• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Improved Singularity Free Self-Similar Model of Proton Structure Function

    2017-05-18 05:56:40BaishaliSaikiaandChoudhuryDepartmentofPhysicsGauhatiUniversityGuwahati781014AssamIndia
    Communications in Theoretical Physics 2017年1期

    Baishali Saikiaand D.K.ChoudhuryDepartment of Physics,Gauhati University,Guwahati 781 014,Assam,India

    2Physics Academy of North-East,Guwahati 781 014,Assam,India

    1 Introduction

    Although renormalization group equation of quantum if eld theory[1]exhibits self-similarity,[2]it is not yet established rigorously in QCD,the accepted fundamental quantum field theory of strong interaction.However,because of its wide applicability in other areas of physics,[3]study of self-similarity in the structure of the proton is worth pursuing.In this spirit,Lastovicka[4]in 2002, first suggested the self-similarity as a possible feature of multipartons specially in the kinematical region of small Bjorken x,which in later years was pursued in Refs.[5–15].Specifically,how quarks and gluons share the momentum fractions of the proton was studied in Refs.[11–12],behavior of double parton distribution functions,longitudinal structure function FL[14]and Froissart bound.[15]

    One of the limitations of the phenomenological analysis of Ref.[4]is that it has a singularity at x ~ 0.019,[11?12]which is well within the kinematical range of x;0

    In the present paper,we therefore make a re-analysis of the model of Ref.[4],demanding it to be singularity free in the entire x-range;0

    2 Formalism

    2.1 Proton Structure Function Based on Self-Similarity

    The self-similarity based model of the proton structure function of Ref.[4]is based on Parton Distribution Function qi(x,Q2)where qiis the virtualities of the quark hit by the photon.In Refs.[13,15],it has been shown that if one assumes that the TMDPDF has similar formula like Lastovicka used,[4]one can obtain the same form of structure function although the two models are different.Such identical form of the PDF of structure function has been obtained because the relation between unintegrated parton distribution function(uPDF)and the TMD with PDF are assumed to be identical,which is in general may not be true.With such assumption,we follow the reformulated model[13,15]of Ref.[4](Model 1,Model 1A)and see its possible consequences.Choosing the magni fication factors(1/x)andit is written as:[13,15](reformulated Lastovicka model)

    where i denotes a quark fl avor.Here D1,D2,D3are the three fl avor independent model parameters whileis the only fl avor dependent normalization constant.M2(=1 GeV2)is introduced to make(PDF)qi(x,Q2)as defi ned below(in Eq.(2))dimensionless.The integrated quark densities then de fi ned as:

    As a result,the following analytical parametrization of a quark density is obtained by using Eq.(2):[12](Model 1A)

    where

    is fl avor independent.Using Eq.(3)in the usual Definition of the structure function F2(x,Q2),one can get

    or it can be written as

    whereEquation(5)involves quarks and anti-quarks as in Ref.[4]we use the same parametrization both for quarks and anti-quarks.

    From HERA data,[17?18]Eq.(6)was fi tted in Ref.[4]with

    in the kinematical region,

    We note that the parameters in Eqs.(7)and(8)are same as Ref.[4].We call it to be the reformulated version of Model 1 except the Definition of Eq.(1)because it is PDF not TMD,which occurs in the Definition of structure function in Ref.[4].

    2.2 Singularity Free Structure Function(Model 2)

    The de fi ning equations of the model of Ref.[4](Eqs.(1)–(4)above)do not ascertain the numerical values and signs of the parameters Djs.These are determined from data[17?18]leading to the set of Eq.(7)in the kinematic range(Eq.(8)).However,the phenomenological analysis has one inherent limitation:due to the negative value of D3,Eq.(6)develops a singularity at x0v 0.019[11?12]as it satis fi es the condition 1+D3+D1log(1/x0)=0,contrary to the expectation of a physically viable form of structure function.

    Rede fi ning the model parameters Djs bys(j=1,2,3)and(PDF)qi(x,Q2)by(x,Q2)and also structure function F2(x,Q2)by(x,Q2)in the present analysis,we observe that it can be made singularity free under the following speci fic conditions:

    Case 1 Ifin Eq.(1)then the PDF Eq.(3)and the Structure Function Eq.(6)will be of the form:

    Case 2 In this casein Eq.(1)then the corresponding expressions for the PDF and Structure Function in this limit are respectively:

    Case 3 In this case,in Eq.(1)then the corresponding PDF and the Structure Function are set in the form:

    respectively.

    Case 4 This is the most general case for the singularity free model of Parton Distribution Function(PDF)Eq.(3)and Structure Function Eq.(6)under the condition thatare positive.

    3 Results

    3.1 Analysis of Singularity Free Model(Model 2)

    To determine the parameters of the modelwe use recently compiled HERA data[16]instead of earlier data[17?18]used in Ref.[4].Following this procedure of Ref.[4],we make χ2-analysis of the data and find the following results.Case 1We note that=1 is ruled out since it will make the structure function Eq.(10)x-independent.In Table 1 we show the results.From the χ2-analysis,it is obtained that the model in case 1 is con fi ned well with data for 0.35 GeV2≤Q2≤70 GeV2and 6.62×10?6≤x≤0.08.andare taken to be zero in this limit.Here the number ofdata points is 222.

    Table 1 Results of the fi t of case 1;Eq.(10).

    Case 2 The parametersare determined(given in Table 2)in the similar manner as in case 1 and the range of validity has been obtained as:0.35 GeV2≤Q2≤27 GeV2and 6.62× 10?6≤ x≤0.032.As in case 1,here too D2=1 is ruled out since it will make Eq.(12)x-independent.The number ofdata points is 174.

    Table 2 Results of the fi t of case 2;Eq.(12).

    Case 3 Here,parameters are best fi tted in the range:0.35 GeV2≤ Q2≤ 15 GeV2and 6.62×10?6≤x≤ 0.02 and given in Table 3.The number ofdata points is 146.

    Table 3 Results of the fi t of case 3;Eq.(14).

    Case 4 Parametersare determined and given in Table 4 and obtained in a more restrictive range:0.85 GeV2≤Q2≤10 GeV2and 2×10?5≤x≤0.02.The number ofdata points is 95.

    Table 4 Results of the fi t of case 4;Eq.(16).

    In Fig.1,we plotof the present model(Model 2)for case 4 as a function of x for eight representative values of Q2(Q2=(1.5,2,2.7,3.5,4.5,6.5,8.5,10)GeV2)in the phenomenologically allowed range 0.85 GeV2≤Q2≤10 GeV2.We also show the corresponding available data from Ref.[16].

    It shows that as the model parameters have lesser restrictive constraint except for the positivity,the range of validity shrinks from Q2=120 GeV2to Q2=10 GeV2.Thus our analysis indicates that the phenomenological range of validity of the present version of the model is more restrictive:0.85 GeV2≤Q2≤10 GeV2and 2×10?5≤ x ≤ 0.02 to be compared with Eq.(8)of the previous version of Ref.[4].Also,the individual χ2at Q2=8.5 GeV2and 10 GeV2is minimum to be compared with Q2=4.5 GeV2and 10 GeV2,which is quite larger than that of 10 GeV2.It is same for Q2=1.5 GeV2too.Basically,our results valid in small area in between Q2of 8.5 GeV2and 10 GeV2.But due to the unavailability of the experimental data points,the di ff erence can not be shown explicitly.

    We also observe the following features of the model compared to data:at Q2=1.5 GeV2data overshoots the theory.But as Q2increases,the theoretical curve comes closer to data.At Q2=10 GeV2,on the other hand,the theory exceeds data.Main reason of this feature is that the x-slope of the model is less than that of the data.Speci fically,due to positive D3,the growth of the structure function with Q2becomes faster than a linear growth as can be seen from Eq.(4)i.e.

    at higher values of Q2>1 GeV2to be compared with

    of Ref.[4],which is faster than data.This is the major limitation of the present singularity free version of the model,which calls for further improvement.

    Fig.1 Comparison of the structure function(Model 2)Eq.(16)as a function of x in bins of Q2for case 4 with measured data of F2from HERAPDF1.0.[16]

    4 An Improved Singularity Free Model

    Let us discuss a possible way of removing the short coming of the models under discussion.As noted in Ref.[4],this approach has taken the notion of selfsimilarity to parametrize Parton Distribution Function(PDF)and eventually the structure function.However,the variables in which the supposed fractal scaling of the quark distributions and F2(x,Q2)occur are not known from the underlying theory.In Ref.[4],the choice of 1/x is presumably because of the power law form of the quark distributions at small x found in Gl¨uck–Reya–Vogt(GRV)[19]distribution.However,this form is not derived theoretically but rather follows from the power law distributions in x assumed for the input quark distributions used by the GRV distribution for the QCD evolution.The choice of 1/x as the proper scaling variable is therefore not established from the underlying theory.Instead,if log1/x is chosen as the scaling variable[20]then asymptotic Froissart saturation like[21]behavior can be achieved in such self-similar model.[15]Same is true for the magni fication factor M1=as occurred in de fi ning TMD(Eq.(1)).In the present case,a proper choice of M1seems necessary to allow an expression of proper singularity free version of the models.

    The magni fication factor M1can be considered as special case of a more general form:

    Only in a speci fic case,where α1=1 and all other coefficients cases vanish lead to the original M1as de fi ned in Eq.(1).

    The de fi ning TMD therefore can be generalized to instead of Eq.(1),such that the generalized TMD will take the form

    If,on the other hand,αi(i=0,1,2,...,n)vanish or negligibly small thenbecome

    where

    Taking only the two terms of Eq.(20),can be written as

    and the corresponding TMD(Eq.(19))becomes

    Assuming the convergence of the polynomials as occurred in Eq.(23),we obtain:(Model 3)

    After integration overit yields the desired PDF

    Using Eq.(25)in Eq.(5),the usual Definition of structure function,it gives

    with the condition that

    as the equality will yield an undesired singularity.

    The above model of structure function(Model 3)has new 7 independent parameters B1,B2,to be fi tted from data and compared with the previous models(Models 1 and 2).If the model parametersandsatisfy the additional condition

    then the resultant TMD becomes:(Model 4)

    while the integration overleads to the PDF

    And the corresponding structure function is

    which is completely free from singularity except for≥1.Such singularity is,however,consistent with the usual Regge expectation.[22?26]The model has now got 4 parameters:

    Furthermore,if the magni fication factor 1/x is also generalized to(1/x?1)for large x as suggested in Ref.[13]then one has got TMDPDF,PDF and structure function as:

    which leads to

    Generalizing the magni fication factor?M1as in Eq.(22)and taking only the two terms and assuming the convergence of the polynomials occurring in the expression as in Eq.(23),we obtain the generalized TMD as:(Model 5)

    And hence corresponding PDF(ˉqi)and structure function(ˉF2)will be

    Imposing the condition

    will lead to corresponding TMD,PDF and structure function as:(Model 6)

    Corresponding PDF

    and corresponding structure function

    which is our improved form and also has slower logarithmic raise in Q2with the large x behavior

    consistent with QCD.[23?27]Equations(31)and(40)are the main results,which are singularity free and have the logarithmic rise in virtually Q2.

    5 Comparison of the Structure Function of Models 4 and 6 with Data and Determination of the Model Parameters

    In this section,we make a comparison of structure function of Models 4 and 6 since only these two have logarithmic Q2rise in PDF and structure function.Model 6 is the large x extrapolation of Model 4.

    To determine the parameters of Model 4 and Model 6,we have used the compiled HERA data[16]as used in earlier work(Model 2).We make χ2-analysis of the data and obtain the phenomenological range of validity of Q2and x.

    For Model 4,the fi tted parameters are given in Table 5.The range of validity is found within:1.2 GeV2≤Q2≤ 800 GeV2and 2×10?5≤ x≤ 0.4.The number of data points of?F2is 284.Similarly for Model 6,the range of validity is:1.2 GeV2≤Q2≤1200 GeV2and 2×10?5≤ x≤ 0.4,which is quite larger in comparative to earlier works(Models 1 and 2).The fi tted parameters for Model 6 are given in Table 6.The number of data points ofis 302.

    In Figs.2 and 3,we plotandof Models 4 and 6 respectively as a function of x for few representative values of Q2

    We note that some experimental values cannot be well described by Model 4 in Fig.2.Figure 2 shows the model 4 is suitable for small x but not the large x.The main reason is:the model 4 is by construction for small x whereas the model 6 is extrapolated to large x.From Fig.2,this feature can be seen prominently:as the experimental values of Q2increase the corresponding experimental ranges of x also increase.At Q2=150 GeV2,x range is 6 10?1whereas at Q2=800 GeV2,the corresponding range goes up to x 6 0.4,which is well above the small x-range.Thus at higher Q2,the agreement is less than that of lower Q2.However,in Fig.3,where the model 6 is applied,the experimental agreement at high Q2is better.

    The above analysis indicates that a singularity free version of a self-similarity based model in Proton is possible if proper choice of magni fication factor is made.It has allowed such a wider phenomenological range of validity in Q2than that of the model of Ref.[4].It has also logarithmic rise in virtually Q2instead of power law.

    Fig.2 Comparison of the structure function(Model 4)Eq.(31)as a function of x in bins of Q2with measured data of F2from HERAPDF1.0.[16]

    Fig.3 Comparison of structure function(Model 6)Eq.(40)as a function of x in bins of Q2with measured data of F2from HERAPDF1.0.[16]

    Table 5 Results of the fi t of Model 4;Eq.(31).

    Table 6 Results of the fi t of Model 6;Eq.(40).

    6 Summary

    In the present paper,we have made a reanalysis of a structure function(x,Q2)based on self-similarity using the more recently compiled HERA data.[16]The present study is based on the notion that a physically viable model of Proton should be fi nite in the x-range;0

    Our first analysis,however,indicates that the range of validity of such singularity free version of the model is much narrower in Q2:0.85 GeV2≤Q2≤10 GeV2to be compared with that of Ref.[4].

    We have then explored the possible way of improving the model phenomenologically.As noted in Ref.[15],this approach of Ref.[4]has taken the notion of self-similarity to parametrize Parton Distribution Function(PDF)and eventually the structure function.However,the variables in which the supposed fractal scaling of the quark distribution and F2(x,Q2)occurs are not known from the underlying theory.In Ref.[4],the choice of 1/x is presumably because of the power law form of the quark distributions at small x found in Gl¨uck–Reya–Vogt(GRV)[19]distribution.However,this form is not derived theoretically but rather followed from the power law distribution in x assumed for the input quark distribution used by the GRV distribution for the QCD evolution.A more plausible variable appears instead to be ln(1/x)as has been used by Block etal,.[20]which is consistent with Froissart bound.[21]It also results in similar Froissart bound in the self-similar model.[15]

    In this spirit,we have modi fi ed magni fication factor M1properly so as to yield a singularity free version of the model,which has also logarithmic rise of Q2instead of power law as in Ref.[4].The phenomenological range of validity is also much larger:1.2 GeV2≤Q2≤800 GeV2than the previous singularity free version:0.85 GeV2≤Q2≤10 GeV2.A parameter free extrapolation to large x increases the phenomenological range further 1.2 GeV2≤Q2≤1200 GeV2.

    We now report the possible prediction of the model.

    (i)Using this model,one can obtain the corresponding form of gluon distribution which then can be used to calculate the Longitudinal Structure Function FL(x,Q2),using the Altarelli and Martinelli equation[28]as an improvement of our earlier result of model 1.[14]

    (ii)It can also predict the corresponding partial momentum fraction carried by quarks and gluons in Proton and test how far such pattern di ff ers from the QCD based models.[20]

    Let us end this section with a comment regarding the theoretical limitation of the present work:

    As noted in the introduction,self-similarity is not a general property of QCD and is not established properly,either theoretically or experimentally.In this work,we have merely made a use of fractal techniques to parametrize a multivariable function like structure function as a method of generalization as in Ref.[4].We have shown,under speci fic condition among the de fi ning parameters,a slower logarithmic rise in Q2of structure function is achievable,which is closer to QCD expectation than the earlier power law growth of Ref.[4]and has a wider phenomenological range of x and Q2.It implies,in a limited kinematical range,the notion of self-similarity makes some sense.However,unlike perturbative QCD where the corresponding Lagrangian is well de fi ned,Feynman rules are derivable and the asymptotic freedom can be established by using the Renormalization Group Equation leading to such logQ2terms,it is beyond the scope of the present work and hence can not be considered as a first principle result.

    Acknowledgments

    Final part of this work was completed when one of us(DKC)visited the Rudolf Peirels Center of Theoretical Physics,University of Oxford.He thanks Professor Subir Sarkar for hospitality and useful discussion.We also thank Dr.Kushal Kalita for useful comments.One of the authors(BS)acknowledges the UGC-RFSMS for fi nancial support.

    References

    [1]M.Gell Mann and F.Low,Phys.Rev.D 95(1954)1300.

    [2]D.V.Shirkov,Sov.Phys.Dokl.27(1982)197;K.Kr¨oger,Phys.Reports 323(2000)81.

    [3]Xu Cai and Long Guo,Chin.Phys.Lett.26(2009)088901;Jian-Chao Cai,etal.,Chin.Phys.Lett.27(2010)024705;Yu Zhou,Zu-Guo Yu,and Yee Leung,Chin.Phys.B 20(2011)090507;Ching-Hung Yuen and Wong Kwok-Wo,Chin.Phys.B 21(2012)010502;Chao Wang,Wan-Ting Xiong,and You-Gui Wang,Chin.Phys.Lett.29(2012)128903;Hui-Lin Shang,Acta Physica Sinica 61(2012)180506;Chuan-Feng Li and Feng Bi,Chin.Phys.Lett.30(2013)010306;Jian-Chao Cai,Chin.Phys.B 23(2014)044701.

    [4]T.Lastovicka,Euro.Phys.J.C 24(2002)529,hepph/0203260.

    [5]D.K.Choudhury and Rupjyoti Gogoi,hep-ph/0310260;hep-ph/0503047.

    [6]D.K.Choudhury and Rupjyoti Gogoi,Ind.J.Phys.80(2006)823.

    [7]D.K.Choudhury and Rupjyoti Gogoi,Ind.J.Phys.81(2007)607.

    [8]A.Jahan and D.K.Choudhury,hep-ph/1106.1145.

    [9]A.Jahan and D.K.Choudhury,Proceedings of the 3rd International Workshop on Multiple Partonic Interactions at the LHC,(2012)145;DOI:10.3204/DESY HUMBERG-PROC-2012-03/94.

    [10]A.Jahan and D.K.Choudhury,Ind.J.Phys.85(2011)587,hep-ph/1101.0069.

    [11]A.Jahan and D.K.Choudhury,Mod.Phys.Lett.A 27(2012)1250193,hep-ph/1304.6882.

    [12]A.Jahan and D.K.Choudhury,Mod.Phys.Lett.A 28(2013)1350056,hep-ph/1306.1891.

    [13]D.K.Choudhury and A.Jahan,Int.J.Mod.Phys.A 28(2013)1350079,hep-ph/1305.6180.

    [14]A.Jahan and D.K.Choudhury,Commun.Theor.Phys.61(2014)644,hep-ph/1404.0808.

    [15]A.Jahan and D.K.Choudhury,Phys.Rev.D 89(2014)014014,hep-ph/1401.4327.

    [16]H1 and ZEUS Collaborations,F.D.Aaron,etal.,J.High Energy Phys.1001(2010)109,hep-ex/0911.0884.

    [17]H1:C.Adlo ff,etal.,Euro.Phys.J.C 21(2001)33,hepex/0012053.

    [18]ZEUS:J.Breitweg,etal.,Phys.Lett.B 487(2000)53,hep-ex/0005018.

    [19]M.Gl¨uck,E.Reya,and A.Vogt,Euro.Phys.J.C 5(1998)461;hep-ph/9806404

    [20]M.M.Block,L.Durand,P.Ha,and D.W.McKay,Phys.Rev.D 84(2011)094010,hep-ph/1108.1232.

    [21]M.Froissart,Phys.Rev.123(1961)1053.

    [22]T.Regge,Nuovo Cim.14(1959)951.

    [23]Richard D.Ball,Emanuele R.Nocera,and Juan Rojo,arXiv:hep-ph/1604.00024.

    [24]R.G.Roberts,The Structure of the Proton:Deep Inelastic Scattering,Cambridge University Press,Cambridge(1994).

    [25]R.Devenish and A.Cooper-Sarkar,Deep Inelastic Scattering,Oxford University Press,Oxford(2004).

    [26]F.J.Yndurain,Theory of Quark and Gluon Interactions,Springer Verlag,Berlin(1992)p.129.

    [27]S.J.Brodsky and G.R.Farrar,Phys.Rev.Lett.31(1973)1153.

    [28]G.Altarelli and G.Martinelli,Phys.Lett.B 76(1978)89.

    少妇 在线观看| 蜜桃在线观看..| 午夜福利视频精品| 欧美少妇被猛烈插入视频| 黑丝袜美女国产一区| 在线亚洲精品国产二区图片欧美 | 欧美精品亚洲一区二区| 欧美日韩视频高清一区二区三区二| 草草在线视频免费看| 免费人妻精品一区二区三区视频| 国产亚洲av片在线观看秒播厂| av电影中文网址| 亚洲av福利一区| 日韩一本色道免费dvd| 国产不卡av网站在线观看| 亚洲精品456在线播放app| 精品国产一区二区久久| 人妻一区二区av| 午夜精品国产一区二区电影| 国产片特级美女逼逼视频| av在线播放精品| 精品少妇久久久久久888优播| 国产免费一级a男人的天堂| 丝袜在线中文字幕| 一二三四中文在线观看免费高清| 免费久久久久久久精品成人欧美视频 | 久久人妻熟女aⅴ| 午夜精品国产一区二区电影| 青春草亚洲视频在线观看| 99热国产这里只有精品6| 国产精品 国内视频| 国产乱人偷精品视频| 久久97久久精品| 高清av免费在线| 国产成人精品在线电影| 国产欧美日韩一区二区三区在线 | 精品人妻在线不人妻| 在线观看人妻少妇| 天堂8中文在线网| 寂寞人妻少妇视频99o| 国产一区二区三区综合在线观看 | 久久精品国产a三级三级三级| 春色校园在线视频观看| 久久99一区二区三区| 少妇 在线观看| 国产亚洲精品久久久com| 国产黄片视频在线免费观看| 日产精品乱码卡一卡2卡三| 国产精品人妻久久久久久| 丝袜脚勾引网站| 丝袜美足系列| 校园人妻丝袜中文字幕| 人人澡人人妻人| 伦理电影免费视频| 久热这里只有精品99| 国产精品国产三级国产专区5o| 18禁在线无遮挡免费观看视频| 夫妻午夜视频| 国产一区二区在线观看日韩| 极品人妻少妇av视频| 黑人巨大精品欧美一区二区蜜桃 | 日本午夜av视频| 亚洲精品乱码久久久久久按摩| 国产极品天堂在线| 大话2 男鬼变身卡| 91久久精品电影网| 久热久热在线精品观看| 亚洲av成人精品一二三区| av.在线天堂| 欧美xxⅹ黑人| 你懂的网址亚洲精品在线观看| 性色av一级| 美女内射精品一级片tv| 一本色道久久久久久精品综合| 国产男女超爽视频在线观看| 99re6热这里在线精品视频| 日韩一区二区视频免费看| 国产片特级美女逼逼视频| 亚洲欧美日韩卡通动漫| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品无大码| 亚洲欧美一区二区三区黑人 | 亚洲精品久久久久久婷婷小说| 夫妻性生交免费视频一级片| 久久国产精品男人的天堂亚洲 | 亚洲人与动物交配视频| 草草在线视频免费看| 成年女人在线观看亚洲视频| 午夜精品国产一区二区电影| xxxhd国产人妻xxx| 亚洲激情五月婷婷啪啪| 中国美白少妇内射xxxbb| 大香蕉97超碰在线| 国产精品一区二区在线观看99| 国产日韩一区二区三区精品不卡 | 国产亚洲av片在线观看秒播厂| 日韩大片免费观看网站| 精品亚洲乱码少妇综合久久| 国产黄片视频在线免费观看| 免费看光身美女| 青春草国产在线视频| 黑人欧美特级aaaaaa片| 亚州av有码| 欧美日韩一区二区视频在线观看视频在线| 国产探花极品一区二区| 两个人免费观看高清视频| 啦啦啦视频在线资源免费观看| 国产男女内射视频| 日本av手机在线免费观看| 人人妻人人添人人爽欧美一区卜| 亚洲av日韩在线播放| 一边摸一边做爽爽视频免费| 免费黄色在线免费观看| 日本黄色片子视频| 国产日韩欧美亚洲二区| 香蕉精品网在线| 18禁在线播放成人免费| 七月丁香在线播放| 久久久久视频综合| 中国国产av一级| 一本—道久久a久久精品蜜桃钙片| 最新的欧美精品一区二区| 观看av在线不卡| 免费人妻精品一区二区三区视频| 国产女主播在线喷水免费视频网站| 99精国产麻豆久久婷婷| 亚洲av日韩在线播放| 插逼视频在线观看| 蜜桃在线观看..| 午夜视频国产福利| 亚洲丝袜综合中文字幕| tube8黄色片| 丁香六月天网| 亚洲国产成人一精品久久久| 婷婷成人精品国产| 欧美3d第一页| 三级国产精品片| 麻豆乱淫一区二区| 51国产日韩欧美| a 毛片基地| 五月天丁香电影| 久久综合国产亚洲精品| 亚洲精品乱久久久久久| 国产一区二区在线观看av| 精品国产乱码久久久久久小说| 欧美精品一区二区免费开放| 亚洲精品自拍成人| 亚洲人成网站在线观看播放| 久久国产精品男人的天堂亚洲 | 久久人人爽人人爽人人片va| 亚洲精品视频女| 成人毛片60女人毛片免费| freevideosex欧美| 人人妻人人澡人人看| 国产精品秋霞免费鲁丝片| 成人国语在线视频| 大片电影免费在线观看免费| 欧美日韩精品成人综合77777| 国产女主播在线喷水免费视频网站| 母亲3免费完整高清在线观看 | 午夜老司机福利剧场| 国产成人a∨麻豆精品| 啦啦啦视频在线资源免费观看| av女优亚洲男人天堂| 亚洲人与动物交配视频| 国产精品久久久久久久久免| 乱码一卡2卡4卡精品| 80岁老熟妇乱子伦牲交| 国产男女超爽视频在线观看| 国产精品久久久久久久电影| 久久精品国产亚洲av涩爱| 人人妻人人爽人人添夜夜欢视频| 麻豆成人av视频| 久久av网站| 午夜视频国产福利| 欧美老熟妇乱子伦牲交| 熟女av电影| 亚洲久久久国产精品| 久久ye,这里只有精品| 男女啪啪激烈高潮av片| 又大又黄又爽视频免费| 日本猛色少妇xxxxx猛交久久| 亚洲精品久久午夜乱码| 国模一区二区三区四区视频| 精品少妇内射三级| 久久国内精品自在自线图片| 99久国产av精品国产电影| 亚洲成人一二三区av| 久久久久久久亚洲中文字幕| av专区在线播放| 一级爰片在线观看| 一级毛片aaaaaa免费看小| 高清视频免费观看一区二区| .国产精品久久| 免费观看av网站的网址| 如日韩欧美国产精品一区二区三区 | 人妻制服诱惑在线中文字幕| 午夜福利在线观看免费完整高清在| 男女边摸边吃奶| 亚洲av国产av综合av卡| 在线观看免费日韩欧美大片 | 一本一本综合久久| 中文天堂在线官网| 精品午夜福利在线看| 精品午夜福利在线看| 激情五月婷婷亚洲| 丰满迷人的少妇在线观看| 精品少妇久久久久久888优播| 午夜福利视频精品| 国产精品久久久久成人av| 99热全是精品| 亚洲精品一区蜜桃| 青春草视频在线免费观看| 少妇高潮的动态图| 国产极品天堂在线| 有码 亚洲区| 亚洲四区av| 亚洲国产成人一精品久久久| 国产精品人妻久久久久久| 精品熟女少妇av免费看| 国产女主播在线喷水免费视频网站| 亚洲精品日韩在线中文字幕| 免费播放大片免费观看视频在线观看| 久久 成人 亚洲| 女的被弄到高潮叫床怎么办| 在线亚洲精品国产二区图片欧美 | 免费播放大片免费观看视频在线观看| 制服人妻中文乱码| 色视频在线一区二区三区| 国产成人av激情在线播放 | 婷婷成人精品国产| 国产一区有黄有色的免费视频| www.av在线官网国产| 汤姆久久久久久久影院中文字幕| 久久精品国产自在天天线| 亚洲综合色惰| 一边亲一边摸免费视频| 黑人欧美特级aaaaaa片| 好男人视频免费观看在线| 熟女人妻精品中文字幕| 如何舔出高潮| 黄色欧美视频在线观看| 91精品三级在线观看| 黑丝袜美女国产一区| 日韩av不卡免费在线播放| 欧美人与性动交α欧美精品济南到 | 蜜臀久久99精品久久宅男| 九九久久精品国产亚洲av麻豆| 国产精品免费大片| 久久午夜福利片| a级毛色黄片| 国产色爽女视频免费观看| 看十八女毛片水多多多| 欧美日韩成人在线一区二区| 国产精品三级大全| 中文乱码字字幕精品一区二区三区| 国产在线一区二区三区精| 少妇高潮的动态图| 日本色播在线视频| 亚洲情色 制服丝袜| 国产精品熟女久久久久浪| 涩涩av久久男人的天堂| 久久国产精品大桥未久av| 亚洲av国产av综合av卡| 又粗又硬又长又爽又黄的视频| 久久精品久久精品一区二区三区| 久久精品夜色国产| 亚洲欧美色中文字幕在线| 国产高清不卡午夜福利| 国产精品偷伦视频观看了| 美女国产视频在线观看| 免费观看无遮挡的男女| 在线亚洲精品国产二区图片欧美 | 亚洲成色77777| 国产精品无大码| 制服人妻中文乱码| 51国产日韩欧美| 两个人免费观看高清视频| 中文天堂在线官网| 高清av免费在线| 老司机影院成人| 夜夜爽夜夜爽视频| 亚洲精品aⅴ在线观看| 视频在线观看一区二区三区| 国产成人免费观看mmmm| 国产精品久久久久久av不卡| 熟妇人妻不卡中文字幕| 大香蕉久久网| 精品国产一区二区久久| 欧美日本中文国产一区发布| 亚洲在久久综合| 成人免费观看视频高清| 国产欧美日韩综合在线一区二区| 色哟哟·www| 久久久久久久精品精品| 香蕉精品网在线| 黄色配什么色好看| 搡女人真爽免费视频火全软件| 亚洲精品久久午夜乱码| 亚洲欧美中文字幕日韩二区| 亚洲美女搞黄在线观看| 中国美白少妇内射xxxbb| 在线看a的网站| 国产伦精品一区二区三区视频9| 美女xxoo啪啪120秒动态图| av不卡在线播放| 国产日韩欧美视频二区| 欧美一级a爱片免费观看看| 国产免费现黄频在线看| 国产精品成人在线| 欧美老熟妇乱子伦牲交| 久久国产精品大桥未久av| 国产精品一国产av| 激情五月婷婷亚洲| 免费观看的影片在线观看| 美女视频免费永久观看网站| 久热这里只有精品99| 日本-黄色视频高清免费观看| 欧美人与性动交α欧美精品济南到 | 国产精品偷伦视频观看了| 有码 亚洲区| 亚洲欧美日韩另类电影网站| 97在线人人人人妻| 亚洲久久久国产精品| 国产黄频视频在线观看| av国产久精品久网站免费入址| 国产日韩欧美在线精品| 交换朋友夫妻互换小说| 丰满乱子伦码专区| 国产视频内射| 伊人久久精品亚洲午夜| 少妇被粗大猛烈的视频| 99九九在线精品视频| 内地一区二区视频在线| 国产欧美亚洲国产| av免费观看日本| 精品少妇内射三级| av在线app专区| 欧美三级亚洲精品| 日韩av免费高清视频| av不卡在线播放| 精品久久久噜噜| 亚洲精品视频女| 亚洲国产精品一区三区| 在线 av 中文字幕| 午夜视频国产福利| 久久99蜜桃精品久久| 亚洲欧美日韩卡通动漫| 蜜桃久久精品国产亚洲av| 伊人久久精品亚洲午夜| 男女边摸边吃奶| 午夜久久久在线观看| 大香蕉97超碰在线| 又黄又爽又刺激的免费视频.| 国产精品99久久久久久久久| 日韩av在线免费看完整版不卡| 综合色丁香网| 如何舔出高潮| 国产精品一区二区在线观看99| 一本色道久久久久久精品综合| a级毛片黄视频| 亚洲性久久影院| 亚洲欧洲国产日韩| 久久国内精品自在自线图片| 考比视频在线观看| 亚洲国产精品一区二区三区在线| 色吧在线观看| 黄色视频在线播放观看不卡| 不卡视频在线观看欧美| 一本—道久久a久久精品蜜桃钙片| 下体分泌物呈黄色| 一级爰片在线观看| 久久久午夜欧美精品| 亚洲婷婷狠狠爱综合网| 在线播放无遮挡| 制服诱惑二区| 亚洲精品久久午夜乱码| 免费黄频网站在线观看国产| 国产探花极品一区二区| 精品国产一区二区久久| 国产片特级美女逼逼视频| 欧美+日韩+精品| 日本午夜av视频| 国产免费一区二区三区四区乱码| 伊人久久国产一区二区| 亚洲国产精品一区二区三区在线| 亚洲国产精品一区三区| 久久久久久久久久久丰满| 日产精品乱码卡一卡2卡三| 精品卡一卡二卡四卡免费| 中文字幕制服av| videosex国产| 美女国产视频在线观看| 婷婷色综合www| 中文字幕久久专区| 国产精品 国内视频| 亚洲欧洲精品一区二区精品久久久 | 国产成人freesex在线| 国产精品 国内视频| 国产欧美日韩综合在线一区二区| 日韩欧美精品免费久久| 午夜激情福利司机影院| 狠狠精品人妻久久久久久综合| 久久鲁丝午夜福利片| 亚洲欧美成人综合另类久久久| 国产综合精华液| 久久精品国产亚洲av天美| 人妻夜夜爽99麻豆av| 丰满迷人的少妇在线观看| 久久精品国产亚洲av天美| 人成视频在线观看免费观看| 啦啦啦中文免费视频观看日本| 熟妇人妻不卡中文字幕| 国产成人精品一,二区| 人体艺术视频欧美日本| 国产亚洲午夜精品一区二区久久| 超碰97精品在线观看| 欧美三级亚洲精品| 人人澡人人妻人| 91成人精品电影| 这个男人来自地球电影免费观看 | 99久久中文字幕三级久久日本| 女性被躁到高潮视频| 麻豆成人av视频| 七月丁香在线播放| 人妻系列 视频| 精品国产露脸久久av麻豆| 有码 亚洲区| 婷婷色av中文字幕| 亚洲av二区三区四区| 精品久久蜜臀av无| 国产黄色视频一区二区在线观看| 欧美激情 高清一区二区三区| 欧美日韩精品成人综合77777| 最后的刺客免费高清国语| 久久精品熟女亚洲av麻豆精品| 最新的欧美精品一区二区| 最近中文字幕高清免费大全6| 十八禁高潮呻吟视频| 国产女主播在线喷水免费视频网站| 搡老乐熟女国产| 久久久久久人妻| 国产成人精品久久久久久| 丰满乱子伦码专区| 欧美 日韩 精品 国产| 高清午夜精品一区二区三区| 一级毛片电影观看| 欧美日韩亚洲高清精品| 肉色欧美久久久久久久蜜桃| 大码成人一级视频| 五月天丁香电影| 伦精品一区二区三区| 亚洲国产欧美在线一区| 超碰97精品在线观看| 亚洲国产精品一区二区三区在线| 久久精品久久精品一区二区三区| 老熟女久久久| 最近的中文字幕免费完整| 日本黄色日本黄色录像| 亚州av有码| 一级黄片播放器| 美女脱内裤让男人舔精品视频| 久久影院123| 黄色欧美视频在线观看| 欧美精品一区二区免费开放| 国产亚洲精品久久久com| 国产成人freesex在线| 欧美日韩国产mv在线观看视频| 九九爱精品视频在线观看| 满18在线观看网站| 午夜免费鲁丝| 一级爰片在线观看| 日本av免费视频播放| 高清欧美精品videossex| 亚洲国产精品999| 桃花免费在线播放| 麻豆乱淫一区二区| 国产高清不卡午夜福利| a级毛片免费高清观看在线播放| 国产爽快片一区二区三区| 人成视频在线观看免费观看| 久久97久久精品| 国产淫语在线视频| 少妇丰满av| 婷婷成人精品国产| 色网站视频免费| 亚洲成人手机| 日韩,欧美,国产一区二区三区| 啦啦啦在线观看免费高清www| 麻豆精品久久久久久蜜桃| 91久久精品电影网| 最后的刺客免费高清国语| 日韩视频在线欧美| 日本午夜av视频| 国产乱来视频区| 成人毛片60女人毛片免费| 国产在视频线精品| 欧美最新免费一区二区三区| 久久久久久久精品精品| 亚洲欧美成人精品一区二区| 一边亲一边摸免费视频| 少妇精品久久久久久久| 国产伦精品一区二区三区视频9| 亚洲精品中文字幕在线视频| 天天操日日干夜夜撸| 亚洲综合精品二区| 亚洲av二区三区四区| 黄片播放在线免费| h视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 最后的刺客免费高清国语| 亚洲三级黄色毛片| 亚洲av男天堂| 午夜激情福利司机影院| av有码第一页| 91在线精品国自产拍蜜月| 久久亚洲国产成人精品v| 亚洲欧洲日产国产| 亚洲欧美色中文字幕在线| 亚洲色图 男人天堂 中文字幕 | 精品少妇内射三级| 亚洲av电影在线观看一区二区三区| 精品久久久噜噜| 七月丁香在线播放| 亚洲成人一二三区av| 22中文网久久字幕| 午夜福利影视在线免费观看| 免费看光身美女| 精品一区在线观看国产| av在线老鸭窝| 少妇丰满av| 欧美3d第一页| 亚洲欧美色中文字幕在线| av免费观看日本| 一级黄片播放器| 永久免费av网站大全| 嫩草影院入口| 尾随美女入室| 精品久久国产蜜桃| 亚洲国产毛片av蜜桃av| 亚洲欧美成人综合另类久久久| 韩国高清视频一区二区三区| 欧美精品一区二区大全| 一区二区三区乱码不卡18| 九草在线视频观看| 综合色丁香网| 色5月婷婷丁香| 亚洲精品国产色婷婷电影| 日韩视频在线欧美| 爱豆传媒免费全集在线观看| 精品亚洲成国产av| 亚洲精品色激情综合| 亚洲国产毛片av蜜桃av| 爱豆传媒免费全集在线观看| 午夜福利视频在线观看免费| 亚洲国产精品专区欧美| 乱人伦中国视频| 国产精品秋霞免费鲁丝片| 99热这里只有精品一区| 国产极品粉嫩免费观看在线 | 亚洲精华国产精华液的使用体验| 九色成人免费人妻av| 91成人精品电影| 日本vs欧美在线观看视频| 亚洲精品乱码久久久v下载方式| 又大又黄又爽视频免费| 成年av动漫网址| 亚洲欧洲国产日韩| 亚洲不卡免费看| 色婷婷av一区二区三区视频| 伊人久久国产一区二区| 成人国产麻豆网| 亚洲精品国产av蜜桃| 国产欧美日韩综合在线一区二区| 欧美 日韩 精品 国产| 99热国产这里只有精品6| 99热这里只有精品一区| 观看av在线不卡| 国产一级毛片在线| 欧美日韩精品成人综合77777| 久久久久久人妻| 亚洲国产av新网站| 在线观看人妻少妇| 爱豆传媒免费全集在线观看| 国产成人精品一,二区| 国产男人的电影天堂91| 久久婷婷青草| 国产精品三级大全| 99久久精品一区二区三区| 国产成人精品婷婷| 青春草视频在线免费观看| 亚洲综合色网址| 久久狼人影院| 有码 亚洲区| 午夜视频国产福利| 国产亚洲最大av| 国产成人午夜福利电影在线观看| 一级毛片电影观看| 亚洲精华国产精华液的使用体验| 91久久精品国产一区二区三区| 少妇被粗大的猛进出69影院 | 亚洲av男天堂| 亚洲国产毛片av蜜桃av| 日韩中文字幕视频在线看片| 欧美精品高潮呻吟av久久| 午夜激情久久久久久久| 国产av一区二区精品久久| 久久久久人妻精品一区果冻| 亚洲无线观看免费| 最近中文字幕高清免费大全6| videosex国产| 国产精品久久久久成人av| 天天操日日干夜夜撸| 少妇熟女欧美另类| 午夜av观看不卡|