• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synchronization of second-order Kuramoto networks from the perspective of edge dynamics

    2023-12-01 09:51:54LiangWuJiumingZhongHaoyongChen
    Control Theory and Technology 2023年4期

    Liang Wu·Jiuming Zhong·Haoyong Chen

    Abstract This paper presents new synchronization conditions for second-order phase-coupled Kuramoto oscillators in terms of edge dynamics.Two types of network-underlying graphs are studied,the positively weighted and signed graphs,respectively.We apply an edge Laplacian matrix for a positively weighted network to represent the edge connections.The properties of the edge Laplacian matrix are analyzed and incorporated into the proposed conditions.These conditions take account of the dynamics of edge-connected oscillators instead of all oscillator pairs in conventional studies.For a network with positive and negative weights,we represent the network by its spanning tree dynamics,and derive conditions to evaluate the synchronization state of this network.These conditions show that if all edge weights in the spanning tree are positive,and the tree-induced dynamics are in a dominant position over the negative edge dynamics, then this network achieves synchronization.The theoretical findings are validated by numerical examples.

    Keywords Kuramoto oscillator·Signed graph·Synchronization·Edge Laplacian matrix·Spanning tree

    1 Introduction

    The synchronization phenomenon exists in many networked systems across various disciplines.Such a phenomenon occurs when a group of interacting oscillators evolve towards a common target.Among various synchronization patterns,the second-order Kuramoto model has been adopted to provide theoretical insights into the slow synchronization phenomenon observed in certain types of natural and engineering networks, such as special kinds of fireflies [1],Josephson junctions[2],and power grids[3–7].In this type of network,each Kuramoto oscillator is capable of adapting its own frequency, which might prevent the network from being synchronized.

    In general,the synchronization among the phase-coupled Kuramoto oscillators is a result of three interplaying elements, which are the unique dynamics of Kuramoto oscillators,their initial states,and the connection pattern among them.With the consideration of these factors, a great deal of progress has been made to identify synchronization conditions for the second-order Kuramoto network in recent years[8].It is shown that if the coupling strength is strong enough to dominate the non-uniformity of the oscillators’parameters,or/and the oscillators stay close enough to each other,then this network achieves frequency synchronization while the phase differences remain cohesive.In particular, graph theory and control theory provide indispensable analysis methods for deriving quantifiable synchronization conditions.Contraction analysis methods have been used in[3,4,6,9,10]to derive sufficient conditions for a network,whose underlying graph diameter is not greater than two.For a general network topology,energy/Lyapunov functions have been constructed in [4–7, 11] to provide synchronization conditions.In general,contraction-typed conditions are less conservative than energy-function-based conditions.However, they are not applicable to networks with general connectivity.On the other hand,the energy function method has gained increasing attention due to its flexibility in characterizing topology-related synchronization conditions for the second-order Kuramoto network.

    As far as we know,a majority of synchronization conditions were developed via the complete-graph-based energy function methods.These conditions connect the given-graphinduced with the complete-graph-induced phase differences of oscillators by using the graph algebraic connectivity [5,6,11],the lengths of graph paths[11],or the diameter of a graph complement[4,7].Therefore,a natural question to ask is if there exists a way to construct an energy function using only phase differences from edge-connected oscillators.This question was partly answered in the multi-agent consensus research community during recent years[12–14],where the edge dynamics were considered instead of node dynamics.The consensus over edges is referred to as the edge consensus or the edge agreements.A similar methodology was adopted in[15,16]to provide synchronization conditions for the firstorder Kuramoto network.However, the synchronization of the second-order system from the viewpoint of edge dynamics is worth further investigation.

    Besides, a large number of developed synchronization conditions in the aforementioned literature are only applicable to the scenario of positive edge weights.Negative couplings among Kuramoto oscillators have been discovered in social networks and neurons [17, 18].For a power system model,the graph edges represent the transmission lines connecting generators and loads,while the edge weights are the power transmitting capacities [3–5].The edge weights of a power system are supposed to be positive,but they can turn negative when the corresponding transmission lines are capacitive[19],which brings impact on the system stability.Local stability around the synchronized states of a Kuramoto network with negative weights has been studied in[20].Nevertheless,it remains unclear if a signed network can achieve synchronization when oscillators are scattered far from each other,especially in the case of second-order dynamics.

    Inspired by the aforementioned works,this paper applies the state-of-the-art graph techniques to investigate the synchronization of a second-order Kuramoto network on an undirected graph,where the edge weights are allowed to be both positive and negative, i.e., a signed graph.By appropriately designing energy functions,we derive sufficient and explicit conditions to achieve phase cohesiveness for edgeconnected oscillators; and the frequency synchronization among them.The main contributions of this work are mainly twofold.First,for graphs with only positive edge weights,we introduce a new definition of edge Laplacian matrix, based on which we construct a novel edge-induced energy function.A useful relation is proposed to connect the minimum positive eigenvalue of the edge Laplacian matrix with the graph algebraic connectivity, which is essential in deriving synchronization conditions from the proposed energy function.Second, we extend our studies to signed graphs.To derive synchronization conditions for this type of network,we construct an energy function using the information of oscillators’relative angles induced by a spanning tree.We show that when the edge weights of the spanning tree are positively great enough against the negative weights, synchronization is achieved among the oscillators.Numerical examples are given to verify the effectiveness of the presented conditions.

    Notation Let‖·‖and‖·‖∞be the Euclidean and infinity norm,respectively.For symmetric real matricesXandY,means thatX-Yis positive(non-negative)definite.For a symmetric real matrixX,we denote its minimal and maximal eigenvalues asλ(X) andλ(X), respectively.Letσ(X)be the maximal singular value of a matrixX.IfXis a set,then denote|X|as its cardinality.LetIn(On)and 1n(0n)be an identity(null)matrix and a all-one(all-zero)column vector with the dimensionn×nandn×1,respectively.Define a function as sinc(x):=sin(x)/x.

    2 Preliminaries

    A connected and undirected graph is defined byG:=(N,E,W)consisting of a node(vertex)setN,an edge setE?N×N,and an edge weight matrixW:=diag{ai j} ∈R|E|×|E|for all(i,j) ∈E.The edge weightsai jsatisfyai j=a ji/= 0 iff(i,j) ∈E, otherwise,ai j= 0.Here,the weightsai jfor(i,j) ∈Ecan be positive or negative,which represents a signed graph.By associating an arbitrary orientation to the edges,the incidence matrix ofGis denoted byB∈R|N|×|E| with elementsbik= 1 if the nodeiis the source of thekth edge,bik= -1 ifiis the sink of thekth edge,andbik=0 otherwise.

    Next,consider a set of second-order Kuramoto oscillators defined on the graphG,whose dynamics are given by

    whereθi,diandpiare the phase, damping coefficient and naturalfrequencyoftheithoscillator,respectively,andθi j:=θi-θ j.Here,di>0 andpiare constants.Let?:=BTθ∈R|E|×1 be a vector of collecting all the edge-induced phase differences of the Kuramoto oscillators, and defineM:=diag{mi} ∈R|N|×|N|,D:= diag{di} ∈R|N|×|N|,p=[p1,...,p|N|]T∈R|N|×1,andΠ(?) := diag{sinc(θi j)} ∈R|E|×|E|for(i,j) ∈E.Then,we can rewrite the Kuramoto system(1)as the following vector form:

    Without loss of generality, throughout this paper, we assume that the sum of natural frequencies of all Kuramoto oscillators is zero,i.e.,1T|N|p= 0.In addition,we consider that all oscillators are evolving in the Euclidean space instead of ann-torus.The above two points are commonly taken when the Kuramoto system is studied from the viewpoints of control theory and engineering application[3,5,10].Next,we provide the following definitions for the dynamics of the Kuramoto network(2).

    Definition 1 The Kuramoto network (2) is said to be edge cohesive if the phase differences between edge-connected oscillators satisfy|θi j(t)|≤ηfort≥0 and for all(i,j)∈E,whereη∈[0,π).

    Definition 2 The Kuramoto network (2) is said to achieve frequency synchronization if the frequencies of oscillators satisfy

    Definition 1 is also termed phase cohesiveness in some studies[6,9],which can be achieved when the network’s initial configurations satisfy some sufficient conditions.These conditions were derived by taking into account the dynamics of phase differences among all oscillators, which may increase the conservativeness in the cohesive conditions.Following a similar terminology used in the multi-agent consensus research community [12–14], edge cohesiveness is definedheretohighlightthattheaimofthisworkistodevelop conditions in achieving a certain level of boundedness for oscillators with physical connections.Towards this end,the following lemma is introduced to show that edge cohesiveness implies frequency synchronization.

    Lemma 1If the Kuramoto network(2)is edge cohesive,then it achieves frequency synchronization.

    ProofThe proof of Lemma 1 is based on the application of LaSalle’s invariance principle[21].Since the edge cohesiveness is defined in terms of phase difference variables, the first step is to construct a Lyapunov-like function consisting ofθi j,whose time derivative is non-positive.To this end,we denote byBc∈R|N|×|Ec|the incidence matrix of a complete graphGc=(N,Ec),and modify the energy function used in[22,Chapter 5]with respect to the trajectory(BTc θ, ˙θ)of the Kuramoto system(2)as follows:

    To apply LaSalle’s invariance principle,we need to show that there exists a compact positively invariant set (PIS)denoted byDfor the system(2)with respect to the trajectory(BTc θ, ˙θ).A set is said to be a PIS if the initial states of a system are located in this set,then the trajectories will remain in the set[21].As shown in[7,Lemma 3.3],the frequencies of Kuramoto oscillators ˙θiare bounded by

    whereδi jare positive constants satisfyingδi j≥η.Therefore, the PISDfor system (2) can be defined by (4) and(5) asD:= {(BTc θ, ˙θ) ∈ R(|Ec|+|N|)×1| ‖BTc θ‖∞≤max(i,j)∈Ec δi j,‖˙θ‖∞≤maxi∈N ci},which is compact.

    Obviously,the energy functionUis continuously differentiable inD,whose derivative is computed as

    The matrixBcMcBTcin (6) can be viewed as a Laplacian matrix for a complete graph with the edge weights beingai j=mim jfor(i,j)∈Ec,then it holds that

    Using(2)to replace ¨θin the first term in the right-hand-side of(6)and applying(7),we have

    Similarly,for the second term in the right-hand-side of(6),we have

    where the last equality holds due top=0 andB=0.By applying(8)and(9)to(6),one has ˙U=-ms˙θTD˙θ≤0.LetE:={(BTc θ, ˙θ)∈D|˙U(Bcθ, ˙θ)=0}={(BTc θ, ˙θ)∈D|˙θ=0|N|}andMbethelargestinvariantsetinE.Then,by LaSalle’s invariance principle[21],above arguments suffice to conclude that all trajectories(BTc θ, ˙θ)starting inDconverges toMast→+∞,which indicates the achievement of frequency synchronization.This completes the proof.■Remark 1As shown in [22, Chapter 5], a power system model taking the form of (2) on an undirected graph does not exist any complicated behaviors such as limit cycles or chaotic motions.The boundedness of every single oscillator’s phase results in the convergence of the system trajectory to an equilibrium point (frequency synchronization).Via Lemma 1, we show that such boundedness can be defined in terms of the phase differences of edge-connected oscillators,which guarantees frequency synchronization.

    3 Edge-based synchronization conditions for networks with positive edges

    Based on the application of an edge Laplacian matrix,this section presents synchronization conditions for the Kuramoto network (2) with all edges being positively weighted,which is stated in the following assumption.

    Assumption 1 AssumetheunderlyinggraphfortheKuramoto network(2)is connected,and all its edge weights are positive.

    Proposition 1If the phase differences of the Kuramoto oscillators satisfy|θi j| ≤η for all(i.j) ∈E,then the following relation holds:

    ProofThe proof is based on three observations as follows.First, all eigenvalues of a Laplacian matrix with positive edge weights for a connected graph are positive except one being zero.For the Kuramoto network(2),consider a statedependent Laplacian matrix asL(G(?)) :=BWΠ(?)BT.Since |θi j| ≤ηfor all(i.j) ∈E, we have sinc(θi j)>0, which implies thatΠ(?) is positive definite.Then, it holds that 0 =λ1(L(G(?)))<λ2(L(G(?))) ≤··· ≤λ|N|(L(G(?))).

    whereξ∈R|N|×1is the eigenvector with respect to the zero eigenvalue of~L(G(?)).Note thatξis also the eigenvector of~L(G)corresponding to the eigenvalue of zero.

    Finally,for the real and symmetric matrix~L(G(?)),there exists an orthogonal matrixPsuch thatPT~L(G(?))P=Λ:=diag{0,λ2(~L(G(?))),...,λ|N|(~L(G(?))}.Then,one has that

    where the last inequality holds due toΛOandΛλ2~L(G(?))I|N| = diag{0,0,λ3(~L(G(?)) -λ2(~L(G(?)),x···,λ|N|(~L(G(?)) -λ2(~L(G(?))}O.(12) indicates that

    where(11)is applied.This completes the proof.■

    Remark 2A relation similar to (10) can be found in [16].Compared to that of[16],our result is less conservative and is explicitly connected to the graph algebraic connectivityλ2(~L(G))of a scaled graph.

    Remark 3For directed graphs, (10) can be extended to the cases of a directed spanning tree and a directed cycle.By using the properties of the Laplacian matrices for these two types of digraphs from [24, Proposition 1], this can be achieved with a slight modification of the arguments in the proof of Proposition 1.However, (10) does not hold for a general digraph.The main challenge lies in the fact that the directed edge Laplacian matrix after symmetrization is not generally positive semi-definite.This remains further exploration.

    To fulfill the conditions of Lemma 1, one can identify a positively invariant set for a Kuramoto network by using a non-negative energy function as in [4, 5, 7, 10].From the perspective of edge dynamics, we definex:= [?T˙θT]T∈R|E∪N|×1, and construct the following edge-based energy function to analyze the dynamics of the Kuramoto network(2):

    whereαis a constant that will be in the following lemma.

    Lemma 2Define the following two|E∪N|×|E∪N|matrices:

    ProofThe energy function (14) can be written asV(x) =xTH(?)xwith

    Theorem 2Under Assumption 1,if the following conditions are satisfied,

    ProofUsingΠ(?/2)?/2 = sin(?/2), the energy function(14)can be rewritten as the following form:

    Then,the derivative of energy function(20)along the trajectory of the Kuramoto system(2)is

    whereΨ(?) := diag{cos(θi j)} ∈R|E|×|E|for all(i,j) ∈E.After some mathematical manipulations, from (21), we obtain

    Some estimations related to ˙Vare given as follows:

    and

    Then,applying(23),(24)and(10)to the corresponding terms in(22),we have

    which gives the following relation:

    As(19)is satisfied,(27)and the second inequality of(15)imply that the following relation,which holds fort≥0,

    (28) indicates that the Kuramoto network (2) is edge cohesive.Then, by Lemma 1, we conclude that network (2)achieves frequency synchronization.This completes the proof.■

    Remark 4The condition (19) defines a positively invariant set for the Kuramoto network(2)such that its phase differences remain edge cohesive over time.This set is explicitly related to the network information such as the parameters,the initial states of each pair of physically connected oscillators,and the underlying network topology.This information determines the edge dynamics of coupled oscillators.The disadvantage of (19) is that it can not deal with the case of the signed graph,which will be tackled in the next section.

    4 Spanning-tree-based synchronization conditions for networks on signed graphs

    This section presents synchronization conditions for the Kuramoto network(2)on a signed graph from the perspective of a spanning tree.A connected graphGhas at least one spanning treeGT:=(N,ET,WT), which is a sub-graph ofGwith all the nodes connected by|ET|=|N|-1 edges inE.A co-treeGC:=(NC,EC,WC)contains the remaining edges ofGthat are not included in the spanning tree,i.e.,EC:=EETand|EC|=|E|-|N|+1.The following assumption is given regarding a positively weighted spanning tree.

    Assumption 2 Assume the underlying signed graph for the Kuramoto network(2)is connected,and there exists at least one spanning tree,where all the edge weights are positive.The above assumption is necessary for the synchronization of a network.If it does not hold,then there exists at least one cutset[20],which consists of negative edges only.In this case,the graph Laplacian matrix possesses at least one negative eigenvalue[14,20,25],which prevents the associated network from being synchronous.

    Remark 5A signed graph under Assumption 2 is structurally unbalanced.Structural balance and unbalance are two important concepts in the consensus problems of networks with antagonistic interactions[26].Such interactions are defined on a Laplacian matrix denoted asLs:= [li j]withli j=ai jwhich is different from the one used in this work.The eigenvalues ofLsare always nonnegative regardless of whether a signed graph is structurally balanced or unbalanced[27],which facilitates network synchronization.Given this reason, the study of the Kuramoto network(2)onLsis beyond the scope of this paper.

    Some matrices and their properties that will be used in this section are introduced as follows.

    then Q(a,b)is positive definite.

    where the constantαTwill be defined in the following lemma.

    Lemma 3Define the following two|ET∪N|×|ET∪N|matrices

    ProofNote that the first term in the energy function (31)is equivalent to?TT RWΠ2(?/2)RT?T= 4 sinT(?/2)Wsin(?/2).Then,the derivative of energy function(31)along the trajectory of the Kuramoto system(29)is

    After some mathematical manipulations, from (36), we obtain

    If|θi j(t)|≤ηfor(i,j)∈E,we have

    whereQ(sinc(η),1)is positive definite since(30)holds fora=min{sinc2(),sinc(η)}andb=1.Then,applying(38)to(37),we have

    whereλ(D-αT FT)> 0 holds due to condition (34).As(34)holds,we apply(32)to(37)to derive

    Following the same arguments in the proof of Theorem 2,we have that

    5 Numerical studies

    This section verifies the effectiveness of the proposed methods on some numerical examples.First, we compare the synchronization conditions from Theorem 2 with those from [4, 5, 7] in estimating a positively invariant set(PIS) for the Kuramoto network (2) (see Remark 4).A three-oscillator network associated with a path graph is chosen.The parameters of this network are given asp=[1.4,1.4,-2.8] × 10-4,m= [1.3263,1.2732,1.2202],d= [2.7852,2.5465,2.6844], anda12=a23= 0.1489.Numerical results are shown in Fig.1, which demonstrates thattheproposedmethodproducesagreaterregionthanthose by[4,5,7].However,this does not imply that the presented conditions are generally superior to the existing methods[4,5, 7] due to the lack of a theoretical comparison method.Given this reason,our method can be seen as a complement to the current methods.One can combine these methods to analyze a given network, and choose the best results from them.

    Next, conditions from Theorems 2 and 5 are verified on a six-node network,whose topology is shown in Fig.2 with the values of edge weights.The parameters of oscillators are given as follows:p= [0.0008,0.0012,0.0004,-0.0006,-0.0013,-0.0005],m=[0.5179,0.9245,0.9669,0.8394,0.8788,0.8712],andd=[0.9912,0.9871,0.8456,0.9401,0.7426,0.8265].The initial state values of oscillators are set asθ(0) = [0.016,-0.016,0.048,-0.032,0.080,0.016],

    Fig.1 Comparison of PIS estimated by condition(19)(solid line)and conditions from[5](dash line),[7](dash-dot line)and[4](dot line)

    Fig.2 Diagram of a six-oscillator network

    Fig.3 Dynamics of BTθ(t)and ˙θ(t)of oscillators with positive edges

    6 Conclusion

    Fig.4 Dynamics of BTθ(t)and ˙θ(t)of oscillators on a signed graph

    This paper investigates the synchronization of second-order Kuramoto networks from the perspective of edge dynamics instead of node dynamics.We show that the studies of the synchronization of Kuramoto networks in terms of edge dynamics have two advantages.First, compared to traditional studies, it deals with the phase cohesive problem in a more direct and natural way since it considers only the phase dynamics of physically connected oscillators.Second,the network dynamics can be mapped into the spanningtree-induced dynamics, which allows us to study network synchronization when a portion of the edges are negatively weighted.Explicit synchronization conditions are proposed by the construction of edge-based and spanning-tree-based energy functions, respectively.Numerical studies are performed to verify the effectiveness of presented conditions.Future research will focus on the extension of these conditions to the cases of directed graphs.

    Acknowledgements The authors want to thank Prof.Parvaiz Ahmad Naik,Dr and Muhammad Faizan Tahir for their constructive comments that improve this work.

    建设人人有责人人尽责人人享有的| 黄色怎么调成土黄色| 亚洲avbb在线观看| 午夜久久久在线观看| 制服人妻中文乱码| 看免费av毛片| 夜夜骑夜夜射夜夜干| 变态另类成人亚洲欧美熟女 | 欧美亚洲 丝袜 人妻 在线| 国产97色在线日韩免费| 亚洲国产欧美网| 在线亚洲精品国产二区图片欧美| 19禁男女啪啪无遮挡网站| 亚洲精品自拍成人| 黄色丝袜av网址大全| 在线 av 中文字幕| 成年动漫av网址| 国产伦人伦偷精品视频| 大片电影免费在线观看免费| 黄色视频在线播放观看不卡| 午夜福利欧美成人| 欧美精品人与动牲交sv欧美| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久久久精品电影小说| 免费黄频网站在线观看国产| 亚洲av日韩在线播放| 女人精品久久久久毛片| 久久精品亚洲精品国产色婷小说| 日本欧美视频一区| 亚洲黑人精品在线| 亚洲欧洲日产国产| 亚洲专区国产一区二区| 国产欧美日韩一区二区三| 交换朋友夫妻互换小说| 久久久精品94久久精品| 日本黄色视频三级网站网址 | 超色免费av| 成人18禁在线播放| 日韩一区二区三区影片| 欧美黄色片欧美黄色片| av福利片在线| 99久久99久久久精品蜜桃| 成人国产一区最新在线观看| 精品国产乱码久久久久久男人| 成人18禁高潮啪啪吃奶动态图| 欧美日韩av久久| 国产xxxxx性猛交| 男女之事视频高清在线观看| 高清av免费在线| 国产精品久久久久成人av| 免费看a级黄色片| 免费高清在线观看日韩| 国产麻豆69| 亚洲中文日韩欧美视频| 韩国精品一区二区三区| 天堂中文最新版在线下载| 国产成人免费观看mmmm| 女人爽到高潮嗷嗷叫在线视频| 日本五十路高清| 91成年电影在线观看| 国产精品美女特级片免费视频播放器 | 9热在线视频观看99| 啦啦啦免费观看视频1| 亚洲七黄色美女视频| 精品欧美一区二区三区在线| 一二三四在线观看免费中文在| 国产高清激情床上av| 欧美精品人与动牲交sv欧美| av天堂久久9| 夜夜骑夜夜射夜夜干| 国产亚洲一区二区精品| 免费黄频网站在线观看国产| 90打野战视频偷拍视频| 欧美亚洲 丝袜 人妻 在线| 一本色道久久久久久精品综合| av国产精品久久久久影院| 免费在线观看视频国产中文字幕亚洲| 欧美日韩国产mv在线观看视频| 国产深夜福利视频在线观看| 天堂中文最新版在线下载| 777米奇影视久久| 美女国产高潮福利片在线看| 成年动漫av网址| 男女边摸边吃奶| 国产人伦9x9x在线观看| 妹子高潮喷水视频| 国产精品一区二区在线观看99| 性少妇av在线| 一本大道久久a久久精品| 搡老岳熟女国产| 人成视频在线观看免费观看| 国产精品一区二区免费欧美| 久久婷婷成人综合色麻豆| 亚洲精品粉嫩美女一区| 日韩大片免费观看网站| 欧美精品啪啪一区二区三区| 国产欧美日韩一区二区三| 国产精品成人在线| 色播在线永久视频| 成年动漫av网址| 丝袜人妻中文字幕| 美女福利国产在线| 男女午夜视频在线观看| 久久精品成人免费网站| 天堂8中文在线网| 欧美 日韩 精品 国产| 久久久国产精品麻豆| 免费不卡黄色视频| 777久久人妻少妇嫩草av网站| 久久毛片免费看一区二区三区| 成人手机av| 免费在线观看日本一区| 在线观看人妻少妇| 免费观看av网站的网址| 成人黄色视频免费在线看| 汤姆久久久久久久影院中文字幕| 国产亚洲一区二区精品| 男女午夜视频在线观看| 日韩欧美三级三区| 国产成人精品在线电影| 18在线观看网站| 欧美日韩亚洲国产一区二区在线观看 | 国产精品秋霞免费鲁丝片| netflix在线观看网站| 少妇精品久久久久久久| 亚洲五月婷婷丁香| 男男h啪啪无遮挡| 亚洲成人免费av在线播放| 最近最新中文字幕大全免费视频| 欧美中文综合在线视频| 18禁观看日本| 交换朋友夫妻互换小说| 国产成人免费无遮挡视频| 精品人妻1区二区| 男女之事视频高清在线观看| 精品第一国产精品| 无遮挡黄片免费观看| 久久久久久久久久久久大奶| 真人做人爱边吃奶动态| 国产av一区二区精品久久| 欧美乱妇无乱码| 美女福利国产在线| 久久久欧美国产精品| 欧美日韩视频精品一区| 免费在线观看视频国产中文字幕亚洲| 1024香蕉在线观看| 国产区一区二久久| 亚洲五月色婷婷综合| 国产欧美日韩精品亚洲av| 极品人妻少妇av视频| 亚洲va日本ⅴa欧美va伊人久久| 久久久精品免费免费高清| 在线观看免费日韩欧美大片| 无限看片的www在线观看| 考比视频在线观看| 日本wwww免费看| 老司机亚洲免费影院| 少妇被粗大的猛进出69影院| 国产成人一区二区三区免费视频网站| 亚洲 欧美一区二区三区| 我要看黄色一级片免费的| 美女主播在线视频| 欧美一级毛片孕妇| 久久青草综合色| 不卡一级毛片| 1024香蕉在线观看| 18在线观看网站| 人人澡人人妻人| 激情视频va一区二区三区| 亚洲成人国产一区在线观看| 丝袜人妻中文字幕| 国产精品一区二区免费欧美| 亚洲欧美精品综合一区二区三区| 亚洲伊人色综图| 国产精品二区激情视频| 色94色欧美一区二区| 天天添夜夜摸| 日本一区二区免费在线视频| 精品一区二区三区av网在线观看 | 91字幕亚洲| 在线天堂中文资源库| 后天国语完整版免费观看| 久久午夜综合久久蜜桃| 老司机亚洲免费影院| 久久狼人影院| 最近最新中文字幕大全免费视频| 午夜老司机福利片| 日本av手机在线免费观看| 777久久人妻少妇嫩草av网站| 在线永久观看黄色视频| 男女下面插进去视频免费观看| 色婷婷av一区二区三区视频| 免费一级毛片在线播放高清视频 | 一个人免费在线观看的高清视频| 18禁黄网站禁片午夜丰满| 我的亚洲天堂| 老司机靠b影院| 日韩欧美一区二区三区在线观看 | 巨乳人妻的诱惑在线观看| 欧美变态另类bdsm刘玥| 国产精品自产拍在线观看55亚洲 | 成年女人毛片免费观看观看9 | 久久久久久久久免费视频了| 免费在线观看视频国产中文字幕亚洲| 亚洲中文字幕日韩| 他把我摸到了高潮在线观看 | 色婷婷久久久亚洲欧美| 免费黄频网站在线观看国产| 99国产精品一区二区蜜桃av | 成年女人毛片免费观看观看9 | 最新美女视频免费是黄的| 黑人巨大精品欧美一区二区mp4| 80岁老熟妇乱子伦牲交| 久久久国产精品麻豆| 女警被强在线播放| 丰满迷人的少妇在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久人人人人人| 午夜福利一区二区在线看| 母亲3免费完整高清在线观看| 黑人欧美特级aaaaaa片| 黑人巨大精品欧美一区二区蜜桃| 日本a在线网址| 欧美日韩一级在线毛片| 91精品国产国语对白视频| 免费在线观看影片大全网站| a级片在线免费高清观看视频| 亚洲av国产av综合av卡| 天堂8中文在线网| 韩国精品一区二区三区| 90打野战视频偷拍视频| 女人精品久久久久毛片| 精品国产国语对白av| 午夜视频精品福利| 亚洲,欧美精品.| 精品国产一区二区三区久久久樱花| 成年女人毛片免费观看观看9 | 脱女人内裤的视频| 国产深夜福利视频在线观看| 国产一区二区激情短视频| 桃花免费在线播放| 757午夜福利合集在线观看| av欧美777| 最黄视频免费看| 两性午夜刺激爽爽歪歪视频在线观看 | 成人国语在线视频| 建设人人有责人人尽责人人享有的| 久久国产精品大桥未久av| 欧美国产精品一级二级三级| 精品一区二区三区视频在线观看免费 | 多毛熟女@视频| 动漫黄色视频在线观看| 蜜桃在线观看..| 99精品久久久久人妻精品| 国产亚洲精品一区二区www | 日韩欧美一区视频在线观看| 欧美精品人与动牲交sv欧美| 天堂8中文在线网| 精品人妻1区二区| 国产黄色免费在线视频| 欧美精品av麻豆av| 少妇 在线观看| 少妇被粗大的猛进出69影院| 一级,二级,三级黄色视频| 黄色丝袜av网址大全| 欧美+亚洲+日韩+国产| 男女床上黄色一级片免费看| 国产精品偷伦视频观看了| 国产精品一区二区免费欧美| 精品亚洲乱码少妇综合久久| 国产免费福利视频在线观看| 2018国产大陆天天弄谢| 亚洲三区欧美一区| 久久久欧美国产精品| 99热国产这里只有精品6| 高清欧美精品videossex| 国产精品麻豆人妻色哟哟久久| 大香蕉久久网| 两性夫妻黄色片| 99九九在线精品视频| 免费少妇av软件| 免费观看av网站的网址| 黑人猛操日本美女一级片| 正在播放国产对白刺激| 欧美 日韩 精品 国产| 99re6热这里在线精品视频| 麻豆国产av国片精品| 啦啦啦在线免费观看视频4| 人人妻,人人澡人人爽秒播| 日本a在线网址| 欧美中文综合在线视频| 黑人巨大精品欧美一区二区mp4| 亚洲精品国产精品久久久不卡| 亚洲熟女精品中文字幕| 国精品久久久久久国模美| 亚洲少妇的诱惑av| 国内毛片毛片毛片毛片毛片| 国产成人av教育| 亚洲欧美一区二区三区久久| 搡老岳熟女国产| 亚洲精品自拍成人| 脱女人内裤的视频| 国产男靠女视频免费网站| 夜夜爽天天搞| 人人澡人人妻人| 亚洲av成人不卡在线观看播放网| 性色av乱码一区二区三区2| 久久人妻av系列| 国产一区有黄有色的免费视频| 亚洲天堂av无毛| 热99国产精品久久久久久7| 亚洲av美国av| 一本色道久久久久久精品综合| 国产成人欧美| 交换朋友夫妻互换小说| 99国产精品99久久久久| 一区福利在线观看| 最新的欧美精品一区二区| 9191精品国产免费久久| 国产免费av片在线观看野外av| 国产精品偷伦视频观看了| 黄色a级毛片大全视频| videos熟女内射| 免费人妻精品一区二区三区视频| 日日摸夜夜添夜夜添小说| 少妇精品久久久久久久| 国产精品 国内视频| 在线观看舔阴道视频| avwww免费| 亚洲黑人精品在线| 9色porny在线观看| 免费看a级黄色片| 欧美亚洲 丝袜 人妻 在线| 精品久久久精品久久久| 18禁国产床啪视频网站| 精品国产一区二区久久| 在线观看免费视频日本深夜| 日本精品一区二区三区蜜桃| 大码成人一级视频| 中文字幕制服av| 免费人妻精品一区二区三区视频| 搡老熟女国产l中国老女人| 国产日韩欧美在线精品| 免费看十八禁软件| 热re99久久国产66热| 国产主播在线观看一区二区| 菩萨蛮人人尽说江南好唐韦庄| 中文亚洲av片在线观看爽 | 99re6热这里在线精品视频| 国产麻豆69| 变态另类成人亚洲欧美熟女 | 国产精品秋霞免费鲁丝片| 欧美性长视频在线观看| 热99久久久久精品小说推荐| 久久香蕉激情| 在线十欧美十亚洲十日本专区| avwww免费| 亚洲色图 男人天堂 中文字幕| 超碰成人久久| 久久毛片免费看一区二区三区| 国产欧美日韩一区二区精品| xxxhd国产人妻xxx| 精品亚洲乱码少妇综合久久| 狠狠狠狠99中文字幕| 搡老乐熟女国产| 男女午夜视频在线观看| 日韩大码丰满熟妇| 91九色精品人成在线观看| 国产一卡二卡三卡精品| 99久久精品国产亚洲精品| 亚洲欧美日韩另类电影网站| 精品国产一区二区三区久久久樱花| 久久热在线av| 亚洲第一av免费看| 午夜精品久久久久久毛片777| www日本在线高清视频| 久久久水蜜桃国产精品网| www.精华液| 日本五十路高清| 日本av免费视频播放| 美女国产高潮福利片在线看| 国产男女超爽视频在线观看| 又黄又粗又硬又大视频| 天天操日日干夜夜撸| 一边摸一边抽搐一进一出视频| 国产成人精品无人区| 美女国产高潮福利片在线看| 又大又爽又粗| 国产成人欧美| 日本一区二区免费在线视频| videos熟女内射| 久久久久视频综合| 成年动漫av网址| svipshipincom国产片| 久久精品aⅴ一区二区三区四区| 夫妻午夜视频| 欧美激情 高清一区二区三区| 国产精品一区二区免费欧美| 国产一区二区激情短视频| 国产成人精品久久二区二区免费| 国产有黄有色有爽视频| 老熟妇乱子伦视频在线观看| 欧美日韩成人在线一区二区| 久久久久久久大尺度免费视频| 国产成人av教育| 十八禁高潮呻吟视频| 日韩大片免费观看网站| 亚洲精品久久成人aⅴ小说| 国产精品 欧美亚洲| 亚洲成人国产一区在线观看| av国产精品久久久久影院| 亚洲av日韩精品久久久久久密| 亚洲av片天天在线观看| 免费观看人在逋| 757午夜福利合集在线观看| 欧美精品人与动牲交sv欧美| 丰满饥渴人妻一区二区三| 亚洲熟女精品中文字幕| 99国产极品粉嫩在线观看| 一本—道久久a久久精品蜜桃钙片| 欧美在线黄色| 搡老乐熟女国产| 99国产精品免费福利视频| 国产av国产精品国产| 午夜福利在线免费观看网站| 国产精品熟女久久久久浪| 欧美精品人与动牲交sv欧美| 精品一区二区三区视频在线观看免费 | 好男人电影高清在线观看| 色婷婷av一区二区三区视频| avwww免费| 最近最新中文字幕大全电影3 | 国产成人精品久久二区二区91| 777久久人妻少妇嫩草av网站| 十八禁人妻一区二区| 悠悠久久av| 极品人妻少妇av视频| 国产在线观看jvid| 搡老乐熟女国产| 国产一区二区三区综合在线观看| 女人被躁到高潮嗷嗷叫费观| 国产色视频综合| 黄网站色视频无遮挡免费观看| 久久午夜亚洲精品久久| 欧美+亚洲+日韩+国产| 国产精品亚洲av一区麻豆| 男女无遮挡免费网站观看| 搡老乐熟女国产| 在线天堂中文资源库| 在线观看舔阴道视频| 亚洲一码二码三码区别大吗| 日韩中文字幕欧美一区二区| 中文字幕人妻熟女乱码| 十八禁高潮呻吟视频| 成人三级做爰电影| 亚洲视频免费观看视频| 啦啦啦中文免费视频观看日本| 国产精品自产拍在线观看55亚洲 | h视频一区二区三区| 成人18禁高潮啪啪吃奶动态图| 国产午夜精品久久久久久| 搡老熟女国产l中国老女人| 天天操日日干夜夜撸| 国产亚洲一区二区精品| 亚洲国产av影院在线观看| 巨乳人妻的诱惑在线观看| 中文字幕最新亚洲高清| 女人久久www免费人成看片| 国产精品久久久久成人av| 久久免费观看电影| 亚洲精品中文字幕在线视频| 亚洲免费av在线视频| 久热这里只有精品99| 精品少妇久久久久久888优播| 国产免费现黄频在线看| 曰老女人黄片| 免费观看a级毛片全部| 国产亚洲精品第一综合不卡| 一级毛片电影观看| av有码第一页| 亚洲一区中文字幕在线| 亚洲熟女精品中文字幕| 日韩成人在线观看一区二区三区| 久久久久精品国产欧美久久久| 成年人免费黄色播放视频| 夜夜骑夜夜射夜夜干| 免费看十八禁软件| 伊人久久大香线蕉亚洲五| 十分钟在线观看高清视频www| 国产精品久久久人人做人人爽| 亚洲精品久久午夜乱码| 国内毛片毛片毛片毛片毛片| 一边摸一边做爽爽视频免费| 国产一区二区在线观看av| 成年动漫av网址| 免费在线观看日本一区| 日本a在线网址| 激情视频va一区二区三区| 色婷婷av一区二区三区视频| 少妇被粗大的猛进出69影院| 午夜福利视频精品| 夜夜爽天天搞| 亚洲全国av大片| 777米奇影视久久| 亚洲久久久国产精品| 久久精品亚洲精品国产色婷小说| 超色免费av| 亚洲少妇的诱惑av| av天堂久久9| 日韩视频一区二区在线观看| 麻豆成人av在线观看| 国产成人一区二区三区免费视频网站| 国产主播在线观看一区二区| 少妇猛男粗大的猛烈进出视频| 国产成人精品久久二区二区91| 婷婷成人精品国产| 亚洲综合色网址| 国产欧美日韩精品亚洲av| 欧美 亚洲 国产 日韩一| 亚洲人成电影观看| 日本五十路高清| 国产人伦9x9x在线观看| 视频区欧美日本亚洲| 黄色视频在线播放观看不卡| 黄色片一级片一级黄色片| 日韩欧美一区视频在线观看| 精品高清国产在线一区| 1024视频免费在线观看| 午夜免费成人在线视频| 最新美女视频免费是黄的| 亚洲九九香蕉| 精品国产亚洲在线| 久久久久视频综合| 一二三四社区在线视频社区8| 99国产精品一区二区三区| 国产av又大| 国产真人三级小视频在线观看| xxxhd国产人妻xxx| 69av精品久久久久久 | 大片电影免费在线观看免费| 19禁男女啪啪无遮挡网站| 手机成人av网站| 视频区图区小说| 人妻 亚洲 视频| 亚洲av片天天在线观看| 十八禁人妻一区二区| 精品亚洲成国产av| 最新美女视频免费是黄的| 欧美激情高清一区二区三区| 久热爱精品视频在线9| aaaaa片日本免费| 国产欧美日韩一区二区三| 91九色精品人成在线观看| 国产黄频视频在线观看| 丁香欧美五月| 丁香六月欧美| 亚洲一区二区三区欧美精品| videos熟女内射| 我的亚洲天堂| 天天操日日干夜夜撸| 自线自在国产av| 欧美精品av麻豆av| 中文字幕人妻丝袜制服| 成人av一区二区三区在线看| www.精华液| 国产男女超爽视频在线观看| 久久久精品区二区三区| 老司机福利观看| 亚洲av日韩精品久久久久久密| 一级黄色大片毛片| 成人国语在线视频| 欧美日本中文国产一区发布| 曰老女人黄片| 极品人妻少妇av视频| 人妻一区二区av| 久久久久网色| 亚洲国产av新网站| 精品乱码久久久久久99久播| 老司机亚洲免费影院| bbb黄色大片| 国产91精品成人一区二区三区 | 久久性视频一级片| 国产在线一区二区三区精| 大片电影免费在线观看免费| 国产精品影院久久| 一进一出好大好爽视频| 成人18禁在线播放| 国产伦理片在线播放av一区| 精品国产乱子伦一区二区三区| 五月开心婷婷网| 一区二区三区乱码不卡18| 国产成人精品久久二区二区91| 黄色成人免费大全| 中文欧美无线码| 黑人巨大精品欧美一区二区蜜桃| 亚洲第一欧美日韩一区二区三区 | 丝袜美腿诱惑在线| 九色亚洲精品在线播放| tocl精华| av天堂在线播放| 色综合欧美亚洲国产小说| 久久毛片免费看一区二区三区| 99精品在免费线老司机午夜| 欧美激情高清一区二区三区| 亚洲欧美日韩另类电影网站| 99热国产这里只有精品6| 天天影视国产精品| 久久人妻av系列| 国产精品一区二区在线观看99| 国产精品国产高清国产av | aaaaa片日本免费| 一区福利在线观看| 精品少妇久久久久久888优播| 叶爱在线成人免费视频播放| 欧美日韩精品网址|