑟在线播放| 无人区码免费观看不卡| 国产成人福利小说| 国产乱人视频| 久久6这里有精品| 日韩欧美国产一区二区入口| 国产精品野战在线观看| 久99久视频精品免费| 一个人看视频在线观看www免费| 女生性感内裤真人,穿戴方法视频| 人人妻人人澡欧美一区二区| 国产午夜福利久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 免费看日本二区| 嫩草影视91久久| 精品熟女少妇八av免费久了| 欧美黑人欧美精品刺激| 两个人的视频大全免费| 亚洲国产精品合色在线| 搞女人的毛片| 亚洲五月婷婷丁香| av福利片在线观看| 日本撒尿小便嘘嘘汇集6| a级毛片免费高清观看在线播放| 日本黄色视频三级网站网址| 狠狠狠狠99中文字幕| 大型黄色视频在线免费观看| 成人永久免费在线观看视频| 国产成人a区在线观看| 国产美女午夜福利| 国产乱人视频| 尤物成人国产欧美一区二区三区| 午夜精品久久久久久毛片777| 久久亚洲精品不卡| 国产综合懂色| 成年版毛片免费区| 看片在线看免费视频| 日本撒尿小便嘘嘘汇集6| 亚洲精品在线观看二区| 午夜福利成人在线免费观看| 简卡轻食公司| 有码 亚洲区| 国产成人a区在线观看| 欧美成人a在线观看| 少妇丰满av| 亚洲专区中文字幕在线| 日本一本二区三区精品| 最近视频中文字幕2019在线8| 欧美+亚洲+日韩+国产| 怎么达到女性高潮| 老司机午夜十八禁免费视频| 性色avwww在线观看| 嫩草影院精品99| 色在线成人网| 国产视频一区二区在线看| 精品国内亚洲2022精品成人| 99热6这里只有精品| 给我免费播放毛片高清在线观看| 欧美+亚洲+日韩+国产| 国内精品久久久久精免费| 欧美不卡视频在线免费观看| 宅男免费午夜| 日本精品一区二区三区蜜桃| 亚洲美女视频黄频| 免费av不卡在线播放| 亚洲男人的天堂狠狠| 精品无人区乱码1区二区| 国产黄色小视频在线观看| 久久人人爽人人爽人人片va | 午夜激情福利司机影院| 国产精品三级大全| 最近中文字幕高清免费大全6 | 国产一区二区三区视频了| 99精品久久久久人妻精品| 国产三级中文精品| 成人精品一区二区免费| 91麻豆av在线| 色播亚洲综合网| 婷婷色综合大香蕉| 又爽又黄a免费视频| 国产伦人伦偷精品视频| 久久久久亚洲av毛片大全| 欧美日韩国产亚洲二区| 51午夜福利影视在线观看| 3wmmmm亚洲av在线观看| 18美女黄网站色大片免费观看| 一级毛片久久久久久久久女| 精品久久久久久久久av| 免费av不卡在线播放| 久久久久精品国产欧美久久久| 在现免费观看毛片| 日韩欧美免费精品| 久久国产乱子伦精品免费另类| av福利片在线观看| 九九在线视频观看精品| 午夜日韩欧美国产| 成年女人毛片免费观看观看9| 色播亚洲综合网| 九九热线精品视视频播放| 男人舔女人下体高潮全视频| 怎么达到女性高潮| 欧美成狂野欧美在线观看| 国产aⅴ精品一区二区三区波| 欧美高清性xxxxhd video| 91麻豆av在线| 夜夜爽天天搞| 最后的刺客免费高清国语| 欧美一区二区亚洲| 51午夜福利影视在线观看| 制服丝袜大香蕉在线| 18禁在线播放成人免费| 精品午夜福利在线看| 亚州av有码| 丰满的人妻完整版| 观看美女的网站| 成人性生交大片免费视频hd| 精品无人区乱码1区二区| 久久久久久久精品吃奶| 久久天躁狠狠躁夜夜2o2o| 美女cb高潮喷水在线观看| 美女cb高潮喷水在线观看| 国产精品自产拍在线观看55亚洲| 成人特级av手机在线观看| 综合色av麻豆| 欧美在线一区亚洲| 免费一级毛片在线播放高清视频| 国产午夜福利久久久久久| 国产高清激情床上av| 久久婷婷人人爽人人干人人爱| 精品人妻1区二区| 一级a爱片免费观看的视频| 婷婷六月久久综合丁香| 精品久久国产蜜桃| 欧美在线一区亚洲| 18禁在线播放成人免费| 国内毛片毛片毛片毛片毛片| 最后的刺客免费高清国语| 国产欧美日韩精品一区二区| 久久精品91蜜桃| 精品久久久久久久久亚洲 | 午夜精品一区二区三区免费看| 看黄色毛片网站| 波野结衣二区三区在线| 亚洲 国产 在线| 成人三级黄色视频| 精华霜和精华液先用哪个| 国产精品久久视频播放| 亚洲无线观看免费| 国产成年人精品一区二区| 国产日本99.免费观看| 日韩国内少妇激情av| 99国产极品粉嫩在线观看| 国产高清视频在线观看网站| 亚洲av一区综合| 国产一区二区在线av高清观看| 久久久久久久午夜电影| 亚洲av日韩精品久久久久久密| 久久6这里有精品| 国产aⅴ精品一区二区三区波| 日本熟妇午夜| 久久久久久久午夜电影| 中文字幕人妻熟人妻熟丝袜美| 国内少妇人妻偷人精品xxx网站| 国产黄色小视频在线观看| 观看免费一级毛片| 亚洲一区二区三区色噜噜| 久久人人爽人人爽人人片va | 中亚洲国语对白在线视频| 国产精品久久久久久人妻精品电影| 18美女黄网站色大片免费观看| 1024手机看黄色片| 久久久久精品国产欧美久久久| 亚洲午夜理论影院| 日本黄大片高清| 国产欧美日韩精品亚洲av| 国产麻豆成人av免费视频| 高清在线国产一区| 亚洲,欧美,日韩| 午夜久久久久精精品| 精品国内亚洲2022精品成人| 老熟妇乱子伦视频在线观看| 亚洲真实伦在线观看| 日本熟妇午夜| 在线a可以看的网站| 日韩欧美一区二区三区在线观看| 国产三级黄色录像| 国内毛片毛片毛片毛片毛片| 女人十人毛片免费观看3o分钟| 亚洲欧美清纯卡通| 日日摸夜夜添夜夜添av毛片 | 欧美性猛交黑人性爽| av在线天堂中文字幕| 国产美女午夜福利| 黄色丝袜av网址大全| h日本视频在线播放| 国产真实伦视频高清在线观看 | 亚洲美女黄片视频| 搡老岳熟女国产| av在线天堂中文字幕| 在线看三级毛片| 欧美区成人在线视频| 最近视频中文字幕2019在线8| 又爽又黄a免费视频| 神马国产精品三级电影在线观看| 啪啪无遮挡十八禁网站| 18+在线观看网站| 一区福利在线观看| 日韩 亚洲 欧美在线| 老熟妇乱子伦视频在线观看| 欧美性感艳星| 天堂影院成人在线观看| av在线观看视频网站免费| 午夜老司机福利剧场| 搡老熟女国产l中国老女人| 欧美午夜高清在线| 亚洲精品456在线播放app | 欧美精品国产亚洲| 日本三级黄在线观看| 亚洲av成人不卡在线观看播放网| 亚洲最大成人手机在线| .国产精品久久| 国产一区二区三区在线臀色熟女| 99热这里只有是精品50| 久久亚洲精品不卡| 很黄的视频免费| 亚洲成人免费电影在线观看| 欧美zozozo另类| a级一级毛片免费在线观看| av欧美777| 好男人在线观看高清免费视频| 成人高潮视频无遮挡免费网站| 波多野结衣高清作品| 中文字幕免费在线视频6| 午夜福利高清视频| 男人的好看免费观看在线视频| 国产探花极品一区二区| 久久久精品欧美日韩精品| 最近最新中文字幕大全电影3| 日韩成人在线观看一区二区三区| 国产美女午夜福利| 精品一区二区三区人妻视频| 国产亚洲av嫩草精品影院| 国产精品一区二区三区四区免费观看 | 又黄又爽又刺激的免费视频.| 久久国产乱子免费精品| 成年免费大片在线观看| 亚洲av成人不卡在线观看播放网| 久99久视频精品免费| 中文亚洲av片在线观看爽| 观看美女的网站| 免费一级毛片在线播放高清视频| 哪里可以看免费的av片| 精品久久久久久久久久免费视频| 久久精品久久久久久噜噜老黄 | 18+在线观看网站| www.色视频.com| 久久草成人影院| 久久久久亚洲av毛片大全| 在现免费观看毛片| 欧美日韩黄片免| 欧美成人a在线观看| 国产伦在线观看视频一区| 少妇的逼好多水| 日韩欧美国产在线观看| 精品一区二区免费观看| 国产成人啪精品午夜网站| 日韩成人在线观看一区二区三区| 97超级碰碰碰精品色视频在线观看| 国产精品一区二区性色av| 在线观看午夜福利视频| 老司机深夜福利视频在线观看| 床上黄色一级片| 精品人妻一区二区三区麻豆 | 国内精品一区二区在线观看| 51午夜福利影视在线观看| 国产精品不卡视频一区二区 | 日本熟妇午夜| 69人妻影院| 午夜免费男女啪啪视频观看 | 久久婷婷人人爽人人干人人爱| 老司机午夜福利在线观看视频| 午夜福利在线在线| 美女 人体艺术 gogo| 亚洲成人久久性| 男人的好看免费观看在线视频| 国语自产精品视频在线第100页| 欧美日韩乱码在线| 伊人久久精品亚洲午夜| 国产伦人伦偷精品视频| 伊人久久精品亚洲午夜| 一夜夜www| 亚洲午夜理论影院| 欧美性猛交╳xxx乱大交人| 窝窝影院91人妻| 国产在线男女| 亚洲熟妇熟女久久| 精品国内亚洲2022精品成人| 国产黄a三级三级三级人| 最近最新中文字幕大全电影3| 婷婷六月久久综合丁香| 黄色丝袜av网址大全| 午夜福利欧美成人| 成熟少妇高潮喷水视频| 精品久久久久久,| 欧美xxxx性猛交bbbb| 我的老师免费观看完整版| 中亚洲国语对白在线视频| 国产伦精品一区二区三区四那| 婷婷精品国产亚洲av| 午夜精品一区二区三区免费看| 国产精品亚洲一级av第二区| 一级a爱片免费观看的视频| 久久久久久久久久黄片| 日韩亚洲欧美综合| 亚洲午夜理论影院| 五月玫瑰六月丁香| 中文在线观看免费www的网站| 黄色女人牲交| 国产综合懂色| 国产高清视频在线观看网站| 黄色丝袜av网址大全| 亚洲美女视频黄频| 蜜桃久久精品国产亚洲av| 久久精品久久久久久噜噜老黄 | 午夜精品一区二区三区免费看| 精品乱码久久久久久99久播| 黄色丝袜av网址大全| 久久99热这里只有精品18| 免费黄网站久久成人精品 | 直男gayav资源| 最新中文字幕久久久久| 国产精品永久免费网站| 国产高清激情床上av| 精品久久久久久成人av| av欧美777| 精品99又大又爽又粗少妇毛片 | 亚洲性夜色夜夜综合| 久久久久久久久中文| 亚洲av电影在线进入| 看黄色毛片网站| 欧美一区二区国产精品久久精品| 午夜免费男女啪啪视频观看 | 亚洲成人中文字幕在线播放| 欧美另类亚洲清纯唯美| www日本黄色视频网| 首页视频小说图片口味搜索| 精品人妻视频免费看| 成人鲁丝片一二三区免费| 日韩成人在线观看一区二区三区| 欧美另类亚洲清纯唯美| 他把我摸到了高潮在线观看| 中文在线观看免费www的网站| 国产蜜桃级精品一区二区三区| 日本三级黄在线观看| 日韩欧美一区二区三区在线观看| 老女人水多毛片| 欧美黄色片欧美黄色片| 国产成人a区在线观看| 亚洲熟妇中文字幕五十中出| 日日夜夜操网爽| 亚洲国产欧美人成| 亚洲一区二区三区不卡视频| 日日干狠狠操夜夜爽| 国产精品一区二区三区四区免费观看 | 最好的美女福利视频网| 欧美成人免费av一区二区三区| av国产免费在线观看| 精品99又大又爽又粗少妇毛片 | 18美女黄网站色大片免费观看| 欧美日韩综合久久久久久 | 免费av观看视频| 亚洲av电影在线进入| 欧美日韩国产亚洲二区| 日韩av在线大香蕉| 欧美日韩综合久久久久久 | 亚洲人成伊人成综合网2020| 91av网一区二区| 欧美另类亚洲清纯唯美| 国产91精品成人一区二区三区| 99热这里只有是精品50| 琪琪午夜伦伦电影理论片6080| 成人精品一区二区免费| 天美传媒精品一区二区| 国产乱人伦免费视频| 日韩欧美精品免费久久 | 免费在线观看亚洲国产| 欧美在线黄色| 国产大屁股一区二区在线视频| 亚洲18禁久久av| 美女被艹到高潮喷水动态| 亚洲av电影在线进入| 特级一级黄色大片| 国产精品久久视频播放| av在线蜜桃| 少妇人妻精品综合一区二区 | 亚洲色图av天堂| 午夜老司机福利剧场| 亚洲一区二区三区色噜噜| 熟女人妻精品中文字幕| 精品人妻视频免费看| 蜜桃久久精品国产亚洲av| 国产精品一及| 欧美潮喷喷水| 一个人免费在线观看电影| 亚洲av五月六月丁香网| 成年人黄色毛片网站| 91字幕亚洲| 国产视频内射| 搡女人真爽免费视频火全软件 | 97热精品久久久久久| 亚洲中文字幕一区二区三区有码在线看| 亚洲人成电影免费在线| 国产真实伦视频高清在线观看 | 麻豆国产av国片精品| 亚洲精品在线美女| 亚洲人与动物交配视频| 村上凉子中文字幕在线| 国产精品久久电影中文字幕| 国产成年人精品一区二区| 精品久久久久久久人妻蜜臀av| 超碰av人人做人人爽久久| 国产精品国产高清国产av| 国产成人影院久久av| 老熟妇仑乱视频hdxx| 国产亚洲欧美98| 久久精品久久久久久噜噜老黄 | 色哟哟哟哟哟哟| 好男人在线观看高清免费视频| 国产精品久久久久久亚洲av鲁大| 成熟少妇高潮喷水视频| 亚洲18禁久久av| 免费av观看视频| 欧美zozozo另类| 亚洲国产高清在线一区二区三| 精品熟女少妇八av免费久了| 精品人妻视频免费看| 久久久久精品国产欧美久久久| 九色成人免费人妻av| 国产亚洲精品av在线| 国产精品久久久久久人妻精品电影| 亚洲 欧美 日韩 在线 免费| 欧美xxxx性猛交bbbb| av国产免费在线观看| 老女人水多毛片| 欧美性猛交黑人性爽| 久久久久国产精品人妻aⅴ院| 午夜免费激情av| 青草久久国产| 欧美+亚洲+日韩+国产| 特大巨黑吊av在线直播| 精品乱码久久久久久99久播| 99久久99久久久精品蜜桃| 欧美激情在线99| 久久精品91蜜桃| aaaaa片日本免费| 国产一区二区在线观看日韩| 精品久久久久久久久久免费视频| 极品教师在线免费播放| 波野结衣二区三区在线| 国产美女午夜福利| 国内揄拍国产精品人妻在线| 99热精品在线国产| 日日干狠狠操夜夜爽| 精品国产亚洲在线| 色视频www国产| 国产欧美日韩一区二区三| 看片在线看免费视频| av视频在线观看入口| 999久久久精品免费观看国产| 一级黄片播放器| 婷婷六月久久综合丁香| a级一级毛片免费在线观看| 日日干狠狠操夜夜爽| 人妻制服诱惑在线中文字幕| 国产高清有码在线观看视频| 免费看光身美女| 男女之事视频高清在线观看| 天天一区二区日本电影三级| 18禁在线播放成人免费| 在线十欧美十亚洲十日本专区| 亚洲av日韩精品久久久久久密| 成人精品一区二区免费| 国产一区二区三区在线臀色熟女| 成人精品一区二区免费| 国产亚洲欧美在线一区二区| 看片在线看免费视频| 久久久久久国产a免费观看| 成人一区二区视频在线观看| 麻豆国产97在线/欧美| 美女被艹到高潮喷水动态| 久久中文看片网| 别揉我奶头 嗯啊视频| 老熟妇仑乱视频hdxx| 午夜免费激情av| 精品一区二区三区人妻视频| 好男人在线观看高清免费视频| 亚洲一区二区三区色噜噜| 精品欧美国产一区二区三| 麻豆久久精品国产亚洲av| av女优亚洲男人天堂| 亚洲 国产 在线| 在线看三级毛片| 无遮挡黄片免费观看| 国产单亲对白刺激| 搡老岳熟女国产| 最近最新中文字幕大全电影3| 国产精品精品国产色婷婷| 三级男女做爰猛烈吃奶摸视频| 午夜激情欧美在线| 欧美午夜高清在线| 欧美日韩国产亚洲二区| 青草久久国产| 一级a爱片免费观看的视频| 啦啦啦观看免费观看视频高清| 超碰av人人做人人爽久久| 成年女人看的毛片在线观看| 亚洲第一欧美日韩一区二区三区| 日韩欧美一区二区三区在线观看| 国产精品人妻久久久久久| 色播亚洲综合网| 永久网站在线| 色av中文字幕| 精品久久国产蜜桃| 精品福利观看| 熟女人妻精品中文字幕| 亚洲精品日韩av片在线观看| 成人美女网站在线观看视频| 成人午夜高清在线视频| 好男人电影高清在线观看| 日本在线视频免费播放| 久久久久久大精品| 在线天堂最新版资源| 又爽又黄无遮挡网站| 男女床上黄色一级片免费看| 欧美日韩瑟瑟在线播放| 国产麻豆成人av免费视频| 日韩欧美一区二区三区在线观看| 91九色精品人成在线观看| 日韩高清综合在线| 日本与韩国留学比较| 午夜精品一区二区三区免费看| 欧美成人性av电影在线观看| 国产爱豆传媒在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品爽爽va在线观看网站| 国产黄片美女视频| 国产精品嫩草影院av在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 亚洲五月婷婷丁香| 91字幕亚洲| 99热这里只有精品一区| 深夜精品福利| 9191精品国产免费久久| 色播亚洲综合网| 人妻夜夜爽99麻豆av| 久久久国产成人精品二区| 久久99热这里只有精品18| 99热精品在线国产| 欧美性猛交╳xxx乱大交人| .国产精品久久| 成人性生交大片免费视频hd| 精品人妻视频免费看| 99久久成人亚洲精品观看| 国产亚洲欧美在线一区二区| 少妇熟女aⅴ在线视频| 午夜免费激情av| 久久久久亚洲av毛片大全| 亚洲精品乱码久久久v下载方式| 国产欧美日韩精品亚洲av| 国产伦在线观看视频一区| 色播亚洲综合网| 色哟哟哟哟哟哟| 亚洲人成伊人成综合网2020| 久久亚洲精品不卡| 怎么达到女性高潮| 九九热线精品视视频播放| 国产精品亚洲美女久久久| 午夜福利在线观看吧| 午夜免费成人在线视频| 看免费av毛片| 亚洲五月天丁香| 少妇人妻一区二区三区视频| 丁香六月欧美|