• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synchronization of second-order Kuramoto networks from the perspective of edge dynamics

    2023-12-01 09:51:54LiangWuJiumingZhongHaoyongChen
    Control Theory and Technology 2023年4期

    Liang Wu·Jiuming Zhong·Haoyong Chen

    Abstract This paper presents new synchronization conditions for second-order phase-coupled Kuramoto oscillators in terms of edge dynamics.Two types of network-underlying graphs are studied,the positively weighted and signed graphs,respectively.We apply an edge Laplacian matrix for a positively weighted network to represent the edge connections.The properties of the edge Laplacian matrix are analyzed and incorporated into the proposed conditions.These conditions take account of the dynamics of edge-connected oscillators instead of all oscillator pairs in conventional studies.For a network with positive and negative weights,we represent the network by its spanning tree dynamics,and derive conditions to evaluate the synchronization state of this network.These conditions show that if all edge weights in the spanning tree are positive,and the tree-induced dynamics are in a dominant position over the negative edge dynamics, then this network achieves synchronization.The theoretical findings are validated by numerical examples.

    Keywords Kuramoto oscillator·Signed graph·Synchronization·Edge Laplacian matrix·Spanning tree

    1 Introduction

    The synchronization phenomenon exists in many networked systems across various disciplines.Such a phenomenon occurs when a group of interacting oscillators evolve towards a common target.Among various synchronization patterns,the second-order Kuramoto model has been adopted to provide theoretical insights into the slow synchronization phenomenon observed in certain types of natural and engineering networks, such as special kinds of fireflies [1],Josephson junctions[2],and power grids[3–7].In this type of network,each Kuramoto oscillator is capable of adapting its own frequency, which might prevent the network from being synchronized.

    In general,the synchronization among the phase-coupled Kuramoto oscillators is a result of three interplaying elements, which are the unique dynamics of Kuramoto oscillators,their initial states,and the connection pattern among them.With the consideration of these factors, a great deal of progress has been made to identify synchronization conditions for the second-order Kuramoto network in recent years[8].It is shown that if the coupling strength is strong enough to dominate the non-uniformity of the oscillators’parameters,or/and the oscillators stay close enough to each other,then this network achieves frequency synchronization while the phase differences remain cohesive.In particular, graph theory and control theory provide indispensable analysis methods for deriving quantifiable synchronization conditions.Contraction analysis methods have been used in[3,4,6,9,10]to derive sufficient conditions for a network,whose underlying graph diameter is not greater than two.For a general network topology,energy/Lyapunov functions have been constructed in [4–7, 11] to provide synchronization conditions.In general,contraction-typed conditions are less conservative than energy-function-based conditions.However, they are not applicable to networks with general connectivity.On the other hand,the energy function method has gained increasing attention due to its flexibility in characterizing topology-related synchronization conditions for the second-order Kuramoto network.

    As far as we know,a majority of synchronization conditions were developed via the complete-graph-based energy function methods.These conditions connect the given-graphinduced with the complete-graph-induced phase differences of oscillators by using the graph algebraic connectivity [5,6,11],the lengths of graph paths[11],or the diameter of a graph complement[4,7].Therefore,a natural question to ask is if there exists a way to construct an energy function using only phase differences from edge-connected oscillators.This question was partly answered in the multi-agent consensus research community during recent years[12–14],where the edge dynamics were considered instead of node dynamics.The consensus over edges is referred to as the edge consensus or the edge agreements.A similar methodology was adopted in[15,16]to provide synchronization conditions for the firstorder Kuramoto network.However, the synchronization of the second-order system from the viewpoint of edge dynamics is worth further investigation.

    Besides, a large number of developed synchronization conditions in the aforementioned literature are only applicable to the scenario of positive edge weights.Negative couplings among Kuramoto oscillators have been discovered in social networks and neurons [17, 18].For a power system model,the graph edges represent the transmission lines connecting generators and loads,while the edge weights are the power transmitting capacities [3–5].The edge weights of a power system are supposed to be positive,but they can turn negative when the corresponding transmission lines are capacitive[19],which brings impact on the system stability.Local stability around the synchronized states of a Kuramoto network with negative weights has been studied in[20].Nevertheless,it remains unclear if a signed network can achieve synchronization when oscillators are scattered far from each other,especially in the case of second-order dynamics.

    Inspired by the aforementioned works,this paper applies the state-of-the-art graph techniques to investigate the synchronization of a second-order Kuramoto network on an undirected graph,where the edge weights are allowed to be both positive and negative, i.e., a signed graph.By appropriately designing energy functions,we derive sufficient and explicit conditions to achieve phase cohesiveness for edgeconnected oscillators; and the frequency synchronization among them.The main contributions of this work are mainly twofold.First,for graphs with only positive edge weights,we introduce a new definition of edge Laplacian matrix, based on which we construct a novel edge-induced energy function.A useful relation is proposed to connect the minimum positive eigenvalue of the edge Laplacian matrix with the graph algebraic connectivity, which is essential in deriving synchronization conditions from the proposed energy function.Second, we extend our studies to signed graphs.To derive synchronization conditions for this type of network,we construct an energy function using the information of oscillators’relative angles induced by a spanning tree.We show that when the edge weights of the spanning tree are positively great enough against the negative weights, synchronization is achieved among the oscillators.Numerical examples are given to verify the effectiveness of the presented conditions.

    Notation Let‖·‖and‖·‖∞be the Euclidean and infinity norm,respectively.For symmetric real matricesXandY,means thatX-Yis positive(non-negative)definite.For a symmetric real matrixX,we denote its minimal and maximal eigenvalues asλ(X) andλ(X), respectively.Letσ(X)be the maximal singular value of a matrixX.IfXis a set,then denote|X|as its cardinality.LetIn(On)and 1n(0n)be an identity(null)matrix and a all-one(all-zero)column vector with the dimensionn×nandn×1,respectively.Define a function as sinc(x):=sin(x)/x.

    2 Preliminaries

    A connected and undirected graph is defined byG:=(N,E,W)consisting of a node(vertex)setN,an edge setE?N×N,and an edge weight matrixW:=diag{ai j} ∈R|E|×|E|for all(i,j) ∈E.The edge weightsai jsatisfyai j=a ji/= 0 iff(i,j) ∈E, otherwise,ai j= 0.Here,the weightsai jfor(i,j) ∈Ecan be positive or negative,which represents a signed graph.By associating an arbitrary orientation to the edges,the incidence matrix ofGis denoted byB∈R|N|×|E| with elementsbik= 1 if the nodeiis the source of thekth edge,bik= -1 ifiis the sink of thekth edge,andbik=0 otherwise.

    Next,consider a set of second-order Kuramoto oscillators defined on the graphG,whose dynamics are given by

    whereθi,diandpiare the phase, damping coefficient and naturalfrequencyoftheithoscillator,respectively,andθi j:=θi-θ j.Here,di>0 andpiare constants.Let?:=BTθ∈R|E|×1 be a vector of collecting all the edge-induced phase differences of the Kuramoto oscillators, and defineM:=diag{mi} ∈R|N|×|N|,D:= diag{di} ∈R|N|×|N|,p=[p1,...,p|N|]T∈R|N|×1,andΠ(?) := diag{sinc(θi j)} ∈R|E|×|E|for(i,j) ∈E.Then,we can rewrite the Kuramoto system(1)as the following vector form:

    Without loss of generality, throughout this paper, we assume that the sum of natural frequencies of all Kuramoto oscillators is zero,i.e.,1T|N|p= 0.In addition,we consider that all oscillators are evolving in the Euclidean space instead of ann-torus.The above two points are commonly taken when the Kuramoto system is studied from the viewpoints of control theory and engineering application[3,5,10].Next,we provide the following definitions for the dynamics of the Kuramoto network(2).

    Definition 1 The Kuramoto network (2) is said to be edge cohesive if the phase differences between edge-connected oscillators satisfy|θi j(t)|≤ηfort≥0 and for all(i,j)∈E,whereη∈[0,π).

    Definition 2 The Kuramoto network (2) is said to achieve frequency synchronization if the frequencies of oscillators satisfy

    Definition 1 is also termed phase cohesiveness in some studies[6,9],which can be achieved when the network’s initial configurations satisfy some sufficient conditions.These conditions were derived by taking into account the dynamics of phase differences among all oscillators, which may increase the conservativeness in the cohesive conditions.Following a similar terminology used in the multi-agent consensus research community [12–14], edge cohesiveness is definedheretohighlightthattheaimofthisworkistodevelop conditions in achieving a certain level of boundedness for oscillators with physical connections.Towards this end,the following lemma is introduced to show that edge cohesiveness implies frequency synchronization.

    Lemma 1If the Kuramoto network(2)is edge cohesive,then it achieves frequency synchronization.

    ProofThe proof of Lemma 1 is based on the application of LaSalle’s invariance principle[21].Since the edge cohesiveness is defined in terms of phase difference variables, the first step is to construct a Lyapunov-like function consisting ofθi j,whose time derivative is non-positive.To this end,we denote byBc∈R|N|×|Ec|the incidence matrix of a complete graphGc=(N,Ec),and modify the energy function used in[22,Chapter 5]with respect to the trajectory(BTc θ, ˙θ)of the Kuramoto system(2)as follows:

    To apply LaSalle’s invariance principle,we need to show that there exists a compact positively invariant set (PIS)denoted byDfor the system(2)with respect to the trajectory(BTc θ, ˙θ).A set is said to be a PIS if the initial states of a system are located in this set,then the trajectories will remain in the set[21].As shown in[7,Lemma 3.3],the frequencies of Kuramoto oscillators ˙θiare bounded by

    whereδi jare positive constants satisfyingδi j≥η.Therefore, the PISDfor system (2) can be defined by (4) and(5) asD:= {(BTc θ, ˙θ) ∈ R(|Ec|+|N|)×1| ‖BTc θ‖∞≤max(i,j)∈Ec δi j,‖˙θ‖∞≤maxi∈N ci},which is compact.

    Obviously,the energy functionUis continuously differentiable inD,whose derivative is computed as

    The matrixBcMcBTcin (6) can be viewed as a Laplacian matrix for a complete graph with the edge weights beingai j=mim jfor(i,j)∈Ec,then it holds that

    Using(2)to replace ¨θin the first term in the right-hand-side of(6)and applying(7),we have

    Similarly,for the second term in the right-hand-side of(6),we have

    where the last equality holds due top=0 andB=0.By applying(8)and(9)to(6),one has ˙U=-ms˙θTD˙θ≤0.LetE:={(BTc θ, ˙θ)∈D|˙U(Bcθ, ˙θ)=0}={(BTc θ, ˙θ)∈D|˙θ=0|N|}andMbethelargestinvariantsetinE.Then,by LaSalle’s invariance principle[21],above arguments suffice to conclude that all trajectories(BTc θ, ˙θ)starting inDconverges toMast→+∞,which indicates the achievement of frequency synchronization.This completes the proof.■Remark 1As shown in [22, Chapter 5], a power system model taking the form of (2) on an undirected graph does not exist any complicated behaviors such as limit cycles or chaotic motions.The boundedness of every single oscillator’s phase results in the convergence of the system trajectory to an equilibrium point (frequency synchronization).Via Lemma 1, we show that such boundedness can be defined in terms of the phase differences of edge-connected oscillators,which guarantees frequency synchronization.

    3 Edge-based synchronization conditions for networks with positive edges

    Based on the application of an edge Laplacian matrix,this section presents synchronization conditions for the Kuramoto network (2) with all edges being positively weighted,which is stated in the following assumption.

    Assumption 1 AssumetheunderlyinggraphfortheKuramoto network(2)is connected,and all its edge weights are positive.

    Proposition 1If the phase differences of the Kuramoto oscillators satisfy|θi j| ≤η for all(i.j) ∈E,then the following relation holds:

    ProofThe proof is based on three observations as follows.First, all eigenvalues of a Laplacian matrix with positive edge weights for a connected graph are positive except one being zero.For the Kuramoto network(2),consider a statedependent Laplacian matrix asL(G(?)) :=BWΠ(?)BT.Since |θi j| ≤ηfor all(i.j) ∈E, we have sinc(θi j)>0, which implies thatΠ(?) is positive definite.Then, it holds that 0 =λ1(L(G(?)))<λ2(L(G(?))) ≤··· ≤λ|N|(L(G(?))).

    whereξ∈R|N|×1is the eigenvector with respect to the zero eigenvalue of~L(G(?)).Note thatξis also the eigenvector of~L(G)corresponding to the eigenvalue of zero.

    Finally,for the real and symmetric matrix~L(G(?)),there exists an orthogonal matrixPsuch thatPT~L(G(?))P=Λ:=diag{0,λ2(~L(G(?))),...,λ|N|(~L(G(?))}.Then,one has that

    where the last inequality holds due toΛOandΛλ2~L(G(?))I|N| = diag{0,0,λ3(~L(G(?)) -λ2(~L(G(?)),x···,λ|N|(~L(G(?)) -λ2(~L(G(?))}O.(12) indicates that

    where(11)is applied.This completes the proof.■

    Remark 2A relation similar to (10) can be found in [16].Compared to that of[16],our result is less conservative and is explicitly connected to the graph algebraic connectivityλ2(~L(G))of a scaled graph.

    Remark 3For directed graphs, (10) can be extended to the cases of a directed spanning tree and a directed cycle.By using the properties of the Laplacian matrices for these two types of digraphs from [24, Proposition 1], this can be achieved with a slight modification of the arguments in the proof of Proposition 1.However, (10) does not hold for a general digraph.The main challenge lies in the fact that the directed edge Laplacian matrix after symmetrization is not generally positive semi-definite.This remains further exploration.

    To fulfill the conditions of Lemma 1, one can identify a positively invariant set for a Kuramoto network by using a non-negative energy function as in [4, 5, 7, 10].From the perspective of edge dynamics, we definex:= [?T˙θT]T∈R|E∪N|×1, and construct the following edge-based energy function to analyze the dynamics of the Kuramoto network(2):

    whereαis a constant that will be in the following lemma.

    Lemma 2Define the following two|E∪N|×|E∪N|matrices:

    ProofThe energy function (14) can be written asV(x) =xTH(?)xwith

    Theorem 2Under Assumption 1,if the following conditions are satisfied,

    ProofUsingΠ(?/2)?/2 = sin(?/2), the energy function(14)can be rewritten as the following form:

    Then,the derivative of energy function(20)along the trajectory of the Kuramoto system(2)is

    whereΨ(?) := diag{cos(θi j)} ∈R|E|×|E|for all(i,j) ∈E.After some mathematical manipulations, from (21), we obtain

    Some estimations related to ˙Vare given as follows:

    and

    Then,applying(23),(24)and(10)to the corresponding terms in(22),we have

    which gives the following relation:

    As(19)is satisfied,(27)and the second inequality of(15)imply that the following relation,which holds fort≥0,

    (28) indicates that the Kuramoto network (2) is edge cohesive.Then, by Lemma 1, we conclude that network (2)achieves frequency synchronization.This completes the proof.■

    Remark 4The condition (19) defines a positively invariant set for the Kuramoto network(2)such that its phase differences remain edge cohesive over time.This set is explicitly related to the network information such as the parameters,the initial states of each pair of physically connected oscillators,and the underlying network topology.This information determines the edge dynamics of coupled oscillators.The disadvantage of (19) is that it can not deal with the case of the signed graph,which will be tackled in the next section.

    4 Spanning-tree-based synchronization conditions for networks on signed graphs

    This section presents synchronization conditions for the Kuramoto network(2)on a signed graph from the perspective of a spanning tree.A connected graphGhas at least one spanning treeGT:=(N,ET,WT), which is a sub-graph ofGwith all the nodes connected by|ET|=|N|-1 edges inE.A co-treeGC:=(NC,EC,WC)contains the remaining edges ofGthat are not included in the spanning tree,i.e.,EC:=EETand|EC|=|E|-|N|+1.The following assumption is given regarding a positively weighted spanning tree.

    Assumption 2 Assume the underlying signed graph for the Kuramoto network(2)is connected,and there exists at least one spanning tree,where all the edge weights are positive.The above assumption is necessary for the synchronization of a network.If it does not hold,then there exists at least one cutset[20],which consists of negative edges only.In this case,the graph Laplacian matrix possesses at least one negative eigenvalue[14,20,25],which prevents the associated network from being synchronous.

    Remark 5A signed graph under Assumption 2 is structurally unbalanced.Structural balance and unbalance are two important concepts in the consensus problems of networks with antagonistic interactions[26].Such interactions are defined on a Laplacian matrix denoted asLs:= [li j]withli j=ai jwhich is different from the one used in this work.The eigenvalues ofLsare always nonnegative regardless of whether a signed graph is structurally balanced or unbalanced[27],which facilitates network synchronization.Given this reason, the study of the Kuramoto network(2)onLsis beyond the scope of this paper.

    Some matrices and their properties that will be used in this section are introduced as follows.

    then Q(a,b)is positive definite.

    where the constantαTwill be defined in the following lemma.

    Lemma 3Define the following two|ET∪N|×|ET∪N|matrices

    ProofNote that the first term in the energy function (31)is equivalent to?TT RWΠ2(?/2)RT?T= 4 sinT(?/2)Wsin(?/2).Then,the derivative of energy function(31)along the trajectory of the Kuramoto system(29)is

    After some mathematical manipulations, from (36), we obtain

    If|θi j(t)|≤ηfor(i,j)∈E,we have

    whereQ(sinc(η),1)is positive definite since(30)holds fora=min{sinc2(),sinc(η)}andb=1.Then,applying(38)to(37),we have

    whereλ(D-αT FT)> 0 holds due to condition (34).As(34)holds,we apply(32)to(37)to derive

    Following the same arguments in the proof of Theorem 2,we have that

    5 Numerical studies

    This section verifies the effectiveness of the proposed methods on some numerical examples.First, we compare the synchronization conditions from Theorem 2 with those from [4, 5, 7] in estimating a positively invariant set(PIS) for the Kuramoto network (2) (see Remark 4).A three-oscillator network associated with a path graph is chosen.The parameters of this network are given asp=[1.4,1.4,-2.8] × 10-4,m= [1.3263,1.2732,1.2202],d= [2.7852,2.5465,2.6844], anda12=a23= 0.1489.Numerical results are shown in Fig.1, which demonstrates thattheproposedmethodproducesagreaterregionthanthose by[4,5,7].However,this does not imply that the presented conditions are generally superior to the existing methods[4,5, 7] due to the lack of a theoretical comparison method.Given this reason,our method can be seen as a complement to the current methods.One can combine these methods to analyze a given network, and choose the best results from them.

    Next, conditions from Theorems 2 and 5 are verified on a six-node network,whose topology is shown in Fig.2 with the values of edge weights.The parameters of oscillators are given as follows:p= [0.0008,0.0012,0.0004,-0.0006,-0.0013,-0.0005],m=[0.5179,0.9245,0.9669,0.8394,0.8788,0.8712],andd=[0.9912,0.9871,0.8456,0.9401,0.7426,0.8265].The initial state values of oscillators are set asθ(0) = [0.016,-0.016,0.048,-0.032,0.080,0.016],

    Fig.1 Comparison of PIS estimated by condition(19)(solid line)and conditions from[5](dash line),[7](dash-dot line)and[4](dot line)

    Fig.2 Diagram of a six-oscillator network

    Fig.3 Dynamics of BTθ(t)and ˙θ(t)of oscillators with positive edges

    6 Conclusion

    Fig.4 Dynamics of BTθ(t)and ˙θ(t)of oscillators on a signed graph

    This paper investigates the synchronization of second-order Kuramoto networks from the perspective of edge dynamics instead of node dynamics.We show that the studies of the synchronization of Kuramoto networks in terms of edge dynamics have two advantages.First, compared to traditional studies, it deals with the phase cohesive problem in a more direct and natural way since it considers only the phase dynamics of physically connected oscillators.Second,the network dynamics can be mapped into the spanningtree-induced dynamics, which allows us to study network synchronization when a portion of the edges are negatively weighted.Explicit synchronization conditions are proposed by the construction of edge-based and spanning-tree-based energy functions, respectively.Numerical studies are performed to verify the effectiveness of presented conditions.Future research will focus on the extension of these conditions to the cases of directed graphs.

    Acknowledgements The authors want to thank Prof.Parvaiz Ahmad Naik,Dr and Muhammad Faizan Tahir for their constructive comments that improve this work.

    亚洲一区二区三区色噜噜| 日韩大尺度精品在线看网址| 成人av在线播放网站| 亚洲av电影在线进入| 亚洲精品一区av在线观看| av专区在线播放| 国产亚洲欧美98| 一个人免费在线观看电影| 精品国产三级普通话版| 国产老妇女一区| 啦啦啦观看免费观看视频高清| 中文字幕av成人在线电影| 亚洲专区中文字幕在线| 在线观看av片永久免费下载| 国产毛片a区久久久久| 国产精品久久久久久久电影| 99视频精品全部免费 在线| 亚洲电影在线观看av| netflix在线观看网站| 久久国产精品影院| 成人毛片a级毛片在线播放| 在线观看免费视频日本深夜| 国产午夜精品论理片| 淫妇啪啪啪对白视频| 免费av观看视频| av福利片在线观看| 亚洲av五月六月丁香网| 窝窝影院91人妻| 成年女人毛片免费观看观看9| 国产亚洲精品久久久com| 国产精品自产拍在线观看55亚洲| www.色视频.com| 在线观看av片永久免费下载| 精品福利观看| 国产精品野战在线观看| 国产精品久久电影中文字幕| 亚洲国产精品久久男人天堂| 在线看三级毛片| 欧美日韩福利视频一区二区| 极品教师在线视频| 亚洲在线观看片| 国内精品久久久久久久电影| 毛片一级片免费看久久久久 | 日日摸夜夜添夜夜添av毛片 | 亚洲avbb在线观看| 能在线免费观看的黄片| 国产亚洲av嫩草精品影院| 少妇裸体淫交视频免费看高清| 哪里可以看免费的av片| 3wmmmm亚洲av在线观看| 国产精品久久久久久亚洲av鲁大| 又紧又爽又黄一区二区| 国产成+人综合+亚洲专区| xxxwww97欧美| 国产淫片久久久久久久久 | 老司机福利观看| 99久久精品国产亚洲精品| 美女cb高潮喷水在线观看| 一个人免费在线观看的高清视频| 国产免费av片在线观看野外av| 亚洲精品在线观看二区| 国产一区二区三区视频了| 亚洲最大成人中文| 成人一区二区视频在线观看| 美女高潮的动态| 久久午夜亚洲精品久久| 日本 欧美在线| 老司机午夜十八禁免费视频| 中文字幕人妻熟人妻熟丝袜美| 波多野结衣巨乳人妻| 精品国产亚洲在线| 2021天堂中文幕一二区在线观| 亚洲精品一卡2卡三卡4卡5卡| 日本黄色视频三级网站网址| 欧美bdsm另类| 色吧在线观看| 亚洲国产精品成人综合色| 老司机午夜福利在线观看视频| 高清在线国产一区| 男女那种视频在线观看| 国产在线精品亚洲第一网站| 赤兔流量卡办理| 亚洲不卡免费看| 成年免费大片在线观看| 国产精品美女特级片免费视频播放器| 亚洲欧美清纯卡通| 99久久无色码亚洲精品果冻| 深爱激情五月婷婷| 国产一区二区三区在线臀色熟女| 亚洲内射少妇av| 日韩成人在线观看一区二区三区| .国产精品久久| 国产伦一二天堂av在线观看| 国产av麻豆久久久久久久| 观看免费一级毛片| 久久草成人影院| 成年免费大片在线观看| 美女 人体艺术 gogo| 亚洲人成电影免费在线| 一本一本综合久久| 国产亚洲精品久久久com| 俺也久久电影网| 午夜精品一区二区三区免费看| 99热这里只有精品一区| 如何舔出高潮| 蜜桃亚洲精品一区二区三区| 桃色一区二区三区在线观看| 老司机午夜十八禁免费视频| 51国产日韩欧美| 一进一出抽搐动态| 又黄又爽又刺激的免费视频.| 欧美丝袜亚洲另类 | www.熟女人妻精品国产| 成人永久免费在线观看视频| 永久网站在线| 一进一出好大好爽视频| 我要搜黄色片| 最近在线观看免费完整版| 日本在线视频免费播放| 欧美激情国产日韩精品一区| 悠悠久久av| 国内揄拍国产精品人妻在线| 宅男免费午夜| 亚洲av电影在线进入| 欧美性猛交╳xxx乱大交人| 一本一本综合久久| 中出人妻视频一区二区| 少妇的逼水好多| 色哟哟哟哟哟哟| 在线a可以看的网站| 久久欧美精品欧美久久欧美| 2021天堂中文幕一二区在线观| 亚洲18禁久久av| 国产精品女同一区二区软件 | 亚洲片人在线观看| 久久人人精品亚洲av| 久久热精品热| 成人av一区二区三区在线看| 久久精品91蜜桃| 亚洲无线观看免费| 在线国产一区二区在线| 午夜精品一区二区三区免费看| 中文字幕人妻熟人妻熟丝袜美| 中文字幕免费在线视频6| 99热6这里只有精品| 在现免费观看毛片| 嫁个100分男人电影在线观看| 中国美女看黄片| 亚洲七黄色美女视频| 天美传媒精品一区二区| 俄罗斯特黄特色一大片| 久久精品综合一区二区三区| 变态另类丝袜制服| 国产精品一区二区三区四区久久| 色综合亚洲欧美另类图片| 51午夜福利影视在线观看| 在线看三级毛片| 精品国内亚洲2022精品成人| 国产探花极品一区二区| 中文字幕av在线有码专区| av专区在线播放| 国产激情偷乱视频一区二区| 国产探花在线观看一区二区| 看免费av毛片| 欧美最黄视频在线播放免费| 国产在线精品亚洲第一网站| 中文在线观看免费www的网站| 尤物成人国产欧美一区二区三区| 在线播放国产精品三级| 国产av一区在线观看免费| 久久精品国产亚洲av天美| 亚洲精华国产精华精| 亚洲av第一区精品v没综合| 观看美女的网站| 69人妻影院| 亚洲欧美日韩高清专用| 国产色爽女视频免费观看| 欧美激情久久久久久爽电影| 一区二区三区高清视频在线| 一本久久中文字幕| 中文字幕人妻熟人妻熟丝袜美| 国产精品99久久久久久久久| 欧美日本亚洲视频在线播放| 国产精品三级大全| 老司机午夜十八禁免费视频| 91在线观看av| 国产精品久久久久久亚洲av鲁大| 五月玫瑰六月丁香| 欧美xxxx黑人xx丫x性爽| 桃色一区二区三区在线观看| 人人妻人人看人人澡| 欧美成人性av电影在线观看| 淫秽高清视频在线观看| 免费大片18禁| 91在线精品国自产拍蜜月| 亚洲国产精品成人综合色| 久久午夜福利片| 日本一二三区视频观看| av女优亚洲男人天堂| 非洲黑人性xxxx精品又粗又长| 热99re8久久精品国产| 麻豆av噜噜一区二区三区| 色视频www国产| av中文乱码字幕在线| 亚洲一区二区三区不卡视频| 脱女人内裤的视频| 免费在线观看成人毛片| 首页视频小说图片口味搜索| 国产精品伦人一区二区| 亚洲久久久久久中文字幕| 高清在线国产一区| 亚洲人成网站高清观看| 美女被艹到高潮喷水动态| 9191精品国产免费久久| 好看av亚洲va欧美ⅴa在| 黄色一级大片看看| 麻豆成人av在线观看| 国产一区二区三区视频了| 好男人电影高清在线观看| 国产野战对白在线观看| 久久国产乱子免费精品| 国内揄拍国产精品人妻在线| 亚洲,欧美精品.| 成年女人永久免费观看视频| 国产一区二区亚洲精品在线观看| 18禁在线播放成人免费| 日日干狠狠操夜夜爽| 久久久久国内视频| 一级作爱视频免费观看| 91在线精品国自产拍蜜月| 69av精品久久久久久| 男人的好看免费观看在线视频| 99精品久久久久人妻精品| 能在线免费观看的黄片| 亚洲精品456在线播放app | 欧美一区二区亚洲| 99久久无色码亚洲精品果冻| 久久九九热精品免费| 51国产日韩欧美| 99久国产av精品| 老女人水多毛片| 成人精品一区二区免费| 日本熟妇午夜| 小说图片视频综合网站| 在线观看av片永久免费下载| 亚洲国产精品sss在线观看| 国产高清激情床上av| 久久亚洲精品不卡| 免费高清视频大片| 中文字幕熟女人妻在线| 一个人观看的视频www高清免费观看| 高清毛片免费观看视频网站| 国产麻豆成人av免费视频| 老司机福利观看| 天堂网av新在线| 欧美乱色亚洲激情| 日本成人三级电影网站| 久久热精品热| 久久精品久久久久久噜噜老黄 | 欧美国产日韩亚洲一区| 成人欧美大片| 欧美激情久久久久久爽电影| 午夜福利在线观看免费完整高清在 | 黄色视频,在线免费观看| 老鸭窝网址在线观看| 欧美日韩福利视频一区二区| 99久国产av精品| 亚洲三级黄色毛片| 天天一区二区日本电影三级| 三级男女做爰猛烈吃奶摸视频| 日韩人妻高清精品专区| 国产不卡一卡二| 免费高清视频大片| 成人午夜高清在线视频| 午夜精品久久久久久毛片777| 国产精品伦人一区二区| 亚洲欧美日韩高清在线视频| 搞女人的毛片| 亚洲 欧美 日韩 在线 免费| 欧美日本亚洲视频在线播放| 色吧在线观看| 免费观看人在逋| 男人和女人高潮做爰伦理| 老司机午夜福利在线观看视频| 国产综合懂色| 亚洲,欧美,日韩| av在线蜜桃| 国内揄拍国产精品人妻在线| 欧美一区二区国产精品久久精品| 日本 欧美在线| 日本撒尿小便嘘嘘汇集6| 欧美极品一区二区三区四区| 国产成人a区在线观看| 色5月婷婷丁香| 亚洲电影在线观看av| av中文乱码字幕在线| 欧美黄色片欧美黄色片| а√天堂www在线а√下载| av女优亚洲男人天堂| 久久精品国产亚洲av天美| 国产亚洲精品综合一区在线观看| 麻豆成人av在线观看| 少妇人妻一区二区三区视频| 99在线人妻在线中文字幕| 日本一二三区视频观看| 一进一出抽搐动态| 午夜福利成人在线免费观看| 美女被艹到高潮喷水动态| 变态另类成人亚洲欧美熟女| 国产三级在线视频| 亚洲自偷自拍三级| 免费搜索国产男女视频| 午夜激情福利司机影院| 99热这里只有是精品50| 成人高潮视频无遮挡免费网站| 亚洲精品亚洲一区二区| 亚洲av美国av| 国产一区二区三区在线臀色熟女| 给我免费播放毛片高清在线观看| 成人亚洲精品av一区二区| 在线播放无遮挡| 精品一区二区三区人妻视频| 久久99热这里只有精品18| 性色av乱码一区二区三区2| 国产淫片久久久久久久久 | 亚洲最大成人中文| 日韩精品青青久久久久久| 久久精品国产清高在天天线| 日日干狠狠操夜夜爽| aaaaa片日本免费| 窝窝影院91人妻| 全区人妻精品视频| 午夜福利欧美成人| 国产精品精品国产色婷婷| 简卡轻食公司| 在线播放国产精品三级| 国产免费男女视频| 久久精品人妻少妇| www.色视频.com| 69人妻影院| 最新在线观看一区二区三区| 久久久精品大字幕| .国产精品久久| 国产不卡一卡二| 性色av乱码一区二区三区2| 真人一进一出gif抽搐免费| 色尼玛亚洲综合影院| 国产精品国产高清国产av| 午夜福利在线在线| 床上黄色一级片| 久久久色成人| 尤物成人国产欧美一区二区三区| 国产精品99久久久久久久久| 国产乱人视频| 亚洲激情在线av| 夜夜爽天天搞| 亚洲欧美精品综合久久99| 亚洲国产日韩欧美精品在线观看| 成人av一区二区三区在线看| 黄色视频,在线免费观看| 中亚洲国语对白在线视频| 国产精品久久久久久久久免 | 波野结衣二区三区在线| 国产一区二区在线观看日韩| 搡老妇女老女人老熟妇| 97超级碰碰碰精品色视频在线观看| av在线老鸭窝| 夜夜看夜夜爽夜夜摸| 色吧在线观看| 日韩高清综合在线| 校园春色视频在线观看| 内射极品少妇av片p| 亚洲欧美日韩无卡精品| 最近视频中文字幕2019在线8| 美女 人体艺术 gogo| 麻豆一二三区av精品| 国产精品一区二区性色av| 精品午夜福利在线看| 男插女下体视频免费在线播放| 亚洲天堂国产精品一区在线| 小说图片视频综合网站| 他把我摸到了高潮在线观看| 国模一区二区三区四区视频| 在线播放国产精品三级| 欧美日韩综合久久久久久 | 熟妇人妻久久中文字幕3abv| 人人妻人人澡欧美一区二区| 偷拍熟女少妇极品色| 女人被狂操c到高潮| 国产探花极品一区二区| 亚洲精品成人久久久久久| 久久6这里有精品| 国产久久久一区二区三区| 变态另类成人亚洲欧美熟女| 亚洲激情在线av| 免费观看的影片在线观看| 欧美一级a爱片免费观看看| 两个人的视频大全免费| 有码 亚洲区| 精品无人区乱码1区二区| 亚洲国产日韩欧美精品在线观看| 欧美日本亚洲视频在线播放| 午夜亚洲福利在线播放| 人妻久久中文字幕网| 国产精品1区2区在线观看.| 亚洲av.av天堂| 亚洲最大成人手机在线| 欧美最黄视频在线播放免费| 久久亚洲精品不卡| 国产单亲对白刺激| 久久热精品热| 午夜福利免费观看在线| 国产成人av教育| 好看av亚洲va欧美ⅴa在| 91av网一区二区| 日本 欧美在线| 亚洲av成人精品一区久久| 日本黄大片高清| 欧美日韩中文字幕国产精品一区二区三区| 好男人在线观看高清免费视频| 免费人成在线观看视频色| 国产精品久久久久久亚洲av鲁大| 免费观看人在逋| 亚洲男人的天堂狠狠| 麻豆成人av在线观看| 欧美精品国产亚洲| 一级黄片播放器| 国产成+人综合+亚洲专区| av欧美777| 免费观看的影片在线观看| 成人欧美大片| 午夜福利18| 能在线免费观看的黄片| 999久久久精品免费观看国产| 18美女黄网站色大片免费观看| 又黄又爽又免费观看的视频| 少妇裸体淫交视频免费看高清| 中文字幕av在线有码专区| 免费电影在线观看免费观看| 男人的好看免费观看在线视频| 国产av麻豆久久久久久久| 国产午夜精品久久久久久一区二区三区 | 午夜两性在线视频| 亚洲av美国av| 三级毛片av免费| 免费在线观看日本一区| av天堂中文字幕网| 99在线人妻在线中文字幕| 中亚洲国语对白在线视频| 亚洲人成网站在线播| 国语自产精品视频在线第100页| 国产精品,欧美在线| 别揉我奶头~嗯~啊~动态视频| 中文字幕av在线有码专区| 亚洲最大成人手机在线| 免费无遮挡裸体视频| 亚洲内射少妇av| 亚洲精品乱码久久久v下载方式| 日本免费一区二区三区高清不卡| 两个人视频免费观看高清| 国内精品久久久久精免费| 国产午夜精品久久久久久一区二区三区 | 高清毛片免费观看视频网站| 99久久99久久久精品蜜桃| 亚洲美女视频黄频| 51国产日韩欧美| 在线观看66精品国产| 乱人视频在线观看| 又爽又黄a免费视频| 亚洲精品在线观看二区| 久久午夜福利片| 精品少妇黑人巨大在线播放| 狂野欧美激情性xxxx在线观看| 国产午夜精品一二区理论片| 精品久久国产蜜桃| 国产免费又黄又爽又色| 国产男人的电影天堂91| 天堂网av新在线| 九九久久精品国产亚洲av麻豆| 亚洲综合精品二区| 乱码一卡2卡4卡精品| 三级男女做爰猛烈吃奶摸视频| 搡老乐熟女国产| 直男gayav资源| 亚洲av中文av极速乱| 亚洲高清免费不卡视频| 欧美变态另类bdsm刘玥| 99热网站在线观看| 成人鲁丝片一二三区免费| 日本黄大片高清| 国产免费视频播放在线视频| 少妇的逼水好多| 国产精品国产三级国产av玫瑰| 美女视频免费永久观看网站| av网站免费在线观看视频| 欧美xxxx黑人xx丫x性爽| 伦精品一区二区三区| 国产国拍精品亚洲av在线观看| 女的被弄到高潮叫床怎么办| 91午夜精品亚洲一区二区三区| 欧美成人a在线观看| 国产伦理片在线播放av一区| 亚洲av免费在线观看| 如何舔出高潮| 亚洲精品日韩在线中文字幕| 性色avwww在线观看| 亚洲最大成人中文| 国产高清国产精品国产三级 | 伦精品一区二区三区| 久久影院123| 熟女av电影| 国产综合精华液| 成人午夜精彩视频在线观看| 欧美97在线视频| 男女边摸边吃奶| 亚洲av免费高清在线观看| 国产成人精品福利久久| 欧美性猛交╳xxx乱大交人| 99热这里只有是精品50| eeuss影院久久| 国产精品一二三区在线看| 国产高潮美女av| 亚洲综合精品二区| 国产精品.久久久| 舔av片在线| 秋霞伦理黄片| 国产精品人妻久久久影院| 中文字幕免费在线视频6| 日本与韩国留学比较| 国产黄色视频一区二区在线观看| 插逼视频在线观看| 少妇猛男粗大的猛烈进出视频 | 国产成人福利小说| tube8黄色片| 亚洲国产av新网站| 中文字幕亚洲精品专区| 国产亚洲5aaaaa淫片| 国产黄色视频一区二区在线观看| 永久网站在线| videossex国产| 99久久九九国产精品国产免费| 久久综合国产亚洲精品| 97超碰精品成人国产| 亚洲av福利一区| 国产高清三级在线| 99热网站在线观看| 高清毛片免费看| 哪个播放器可以免费观看大片| 99热这里只有是精品在线观看| 亚洲av欧美aⅴ国产| 日韩亚洲欧美综合| 国产av码专区亚洲av| 亚洲国产最新在线播放| 免费看光身美女| 99九九线精品视频在线观看视频| 国产午夜精品一二区理论片| 男女边吃奶边做爰视频| 男女无遮挡免费网站观看| 97超视频在线观看视频| 老师上课跳d突然被开到最大视频| 久久99热这里只有精品18| 熟妇人妻不卡中文字幕| 免费观看a级毛片全部| 免费看不卡的av| 亚洲av男天堂| 国产在线一区二区三区精| 亚洲综合色惰| 国产一区有黄有色的免费视频| 亚洲一级一片aⅴ在线观看| 直男gayav资源| 日韩精品有码人妻一区| 欧美成人午夜免费资源| 欧美日韩视频精品一区| 久热久热在线精品观看| 亚洲欧美日韩无卡精品| 一级av片app| 日韩欧美精品v在线| 国产精品一二三区在线看| av播播在线观看一区| 干丝袜人妻中文字幕| 少妇被粗大猛烈的视频| 香蕉精品网在线| 最近的中文字幕免费完整| 久久精品人妻少妇| 久久人人爽人人片av| 只有这里有精品99| 女人被狂操c到高潮| 国产真实伦视频高清在线观看| 免费看日本二区| 亚洲成人中文字幕在线播放| 美女视频免费永久观看网站| 国产一区二区在线观看日韩| 欧美成人午夜免费资源| 美女国产视频在线观看| 国产精品麻豆人妻色哟哟久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产淫语在线视频| 精品一区在线观看国产| 亚洲精华国产精华液的使用体验| 国产精品女同一区二区软件| 成人高潮视频无遮挡免费网站| 亚洲aⅴ乱码一区二区在线播放| 肉色欧美久久久久久久蜜桃 | 免费少妇av软件| 国产男人的电影天堂91| 午夜免费观看性视频| 我要看日韩黄色一级片| 国产探花极品一区二区| 丝袜美腿在线中文| 欧美区成人在线视频| 国产精品熟女久久久久浪| 国产国拍精品亚洲av在线观看| 欧美97在线视频| 亚洲精品国产成人久久av| 久久久久久久久久成人|