• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Algebraic form and analysis of SIR epidemic dynamics over probabilistic dynamic networks

    2023-12-01 09:51:08HongxingYuanZengqiangChenZhipengZhangRuiZhuZhongxinLiu
    Control Theory and Technology 2023年4期

    Hongxing Yuan·Zengqiang Chen·Zhipeng Zhang·Rui Zhu·Zhongxin Liu

    Abstract The outbreak of corona virus disease 2019 has profoundly affected people’s way of life.It is increasingly necessary to investigate epidemics over social networks.This paper studies susceptible-infected-removed(SIR)epidemics via the semitensor product.First,a formal susceptible-infected-removed epidemic dynamic model over probabilistic dynamic networks(SIRED-PDN)is given.Based on an evolutionary rule,the algebraic form for the dynamics of individual states and network topologies is given,respectively.Second,the SIRED-PDN can be described by a probabilistic mix-valued logical network.After providing an algorithm,all possible final spreading equilibria can be obtained for any given initial epidemic state and network topology by seeking attractors of the network.And the shortest time for all possible initial epidemic state and network topology profiles to evolve to the final spreading equilibria can be obtained by seeking the transient time of the network.Finally,an illustrative example is given to show the effectiveness of our model.

    Keywords SIR epidemic·Probabilistic dynamic networks·Final spreading equilibria·Semi-tensor product of matrices·Algebraic form

    1 Introduction

    The outbreak of corona virus disease 2019 (COVID-19)has profoundly affected people’s way of life.In fact, every outbreak of epidemics has seriously affected people’s production, life and even lives.Therefore, people have been studying epidemics since ancient times.The classical differential equation epidemic models are presented to describe the spreading process of the epidemic, analyze the number of infected people and explore means to stop the spread of epidemic[1,2].However,these classical models do not take the evolution of spreading networks into account, that is,spreading networks of these models are static.

    In real life, if a susceptible individual realize that their neighbors are infected, he or she is likely to disconnect from these neighbors and establish neighbor relationships with other susceptible individuals rather than infected individuals.That is to say, with the evolution of an epidemic,spreading network is always dynamic.Therefore, it is very practical and necessary to study epidemics whose spreading networks are dynamic.Most scholars use computer simulation and statistics[3–6]to study these epidemics.Recently,[7] has put forward a new type of matrix product called the semi-tensor product(STP)of matrices which has shown its superiority in many fields,including finite automata [8–10],games[11–13],networked evolutionary games[14–16],logical networks [17–25], etc.Logical networks are classified as deterministic and probabilistic [7].So we define that a dynamic network is deterministic,if its every network is deterministic.A dynamic network is probabilistic, if it contains a probabilistic network.If not specified, dynamic networks refer to deterministic dynamic networks.Based on theSTP,Guoetal.[26,27]establishedasusceptible-infectedsusceptible epidemic dynamic model over dynamic networks(SISED-DN), providing a method for mathematically analyzing epidemics with deterministic dynamic networks.In SISED-DN,the spreading networks are deterministic,rather than probabilistic, so probabilistic events in the spread of epidemics cannot be fully described.

    Compared to the SIS epidemics model, the SIR epidemics model has a wider range of applications and has more research value [28–30].For example, the outbreak of COVID-19 at the end of 2019 can be analyzed by establishing a SIR epidemic dynamic model.That is because for the epidemic with highly infectious,infected individuals are more likely to become immune or dead,rather than becoming susceptible again.To our knowledge,most of the research results on SIR epidemics whose spreading networks are dynamic are obtained by computer simulation[31]and mean-field method[3,32].The computer simulation method can not fully study the probabilistic events in the spread of epidemics, and it is difficult to find the shortest time and all possible final spreading equilibria, which are key global information in the analysis of epidemics.The mean-field method can only reflect the average trend of the spread of epidemics.So we would like to solve the above problems by using the semitensor product of matrices.

    Motivated by the above, we use the STP to establish a susceptible-infected-removed epidemic dynamic model over probabilistic dynamic networks(SIRED-PDN)which can be described by probabilistic mix-valued logical networks.The number of each node’s possible states is finite.The main contributions of this paper are as follows:

    ? A formal SIRED-PDN is provided and the algebraic form for the dynamics of individual states and network topologies is given,respectively.

    ? All possible final spreading equilibria and the shortest time for all possible initial epidemic state and network topology profiles to evolve to the final spreading equilibria can be obtained by the algorithm given in this paper.

    ? An illustrative example is given to show the effectiveness of our model.One can check the result of the example with the help of MATLAB toolbox.

    The rest of this paper is arranged as follows.Section2 introducessomepreliminariesabouttheSTP.Section3establishes the algebraic form of the SIRED-PDN.Section4 gives two algorithms and analyzes the SIRED-PDN by calculating the final spreading equilibria and the shortest time.An illustrative example is also given in Sect.4.Section5 gives a brief conclusion.

    2 Preliminaries

    2.1 Notations

    2.2 Semi-tensor product of matrices

    In this section, we introduce some necessary preliminaries about the semi-tensor product.One can refer to[7].

    Definition 1 [7] LetY∈Mu×v,Z∈Mk×t, andc=lcm(v,k) (the least common multiple ofvandk).Define the semi-tensor product(STP)ofYandZas

    where“?”is Kronecher product.

    Whenv=k,Y?Z=Y Z,so we will omit“?”hereafter.

    Proposition 1 [7]

    (1)For any Y∈Mu×1,A∈Mk×t,we have

    (2)Let Y∈Mu×1and Z∈Mv×1.Then

    where W[u,v]∈Muv×uv denotes the swap matrix,

    (3)Assume Y∈Δu,then we get

    where

    stands for the order reducing matrix.(4)For any Y∈Δu,Z∈Δv,we have

    whereis the rear(front)deleting operator.

    (5)Let yi∈Δu,i= 1,2,...,n and y=,then we get

    where

    Definition 2 [7] Define the Khatri-Rao product ofA∈Ma×candB∈Mb×cas

    Proposition 2 [7]

    (1)Assume g:Dnu→Du is a u-valued logical function which is represented by

    Identify i~δiu,i= 1,2,...,u.Then there exists a unique logical matrix Mg∈Lu×un which we call the structure matrix of g.The algebraic form of(7)is

    where y,xi∈Δu,i=1,...,n.

    (2)If in item(1)Δu is changed to Υu,the result remains true except that the structure matrix Mg∈Lu×un in(8)is changed to a Mg∈Υu×un.

    3 Algebraic form of SIR epidemic dynamics over probabilistic dynamic networks

    In this section,by using the STP,the algebraic form of SIR epidemic dynamics over probabilistic dynamic networks is given.In Sect.3.1,a formal SIRED-PDN is provided.Sections3.2and3.3calculatethealgebraicformforthedynamics of individual states and network topologies,respectively.

    3.1 SIR epidemic dynamic model over probabilistic dynamic networks

    This part presents a formal SIRED-PDN,it consists of four basic components:

    (1)nindividuals,whose states are susceptible(S),infected(I)orremoved(R).xi(t)∈{S,I,R}standsforthestate of individualiat timet.“xi(t)=2”indicates the state of individualiat timetis “I”, “xi(t) = 1” indicates the state of individualiat timetis“S”and“xi(t)=0”indicates the state of individualiat timetis“R”.N={1,2,...,n}represents the set of individuals.

    (2) An undirected graphG=(N,ε(t))stands for a timevarying network topology,whereε(t) = {(i,j)|i,j∈N,i/=j} represents the social connections between pairs of individuals.The adjacent matrix ofGat timetis

    (3) The dynamics of individual states: In each period,susceptible individuals have a certain probability of becoming infected due to social connections with their infected neighbors.Infected individuals have a certain probability of becoming removed.Removed individuals are dead or have a strong immunity,so they will not become infected any more.

    (4) The dynamics of network topologies:For each SI connection(connection between an infected individual and a susceptible individual),the susceptible individual has a certain probability of breaking this SI connection,and establishing a new connection with a susceptible or removed individual who do not have a social connection with this susceptible individual.Every susceptible individual breaks at most one connection in each period to avoid repeated connections.

    Based on the above,the dynamics of individual states and network topologies is represented by

    whereX(t) =(x1(t),x2(t),...,xn(t)) stands for the state of all individuals at timet,E(t)is defined as(9),PandQare evolutionary functions of individual states and network topologies,respectively.

    3.2 Algebraic form for the dynamics of individual states

    Thispartgivesthealgebraicformforthedynamicsofindividual states via the STP approach.We first present the dynamics of individual states.

    In each period,each susceptible individual is infected by each of its infected neighbors with the probabilityβ, each infected individual is cured or dead from the epidemic with the probabilityα,becoming removed.

    To give the algebraic form of SIR epidemic dynamics over probabilistic dynamic networks,we express individual states and network topologies into vector form.

    For each kind of individual state,we identify the infected stateI~δ13,the susceptible stateS~δ23and the removed stateR~δ33, then {S,I,R} ~Δ3can be obtained.Considering probability of the epidemic, letxi(t+ 1) ∈Υ3.xi(t+1) = [r1,r2,r3]′indicates the state of individualiat timetis infected with probabilityr1,susceptible with probabilityr2,removed with probabilityr3.

    For each kind of network topology, because its adjacent matrixEsatisfiesei j=e jiandeii= 0,Ecan be uniquely determined by itsupper triangular elements.Therefore we can express the network topology as(c1,c2,...,cq) :=(e12,...,e1n,...,ei,i+1,...,ei,n),whereca(i,j)(t)=ei j(t),

    Theorem 1In a formal SIRED-PDN,the algebraic form of individual states’dynamics is calculated by

    ProofFor the given removal probabilityαand infection probabilityβ, when the state of individualiat timetis infected,the state of individualiat timet+1 will become removed with the probabilityαand retain infected with the probability 1-α.When the state of individualiat timetis susceptible, the state of individualiat timet+ 1 will become infected with the probability 1 -(1-β)bi(t)and retain susceptible with the probability(1-β)bi(t), wherebi(t)denotes the number of individuali’s infected neighbors at timet.When the state of individualiat timetis removed,the state of individualiat timet+1 will retain removed with the probability 1.Combining with the vector form of the individual state,we have

    whereT(β) =(1-(1-β)bi(t),(1-β)bi(t),0)′,H(α) =(1-α,0,α)′.

    For the process of removal,we have

    Therefore,Eq.(15)can be converted into

    Multiplying all equations together yields Eq.(13).It is the algebraic form of (10),based on which we can analyze the dynamics of individual states.■

    3.3 Algebraic form for the dynamics of network topologies

    This part gives the algebraic form for the dynamics of network topologies via the STP approach.We first present the dynamics of network topologies.

    In each period, each SI connection (connection between an infected individual and a susceptible individual) breaks with the probabilityw.When it breaks,the susceptible individual in this SI will randomly establish a new connection with a susceptible or removed individual who do not have a social connection with this susceptible individual,if such an individual exists.Every susceptible individual breaks at most one connection in each period to avoid repeated connections.Therefore we can get the following theorem.

    Theorem 2In a formal SIRED-PDN,the algebraic form of network topologies’dynamics is calculated by

    For each connection(iz,jz) in ˉJu,v, we denote the state of(iz,jz)at timet+1 byaz.az=(1,0)′denotes breaking this connection at timet+1,it happens with the probabilityw.If this connection breaks,the increment ofuwill be

    4 Analysis of SIR epidemic dynamics over probabilistic dynamic networks

    Substituting(13)into(17)yields

    Therefore,the algebraic form of(10)and(11)is

    Multiplying the above two equations together yields

    Denote

    whereL=L′Q?L P,Y(t)=E(t)X(t).

    In the previous content,we hadX(t)∈Δ3n,E(t)∈Δ2q,X(t+1)∈Υ3n,E(t+1)∈Υ2q,which may be a little confused,so we give the following explanation.To simplify,we use profile to stand for epidemic state and network topology profileY(t)hereafter.Epidemics are usually studied for prediction purposes,thus the profile at this moment is generally deterministic rather than probabilistic.So we definedX(t) ∈Δ3n,E(t) ∈Δ2q.In practice,the infection probability and removal probability are generally used to describe an epidemic, thus the predicted profile at the next moment is uncertain.So it makes more sense to represent a predicted profile with a probability vector, that is,X(t+1) ∈Υ3n,E(t+1)∈Υ2q.

    Through Eq.(19), we can see that the structure matrixLcontains each deterministic profile’s next moment profile.We can multiply each deterministic profile’s next moment profile by the probability of the deterministic profile occurring,then put them together to get the next moment profile of a probabilistic profile.This operation can be easily accomplished by taking the STP ofLwith this probabilistic profile.Therefore, although Eq.(19) is obtained under the premise that all profiles at this moment are deterministic,it still holds when the profile at this moment is probabilistic according to the meaning of taking the STP.

    To sum up,all information about the SIR epidemic dynamics over probabilistic dynamic networks can be obtained by analysing the probabilistic matrixLwhose detailed calculation process is in Algorithm 1.

    Algorithm 1 The algebraic form of the SIRED-PDN for each integer i ∈[1,n]do Calculate Li =images/BZ_120_1570_919_1584_954.pngMH MT δ33 ?1′2q·3nimages/BZ_120_1862_919_1876_954.pngW[2q·3i-1,3](I2q·3i-1 ?O3)end for Calculate the structure matrix of X(t +1)=L P E(t)X(t) as L P =L1 ?···?Ln.for each integer u ∈[1,2q]do for each integer v ∈[1,3n]do if | ˉJu,v|≥1 then Calculate Col(u-1)2n+v(L Q)=2| ˉJu,v|images/BZ_120_1357_1292_1394_1327.png| ˉJu,v|Π t=1 z=1([w1-w]az)·δu′2q.else Calculate Col(u-1)2n+v(L Q)=δu2q.end if end for end for Calculate the structure matrix of E(t +1)=L′Q E(t)X(t) as L′Q =L Q(I2q ?L P)O2q.Calculate the structure matrix of E(t +1)X(t +1)= LE(t)X(t) as L = L′Q ?L P.

    The following two propositions provide the method of calculating attractors and the transient time for deterministic mix-valued logical networks.

    Proposition 3 [7]

    (1)For a mix-valued logical network,the number of cycles of length u,indicated by Au,is inductively determined by

    where P(u)represents the set of u’s proper factors.Fixed points stand for the cycles of length1,and Ae expresses the number of fixed points.Attractors are composed of fixed points and cycles.

    Proposition 4 [7]The transient time of a mix-valued logical network is indicated by

    where u represents the number of all possible L.

    BecauseLin our model is a probabilistic matrix,we cannot directly use the above two propositions.If we directly substituteLinto the above two propositions to calculate attractors and the transient time,there are two places that will not work properly,so we give the following two assumptions to approximate the probabilistic events as deterministic,thus we can get attractors and the transient time properly.

    Assumption 1 When the probability of an event is greater than a given valuep,the event is an inevitable event.

    Assumption 2 When the norm of the difference between two probability matrices is less than a given valuee, the two probability matrices are regarded as the same.

    Remark 1There are many kinds of norms.For any norm,ereflects the degree of neglect of low probability events.In practice,wecanchoosearelativelylowe,suchas0.01,0.001.

    According to the probabilistic mix-valued logical network(19) and Assumption 1, we defineM(k)as follows.Figure out all elements greater thanpin matrixLk.For each of these elements,we denote it as(Lk)s,t.Let Colt(Lk)=.We denoteLkafter these operations asM(k).

    In accordance with the above approximation,we give the following definitions for attractors and the transient time of the probabilistic mix-valued logical network(19).

    Definition 3 Under Assumptions 1 and 2, attractors which are composed of fixed points and cycles for the probabilistic mix-valued logical network(19)are defined as follows:

    (1) IfM(1)Y0=Y0,Y0∈Δ2q·3n,thenY0is a fixed point.

    (2) IfM(u)Y0=Y0andanytwoelementsinset{Y0,M(1)Y0,...,M(u-1)Y0} are distinct, then {Y0,M(1)Y0,...,M(u)Y0}is a cycle with lengthu.

    Denote the limit set asΩ,which consists of all attractors.

    Definition 4 Under Assumption 1 and 2,the transient time is the smallestksatisfying that for anyY0∈Δ2q·3n,M(k)Y0∈Ω.

    Thedefinitionsoftheabovetwoconceptsfordeterministic networks can refer to[7].The differences between the definitions in probabilistic networks and deterministic networks are the descriptions about the inevitable event and matrix equality.The differences are the reason why Propositions 1 and 2 cannot be used on the probabilistic matrixLproperly.SowhenweapplyPropositions1and2onL,weshoulddothe following two approximations.We should replaceLkwithM(k),that is to say,the relatively high probability events in the probabilistic network should be approximately regarded as inevitable events.We should replaceA=Bwith that the norm ofA-Bis less thane, that is to say, the relatively low probability events in the probabilistic network should be approximately regarded as zero probability events.

    Then we can obtain all attractors in the probabilistic mixvalued logical network,that is,final spreading equilibria of the SIR epidemic dynamics,where an equilibrium means that both individual state and network topology be stationary or change periodically.Meanwhile,we can obtain the transient time of the probabilistic mix-valued logical network,that is,the shortest time for all possible initial profiles to evolve to the final spreading equilibria of the SIR epidemic dynamics.The detailed calculation process is in Algorithm 2.

    for each integer i ∈[1,r]do Let Z be the first matrix in cell LL, and delete it from the cell LL.for each integer j ∈[1,|LL|]do if the norm of Z -LL{j}is less than e then The transient time is i.Break.end if end for end for

    Remark 2The computational complexity of any algorithm based on the STP of matrices is exponential[33].However,it is worth pointing out that most of the elements ofLin Eq.(18)are zeros,so it does not require a lot of storage space in the computer and the calculation speed is relatively fast.

    Example 1There are three retailers in the market,and trade may occur between them.If some retailers are infected by an epidemic,others are likely to adjust their trade relations to avoid infection.In addition,retailers who suffer from this epidemic will develop immunity after being cured or die from the epidemic.If a retailer is cured or dead,he or she will not be infected again.

    The above epidemic can be modeled as a SIRED-PDN,whereN= {1,2,3}.Next, we give the parameters in this example.In each period, each susceptible retailer is infected by each of his infected neighbors with the probabilityβ= 0.5, each infected retailer is cured or dead from the epidemic with the probabilityα= 0.6, becoming removed.Each SI connection breaks with the probabilityw= 0.4.When it breaks,the susceptible retailer in this SI will randomly establish a new connection with a susceptible or removed retailer who do not have a social connection with this susceptible retailer, if such an individual exists.Every susceptible individual breaks at most one connection in each period to avoid repeated connections.When the probability of an event is greater than a given valuep=0.78,the event is an inevitable event.When 2-norm of two probability matrices is less than a given valuee=0.001,the two probability matrices are regarded as the same.

    whereL∈Υ216×216.

    Through Algorithm 2,all final spreading equilibria and the transient time can be obtained.According to the calculation results,there are 64 final spreading equilibria,that is,whenE(t)X(t)takes these 64 values,the network will no longer change.In each final spreading equilibrium,three retailers’states areδ33orδ23,that is,RorS.This is in line with common sense.Because only when there is no infected retailer in network, the network will no longer change.According to the calculation results,the transient time is 10,which means that any initial network will evolve to an spreading equilibrium after at most 10 times of evolution,and will not change any more,as in Fig.1.

    5 Conclusions

    This paper gave a formal susceptible-infected-removed epidemic dynamic model over probabilistic dynamic networks(SIRED-PDN),then the algebraic form for the dynamics of individual states and network topologies was given using the STP.SIRED-PDN can be regarded as a probabilistic mixvalued logical network.When the probability of an event is greater than a given value, the event is considered as an inevitable event in this paper.Then all possible final spreading equilibria and the shortest time for all possible initial epidemic state and network topology profiles to evolve to the final spreading equilibria can be obtained.Two algorithms were given to show the detailed calculation process and an example was provided to verify the validity of our results.In conclusion,this paper provided a method for mathematically analyzing SIR epidemics whose spreading networks are dynamic,rather than using computer simulation and statistics methods.In the future,we would like to apply the semi-tensor product of matrices to more types of epidemics.

    Fig.1 No matter how three retailers are connected and what three retailers’states are,every retailer’s state will evolve into susceptible or removed and no longer change after at most 10 times of evolution

    Declarations

    Conflict of interest The authors declare that there is no conflict of financial or non-financial interests that are directly or indirectly related to the publication of this paper.

    久久久成人免费电影| 91老司机精品| 岛国在线观看网站| 男女下面进入的视频免费午夜| 麻豆国产97在线/欧美| 啪啪无遮挡十八禁网站| 91麻豆av在线| 欧美日韩瑟瑟在线播放| 国产又色又爽无遮挡免费看| 一个人免费在线观看电影 | 日韩中文字幕欧美一区二区| 亚洲av免费在线观看| 国产精品久久视频播放| 日韩欧美在线二视频| 成熟少妇高潮喷水视频| www.熟女人妻精品国产| 最新美女视频免费是黄的| 日本精品一区二区三区蜜桃| 九色成人免费人妻av| 变态另类丝袜制服| 国产黄a三级三级三级人| 亚洲中文av在线| 天堂√8在线中文| 亚洲中文av在线| 观看美女的网站| a级毛片在线看网站| 99热6这里只有精品| 国产高清三级在线| 老汉色∧v一级毛片| 国产精品,欧美在线| 老鸭窝网址在线观看| 欧美成人免费av一区二区三区| 搡老熟女国产l中国老女人| 欧美+亚洲+日韩+国产| 亚洲熟妇熟女久久| 可以在线观看的亚洲视频| 中文字幕久久专区| 三级国产精品欧美在线观看 | 午夜精品一区二区三区免费看| 亚洲国产高清在线一区二区三| 久久精品国产亚洲av香蕉五月| 国产成人精品无人区| 欧美丝袜亚洲另类 | 欧美zozozo另类| 久久精品国产99精品国产亚洲性色| 国产亚洲精品av在线| www.自偷自拍.com| 听说在线观看完整版免费高清| 欧美zozozo另类| 丁香欧美五月| 亚洲成人久久性| 亚洲国产精品999在线| 日本精品一区二区三区蜜桃| 精品国产乱码久久久久久男人| 宅男免费午夜| 午夜福利欧美成人| 久久久成人免费电影| 黄频高清免费视频| 午夜福利成人在线免费观看| 精品不卡国产一区二区三区| 天堂√8在线中文| 国产真实乱freesex| 亚洲欧美日韩高清在线视频| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区三区在线臀色熟女| 夜夜夜夜夜久久久久| netflix在线观看网站| 嫩草影视91久久| 久久久国产精品麻豆| 久久久久性生活片| 欧美精品啪啪一区二区三区| 日韩 欧美 亚洲 中文字幕| 91在线精品国自产拍蜜月 | 久久人妻av系列| 精品国产亚洲在线| 国产亚洲欧美在线一区二区| 美女高潮的动态| 国产午夜精品论理片| 无遮挡黄片免费观看| 制服丝袜大香蕉在线| 国产单亲对白刺激| 岛国在线观看网站| 色吧在线观看| 国产美女午夜福利| 不卡av一区二区三区| av国产免费在线观看| 18禁美女被吸乳视频| 国产单亲对白刺激| 国产亚洲精品久久久久久毛片| 在线观看一区二区三区| 亚洲成av人片免费观看| 欧美日本视频| 热99在线观看视频| 久久性视频一级片| 波多野结衣巨乳人妻| 色老头精品视频在线观看| 村上凉子中文字幕在线| 视频区欧美日本亚洲| 在线观看午夜福利视频| 国产av麻豆久久久久久久| 午夜福利在线在线| 国产精品久久久久久精品电影| 午夜福利免费观看在线| 国产欧美日韩精品亚洲av| 美女被艹到高潮喷水动态| 欧美日本视频| 亚洲真实伦在线观看| 九九热线精品视视频播放| 久久久色成人| 国产综合懂色| 国内精品一区二区在线观看| 97人妻精品一区二区三区麻豆| 成在线人永久免费视频| 在线免费观看不下载黄p国产 | 少妇的丰满在线观看| 怎么达到女性高潮| 欧美激情久久久久久爽电影| 亚洲精品在线美女| 久久国产乱子伦精品免费另类| 亚洲av美国av| 男女之事视频高清在线观看| 亚洲人成电影免费在线| 国产精品 欧美亚洲| 国产亚洲精品综合一区在线观看| 欧美日韩精品网址| 日本五十路高清| 国产av麻豆久久久久久久| 国产熟女xx| 一进一出抽搐gif免费好疼| 日韩成人在线观看一区二区三区| 男人舔女人下体高潮全视频| 亚洲avbb在线观看| svipshipincom国产片| 美女被艹到高潮喷水动态| 三级男女做爰猛烈吃奶摸视频| 日本五十路高清| 亚洲精品美女久久av网站| 亚洲精华国产精华精| 精品久久蜜臀av无| 中文字幕av在线有码专区| 精品国产超薄肉色丝袜足j| 一区福利在线观看| 淫秽高清视频在线观看| 亚洲国产色片| 岛国在线观看网站| 久久久久久久午夜电影| 法律面前人人平等表现在哪些方面| 国产亚洲精品久久久久久毛片| 麻豆国产97在线/欧美| 美女高潮的动态| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品色激情综合| 熟女人妻精品中文字幕| 亚洲色图av天堂| 亚洲av美国av| 老司机福利观看| 精品一区二区三区视频在线观看免费| 国产精品日韩av在线免费观看| 欧美黄色淫秽网站| 老汉色∧v一级毛片| 99国产综合亚洲精品| 色尼玛亚洲综合影院| 国产一区二区三区视频了| 嫩草影院精品99| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲av高清不卡| 视频区欧美日本亚洲| 成熟少妇高潮喷水视频| 12—13女人毛片做爰片一| 午夜亚洲福利在线播放| 最新美女视频免费是黄的| www.自偷自拍.com| 男插女下体视频免费在线播放| 人人妻人人看人人澡| 国产不卡一卡二| 国产亚洲精品久久久com| 少妇的逼水好多| 99re在线观看精品视频| 亚洲成人久久爱视频| 欧美精品啪啪一区二区三区| 欧美一区二区国产精品久久精品| 美女扒开内裤让男人捅视频| 波多野结衣高清无吗| 亚洲国产欧美一区二区综合| 91在线观看av| 天堂√8在线中文| www国产在线视频色| 国产精品久久久久久久电影 | 中亚洲国语对白在线视频| 99精品在免费线老司机午夜| 久久婷婷人人爽人人干人人爱| 亚洲五月婷婷丁香| 在线观看舔阴道视频| 国产免费av片在线观看野外av| 国产美女午夜福利| 亚洲国产高清在线一区二区三| 国产精品精品国产色婷婷| 丰满人妻熟妇乱又伦精品不卡| 999久久久国产精品视频| 日日干狠狠操夜夜爽| 欧美一级a爱片免费观看看| 日本与韩国留学比较| 这个男人来自地球电影免费观看| 国产精品99久久久久久久久| 亚洲精品粉嫩美女一区| 中文在线观看免费www的网站| 国产高潮美女av| 一夜夜www| 黑人欧美特级aaaaaa片| 国产又色又爽无遮挡免费看| 精品无人区乱码1区二区| av福利片在线观看| 中文字幕熟女人妻在线| 99久久成人亚洲精品观看| 嫩草影视91久久| 欧美成人一区二区免费高清观看 | 亚洲aⅴ乱码一区二区在线播放| 人妻丰满熟妇av一区二区三区| 欧美av亚洲av综合av国产av| 国产成人一区二区三区免费视频网站| 成年女人看的毛片在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产欧美日韩精品一区二区| 美女黄网站色视频| 欧美日韩亚洲国产一区二区在线观看| 男女午夜视频在线观看| 国产真实乱freesex| 亚洲av五月六月丁香网| 天天添夜夜摸| 99精品在免费线老司机午夜| 在线免费观看的www视频| 成年女人毛片免费观看观看9| 国内精品美女久久久久久| 亚洲七黄色美女视频| 99精品在免费线老司机午夜| 精品乱码久久久久久99久播| 国产激情久久老熟女| 日韩精品青青久久久久久| 嫩草影院入口| 少妇熟女aⅴ在线视频| 成年女人永久免费观看视频| 午夜久久久久精精品| 色在线成人网| 99久久国产精品久久久| 两个人的视频大全免费| 嫁个100分男人电影在线观看| 国产精品99久久久久久久久| 中文字幕熟女人妻在线| 免费一级毛片在线播放高清视频| 88av欧美| 天堂影院成人在线观看| 久久亚洲精品不卡| 亚洲欧美精品综合久久99| 久久久久久九九精品二区国产| 亚洲国产欧美一区二区综合| 日韩精品中文字幕看吧| 欧美性猛交╳xxx乱大交人| 99热这里只有是精品50| 香蕉av资源在线| 国产97色在线日韩免费| 欧美+亚洲+日韩+国产| 美女cb高潮喷水在线观看 | tocl精华| 亚洲人成网站在线播放欧美日韩| 亚洲国产精品成人综合色| 国产1区2区3区精品| 国产蜜桃级精品一区二区三区| 很黄的视频免费| 身体一侧抽搐| 亚洲五月婷婷丁香| 九九在线视频观看精品| 99久久无色码亚洲精品果冻| 在线十欧美十亚洲十日本专区| 国产精品九九99| 黄色丝袜av网址大全| 91av网一区二区| 熟女人妻精品中文字幕| 12—13女人毛片做爰片一| 国模一区二区三区四区视频 | 午夜福利视频1000在线观看| 免费一级毛片在线播放高清视频| 波多野结衣高清作品| 夜夜夜夜夜久久久久| 久久久久免费精品人妻一区二区| 亚洲自拍偷在线| 国产精品爽爽va在线观看网站| 日韩有码中文字幕| 国产伦在线观看视频一区| 国产精品香港三级国产av潘金莲| 麻豆av在线久日| 国产人伦9x9x在线观看| 两个人的视频大全免费| 亚洲性夜色夜夜综合| 日韩欧美在线二视频| 999久久久精品免费观看国产| 国产亚洲欧美在线一区二区| 首页视频小说图片口味搜索| 白带黄色成豆腐渣| 欧美黄色片欧美黄色片| 午夜激情福利司机影院| 亚洲自偷自拍图片 自拍| 国产私拍福利视频在线观看| 久久久国产成人免费| 欧美日本视频| 九九久久精品国产亚洲av麻豆 | 久久久久久久久中文| 国产精品免费一区二区三区在线| 久久午夜综合久久蜜桃| 国产蜜桃级精品一区二区三区| 99久久综合精品五月天人人| 五月伊人婷婷丁香| 老司机午夜福利在线观看视频| 日韩欧美国产一区二区入口| 狂野欧美白嫩少妇大欣赏| 在线a可以看的网站| 亚洲七黄色美女视频| 欧美日韩国产亚洲二区| 在线观看美女被高潮喷水网站 | 美女 人体艺术 gogo| 全区人妻精品视频| 国产亚洲av嫩草精品影院| 欧美日韩精品网址| 中亚洲国语对白在线视频| 色老头精品视频在线观看| 欧美日韩乱码在线| 特级一级黄色大片| а√天堂www在线а√下载| 好看av亚洲va欧美ⅴa在| 国产精品爽爽va在线观看网站| 国产欧美日韩精品一区二区| 国产亚洲欧美在线一区二区| 中文字幕av在线有码专区| 99精品欧美一区二区三区四区| 国产麻豆成人av免费视频| 在线观看舔阴道视频| 日韩欧美一区二区三区在线观看| 免费在线观看亚洲国产| 最好的美女福利视频网| 亚洲成a人片在线一区二区| 国产三级中文精品| 欧美日韩福利视频一区二区| 亚洲 国产 在线| 亚洲人成电影免费在线| 日韩精品青青久久久久久| 亚洲成人久久爱视频| 免费在线观看影片大全网站| 亚洲成人久久爱视频| 老熟妇仑乱视频hdxx| 国产淫片久久久久久久久 | 夜夜躁狠狠躁天天躁| avwww免费| 精品日产1卡2卡| 久久欧美精品欧美久久欧美| 黄色片一级片一级黄色片| 国产乱人视频| 久久久久性生活片| 在线视频色国产色| 亚洲avbb在线观看| 亚洲美女视频黄频| 午夜成年电影在线免费观看| 99久久精品热视频| 亚洲国产精品久久男人天堂| 18禁国产床啪视频网站| 男女那种视频在线观看| 99在线人妻在线中文字幕| 成人一区二区视频在线观看| 琪琪午夜伦伦电影理论片6080| 丁香六月欧美| 亚洲国产欧美人成| 欧美乱码精品一区二区三区| 我要搜黄色片| 欧美不卡视频在线免费观看| a级毛片在线看网站| 变态另类成人亚洲欧美熟女| 桃红色精品国产亚洲av| 色哟哟哟哟哟哟| 1024手机看黄色片| 两个人的视频大全免费| 午夜激情福利司机影院| 午夜福利18| e午夜精品久久久久久久| 婷婷精品国产亚洲av在线| 久久久久性生活片| 精华霜和精华液先用哪个| 成熟少妇高潮喷水视频| 国产精品久久久久久精品电影| 国产高清videossex| 国产欧美日韩一区二区三| 中文字幕最新亚洲高清| 老汉色av国产亚洲站长工具| 看免费av毛片| 国产精品日韩av在线免费观看| 看片在线看免费视频| 美女高潮喷水抽搐中文字幕| 成人欧美大片| 欧美性猛交╳xxx乱大交人| 成人永久免费在线观看视频| 亚洲黑人精品在线| 夜夜看夜夜爽夜夜摸| 好男人在线观看高清免费视频| 一区二区三区高清视频在线| aaaaa片日本免费| 久久久国产欧美日韩av| 亚洲精品456在线播放app | 成人一区二区视频在线观看| 久久久精品欧美日韩精品| 亚洲专区字幕在线| 色播亚洲综合网| 无限看片的www在线观看| 国产成人精品无人区| 国产精品1区2区在线观看.| 一边摸一边抽搐一进一小说| 黄色 视频免费看| 亚洲成人久久爱视频| 人人妻,人人澡人人爽秒播| 最新在线观看一区二区三区| 国产不卡一卡二| 亚洲第一电影网av| www.999成人在线观看| 99热精品在线国产| 久久中文字幕一级| 成人国产综合亚洲| 99riav亚洲国产免费| 身体一侧抽搐| 国产日本99.免费观看| 午夜影院日韩av| 老司机福利观看| 丰满的人妻完整版| 亚洲欧美日韩高清在线视频| 噜噜噜噜噜久久久久久91| 韩国av一区二区三区四区| 欧美日韩乱码在线| 欧美日韩综合久久久久久 | 变态另类成人亚洲欧美熟女| 好男人在线观看高清免费视频| 大型黄色视频在线免费观看| 成年女人毛片免费观看观看9| 精品国产三级普通话版| 欧美一级a爱片免费观看看| 国产三级黄色录像| 不卡av一区二区三区| 久久天躁狠狠躁夜夜2o2o| 亚洲熟女毛片儿| 亚洲国产色片| 在线视频色国产色| 亚洲天堂国产精品一区在线| 波多野结衣高清作品| 亚洲中文日韩欧美视频| 久久久久久久精品吃奶| 国产午夜福利久久久久久| 99久久国产精品久久久| 亚洲欧美日韩无卡精品| 国产久久久一区二区三区| 88av欧美| 欧美乱码精品一区二区三区| 久久精品亚洲精品国产色婷小说| 搡老妇女老女人老熟妇| 黄色成人免费大全| 天天躁日日操中文字幕| 国产精品国产高清国产av| 精品国产乱码久久久久久男人| 天堂影院成人在线观看| 午夜福利欧美成人| 久久精品国产99精品国产亚洲性色| 好男人电影高清在线观看| 嫁个100分男人电影在线观看| 亚洲av五月六月丁香网| av视频在线观看入口| netflix在线观看网站| 久久精品夜夜夜夜夜久久蜜豆| av女优亚洲男人天堂 | 一边摸一边抽搐一进一小说| 久久午夜综合久久蜜桃| 国产三级中文精品| 桃红色精品国产亚洲av| 免费无遮挡裸体视频| 久久久水蜜桃国产精品网| xxx96com| 国产免费av片在线观看野外av| 婷婷丁香在线五月| 大型黄色视频在线免费观看| 亚洲黑人精品在线| 白带黄色成豆腐渣| 免费观看的影片在线观看| 伊人久久大香线蕉亚洲五| 婷婷丁香在线五月| 中文字幕人妻丝袜一区二区| 香蕉久久夜色| 欧美成人一区二区免费高清观看 | 婷婷丁香在线五月| 中文字幕人妻丝袜一区二区| 欧美乱色亚洲激情| 黄片大片在线免费观看| 午夜免费成人在线视频| 丰满人妻熟妇乱又伦精品不卡| 床上黄色一级片| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久国内视频| www.自偷自拍.com| svipshipincom国产片| 国产午夜精品久久久久久| 欧美乱色亚洲激情| 久久性视频一级片| 日韩欧美精品v在线| 欧美大码av| 中文字幕熟女人妻在线| 日本成人三级电影网站| 18禁黄网站禁片午夜丰满| 一a级毛片在线观看| 淫妇啪啪啪对白视频| 99国产综合亚洲精品| 黄色日韩在线| 18禁黄网站禁片午夜丰满| avwww免费| 日日夜夜操网爽| а√天堂www在线а√下载| 国产午夜福利久久久久久| 首页视频小说图片口味搜索| 亚洲av免费在线观看| 欧美日韩国产亚洲二区| 国产精华一区二区三区| 亚洲乱码一区二区免费版| 国产成人啪精品午夜网站| 国产精品九九99| 亚洲av五月六月丁香网| 国产成人aa在线观看| 亚洲欧美日韩无卡精品| 黄色丝袜av网址大全| 国产精品爽爽va在线观看网站| 网址你懂的国产日韩在线| 可以在线观看的亚洲视频| 久久精品夜夜夜夜夜久久蜜豆| 丁香六月欧美| a级毛片在线看网站| 日韩免费av在线播放| www.精华液| 女生性感内裤真人,穿戴方法视频| 成人国产综合亚洲| 18禁黄网站禁片午夜丰满| 国产精品av视频在线免费观看| 窝窝影院91人妻| 国产精品久久久久久人妻精品电影| 国内精品美女久久久久久| 婷婷丁香在线五月| 国产一区二区激情短视频| 搞女人的毛片| 国产淫片久久久久久久久 | 黄色成人免费大全| 美女 人体艺术 gogo| 亚洲自拍偷在线| 一区二区三区激情视频| АⅤ资源中文在线天堂| 欧美中文日本在线观看视频| 免费看美女性在线毛片视频| 精品一区二区三区四区五区乱码| 熟妇人妻久久中文字幕3abv| 精品乱码久久久久久99久播| 国产97色在线日韩免费| 免费在线观看日本一区| 男人舔女人下体高潮全视频| 岛国在线免费视频观看| 成人精品一区二区免费| 成在线人永久免费视频| 天堂网av新在线| 亚洲av成人不卡在线观看播放网| 亚洲国产欧美人成| 国产精品永久免费网站| 欧美三级亚洲精品| 国产黄色小视频在线观看| 一级毛片女人18水好多| 村上凉子中文字幕在线| 女警被强在线播放| 12—13女人毛片做爰片一| 国模一区二区三区四区视频 | 国产精品精品国产色婷婷| 国产探花在线观看一区二区| 亚洲片人在线观看| 国产日本99.免费观看| 99视频精品全部免费 在线 | netflix在线观看网站| 老汉色av国产亚洲站长工具| 黑人欧美特级aaaaaa片| 色综合亚洲欧美另类图片| 女人被狂操c到高潮| 国产一级毛片七仙女欲春2| xxxwww97欧美| 国产高清激情床上av| 可以在线观看毛片的网站| 国产高清有码在线观看视频| 国产精品综合久久久久久久免费| 91麻豆av在线| 久久久久久国产a免费观看| 国产午夜精品论理片| 亚洲性夜色夜夜综合| 中文字幕最新亚洲高清| 夜夜看夜夜爽夜夜摸| 欧美黄色片欧美黄色片| 国产成人aa在线观看| 999久久久精品免费观看国产| 久久性视频一级片| 老司机在亚洲福利影院| 欧美激情在线99| 亚洲国产欧美网| 国产成年人精品一区二区| 国产成人欧美在线观看| 久久香蕉精品热| 亚洲熟妇熟女久久| 真实男女啪啪啪动态图| 久久精品国产清高在天天线| 少妇的丰满在线观看| 在线视频色国产色| 国产日本99.免费观看| 一进一出抽搐gif免费好疼| 欧美日韩一级在线毛片| 国产极品精品免费视频能看的|