• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Algebraic form and analysis of SIR epidemic dynamics over probabilistic dynamic networks

    2023-12-01 09:51:08HongxingYuanZengqiangChenZhipengZhangRuiZhuZhongxinLiu
    Control Theory and Technology 2023年4期

    Hongxing Yuan·Zengqiang Chen·Zhipeng Zhang·Rui Zhu·Zhongxin Liu

    Abstract The outbreak of corona virus disease 2019 has profoundly affected people’s way of life.It is increasingly necessary to investigate epidemics over social networks.This paper studies susceptible-infected-removed(SIR)epidemics via the semitensor product.First,a formal susceptible-infected-removed epidemic dynamic model over probabilistic dynamic networks(SIRED-PDN)is given.Based on an evolutionary rule,the algebraic form for the dynamics of individual states and network topologies is given,respectively.Second,the SIRED-PDN can be described by a probabilistic mix-valued logical network.After providing an algorithm,all possible final spreading equilibria can be obtained for any given initial epidemic state and network topology by seeking attractors of the network.And the shortest time for all possible initial epidemic state and network topology profiles to evolve to the final spreading equilibria can be obtained by seeking the transient time of the network.Finally,an illustrative example is given to show the effectiveness of our model.

    Keywords SIR epidemic·Probabilistic dynamic networks·Final spreading equilibria·Semi-tensor product of matrices·Algebraic form

    1 Introduction

    The outbreak of corona virus disease 2019 (COVID-19)has profoundly affected people’s way of life.In fact, every outbreak of epidemics has seriously affected people’s production, life and even lives.Therefore, people have been studying epidemics since ancient times.The classical differential equation epidemic models are presented to describe the spreading process of the epidemic, analyze the number of infected people and explore means to stop the spread of epidemic[1,2].However,these classical models do not take the evolution of spreading networks into account, that is,spreading networks of these models are static.

    In real life, if a susceptible individual realize that their neighbors are infected, he or she is likely to disconnect from these neighbors and establish neighbor relationships with other susceptible individuals rather than infected individuals.That is to say, with the evolution of an epidemic,spreading network is always dynamic.Therefore, it is very practical and necessary to study epidemics whose spreading networks are dynamic.Most scholars use computer simulation and statistics[3–6]to study these epidemics.Recently,[7] has put forward a new type of matrix product called the semi-tensor product(STP)of matrices which has shown its superiority in many fields,including finite automata [8–10],games[11–13],networked evolutionary games[14–16],logical networks [17–25], etc.Logical networks are classified as deterministic and probabilistic [7].So we define that a dynamic network is deterministic,if its every network is deterministic.A dynamic network is probabilistic, if it contains a probabilistic network.If not specified, dynamic networks refer to deterministic dynamic networks.Based on theSTP,Guoetal.[26,27]establishedasusceptible-infectedsusceptible epidemic dynamic model over dynamic networks(SISED-DN), providing a method for mathematically analyzing epidemics with deterministic dynamic networks.In SISED-DN,the spreading networks are deterministic,rather than probabilistic, so probabilistic events in the spread of epidemics cannot be fully described.

    Compared to the SIS epidemics model, the SIR epidemics model has a wider range of applications and has more research value [28–30].For example, the outbreak of COVID-19 at the end of 2019 can be analyzed by establishing a SIR epidemic dynamic model.That is because for the epidemic with highly infectious,infected individuals are more likely to become immune or dead,rather than becoming susceptible again.To our knowledge,most of the research results on SIR epidemics whose spreading networks are dynamic are obtained by computer simulation[31]and mean-field method[3,32].The computer simulation method can not fully study the probabilistic events in the spread of epidemics, and it is difficult to find the shortest time and all possible final spreading equilibria, which are key global information in the analysis of epidemics.The mean-field method can only reflect the average trend of the spread of epidemics.So we would like to solve the above problems by using the semitensor product of matrices.

    Motivated by the above, we use the STP to establish a susceptible-infected-removed epidemic dynamic model over probabilistic dynamic networks(SIRED-PDN)which can be described by probabilistic mix-valued logical networks.The number of each node’s possible states is finite.The main contributions of this paper are as follows:

    ? A formal SIRED-PDN is provided and the algebraic form for the dynamics of individual states and network topologies is given,respectively.

    ? All possible final spreading equilibria and the shortest time for all possible initial epidemic state and network topology profiles to evolve to the final spreading equilibria can be obtained by the algorithm given in this paper.

    ? An illustrative example is given to show the effectiveness of our model.One can check the result of the example with the help of MATLAB toolbox.

    The rest of this paper is arranged as follows.Section2 introducessomepreliminariesabouttheSTP.Section3establishes the algebraic form of the SIRED-PDN.Section4 gives two algorithms and analyzes the SIRED-PDN by calculating the final spreading equilibria and the shortest time.An illustrative example is also given in Sect.4.Section5 gives a brief conclusion.

    2 Preliminaries

    2.1 Notations

    2.2 Semi-tensor product of matrices

    In this section, we introduce some necessary preliminaries about the semi-tensor product.One can refer to[7].

    Definition 1 [7] LetY∈Mu×v,Z∈Mk×t, andc=lcm(v,k) (the least common multiple ofvandk).Define the semi-tensor product(STP)ofYandZas

    where“?”is Kronecher product.

    Whenv=k,Y?Z=Y Z,so we will omit“?”hereafter.

    Proposition 1 [7]

    (1)For any Y∈Mu×1,A∈Mk×t,we have

    (2)Let Y∈Mu×1and Z∈Mv×1.Then

    where W[u,v]∈Muv×uv denotes the swap matrix,

    (3)Assume Y∈Δu,then we get

    where

    stands for the order reducing matrix.(4)For any Y∈Δu,Z∈Δv,we have

    whereis the rear(front)deleting operator.

    (5)Let yi∈Δu,i= 1,2,...,n and y=,then we get

    where

    Definition 2 [7] Define the Khatri-Rao product ofA∈Ma×candB∈Mb×cas

    Proposition 2 [7]

    (1)Assume g:Dnu→Du is a u-valued logical function which is represented by

    Identify i~δiu,i= 1,2,...,u.Then there exists a unique logical matrix Mg∈Lu×un which we call the structure matrix of g.The algebraic form of(7)is

    where y,xi∈Δu,i=1,...,n.

    (2)If in item(1)Δu is changed to Υu,the result remains true except that the structure matrix Mg∈Lu×un in(8)is changed to a Mg∈Υu×un.

    3 Algebraic form of SIR epidemic dynamics over probabilistic dynamic networks

    In this section,by using the STP,the algebraic form of SIR epidemic dynamics over probabilistic dynamic networks is given.In Sect.3.1,a formal SIRED-PDN is provided.Sections3.2and3.3calculatethealgebraicformforthedynamics of individual states and network topologies,respectively.

    3.1 SIR epidemic dynamic model over probabilistic dynamic networks

    This part presents a formal SIRED-PDN,it consists of four basic components:

    (1)nindividuals,whose states are susceptible(S),infected(I)orremoved(R).xi(t)∈{S,I,R}standsforthestate of individualiat timet.“xi(t)=2”indicates the state of individualiat timetis “I”, “xi(t) = 1” indicates the state of individualiat timetis“S”and“xi(t)=0”indicates the state of individualiat timetis“R”.N={1,2,...,n}represents the set of individuals.

    (2) An undirected graphG=(N,ε(t))stands for a timevarying network topology,whereε(t) = {(i,j)|i,j∈N,i/=j} represents the social connections between pairs of individuals.The adjacent matrix ofGat timetis

    (3) The dynamics of individual states: In each period,susceptible individuals have a certain probability of becoming infected due to social connections with their infected neighbors.Infected individuals have a certain probability of becoming removed.Removed individuals are dead or have a strong immunity,so they will not become infected any more.

    (4) The dynamics of network topologies:For each SI connection(connection between an infected individual and a susceptible individual),the susceptible individual has a certain probability of breaking this SI connection,and establishing a new connection with a susceptible or removed individual who do not have a social connection with this susceptible individual.Every susceptible individual breaks at most one connection in each period to avoid repeated connections.

    Based on the above,the dynamics of individual states and network topologies is represented by

    whereX(t) =(x1(t),x2(t),...,xn(t)) stands for the state of all individuals at timet,E(t)is defined as(9),PandQare evolutionary functions of individual states and network topologies,respectively.

    3.2 Algebraic form for the dynamics of individual states

    Thispartgivesthealgebraicformforthedynamicsofindividual states via the STP approach.We first present the dynamics of individual states.

    In each period,each susceptible individual is infected by each of its infected neighbors with the probabilityβ, each infected individual is cured or dead from the epidemic with the probabilityα,becoming removed.

    To give the algebraic form of SIR epidemic dynamics over probabilistic dynamic networks,we express individual states and network topologies into vector form.

    For each kind of individual state,we identify the infected stateI~δ13,the susceptible stateS~δ23and the removed stateR~δ33, then {S,I,R} ~Δ3can be obtained.Considering probability of the epidemic, letxi(t+ 1) ∈Υ3.xi(t+1) = [r1,r2,r3]′indicates the state of individualiat timetis infected with probabilityr1,susceptible with probabilityr2,removed with probabilityr3.

    For each kind of network topology, because its adjacent matrixEsatisfiesei j=e jiandeii= 0,Ecan be uniquely determined by itsupper triangular elements.Therefore we can express the network topology as(c1,c2,...,cq) :=(e12,...,e1n,...,ei,i+1,...,ei,n),whereca(i,j)(t)=ei j(t),

    Theorem 1In a formal SIRED-PDN,the algebraic form of individual states’dynamics is calculated by

    ProofFor the given removal probabilityαand infection probabilityβ, when the state of individualiat timetis infected,the state of individualiat timet+1 will become removed with the probabilityαand retain infected with the probability 1-α.When the state of individualiat timetis susceptible, the state of individualiat timet+ 1 will become infected with the probability 1 -(1-β)bi(t)and retain susceptible with the probability(1-β)bi(t), wherebi(t)denotes the number of individuali’s infected neighbors at timet.When the state of individualiat timetis removed,the state of individualiat timet+1 will retain removed with the probability 1.Combining with the vector form of the individual state,we have

    whereT(β) =(1-(1-β)bi(t),(1-β)bi(t),0)′,H(α) =(1-α,0,α)′.

    For the process of removal,we have

    Therefore,Eq.(15)can be converted into

    Multiplying all equations together yields Eq.(13).It is the algebraic form of (10),based on which we can analyze the dynamics of individual states.■

    3.3 Algebraic form for the dynamics of network topologies

    This part gives the algebraic form for the dynamics of network topologies via the STP approach.We first present the dynamics of network topologies.

    In each period, each SI connection (connection between an infected individual and a susceptible individual) breaks with the probabilityw.When it breaks,the susceptible individual in this SI will randomly establish a new connection with a susceptible or removed individual who do not have a social connection with this susceptible individual,if such an individual exists.Every susceptible individual breaks at most one connection in each period to avoid repeated connections.Therefore we can get the following theorem.

    Theorem 2In a formal SIRED-PDN,the algebraic form of network topologies’dynamics is calculated by

    For each connection(iz,jz) in ˉJu,v, we denote the state of(iz,jz)at timet+1 byaz.az=(1,0)′denotes breaking this connection at timet+1,it happens with the probabilityw.If this connection breaks,the increment ofuwill be

    4 Analysis of SIR epidemic dynamics over probabilistic dynamic networks

    Substituting(13)into(17)yields

    Therefore,the algebraic form of(10)and(11)is

    Multiplying the above two equations together yields

    Denote

    whereL=L′Q?L P,Y(t)=E(t)X(t).

    In the previous content,we hadX(t)∈Δ3n,E(t)∈Δ2q,X(t+1)∈Υ3n,E(t+1)∈Υ2q,which may be a little confused,so we give the following explanation.To simplify,we use profile to stand for epidemic state and network topology profileY(t)hereafter.Epidemics are usually studied for prediction purposes,thus the profile at this moment is generally deterministic rather than probabilistic.So we definedX(t) ∈Δ3n,E(t) ∈Δ2q.In practice,the infection probability and removal probability are generally used to describe an epidemic, thus the predicted profile at the next moment is uncertain.So it makes more sense to represent a predicted profile with a probability vector, that is,X(t+1) ∈Υ3n,E(t+1)∈Υ2q.

    Through Eq.(19), we can see that the structure matrixLcontains each deterministic profile’s next moment profile.We can multiply each deterministic profile’s next moment profile by the probability of the deterministic profile occurring,then put them together to get the next moment profile of a probabilistic profile.This operation can be easily accomplished by taking the STP ofLwith this probabilistic profile.Therefore, although Eq.(19) is obtained under the premise that all profiles at this moment are deterministic,it still holds when the profile at this moment is probabilistic according to the meaning of taking the STP.

    To sum up,all information about the SIR epidemic dynamics over probabilistic dynamic networks can be obtained by analysing the probabilistic matrixLwhose detailed calculation process is in Algorithm 1.

    Algorithm 1 The algebraic form of the SIRED-PDN for each integer i ∈[1,n]do Calculate Li =images/BZ_120_1570_919_1584_954.pngMH MT δ33 ?1′2q·3nimages/BZ_120_1862_919_1876_954.pngW[2q·3i-1,3](I2q·3i-1 ?O3)end for Calculate the structure matrix of X(t +1)=L P E(t)X(t) as L P =L1 ?···?Ln.for each integer u ∈[1,2q]do for each integer v ∈[1,3n]do if | ˉJu,v|≥1 then Calculate Col(u-1)2n+v(L Q)=2| ˉJu,v|images/BZ_120_1357_1292_1394_1327.png| ˉJu,v|Π t=1 z=1([w1-w]az)·δu′2q.else Calculate Col(u-1)2n+v(L Q)=δu2q.end if end for end for Calculate the structure matrix of E(t +1)=L′Q E(t)X(t) as L′Q =L Q(I2q ?L P)O2q.Calculate the structure matrix of E(t +1)X(t +1)= LE(t)X(t) as L = L′Q ?L P.

    The following two propositions provide the method of calculating attractors and the transient time for deterministic mix-valued logical networks.

    Proposition 3 [7]

    (1)For a mix-valued logical network,the number of cycles of length u,indicated by Au,is inductively determined by

    where P(u)represents the set of u’s proper factors.Fixed points stand for the cycles of length1,and Ae expresses the number of fixed points.Attractors are composed of fixed points and cycles.

    Proposition 4 [7]The transient time of a mix-valued logical network is indicated by

    where u represents the number of all possible L.

    BecauseLin our model is a probabilistic matrix,we cannot directly use the above two propositions.If we directly substituteLinto the above two propositions to calculate attractors and the transient time,there are two places that will not work properly,so we give the following two assumptions to approximate the probabilistic events as deterministic,thus we can get attractors and the transient time properly.

    Assumption 1 When the probability of an event is greater than a given valuep,the event is an inevitable event.

    Assumption 2 When the norm of the difference between two probability matrices is less than a given valuee, the two probability matrices are regarded as the same.

    Remark 1There are many kinds of norms.For any norm,ereflects the degree of neglect of low probability events.In practice,wecanchoosearelativelylowe,suchas0.01,0.001.

    According to the probabilistic mix-valued logical network(19) and Assumption 1, we defineM(k)as follows.Figure out all elements greater thanpin matrixLk.For each of these elements,we denote it as(Lk)s,t.Let Colt(Lk)=.We denoteLkafter these operations asM(k).

    In accordance with the above approximation,we give the following definitions for attractors and the transient time of the probabilistic mix-valued logical network(19).

    Definition 3 Under Assumptions 1 and 2, attractors which are composed of fixed points and cycles for the probabilistic mix-valued logical network(19)are defined as follows:

    (1) IfM(1)Y0=Y0,Y0∈Δ2q·3n,thenY0is a fixed point.

    (2) IfM(u)Y0=Y0andanytwoelementsinset{Y0,M(1)Y0,...,M(u-1)Y0} are distinct, then {Y0,M(1)Y0,...,M(u)Y0}is a cycle with lengthu.

    Denote the limit set asΩ,which consists of all attractors.

    Definition 4 Under Assumption 1 and 2,the transient time is the smallestksatisfying that for anyY0∈Δ2q·3n,M(k)Y0∈Ω.

    Thedefinitionsoftheabovetwoconceptsfordeterministic networks can refer to[7].The differences between the definitions in probabilistic networks and deterministic networks are the descriptions about the inevitable event and matrix equality.The differences are the reason why Propositions 1 and 2 cannot be used on the probabilistic matrixLproperly.SowhenweapplyPropositions1and2onL,weshoulddothe following two approximations.We should replaceLkwithM(k),that is to say,the relatively high probability events in the probabilistic network should be approximately regarded as inevitable events.We should replaceA=Bwith that the norm ofA-Bis less thane, that is to say, the relatively low probability events in the probabilistic network should be approximately regarded as zero probability events.

    Then we can obtain all attractors in the probabilistic mixvalued logical network,that is,final spreading equilibria of the SIR epidemic dynamics,where an equilibrium means that both individual state and network topology be stationary or change periodically.Meanwhile,we can obtain the transient time of the probabilistic mix-valued logical network,that is,the shortest time for all possible initial profiles to evolve to the final spreading equilibria of the SIR epidemic dynamics.The detailed calculation process is in Algorithm 2.

    for each integer i ∈[1,r]do Let Z be the first matrix in cell LL, and delete it from the cell LL.for each integer j ∈[1,|LL|]do if the norm of Z -LL{j}is less than e then The transient time is i.Break.end if end for end for

    Remark 2The computational complexity of any algorithm based on the STP of matrices is exponential[33].However,it is worth pointing out that most of the elements ofLin Eq.(18)are zeros,so it does not require a lot of storage space in the computer and the calculation speed is relatively fast.

    Example 1There are three retailers in the market,and trade may occur between them.If some retailers are infected by an epidemic,others are likely to adjust their trade relations to avoid infection.In addition,retailers who suffer from this epidemic will develop immunity after being cured or die from the epidemic.If a retailer is cured or dead,he or she will not be infected again.

    The above epidemic can be modeled as a SIRED-PDN,whereN= {1,2,3}.Next, we give the parameters in this example.In each period, each susceptible retailer is infected by each of his infected neighbors with the probabilityβ= 0.5, each infected retailer is cured or dead from the epidemic with the probabilityα= 0.6, becoming removed.Each SI connection breaks with the probabilityw= 0.4.When it breaks,the susceptible retailer in this SI will randomly establish a new connection with a susceptible or removed retailer who do not have a social connection with this susceptible retailer, if such an individual exists.Every susceptible individual breaks at most one connection in each period to avoid repeated connections.When the probability of an event is greater than a given valuep=0.78,the event is an inevitable event.When 2-norm of two probability matrices is less than a given valuee=0.001,the two probability matrices are regarded as the same.

    whereL∈Υ216×216.

    Through Algorithm 2,all final spreading equilibria and the transient time can be obtained.According to the calculation results,there are 64 final spreading equilibria,that is,whenE(t)X(t)takes these 64 values,the network will no longer change.In each final spreading equilibrium,three retailers’states areδ33orδ23,that is,RorS.This is in line with common sense.Because only when there is no infected retailer in network, the network will no longer change.According to the calculation results,the transient time is 10,which means that any initial network will evolve to an spreading equilibrium after at most 10 times of evolution,and will not change any more,as in Fig.1.

    5 Conclusions

    This paper gave a formal susceptible-infected-removed epidemic dynamic model over probabilistic dynamic networks(SIRED-PDN),then the algebraic form for the dynamics of individual states and network topologies was given using the STP.SIRED-PDN can be regarded as a probabilistic mixvalued logical network.When the probability of an event is greater than a given value, the event is considered as an inevitable event in this paper.Then all possible final spreading equilibria and the shortest time for all possible initial epidemic state and network topology profiles to evolve to the final spreading equilibria can be obtained.Two algorithms were given to show the detailed calculation process and an example was provided to verify the validity of our results.In conclusion,this paper provided a method for mathematically analyzing SIR epidemics whose spreading networks are dynamic,rather than using computer simulation and statistics methods.In the future,we would like to apply the semi-tensor product of matrices to more types of epidemics.

    Fig.1 No matter how three retailers are connected and what three retailers’states are,every retailer’s state will evolve into susceptible or removed and no longer change after at most 10 times of evolution

    Declarations

    Conflict of interest The authors declare that there is no conflict of financial or non-financial interests that are directly or indirectly related to the publication of this paper.

    日日干狠狠操夜夜爽| 美女午夜性视频免费| 在线观看一区二区三区| 国产精品久久久久久人妻精品电影| 真人一进一出gif抽搐免费| 色综合欧美亚洲国产小说| 亚洲欧美日韩高清在线视频| 久久国产精品影院| 精华霜和精华液先用哪个| 国产成年人精品一区二区| 色吧在线观看| 国产高清视频在线观看网站| 国产精品一及| 91字幕亚洲| 亚洲五月天丁香| tocl精华| 日韩高清综合在线| 麻豆成人午夜福利视频| 特大巨黑吊av在线直播| 亚洲欧美日韩高清在线视频| 国产伦精品一区二区三区四那| 日日夜夜操网爽| 国产亚洲精品一区二区www| 中文字幕av在线有码专区| 给我免费播放毛片高清在线观看| 99久久无色码亚洲精品果冻| 久久性视频一级片| 午夜精品久久久久久毛片777| 免费在线观看亚洲国产| 中出人妻视频一区二区| 最近最新中文字幕大全电影3| 成人欧美大片| 日韩国内少妇激情av| 亚洲专区国产一区二区| 变态另类成人亚洲欧美熟女| 日韩免费av在线播放| 村上凉子中文字幕在线| 国产一区在线观看成人免费| 亚洲国产精品成人综合色| www国产在线视频色| 国产激情偷乱视频一区二区| 亚洲av成人不卡在线观看播放网| 国产三级黄色录像| 在线看三级毛片| 看片在线看免费视频| 精品电影一区二区在线| 国产精品女同一区二区软件 | 精品国内亚洲2022精品成人| 成人av一区二区三区在线看| 男女床上黄色一级片免费看| 欧美成狂野欧美在线观看| 久久午夜综合久久蜜桃| 午夜福利在线观看免费完整高清在 | 俺也久久电影网| 欧美国产日韩亚洲一区| 动漫黄色视频在线观看| 美女黄网站色视频| 成人性生交大片免费视频hd| 国产伦精品一区二区三区四那| 国内少妇人妻偷人精品xxx网站 | 欧美乱码精品一区二区三区| 色在线成人网| 国产黄色小视频在线观看| 国产亚洲欧美98| 99re在线观看精品视频| 欧美在线一区亚洲| www.精华液| 网址你懂的国产日韩在线| 一区福利在线观看| 国产亚洲av嫩草精品影院| 观看免费一级毛片| 欧美一区二区精品小视频在线| 国产亚洲欧美在线一区二区| 桃色一区二区三区在线观看| 成年版毛片免费区| 亚洲国产欧洲综合997久久,| 久久久久性生活片| 国内精品一区二区在线观看| 国产91精品成人一区二区三区| 久久久久国内视频| 国产探花在线观看一区二区| 日本五十路高清| 亚洲av成人av| 国产69精品久久久久777片 | 真人一进一出gif抽搐免费| 啦啦啦观看免费观看视频高清| 1000部很黄的大片| 免费观看人在逋| 精品日产1卡2卡| 亚洲av五月六月丁香网| 久久这里只有精品中国| 欧美色视频一区免费| 99精品在免费线老司机午夜| 午夜视频精品福利| 免费观看人在逋| 亚洲第一欧美日韩一区二区三区| 一二三四在线观看免费中文在| 丰满的人妻完整版| 欧美色视频一区免费| 精品久久久久久久人妻蜜臀av| 亚洲av成人不卡在线观看播放网| cao死你这个sao货| 一级毛片女人18水好多| 久久人人精品亚洲av| 亚洲av第一区精品v没综合| 亚洲av电影不卡..在线观看| 午夜福利在线观看免费完整高清在 | 两个人的视频大全免费| 亚洲av日韩精品久久久久久密| 很黄的视频免费| 特级一级黄色大片| 丰满的人妻完整版| 国产成人一区二区三区免费视频网站| 网址你懂的国产日韩在线| 宅男免费午夜| 亚洲国产色片| 亚洲中文日韩欧美视频| 午夜福利欧美成人| 亚洲欧美日韩高清专用| 香蕉久久夜色| 国产成人系列免费观看| 毛片女人毛片| 国产探花在线观看一区二区| 欧美在线黄色| 一二三四社区在线视频社区8| 免费电影在线观看免费观看| 国产人伦9x9x在线观看| 不卡av一区二区三区| ponron亚洲| 色综合亚洲欧美另类图片| 亚洲国产精品成人综合色| 国产亚洲欧美98| 国产亚洲精品一区二区www| 亚洲 国产 在线| 欧美黄色片欧美黄色片| 国产亚洲精品久久久com| 亚洲国产精品久久男人天堂| 欧美日韩瑟瑟在线播放| 亚洲美女黄片视频| 国产91精品成人一区二区三区| 免费大片18禁| 丝袜人妻中文字幕| 国产成人av教育| 久久国产精品人妻蜜桃| 国产精品一区二区三区四区免费观看 | cao死你这个sao货| 欧美色欧美亚洲另类二区| 国产精品一区二区免费欧美| 欧美激情久久久久久爽电影| 少妇人妻一区二区三区视频| 琪琪午夜伦伦电影理论片6080| 给我免费播放毛片高清在线观看| 搞女人的毛片| 床上黄色一级片| 亚洲一区高清亚洲精品| 精品国产亚洲在线| 18禁美女被吸乳视频| 亚洲第一电影网av| 日本五十路高清| 欧美黑人巨大hd| 亚洲欧美日韩高清在线视频| 色噜噜av男人的天堂激情| 男插女下体视频免费在线播放| 看片在线看免费视频| 97人妻精品一区二区三区麻豆| 欧美黑人巨大hd| 国产探花在线观看一区二区| av国产免费在线观看| 俺也久久电影网| 色综合婷婷激情| 精品国产三级普通话版| 国产成人一区二区三区免费视频网站| 麻豆成人av在线观看| 亚洲国产欧美人成| 免费看日本二区| 中文亚洲av片在线观看爽| 琪琪午夜伦伦电影理论片6080| 婷婷丁香在线五月| 伊人久久大香线蕉亚洲五| 国产成人精品无人区| 亚洲av成人精品一区久久| 欧美又色又爽又黄视频| 男插女下体视频免费在线播放| 亚洲av成人一区二区三| 午夜免费观看网址| 日本撒尿小便嘘嘘汇集6| 国产毛片a区久久久久| 岛国视频午夜一区免费看| 中文字幕精品亚洲无线码一区| 757午夜福利合集在线观看| 久久久久久久久久黄片| 欧美成人免费av一区二区三区| 在线观看免费视频日本深夜| 免费大片18禁| 窝窝影院91人妻| 日韩欧美精品v在线| 一边摸一边抽搐一进一小说| 一本综合久久免费| 国产精品久久久av美女十八| 国产精品 国内视频| 日韩大尺度精品在线看网址| www日本黄色视频网| 俺也久久电影网| 韩国av一区二区三区四区| 久久久成人免费电影| 久久性视频一级片| 精品福利观看| 国产黄a三级三级三级人| 色av中文字幕| 大型黄色视频在线免费观看| 一边摸一边抽搐一进一小说| 国产熟女xx| 午夜免费观看网址| 色av中文字幕| 女人高潮潮喷娇喘18禁视频| 十八禁人妻一区二区| 欧美日本视频| 88av欧美| 国产精品永久免费网站| 国产三级在线视频| 欧美日韩福利视频一区二区| 九九在线视频观看精品| 成在线人永久免费视频| 美女被艹到高潮喷水动态| 国内揄拍国产精品人妻在线| 亚洲成人久久爱视频| 亚洲国产日韩欧美精品在线观看 | 日韩欧美一区二区三区在线观看| 极品教师在线免费播放| 亚洲国产精品久久男人天堂| 久久国产精品影院| 美女高潮喷水抽搐中文字幕| 可以在线观看的亚洲视频| 亚洲午夜理论影院| 少妇人妻一区二区三区视频| 免费搜索国产男女视频| 亚洲av成人精品一区久久| 欧美又色又爽又黄视频| av在线天堂中文字幕| 欧美一级毛片孕妇| 欧美不卡视频在线免费观看| 国产精品一区二区三区四区久久| 亚洲人成伊人成综合网2020| 免费在线观看视频国产中文字幕亚洲| 国内揄拍国产精品人妻在线| 香蕉国产在线看| 亚洲在线自拍视频| 两个人的视频大全免费| 在线观看美女被高潮喷水网站 | 国产毛片a区久久久久| 国产精品久久久人人做人人爽| 观看美女的网站| 午夜激情福利司机影院| 国产成人啪精品午夜网站| 欧美激情久久久久久爽电影| 午夜福利18| 欧美成人性av电影在线观看| 蜜桃久久精品国产亚洲av| 国产精品99久久99久久久不卡| www日本黄色视频网| 日本a在线网址| 校园春色视频在线观看| 亚洲自偷自拍图片 自拍| 国产又色又爽无遮挡免费看| 欧美成人一区二区免费高清观看 | 99re在线观看精品视频| 亚洲精品中文字幕一二三四区| 色综合欧美亚洲国产小说| 亚洲色图av天堂| 亚洲,欧美精品.| 亚洲成人久久爱视频| 在线观看舔阴道视频| 88av欧美| 国产又黄又爽又无遮挡在线| 亚洲美女视频黄频| 欧美另类亚洲清纯唯美| 无遮挡黄片免费观看| 熟女人妻精品中文字幕| 成人av一区二区三区在线看| 男人和女人高潮做爰伦理| 亚洲自偷自拍图片 自拍| 国产精品日韩av在线免费观看| 中文字幕最新亚洲高清| 热99在线观看视频| 欧美日韩亚洲国产一区二区在线观看| 成人三级黄色视频| x7x7x7水蜜桃| 日韩欧美国产一区二区入口| 午夜福利视频1000在线观看| 午夜两性在线视频| 亚洲黑人精品在线| 搞女人的毛片| 99国产综合亚洲精品| 99热精品在线国产| 美女高潮喷水抽搐中文字幕| 伦理电影免费视频| 日韩欧美一区二区三区在线观看| 午夜成年电影在线免费观看| 午夜福利欧美成人| 精品久久蜜臀av无| 精品久久久久久,| 国产成人aa在线观看| 中文亚洲av片在线观看爽| 欧美在线一区亚洲| 欧美不卡视频在线免费观看| 国产成人精品无人区| 亚洲av成人一区二区三| 精品久久久久久久毛片微露脸| 亚洲天堂国产精品一区在线| 1024香蕉在线观看| 99久久成人亚洲精品观看| 啦啦啦免费观看视频1| 亚洲成a人片在线一区二区| 12—13女人毛片做爰片一| 十八禁人妻一区二区| 一个人看的www免费观看视频| 精品免费久久久久久久清纯| 99国产精品一区二区三区| 国产精品日韩av在线免费观看| 天堂网av新在线| 18禁国产床啪视频网站| 日韩欧美国产在线观看| 亚洲美女视频黄频| 亚洲国产精品久久男人天堂| 99久久精品热视频| 级片在线观看| 免费电影在线观看免费观看| 伦理电影免费视频| 草草在线视频免费看| 免费看日本二区| 亚洲精品一区av在线观看| 午夜激情福利司机影院| 精品人妻1区二区| 午夜激情欧美在线| 99国产极品粉嫩在线观看| 一级作爱视频免费观看| 每晚都被弄得嗷嗷叫到高潮| 成人av在线播放网站| 动漫黄色视频在线观看| 精品欧美国产一区二区三| 日本成人三级电影网站| 黄片大片在线免费观看| 亚洲中文字幕一区二区三区有码在线看 | 一级毛片女人18水好多| 国产午夜精品久久久久久| 欧美一级a爱片免费观看看| 国产精品一及| 亚洲人成网站高清观看| 欧美黑人欧美精品刺激| 人妻丰满熟妇av一区二区三区| 少妇丰满av| 狂野欧美激情性xxxx| 老熟妇仑乱视频hdxx| 亚洲国产色片| 国产精品综合久久久久久久免费| 国产成人av教育| 大型黄色视频在线免费观看| 午夜激情福利司机影院| 午夜影院日韩av| 欧美极品一区二区三区四区| 亚洲国产看品久久| 久久伊人香网站| 九九久久精品国产亚洲av麻豆 | 免费看a级黄色片| 亚洲成a人片在线一区二区| av中文乱码字幕在线| 亚洲欧美激情综合另类| 日韩欧美精品v在线| 国产精品亚洲av一区麻豆| av天堂在线播放| 日本撒尿小便嘘嘘汇集6| 女人高潮潮喷娇喘18禁视频| 精品久久蜜臀av无| 久久亚洲精品不卡| 中文在线观看免费www的网站| 国产欧美日韩一区二区三| 级片在线观看| www.999成人在线观看| 99热这里只有是精品50| 国产成人福利小说| 波多野结衣巨乳人妻| 久久久国产精品麻豆| 亚洲午夜理论影院| 日本a在线网址| 成人国产综合亚洲| 国产黄色小视频在线观看| 免费看光身美女| 国产成人精品久久二区二区91| 婷婷亚洲欧美| 18禁裸乳无遮挡免费网站照片| 亚洲中文字幕日韩| 午夜精品久久久久久毛片777| 老熟妇仑乱视频hdxx| 99久久国产精品久久久| 精品电影一区二区在线| 这个男人来自地球电影免费观看| 亚洲av成人一区二区三| АⅤ资源中文在线天堂| 国产又黄又爽又无遮挡在线| 国产av不卡久久| 亚洲av中文字字幕乱码综合| 国产精品精品国产色婷婷| 国产亚洲精品一区二区www| 日本免费a在线| 一个人看视频在线观看www免费 | 欧美国产日韩亚洲一区| 岛国视频午夜一区免费看| 一级毛片女人18水好多| 天天添夜夜摸| 亚洲欧美日韩东京热| 亚洲欧美日韩卡通动漫| 99视频精品全部免费 在线 | 久久国产乱子伦精品免费另类| 中出人妻视频一区二区| 丰满的人妻完整版| 看免费av毛片| 嫩草影院精品99| 99国产精品一区二区三区| 免费人成视频x8x8入口观看| 国产精品久久久久久久电影 | 99热精品在线国产| 国产精品自产拍在线观看55亚洲| 老司机深夜福利视频在线观看| 91在线精品国自产拍蜜月 | 国产蜜桃级精品一区二区三区| 久久久久精品国产欧美久久久| 亚洲精品色激情综合| 亚洲 欧美一区二区三区| 九九热线精品视视频播放| 国产熟女xx| 国产成人精品久久二区二区91| 在线观看66精品国产| 日本一二三区视频观看| www.自偷自拍.com| 狂野欧美激情性xxxx| 国产高清激情床上av| 久久午夜综合久久蜜桃| 久久久久久国产a免费观看| 中文资源天堂在线| 夜夜爽天天搞| 日本黄色视频三级网站网址| 99久久国产精品久久久| www日本黄色视频网| 99久久成人亚洲精品观看| 天堂动漫精品| 国产亚洲精品av在线| 国产免费av片在线观看野外av| 欧美日韩亚洲国产一区二区在线观看| 亚洲,欧美精品.| 丁香六月欧美| 国产伦人伦偷精品视频| 女同久久另类99精品国产91| 久99久视频精品免费| 女人高潮潮喷娇喘18禁视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲av免费在线观看| 99久久精品一区二区三区| 免费看美女性在线毛片视频| 在线观看66精品国产| 真人一进一出gif抽搐免费| 久久久久亚洲av毛片大全| 99久久综合精品五月天人人| 亚洲av美国av| 久久精品国产综合久久久| 日日干狠狠操夜夜爽| 国产亚洲精品久久久久久毛片| 欧美色视频一区免费| 亚洲精品一区av在线观看| 国产精品久久电影中文字幕| 老汉色av国产亚洲站长工具| 国产精品99久久久久久久久| www.www免费av| 午夜福利高清视频| 免费看日本二区| 亚洲激情在线av| 日日夜夜操网爽| 黄频高清免费视频| 亚洲 欧美 日韩 在线 免费| 欧美色欧美亚洲另类二区| 一区福利在线观看| 啦啦啦韩国在线观看视频| 精品国产乱码久久久久久男人| 老司机在亚洲福利影院| 欧美色视频一区免费| 国产野战对白在线观看| 亚洲天堂国产精品一区在线| 午夜福利免费观看在线| 欧美日韩精品网址| 久99久视频精品免费| 丁香欧美五月| 国产高清三级在线| 久久中文字幕人妻熟女| 欧美日韩综合久久久久久 | 午夜福利在线观看免费完整高清在 | 欧美黄色片欧美黄色片| 欧美乱码精品一区二区三区| 麻豆av在线久日| 999久久久国产精品视频| 又爽又黄无遮挡网站| 一进一出好大好爽视频| 窝窝影院91人妻| 欧美成人性av电影在线观看| 老汉色∧v一级毛片| 免费在线观看亚洲国产| 精品国产美女av久久久久小说| 国产伦精品一区二区三区四那| 狠狠狠狠99中文字幕| 亚洲中文字幕日韩| xxxwww97欧美| 丰满的人妻完整版| 色综合婷婷激情| 亚洲精华国产精华精| 999久久久国产精品视频| 色av中文字幕| 国产黄a三级三级三级人| 成人高潮视频无遮挡免费网站| 久久久久九九精品影院| 国产野战对白在线观看| 九色国产91popny在线| 99国产综合亚洲精品| 国产精品亚洲一级av第二区| 免费在线观看成人毛片| 久久精品国产清高在天天线| 国产亚洲精品av在线| 欧美成人一区二区免费高清观看 | 国产精品久久电影中文字幕| 国产一区二区激情短视频| 亚洲午夜精品一区,二区,三区| 一级作爱视频免费观看| 男人舔女人下体高潮全视频| 99久久精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 亚洲成人久久性| 婷婷丁香在线五月| 变态另类丝袜制服| 亚洲av五月六月丁香网| 亚洲人与动物交配视频| 国产精品久久久人人做人人爽| 在线国产一区二区在线| www.www免费av| 最好的美女福利视频网| 久久伊人香网站| 午夜福利免费观看在线| 精品不卡国产一区二区三区| 99久久精品国产亚洲精品| 18禁国产床啪视频网站| 久久精品亚洲精品国产色婷小说| 成年人黄色毛片网站| 丁香欧美五月| 国产精品电影一区二区三区| 91久久精品国产一区二区成人 | 国产一区在线观看成人免费| 一级毛片精品| 天天躁日日操中文字幕| 神马国产精品三级电影在线观看| 国产成人影院久久av| 亚洲精品一区av在线观看| 两个人看的免费小视频| 国内毛片毛片毛片毛片毛片| 日本黄色视频三级网站网址| 久久久久国产一级毛片高清牌| 十八禁网站免费在线| 国产精品国产高清国产av| 在线观看免费午夜福利视频| 国产蜜桃级精品一区二区三区| 亚洲午夜理论影院| 禁无遮挡网站| www日本黄色视频网| 国产伦精品一区二区三区四那| 最近最新免费中文字幕在线| 久久久久亚洲av毛片大全| 国产aⅴ精品一区二区三区波| 我要搜黄色片| 日韩欧美 国产精品| 国产久久久一区二区三区| 久久久国产精品麻豆| 亚洲人成网站在线播放欧美日韩| 夜夜夜夜夜久久久久| 天堂动漫精品| h日本视频在线播放| 99久久精品国产亚洲精品| 日本精品一区二区三区蜜桃| 亚洲av五月六月丁香网| 老司机午夜十八禁免费视频| 欧美黑人欧美精品刺激| 激情在线观看视频在线高清| 国内精品久久久久久久电影| 深夜精品福利| 婷婷亚洲欧美| 欧美色欧美亚洲另类二区| 深夜精品福利| 白带黄色成豆腐渣| 免费在线观看亚洲国产| 亚洲国产欧洲综合997久久,| 精品福利观看| 美女高潮的动态| 日韩三级视频一区二区三区| 成年版毛片免费区| av片东京热男人的天堂| 国产欧美日韩精品亚洲av| 婷婷精品国产亚洲av| 国产亚洲欧美98| 变态另类丝袜制服| 黑人巨大精品欧美一区二区mp4| 欧美黄色淫秽网站| 国产一区二区在线av高清观看| 国产毛片a区久久久久| 亚洲欧美激情综合另类| 亚洲av成人av| 变态另类成人亚洲欧美熟女| 少妇的丰满在线观看| 亚洲精品在线美女| 老司机福利观看| 国产亚洲欧美在线一区二区| 日本黄色视频三级网站网址|