• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive feedback control for nonlinear triangular systems subject to uncertain asymmetric dead-zone input

    2023-12-01 09:51:24MinghuiFengYanjieChangZhiyuDuanXianfuZhang
    Control Theory and Technology 2023年4期

    Minghui Feng·Yanjie Chang·Zhiyu Duan·Xianfu Zhang

    Abstract In this paper, an adaptive control strategy is proposed to investigate the issue of uncertain dead-zone input for nonlinear triangular systems with unknown nonlinearities.The considered system has no precise priori knowledge about the dead-zone feature and growth rate of nonlinearity.Firstly,a dynamic gain is introduced to deal with the unknown growth rate,and the dead-zone characteristic is processed by the adaptive estimation approach without constructing the dead-zone inverse.Then,by virtue of hyperbolic functions and sign functions,a new adaptive state feedback controller is proposed to guarantee the global boundedness of all signals in the closed-loop system.Moreover,the uncertain dead-zone input problem for nonlinear upper-triangular systems is solved by the similar control strategy.Finally, two simulation examples are given to verify the effectiveness of the control scheme.

    Keywords Dead-zone input·Dynamic gain·Adaptive estimation·Global boundedness

    1 Introduction

    Theresearchfieldofnonlineartriangularsystemhasobtained accumulating attention in the past several years.Quite a few mathematicalmodelsandengineeringproblemsinrealitycan be converted to the issues of global stabilization or boundedness of nonlinear triangular systems,see[1–7].Recursive design comprising forwarding and backstepping design technique is a powerful technique for studying the nonlinear triangular systems[1,2].Based on backstepping design and Razumikhin lemma, [1] studied the robust control problem for a class of nonlinear time-delay systems with triangular structure where the state feedback controllers were designed such that the global regulation was achieved.Besides, two novel control schemes were developed to solve the timedelay problem for upper-triangular nonlinear system through recursive design approach in [2].In recent years, dynamic gain becomes a creative control approach for the research of nonlinear triangular systems and plays an important role in coping with nonlinearities,which facilitates the design of the control strategy.Using dynamic gain technique,the constructivecontrolstrategieswereproposedfortime-delaynonlinear triangular systems in [3–5], and globally asymptotical stability was achieved with the help of Lyapunov–Krasovskii functionals.

    When system parameters or the bounds of system parameters are unknown, the adaptive control has been widely studied.Recently, a growing number of adaptive control problems appear in practical industrial systems, see [8, 9].On the basis of this framework of backstepping design,fuzzy logic systems and neural network technique were applied to approximate the uncertain nonlinear terms, which made it convenient to compensate the complex nonlinear terms,see[10,11].Using the adaptive backstepping technique,a novel adaptive control algorithm for uncertain nonlinear systems was developed in[12]to offset the effect of uncertain input parametersbyintroducingahyperbolictangentfunction.Different with the above literature, under the circumstance of unknown growth rate,two dynamic gains were introduced to deal with the uncertain system parameter,see[13].In[14],the problem of time-delay nonlinear systems with unknown parameters was investigated using dynamic gain approach,and an adaptive state feedback control scheme was proposed.It can be seen from the above results that the backstepping design and neural network technique are commonly applied to cope with the uncertain system parameters.

    In addition, uncertain dead zone input is an universal issue and occurs in many practical applications.The existence of uncertain dead-zone affects the system performance seriously.Therefore,for the sake of compensating for negative effects brought by dead-zone input,a series of relevant studies have been executed by constructing the inverse of dead-zone, see [15, 16].With further study on dead-zone input, [17] decomposed the dead nonlinearity into a linear part and a disturbance-like term.Based on this idea, some excellent results were obtained,see[18,19].Ibrir et al.[18]solved the adaptive tracking problem for nonlinear linearizable uncertain systems without constructing the dead-zone inverse.By constructing a smooth adaptive controller, the tracking control problem for a class of nonlinear system subject to time delay and dead-zone input was investigated in [19].For a class of nonlinear systems subject to fuzzy dead zone, the adaptive fuzzy controller was constructed,which guaranteed that all the signals of closed-loop system were semi-globally uniformly bounded,see[20,21].Without preciseinformationaboutthedeadzoneinput,anoutputfeedback controller was developed in [22] to ensure the global boundedness of all states, so that the problem of tracking was solved for systems in lower-triangular form.However,cognate researches on state feedback control problem for nonlinear triangular systems with uncertain dead-zone input based on dynamic gain approach have received little attention.

    This paper explores the state feedback stabilisation problem for nonlinear triangular systems subject to dead-zone input.Influenced by[4,23],the dynamic gain is developed to cope with the nonlinear terms for lower-triangular system.Then, it is extended to nonlinear upper-triangular system,where a new form of dynamic gain is presented.The adaptive feedback controllers for both nonlinear lower-triangular systems and nonlinear upper-triangular systems are proposed to guarantee the boundedness of all signals in the closedloop system.The main contributions of this paper is listed as below.

    (i) Unlike existing works using adaptive fuzzy backstepping design control approach, the dynamic gain technique is applied to settle the state feedback problem of nonlinear triangular systems with dead-zone input,which simplifies the form of controller as well as avoids complex iterative steps.In particular, a new dynamic gain is proposed for nonlinear upper-triangular systems.

    (ii) Different from [20, 21], the global boundedness of all states of the closed-loop system is obtained.Furthermore, the convergence region around zero of all states in the closed-loop system can be small enough by adjusting relative design parameters.

    (iii) Most of the existing literature about dead-zone input are aimed at nonlinear lower-triangular systems, and it has shown the feasibility of handling the effects of dead-zone and inherent nonlinearities through adaptive control strategy,see[24].Specially,it is a remarkable fact that the adaptive controller in this paper is also effective for nonlinear upper-triangular systems.

    The rest of this paper is indicated as below.Section1 devotes to the problem formulation and preliminary work.Next,the main results of this work are presented in Sect.3,which includes the design of adaptive control schemes and the boundedness analysis of dynamic gain and all states for lower-triangular system as well as upper-triangular system.Then,Sect.4 provides two simulation examples to manifest the effectiveness of the adaptive control strategy.Finally,Sect.5 presents the conclusions.

    Notations R, R+and Rnrepresent the set of real numbers,the set of nonnegative real numbers andn-dimensional Euclidean space,respectively.Irepresents an identity matrix with suitable dimension.The sign function sign(a)denotes that whena> 0,sign(a)= 1;whena< 0,sign(a)= -1;whena= 0, sign(a)= 0.‖·‖denotes the Euclidean norm of a vector or matrix.λmax(·) andλmin(·) stand for the maximum eigenvalue and minimum eigenvalue of a matrix,respectively.

    2 Preliminaries and problem formulation

    Consider the following uncertain nonlinear system

    wherex(t) = [x1(t),...,xn(t)]T∈Rnandu(t) ∈R are the system state and input,respectively.The nonlinearityfi(·):R+×Rn→R is a continuous function.Assume that all states in system(1)are measurable and can be utilized in the design of control strategy.The form of uncertain actuator dead zoneN(u(t))is as follows:

    where the unknown parametersmr> 0 andml> 0 represent the right and left slope of the dead-zone characteristic,respectively,br> 0 andbl> 0 denote the break points of dead-zone input.

    To simplify the controller design,one can redescribe the dead-zone model(2)as follows:

    where

    The control objective of this paper is to develop an adaptive controller to ensure all signals of close-loop systems are globally bounded.To achieve the control objective, several necessary assumptions and lemmas are required.

    Assumption 1 [19]The parametersmr>0,ml>0,br>0 andbl>0 are unknown but bounded.

    Remark 1Assumption1isanecessaryconditionusedtoindicate the parameters of dead input,see[18,19,22].Obviously,one can get thatη(u)andψ(u)are bounded form(4),(5)and Assumption 1.Therefore,there exist two unknown constantsθ1andθ2satisfying thatand

    Assumption 2 For eachi= 1,...,n, there exists an unknown positive constantγsuch that

    Assumption 3 For eachi=1,...,n,the system nonlinearitiesfi(·)satisfy the following conditions:

    whereγis an unknown constant,andfn-1=fn=0.

    Remark 2In general,system(1)is known as lower-triangular system when Assumption 2 holds.On the contrary, system(1) is called upper-triangular system when Assumption 3 holds.Under Assumptions 2 or 3,system(1)includes a great quantity of nonlinear physical systems,such as mechanical interaction system of robots and nonlinear liquid level control resonant circuit system,see[6,7].Besides,many renowned studies have investigated the stability problem for a class of nonlinear systems without dead-zone input under conditions of Assumptions 2 and 3,see[4,13].

    Lemma 1 [25]Let A∈Rn×n,C∈Rn×1,F∈R1×n,D1∈Rn×n and D2∈Rn×n be matrices defined as

    D1= diag{1,...,n}and D2= diag{n,...,1}.Then there exist two positive constants d1,d2,one positive definite matrice P>0,and a vector Ka=[a1,a2,...,an]with ai,i=1,2,...,n being Hurwitz polynomial coefficients,such that

    where B=A-CKa,P∈Rn×n,and pi,n denotes the elements in row i and column n of the matrix P,i=1,...,n.

    Lemma 2 [26]For any λ∈Rand ε∈R+,the following inequality holds:

    3 Main results

    3.1 Adaptive controller design for lower-triangular systems

    In this section, a new state feedback controller for system(1) under Assumption 2 will be developed by introducing hyperbolic functions and sign functions.One can see that system (1) satisfying Assumption 2 is indeed a nonlinear lower-triangular system,see[3,7].

    Theorem 1Under Assumptions1,2,the global boundedness of all states in system(1)can be guaranteed by the state feedback controller of the following form:

    with dynamic gain L being updated as

    where parameters?γ1, ?θ1, ?θ2are the estimated values of γ1,θ1,θ2correspondingly,and adaptive updating laws are as below:

    To facilitate understanding,one divides the proof into two parts.

    PartI:IntroductionofcoordinatetransformationsandLyapunov functions.

    The following coordinate transformations are introduced

    Therefore,system(1)can be transformed into

    Next,choose the Lyapunov function candidate

    where

    Part II:Stability analysis.

    By(14)and(16),the time derivative ofV1is given by

    From Assumption 2 and(13),one gets

    which implies

    Significantly,

    then,calculate the last term of(17)by the aid of(3)and(20)

    Combining(9)and(17)–(21),one can derive that

    It is not difficult to derive by Lemma 2 that

    Withthehelpof(9),(11),(16),(22)and(23),thederivative ofVis calculated as

    From(12),one has

    After simple calculation, the following inequalities also hold

    Substituting(25)–(27)into(24),one can arrive at

    Note that

    It follows from(29)that similar inequality can be obtained

    Further,one has

    Using the definition ofVin(15)and(16),there holds

    Remark 3Notably,according to the form of(33),increasing?i,i=1,2,3 and decreasingσi,i=1,2,3,one will obtain smaller convergence domain.Since the design parameters can be chosen at random, the convergence domain can be rendered small enough.Besides,increasingσ1,σ2,ρwhile decreasing?1,?2can make dynamic gain as well as input smaller.Therefore, to balance the size of input and convergence domain and meet the practice demand,the design parameters should be chosen appropriately.

    Remark 4In this section, the adaptive controller design for lower-triangular systems is designed.The main difficulty is to deal with the uncertain dead-zone input and unknown growth rate since the lack of prior information about their bounds.Different with the[19],dynamic gain and coordinate transformation approach is introduced to deal with nonlinear terms.Besides, our systems include more nonlinear terms.Compared with [22], the proposed control scheme in this paper can make the convergence region around zero of all states (x1,...,xn) in the closed-loop system can be small enough.And using the scaling change technique,the method of stability analysis in this paper is more direct.Moreover,the design approach of controller for lower triangular systems is also applicable to upper triangular systems.

    3.2 Adaptive controller design for upper-triangular systems

    In this section, by introducing hyperbolic functions and sign functions, a new control strategy for system (1) under Assumption 3 is proposed to ensure that all signals are bounded.It is clear that system (1) under Assumption 3 is indeed a nonlinear upper-triangular system,see[4,7].

    Theorem 2Under Assumptions1and3,the global boundedness of all states in the closed-loop system(1)can be guaranteed by the state feedback controller of the following form:

    with the gain L updated by

    where parameters?γ1, ?θ1, ?θ2are the estimated values of γ1,θ1,θ2correspondingly,and the adaptive updating laws are as below:

    Next,one divides the proof into two parts.

    PartI:IntroductionofcoordinatetransformationsandLyapunov functions.

    Let

    Thus,system(1)can be converted into

    where

    wherePis given in Lemma 1.

    Part II:Stability analysis.

    Using Lemma 1,a simple derivation is given

    Then, by Assumption 3 and coordination transformation(38),one gives the estimation of the nonlinearity terms 2zTP Fin(42)

    whereγ1is an unknown constant.

    From (34), (43), and Lemma 2, the following inequality holds:

    Recalling(29)and(30),it is derived that

    Remark 5Aimedatuncertainnonlinearupper-triangularsystems with unknown actuator input, the developed control scheme is also valid.The desired control performance can be obtained by adjusting relative design parameters similar with Remark 3.It is worth noting that the accurate information of growth rate and the characteristic about the actuator nonlinearities of nonlinear system are unnecessary,and their bounds are not required to be known.The adaptive controller in this paper can compensate for the effects of uncertain actuator nonlinearities.

    Remark 6On the one hand,for ?t∈[0,+∞),the dynamic gainL(t)is designed to satisfyL(t)≥1.It should be pointed out that the introduction of dynamic gainLis effective to estimate the unknown nonlinear terms.Note that the real but unknown parameterγ1cannot be used in the design of dynamic gain,which means the effects of the unknown nonlinear terms cannot be eliminated directly.Therefore, ?γ1is introduced into dynamic gainL.It can be seen from the above calculation process, by designing ?γ1delicately and incorporating the properties of such a special structure ofL,one can cope with the unknown nonlinearities efficiently.On the other hand,instead of the renowned backstepping design approach,the dynamic gain design approach is used in this paper,which avoids the problem of explosion of complexity.

    4 Two simulation examples

    In this section, two examples are given to verify the effectiveness of the control strategies proposed in this paper.

    Example 1Consider the following system

    Fig.1 Trajectories of x1 and x2 in systems(47)–(51)

    whereN(u)denotes the dead-zone input

    It is easy to see the nonlinearities satisfy Assumption 2 withγbeing an unknown constant.To dispose of the difficulty brought by the uncertain dead-zone input and uncertain nonlinearities in system (47), one can construct the following state feedback control scheme according to Theorem 1:

    whereLis the state of system

    Fig.2 Trajectory of L in systems(47)–(51)

    Fig.3 Trajectories of u and N(u)in systems(47)–(51)

    Fig.4 Trajectories of ?γ1, ?θ1, ?θ2 in systems(47)–(51)

    One can obtain that the control scheme can guarantee the boundedness of all states of the closed-loop system.Particularly,one can make the region of convergence of states small enough by adjusting the values of parametersρ,?1,σ1,?2,σ2,?3,σ3andε.Besides, it is clear that dynamic gain and controller are bounded by Figs.2 and 3.Example 2Consider the following system

    whereN(u)has the following form

    It is easy to see the nonlinearities satisfy Assumption 3 withγbeing an unknown constant.One can employ the following state feedback controller from Theorem 2 to deal with the uncertain dead-zone characteristics as well as nonlinearities

    Fig.5 Trajectories of x1 and x2 in systems(52)–(56)

    Fig.6 Trajectory of L in systems(52)–(56)

    of system(52)and achieve the control goal.

    withLbeing the state of system

    and updated laws of ?γ1, ?θ1and ?θ2are as follows:

    Similarly with Example 1, selectingKa= [1,3, 2],one gets.Then, choose the parametersρ= 0.9,?1= 11,σ1= 0.02,?2= 1,σ2= 0.001,?3= 150,σ3= 0.001,ε= 2.5 and set the initial valuesx1(0),x2(0),x2(0),L(0), ?γ1(0), ?θ1(0), ?θ2(0)T=[-1,1,2,1,0,0,5]T.Figures5,6,7 and 8 show the results and illustrate the validity of control strategies(54)–(56).

    Fig.7 Trajectories of u and N(u)in systems(52)–(56)

    Fig.8 Trajectories of ?γ1, ?θ1, ?θ2 in systems(52)–(56)

    It can be observed from Fig.5 that the control scheme proposed for nonlinear upper-triangular system can also accomplish the control goal.Besides,from Figs.6 and 7,one can see that dynamic gain and the controller are bounded.

    Remark 7In fact,different parameters have variable effects on the convergence region,one can make the region of convergence of all states small enough by adjusting the values of parametersρ,?1,σ1,?2,σ2,?3,σ3andε.Besides,recalling control strategies we proposed,it is clear that dynamic gain and adaptive laws are also dependent on the design parameters,one can obtain appropriate dynamic gain and adaptive estimator by adjusting design parameters properly.

    5 Conclusion

    Inthispaper,wehaveinvestigatedtheissueofuncertaindeadzone input for nonlinear triangular system with unknown nonlinearities.Due to the lack of precise priori knowledge about the dead-zone feature and growth rate of nonlinearity for the considered system,a dynamic gain has been adopted to deal with the unknown growth rate,and the adaptive estimation approach has been employed to tackle the dead-zone characteristic without constructing the dead-zone inverse.Combined with hyperbolic functions and sign functions,two new adaptive state feedback control schemes have been proposed to ensure the global boundedness of all signals in the closed-loop system.The performance of the control scheme has been illustrated through two given simulation examples.

    亚洲专区中文字幕在线| 大片电影免费在线观看免费| 真人做人爱边吃奶动态| 蜜桃国产av成人99| 久久亚洲精品不卡| 在线看a的网站| 欧美日韩视频精品一区| 精品熟女少妇八av免费久了| 成人国语在线视频| 激情五月婷婷亚洲| 丰满人妻熟妇乱又伦精品不卡| 啦啦啦 在线观看视频| 天天躁夜夜躁狠狠躁躁| 中文字幕亚洲精品专区| 国产视频一区二区在线看| 久久影院123| 亚洲欧美日韩高清在线视频 | 亚洲七黄色美女视频| 香蕉国产在线看| 又粗又硬又长又爽又黄的视频| 丰满人妻熟妇乱又伦精品不卡| 黑人欧美特级aaaaaa片| 久久99热这里只频精品6学生| 中文乱码字字幕精品一区二区三区| 国产成人欧美| 亚洲专区中文字幕在线| 日本欧美视频一区| 另类亚洲欧美激情| 亚洲成人免费av在线播放| av在线app专区| 日韩欧美一区视频在线观看| 天天躁夜夜躁狠狠久久av| 2018国产大陆天天弄谢| 中文乱码字字幕精品一区二区三区| tube8黄色片| 国产男女超爽视频在线观看| 精品国产一区二区久久| 一本久久精品| 精品亚洲成国产av| 国产成人精品久久二区二区91| 国产97色在线日韩免费| 丝袜脚勾引网站| 国产xxxxx性猛交| 成年美女黄网站色视频大全免费| 午夜久久久在线观看| 男人爽女人下面视频在线观看| 国产日韩欧美在线精品| 久久99一区二区三区| 爱豆传媒免费全集在线观看| 精品福利观看| 国产伦理片在线播放av一区| 大香蕉久久成人网| 日日爽夜夜爽网站| 极品少妇高潮喷水抽搐| 久久国产精品大桥未久av| 精品国产一区二区久久| 老司机亚洲免费影院| 欧美精品高潮呻吟av久久| 中文字幕另类日韩欧美亚洲嫩草| 美女扒开内裤让男人捅视频| 建设人人有责人人尽责人人享有的| 91麻豆精品激情在线观看国产 | 男女国产视频网站| 亚洲三区欧美一区| 九草在线视频观看| 亚洲免费av在线视频| 国语对白做爰xxxⅹ性视频网站| 亚洲少妇的诱惑av| 久久精品国产亚洲av高清一级| 91麻豆av在线| 久久国产精品影院| 亚洲第一青青草原| 国产国语露脸激情在线看| 中文字幕av电影在线播放| 欧美日韩亚洲高清精品| 黑丝袜美女国产一区| 亚洲伊人久久精品综合| 欧美精品啪啪一区二区三区 | 人妻一区二区av| 青草久久国产| 午夜福利视频精品| 波多野结衣av一区二区av| 中文字幕另类日韩欧美亚洲嫩草| √禁漫天堂资源中文www| 国产黄色视频一区二区在线观看| 人人妻人人爽人人添夜夜欢视频| 国产成人av教育| 精品高清国产在线一区| 亚洲男人天堂网一区| 十八禁人妻一区二区| 黑人欧美特级aaaaaa片| 亚洲 国产 在线| 欧美日本中文国产一区发布| 色婷婷av一区二区三区视频| 9热在线视频观看99| 久久久精品免费免费高清| 亚洲av电影在线进入| 精品一品国产午夜福利视频| 国产成人免费无遮挡视频| 国产成人精品久久二区二区免费| 一级a爱视频在线免费观看| 亚洲国产精品国产精品| 国产在线免费精品| 日韩av不卡免费在线播放| 麻豆国产av国片精品| 女警被强在线播放| 色婷婷久久久亚洲欧美| 精品人妻在线不人妻| 免费看十八禁软件| 国产一区二区 视频在线| 精品国产超薄肉色丝袜足j| 欧美日本中文国产一区发布| 爱豆传媒免费全集在线观看| 建设人人有责人人尽责人人享有的| 亚洲精品美女久久久久99蜜臀 | 婷婷色av中文字幕| 久久人妻福利社区极品人妻图片 | 人妻一区二区av| 观看av在线不卡| 亚洲av片天天在线观看| 国产av一区二区精品久久| 欧美日韩成人在线一区二区| 久久精品国产综合久久久| 免费黄频网站在线观看国产| 超色免费av| 亚洲 欧美一区二区三区| 亚洲伊人色综图| 免费观看av网站的网址| 久久久久久久久免费视频了| 一个人免费看片子| 亚洲人成电影观看| 人妻人人澡人人爽人人| 国产91精品成人一区二区三区 | 这个男人来自地球电影免费观看| 国产成人免费无遮挡视频| 午夜福利视频在线观看免费| 大香蕉久久成人网| 欧美人与性动交α欧美软件| 亚洲,欧美精品.| 一区二区三区精品91| 一边亲一边摸免费视频| 亚洲人成网站在线观看播放| 日韩视频在线欧美| 国产一区二区三区综合在线观看| 亚洲七黄色美女视频| 中文字幕人妻熟女乱码| 大片电影免费在线观看免费| 亚洲 欧美一区二区三区| 狂野欧美激情性bbbbbb| av天堂在线播放| 久久精品国产亚洲av涩爱| 国产精品久久久久久人妻精品电影 | xxx大片免费视频| 精品高清国产在线一区| 好男人电影高清在线观看| 久久久久精品人妻al黑| 国产国语露脸激情在线看| 免费日韩欧美在线观看| 美女高潮到喷水免费观看| 首页视频小说图片口味搜索 | 欧美日韩福利视频一区二区| 欧美日韩精品网址| 波野结衣二区三区在线| 精品一区在线观看国产| videos熟女内射| 伊人亚洲综合成人网| 天堂8中文在线网| 极品少妇高潮喷水抽搐| 成年人黄色毛片网站| 亚洲av片天天在线观看| 人妻一区二区av| 亚洲伊人久久精品综合| 丰满饥渴人妻一区二区三| 夫妻性生交免费视频一级片| av天堂久久9| 老熟女久久久| 亚洲精品久久久久久婷婷小说| 日日摸夜夜添夜夜爱| tube8黄色片| 只有这里有精品99| 在现免费观看毛片| 岛国毛片在线播放| 欧美国产精品一级二级三级| 精品人妻一区二区三区麻豆| 波多野结衣一区麻豆| 一本大道久久a久久精品| 国产午夜精品一二区理论片| 99热网站在线观看| 美女视频免费永久观看网站| 交换朋友夫妻互换小说| 亚洲国产欧美网| 亚洲人成网站在线观看播放| 一本色道久久久久久精品综合| 亚洲精品成人av观看孕妇| 国产在线免费精品| 精品第一国产精品| 国产主播在线观看一区二区 | 在线观看一区二区三区激情| 只有这里有精品99| 一边摸一边抽搐一进一出视频| 宅男免费午夜| 满18在线观看网站| 99久久人妻综合| 国产av一区二区精品久久| 免费看十八禁软件| 国精品久久久久久国模美| 侵犯人妻中文字幕一二三四区| 国产日韩欧美在线精品| 色94色欧美一区二区| av片东京热男人的天堂| 亚洲熟女毛片儿| 国产熟女欧美一区二区| 欧美日韩视频高清一区二区三区二| 丁香六月天网| 日本一区二区免费在线视频| 亚洲欧美中文字幕日韩二区| 国产av精品麻豆| 久久热在线av| 精品视频人人做人人爽| 18禁黄网站禁片午夜丰满| 老司机影院成人| 欧美日本中文国产一区发布| 中国国产av一级| 一级a爱视频在线免费观看| 午夜福利免费观看在线| 久久久精品94久久精品| 免费黄频网站在线观看国产| 亚洲欧美成人综合另类久久久| 欧美日韩精品网址| 成人亚洲精品一区在线观看| 国产精品一区二区在线不卡| 精品国产一区二区三区四区第35| 观看av在线不卡| 欧美日韩精品网址| 亚洲欧美精品自产自拍| 亚洲精品久久午夜乱码| av欧美777| 久久这里只有精品19| 一二三四在线观看免费中文在| 久久精品人人爽人人爽视色| 久久99热这里只频精品6学生| 日韩精品免费视频一区二区三区| 国产成人一区二区三区免费视频网站 | 亚洲欧美日韩另类电影网站| 色94色欧美一区二区| 欧美精品av麻豆av| 久久亚洲精品不卡| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产欧美日韩在线播放| 国产成人影院久久av| 欧美 亚洲 国产 日韩一| 国产欧美日韩精品亚洲av| 色综合欧美亚洲国产小说| 久久人人97超碰香蕉20202| 中国美女看黄片| 亚洲欧美一区二区三区久久| 五月开心婷婷网| 欧美精品av麻豆av| 精品人妻在线不人妻| 成人国产av品久久久| 美女福利国产在线| 国产一区二区三区综合在线观看| 在线观看国产h片| 在线观看一区二区三区激情| 国产97色在线日韩免费| 欧美日韩亚洲高清精品| 亚洲精品久久久久久婷婷小说| 夜夜骑夜夜射夜夜干| www.999成人在线观看| 国产男女内射视频| 亚洲第一av免费看| 首页视频小说图片口味搜索 | 欧美日韩亚洲国产一区二区在线观看 | 看免费成人av毛片| 中文字幕最新亚洲高清| 在线观看免费视频网站a站| 国产麻豆69| 韩国高清视频一区二区三区| 婷婷色麻豆天堂久久| 欧美精品啪啪一区二区三区 | 男女边摸边吃奶| 亚洲精品国产av成人精品| www.999成人在线观看| 美女扒开内裤让男人捅视频| 丰满饥渴人妻一区二区三| 国产一区有黄有色的免费视频| 免费在线观看视频国产中文字幕亚洲 | 久久久久视频综合| 中文字幕精品免费在线观看视频| 巨乳人妻的诱惑在线观看| 老鸭窝网址在线观看| 久久影院123| 丝袜在线中文字幕| 亚洲人成77777在线视频| av网站在线播放免费| 97精品久久久久久久久久精品| 国产一卡二卡三卡精品| 国产精品一国产av| 丝袜美足系列| 久久国产精品男人的天堂亚洲| 亚洲人成电影观看| 一区二区三区四区激情视频| 免费在线观看视频国产中文字幕亚洲 | 久久狼人影院| 老司机午夜十八禁免费视频| 成年av动漫网址| 亚洲美女黄色视频免费看| 亚洲专区国产一区二区| 麻豆av在线久日| 99国产精品一区二区三区| 午夜福利在线免费观看网站| 啦啦啦视频在线资源免费观看| 亚洲精品一二三| 国产精品三级大全| 亚洲国产看品久久| 国产成人免费观看mmmm| 日韩 亚洲 欧美在线| 欧美老熟妇乱子伦牲交| 国产一区二区在线观看av| 亚洲国产精品成人久久小说| 亚洲av美国av| av又黄又爽大尺度在线免费看| 日韩 亚洲 欧美在线| 十八禁网站网址无遮挡| 精品国产一区二区久久| 美女国产高潮福利片在线看| 男女床上黄色一级片免费看| 日本午夜av视频| 五月天丁香电影| 欧美日本中文国产一区发布| 精品少妇久久久久久888优播| 国产不卡av网站在线观看| 国产精品免费大片| 青春草视频在线免费观看| 成人国产av品久久久| 国产精品久久久久成人av| 成人亚洲精品一区在线观看| 精品卡一卡二卡四卡免费| 美女高潮到喷水免费观看| 免费在线观看日本一区| 九草在线视频观看| 精品少妇内射三级| 人体艺术视频欧美日本| 精品国产国语对白av| 亚洲成色77777| 亚洲精品久久午夜乱码| 国产精品九九99| 日日夜夜操网爽| 亚洲精品美女久久av网站| 黄色怎么调成土黄色| 欧美黄色片欧美黄色片| 搡老乐熟女国产| 久久天堂一区二区三区四区| 9色porny在线观看| 亚洲精品美女久久av网站| xxxhd国产人妻xxx| 黄色一级大片看看| 午夜日韩欧美国产| 丝袜美腿诱惑在线| 无限看片的www在线观看| 久久女婷五月综合色啪小说| 免费一级毛片在线播放高清视频 | 少妇 在线观看| 国产一区二区激情短视频 | 国产日韩欧美视频二区| 欧美精品一区二区免费开放| 中文字幕亚洲精品专区| 亚洲国产av新网站| av在线app专区| 亚洲av男天堂| 午夜福利视频在线观看免费| 成人三级做爰电影| 少妇被粗大的猛进出69影院| 国产高清国产精品国产三级| 18禁黄网站禁片午夜丰满| 悠悠久久av| 观看av在线不卡| 中文字幕制服av| 美女主播在线视频| 亚洲精品一区蜜桃| 久久久久视频综合| 亚洲第一av免费看| 又粗又硬又长又爽又黄的视频| 青春草视频在线免费观看| 2018国产大陆天天弄谢| 亚洲视频免费观看视频| 亚洲精品久久午夜乱码| 亚洲成色77777| 精品国产国语对白av| 叶爱在线成人免费视频播放| 欧美 亚洲 国产 日韩一| 满18在线观看网站| 一级黄片播放器| 亚洲五月婷婷丁香| 三上悠亚av全集在线观看| 少妇人妻 视频| www.自偷自拍.com| 中文字幕色久视频| 欧美黑人精品巨大| 国产精品一区二区免费欧美 | 免费在线观看黄色视频的| 欧美+亚洲+日韩+国产| 精品一区二区三区四区五区乱码 | 国产欧美日韩综合在线一区二区| 999久久久国产精品视频| 精品一区二区三区四区五区乱码 | 国产国语露脸激情在线看| 精品亚洲乱码少妇综合久久| 亚洲国产欧美在线一区| 一区二区日韩欧美中文字幕| 久久热在线av| 亚洲av日韩精品久久久久久密 | 九草在线视频观看| 国语对白做爰xxxⅹ性视频网站| 男女之事视频高清在线观看 | 成在线人永久免费视频| 欧美 亚洲 国产 日韩一| 交换朋友夫妻互换小说| 建设人人有责人人尽责人人享有的| 亚洲熟女精品中文字幕| 精品人妻1区二区| 各种免费的搞黄视频| 精品国产一区二区三区四区第35| 国产视频首页在线观看| 亚洲精品美女久久av网站| 中文字幕高清在线视频| 欧美xxⅹ黑人| 秋霞在线观看毛片| 成人黄色视频免费在线看| 久久久久久久国产电影| 女人精品久久久久毛片| 一区二区日韩欧美中文字幕| 高潮久久久久久久久久久不卡| 大香蕉久久网| 丰满少妇做爰视频| 国产精品久久久久久人妻精品电影 | 男女高潮啪啪啪动态图| 午夜福利在线免费观看网站| 老司机深夜福利视频在线观看 | 亚洲精品国产色婷婷电影| 亚洲,欧美,日韩| 亚洲精品av麻豆狂野| 亚洲视频免费观看视频| 免费久久久久久久精品成人欧美视频| 人人妻,人人澡人人爽秒播 | 国产一区二区 视频在线| av欧美777| 高清av免费在线| 91麻豆精品激情在线观看国产 | 久久久久久久国产电影| 日韩中文字幕视频在线看片| 欧美变态另类bdsm刘玥| 午夜免费鲁丝| 欧美日韩亚洲综合一区二区三区_| 亚洲午夜精品一区,二区,三区| 汤姆久久久久久久影院中文字幕| 午夜精品国产一区二区电影| 精品久久蜜臀av无| 亚洲,欧美精品.| 啦啦啦在线免费观看视频4| 人人妻人人澡人人爽人人夜夜| 国产精品熟女久久久久浪| 久久精品成人免费网站| 三上悠亚av全集在线观看| 日韩大片免费观看网站| 少妇被粗大的猛进出69影院| 啦啦啦视频在线资源免费观看| 中文字幕人妻丝袜制服| 欧美成人午夜精品| 国产麻豆69| 精品国产一区二区三区四区第35| 亚洲情色 制服丝袜| 亚洲中文av在线| 欧美人与性动交α欧美软件| 十八禁人妻一区二区| 91字幕亚洲| 久久久久国产一级毛片高清牌| 国产不卡av网站在线观看| 丁香六月欧美| 国产成人精品无人区| 国产亚洲av高清不卡| 女警被强在线播放| 精品视频人人做人人爽| 脱女人内裤的视频| 日本a在线网址| 99热全是精品| 极品人妻少妇av视频| 在线观看免费视频网站a站| 黄色怎么调成土黄色| 人体艺术视频欧美日本| 久久人人爽人人片av| av福利片在线| 亚洲国产看品久久| 久久99热这里只频精品6学生| 国产熟女欧美一区二区| 国产精品国产三级国产专区5o| 又大又黄又爽视频免费| 男女无遮挡免费网站观看| 9色porny在线观看| 国产有黄有色有爽视频| 国产精品一二三区在线看| 午夜老司机福利片| 两个人免费观看高清视频| 久久99热这里只频精品6学生| 中文字幕人妻丝袜制服| 久久精品久久久久久久性| 亚洲伊人久久精品综合| 国产又色又爽无遮挡免| 国产成人精品久久二区二区免费| 母亲3免费完整高清在线观看| 悠悠久久av| 777米奇影视久久| 99国产精品免费福利视频| 婷婷色综合www| 一区二区三区精品91| 涩涩av久久男人的天堂| 制服人妻中文乱码| 夫妻性生交免费视频一级片| 侵犯人妻中文字幕一二三四区| 亚洲欧美成人综合另类久久久| h视频一区二区三区| 高潮久久久久久久久久久不卡| 国产亚洲精品久久久久5区| 亚洲国产精品成人久久小说| 久久天躁狠狠躁夜夜2o2o | 国产麻豆69| 国产精品香港三级国产av潘金莲 | 免费看不卡的av| 国精品久久久久久国模美| 欧美在线一区亚洲| 狠狠精品人妻久久久久久综合| 国产精品人妻久久久影院| 亚洲,欧美精品.| 国产在视频线精品| 如日韩欧美国产精品一区二区三区| 涩涩av久久男人的天堂| 久久综合国产亚洲精品| 欧美xxⅹ黑人| 晚上一个人看的免费电影| 午夜激情久久久久久久| 五月开心婷婷网| 亚洲欧美精品综合一区二区三区| 亚洲国产av影院在线观看| 人妻 亚洲 视频| 午夜福利视频精品| 亚洲精品日韩在线中文字幕| 精品亚洲乱码少妇综合久久| 在线观看国产h片| 久久人妻福利社区极品人妻图片 | 国产成人免费观看mmmm| 亚洲男人天堂网一区| 热99国产精品久久久久久7| 香蕉国产在线看| 欧美97在线视频| 久久 成人 亚洲| 麻豆av在线久日| 国产日韩欧美亚洲二区| 天堂8中文在线网| 高清黄色对白视频在线免费看| 中文字幕亚洲精品专区| svipshipincom国产片| 国产男女超爽视频在线观看| 韩国高清视频一区二区三区| 大码成人一级视频| 岛国毛片在线播放| 久热爱精品视频在线9| 两人在一起打扑克的视频| 欧美黑人欧美精品刺激| 国产片特级美女逼逼视频| 国产国语露脸激情在线看| 亚洲视频免费观看视频| 欧美 亚洲 国产 日韩一| 最黄视频免费看| 国产精品久久久人人做人人爽| 丰满少妇做爰视频| 制服诱惑二区| 国产主播在线观看一区二区 | 免费看十八禁软件| 丝袜喷水一区| 午夜免费鲁丝| 亚洲国产欧美一区二区综合| 精品人妻一区二区三区麻豆| 黄色a级毛片大全视频| 天天操日日干夜夜撸| 成人国产一区最新在线观看 | 欧美日韩综合久久久久久| 亚洲成人国产一区在线观看 | 久久99精品国语久久久| 丝袜喷水一区| 啦啦啦视频在线资源免费观看| 亚洲精品日韩在线中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| xxxhd国产人妻xxx| 久久久亚洲精品成人影院| 成年av动漫网址| 国产日韩一区二区三区精品不卡| 男女免费视频国产| 伊人久久大香线蕉亚洲五| 制服人妻中文乱码| 大话2 男鬼变身卡| 久久人人97超碰香蕉20202| 亚洲av电影在线观看一区二区三区| 国产免费福利视频在线观看| 日韩制服丝袜自拍偷拍| 黄片播放在线免费| 亚洲黑人精品在线| 人人妻,人人澡人人爽秒播 | 免费看不卡的av| 热99国产精品久久久久久7| 少妇人妻 视频| 男女床上黄色一级片免费看| 欧美日韩精品网址| 成人国语在线视频| av有码第一页| 久久精品久久久久久久性|