• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive feedback control for nonlinear triangular systems subject to uncertain asymmetric dead-zone input

    2023-12-01 09:51:24MinghuiFengYanjieChangZhiyuDuanXianfuZhang
    Control Theory and Technology 2023年4期

    Minghui Feng·Yanjie Chang·Zhiyu Duan·Xianfu Zhang

    Abstract In this paper, an adaptive control strategy is proposed to investigate the issue of uncertain dead-zone input for nonlinear triangular systems with unknown nonlinearities.The considered system has no precise priori knowledge about the dead-zone feature and growth rate of nonlinearity.Firstly,a dynamic gain is introduced to deal with the unknown growth rate,and the dead-zone characteristic is processed by the adaptive estimation approach without constructing the dead-zone inverse.Then,by virtue of hyperbolic functions and sign functions,a new adaptive state feedback controller is proposed to guarantee the global boundedness of all signals in the closed-loop system.Moreover,the uncertain dead-zone input problem for nonlinear upper-triangular systems is solved by the similar control strategy.Finally, two simulation examples are given to verify the effectiveness of the control scheme.

    Keywords Dead-zone input·Dynamic gain·Adaptive estimation·Global boundedness

    1 Introduction

    Theresearchfieldofnonlineartriangularsystemhasobtained accumulating attention in the past several years.Quite a few mathematicalmodelsandengineeringproblemsinrealitycan be converted to the issues of global stabilization or boundedness of nonlinear triangular systems,see[1–7].Recursive design comprising forwarding and backstepping design technique is a powerful technique for studying the nonlinear triangular systems[1,2].Based on backstepping design and Razumikhin lemma, [1] studied the robust control problem for a class of nonlinear time-delay systems with triangular structure where the state feedback controllers were designed such that the global regulation was achieved.Besides, two novel control schemes were developed to solve the timedelay problem for upper-triangular nonlinear system through recursive design approach in [2].In recent years, dynamic gain becomes a creative control approach for the research of nonlinear triangular systems and plays an important role in coping with nonlinearities,which facilitates the design of the control strategy.Using dynamic gain technique,the constructivecontrolstrategieswereproposedfortime-delaynonlinear triangular systems in [3–5], and globally asymptotical stability was achieved with the help of Lyapunov–Krasovskii functionals.

    When system parameters or the bounds of system parameters are unknown, the adaptive control has been widely studied.Recently, a growing number of adaptive control problems appear in practical industrial systems, see [8, 9].On the basis of this framework of backstepping design,fuzzy logic systems and neural network technique were applied to approximate the uncertain nonlinear terms, which made it convenient to compensate the complex nonlinear terms,see[10,11].Using the adaptive backstepping technique,a novel adaptive control algorithm for uncertain nonlinear systems was developed in[12]to offset the effect of uncertain input parametersbyintroducingahyperbolictangentfunction.Different with the above literature, under the circumstance of unknown growth rate,two dynamic gains were introduced to deal with the uncertain system parameter,see[13].In[14],the problem of time-delay nonlinear systems with unknown parameters was investigated using dynamic gain approach,and an adaptive state feedback control scheme was proposed.It can be seen from the above results that the backstepping design and neural network technique are commonly applied to cope with the uncertain system parameters.

    In addition, uncertain dead zone input is an universal issue and occurs in many practical applications.The existence of uncertain dead-zone affects the system performance seriously.Therefore,for the sake of compensating for negative effects brought by dead-zone input,a series of relevant studies have been executed by constructing the inverse of dead-zone, see [15, 16].With further study on dead-zone input, [17] decomposed the dead nonlinearity into a linear part and a disturbance-like term.Based on this idea, some excellent results were obtained,see[18,19].Ibrir et al.[18]solved the adaptive tracking problem for nonlinear linearizable uncertain systems without constructing the dead-zone inverse.By constructing a smooth adaptive controller, the tracking control problem for a class of nonlinear system subject to time delay and dead-zone input was investigated in [19].For a class of nonlinear systems subject to fuzzy dead zone, the adaptive fuzzy controller was constructed,which guaranteed that all the signals of closed-loop system were semi-globally uniformly bounded,see[20,21].Without preciseinformationaboutthedeadzoneinput,anoutputfeedback controller was developed in [22] to ensure the global boundedness of all states, so that the problem of tracking was solved for systems in lower-triangular form.However,cognate researches on state feedback control problem for nonlinear triangular systems with uncertain dead-zone input based on dynamic gain approach have received little attention.

    This paper explores the state feedback stabilisation problem for nonlinear triangular systems subject to dead-zone input.Influenced by[4,23],the dynamic gain is developed to cope with the nonlinear terms for lower-triangular system.Then, it is extended to nonlinear upper-triangular system,where a new form of dynamic gain is presented.The adaptive feedback controllers for both nonlinear lower-triangular systems and nonlinear upper-triangular systems are proposed to guarantee the boundedness of all signals in the closedloop system.The main contributions of this paper is listed as below.

    (i) Unlike existing works using adaptive fuzzy backstepping design control approach, the dynamic gain technique is applied to settle the state feedback problem of nonlinear triangular systems with dead-zone input,which simplifies the form of controller as well as avoids complex iterative steps.In particular, a new dynamic gain is proposed for nonlinear upper-triangular systems.

    (ii) Different from [20, 21], the global boundedness of all states of the closed-loop system is obtained.Furthermore, the convergence region around zero of all states in the closed-loop system can be small enough by adjusting relative design parameters.

    (iii) Most of the existing literature about dead-zone input are aimed at nonlinear lower-triangular systems, and it has shown the feasibility of handling the effects of dead-zone and inherent nonlinearities through adaptive control strategy,see[24].Specially,it is a remarkable fact that the adaptive controller in this paper is also effective for nonlinear upper-triangular systems.

    The rest of this paper is indicated as below.Section1 devotes to the problem formulation and preliminary work.Next,the main results of this work are presented in Sect.3,which includes the design of adaptive control schemes and the boundedness analysis of dynamic gain and all states for lower-triangular system as well as upper-triangular system.Then,Sect.4 provides two simulation examples to manifest the effectiveness of the adaptive control strategy.Finally,Sect.5 presents the conclusions.

    Notations R, R+and Rnrepresent the set of real numbers,the set of nonnegative real numbers andn-dimensional Euclidean space,respectively.Irepresents an identity matrix with suitable dimension.The sign function sign(a)denotes that whena> 0,sign(a)= 1;whena< 0,sign(a)= -1;whena= 0, sign(a)= 0.‖·‖denotes the Euclidean norm of a vector or matrix.λmax(·) andλmin(·) stand for the maximum eigenvalue and minimum eigenvalue of a matrix,respectively.

    2 Preliminaries and problem formulation

    Consider the following uncertain nonlinear system

    wherex(t) = [x1(t),...,xn(t)]T∈Rnandu(t) ∈R are the system state and input,respectively.The nonlinearityfi(·):R+×Rn→R is a continuous function.Assume that all states in system(1)are measurable and can be utilized in the design of control strategy.The form of uncertain actuator dead zoneN(u(t))is as follows:

    where the unknown parametersmr> 0 andml> 0 represent the right and left slope of the dead-zone characteristic,respectively,br> 0 andbl> 0 denote the break points of dead-zone input.

    To simplify the controller design,one can redescribe the dead-zone model(2)as follows:

    where

    The control objective of this paper is to develop an adaptive controller to ensure all signals of close-loop systems are globally bounded.To achieve the control objective, several necessary assumptions and lemmas are required.

    Assumption 1 [19]The parametersmr>0,ml>0,br>0 andbl>0 are unknown but bounded.

    Remark 1Assumption1isanecessaryconditionusedtoindicate the parameters of dead input,see[18,19,22].Obviously,one can get thatη(u)andψ(u)are bounded form(4),(5)and Assumption 1.Therefore,there exist two unknown constantsθ1andθ2satisfying thatand

    Assumption 2 For eachi= 1,...,n, there exists an unknown positive constantγsuch that

    Assumption 3 For eachi=1,...,n,the system nonlinearitiesfi(·)satisfy the following conditions:

    whereγis an unknown constant,andfn-1=fn=0.

    Remark 2In general,system(1)is known as lower-triangular system when Assumption 2 holds.On the contrary, system(1) is called upper-triangular system when Assumption 3 holds.Under Assumptions 2 or 3,system(1)includes a great quantity of nonlinear physical systems,such as mechanical interaction system of robots and nonlinear liquid level control resonant circuit system,see[6,7].Besides,many renowned studies have investigated the stability problem for a class of nonlinear systems without dead-zone input under conditions of Assumptions 2 and 3,see[4,13].

    Lemma 1 [25]Let A∈Rn×n,C∈Rn×1,F∈R1×n,D1∈Rn×n and D2∈Rn×n be matrices defined as

    D1= diag{1,...,n}and D2= diag{n,...,1}.Then there exist two positive constants d1,d2,one positive definite matrice P>0,and a vector Ka=[a1,a2,...,an]with ai,i=1,2,...,n being Hurwitz polynomial coefficients,such that

    where B=A-CKa,P∈Rn×n,and pi,n denotes the elements in row i and column n of the matrix P,i=1,...,n.

    Lemma 2 [26]For any λ∈Rand ε∈R+,the following inequality holds:

    3 Main results

    3.1 Adaptive controller design for lower-triangular systems

    In this section, a new state feedback controller for system(1) under Assumption 2 will be developed by introducing hyperbolic functions and sign functions.One can see that system (1) satisfying Assumption 2 is indeed a nonlinear lower-triangular system,see[3,7].

    Theorem 1Under Assumptions1,2,the global boundedness of all states in system(1)can be guaranteed by the state feedback controller of the following form:

    with dynamic gain L being updated as

    where parameters?γ1, ?θ1, ?θ2are the estimated values of γ1,θ1,θ2correspondingly,and adaptive updating laws are as below:

    To facilitate understanding,one divides the proof into two parts.

    PartI:IntroductionofcoordinatetransformationsandLyapunov functions.

    The following coordinate transformations are introduced

    Therefore,system(1)can be transformed into

    Next,choose the Lyapunov function candidate

    where

    Part II:Stability analysis.

    By(14)and(16),the time derivative ofV1is given by

    From Assumption 2 and(13),one gets

    which implies

    Significantly,

    then,calculate the last term of(17)by the aid of(3)and(20)

    Combining(9)and(17)–(21),one can derive that

    It is not difficult to derive by Lemma 2 that

    Withthehelpof(9),(11),(16),(22)and(23),thederivative ofVis calculated as

    From(12),one has

    After simple calculation, the following inequalities also hold

    Substituting(25)–(27)into(24),one can arrive at

    Note that

    It follows from(29)that similar inequality can be obtained

    Further,one has

    Using the definition ofVin(15)and(16),there holds

    Remark 3Notably,according to the form of(33),increasing?i,i=1,2,3 and decreasingσi,i=1,2,3,one will obtain smaller convergence domain.Since the design parameters can be chosen at random, the convergence domain can be rendered small enough.Besides,increasingσ1,σ2,ρwhile decreasing?1,?2can make dynamic gain as well as input smaller.Therefore, to balance the size of input and convergence domain and meet the practice demand,the design parameters should be chosen appropriately.

    Remark 4In this section, the adaptive controller design for lower-triangular systems is designed.The main difficulty is to deal with the uncertain dead-zone input and unknown growth rate since the lack of prior information about their bounds.Different with the[19],dynamic gain and coordinate transformation approach is introduced to deal with nonlinear terms.Besides, our systems include more nonlinear terms.Compared with [22], the proposed control scheme in this paper can make the convergence region around zero of all states (x1,...,xn) in the closed-loop system can be small enough.And using the scaling change technique,the method of stability analysis in this paper is more direct.Moreover,the design approach of controller for lower triangular systems is also applicable to upper triangular systems.

    3.2 Adaptive controller design for upper-triangular systems

    In this section, by introducing hyperbolic functions and sign functions, a new control strategy for system (1) under Assumption 3 is proposed to ensure that all signals are bounded.It is clear that system (1) under Assumption 3 is indeed a nonlinear upper-triangular system,see[4,7].

    Theorem 2Under Assumptions1and3,the global boundedness of all states in the closed-loop system(1)can be guaranteed by the state feedback controller of the following form:

    with the gain L updated by

    where parameters?γ1, ?θ1, ?θ2are the estimated values of γ1,θ1,θ2correspondingly,and the adaptive updating laws are as below:

    Next,one divides the proof into two parts.

    PartI:IntroductionofcoordinatetransformationsandLyapunov functions.

    Let

    Thus,system(1)can be converted into

    where

    wherePis given in Lemma 1.

    Part II:Stability analysis.

    Using Lemma 1,a simple derivation is given

    Then, by Assumption 3 and coordination transformation(38),one gives the estimation of the nonlinearity terms 2zTP Fin(42)

    whereγ1is an unknown constant.

    From (34), (43), and Lemma 2, the following inequality holds:

    Recalling(29)and(30),it is derived that

    Remark 5Aimedatuncertainnonlinearupper-triangularsystems with unknown actuator input, the developed control scheme is also valid.The desired control performance can be obtained by adjusting relative design parameters similar with Remark 3.It is worth noting that the accurate information of growth rate and the characteristic about the actuator nonlinearities of nonlinear system are unnecessary,and their bounds are not required to be known.The adaptive controller in this paper can compensate for the effects of uncertain actuator nonlinearities.

    Remark 6On the one hand,for ?t∈[0,+∞),the dynamic gainL(t)is designed to satisfyL(t)≥1.It should be pointed out that the introduction of dynamic gainLis effective to estimate the unknown nonlinear terms.Note that the real but unknown parameterγ1cannot be used in the design of dynamic gain,which means the effects of the unknown nonlinear terms cannot be eliminated directly.Therefore, ?γ1is introduced into dynamic gainL.It can be seen from the above calculation process, by designing ?γ1delicately and incorporating the properties of such a special structure ofL,one can cope with the unknown nonlinearities efficiently.On the other hand,instead of the renowned backstepping design approach,the dynamic gain design approach is used in this paper,which avoids the problem of explosion of complexity.

    4 Two simulation examples

    In this section, two examples are given to verify the effectiveness of the control strategies proposed in this paper.

    Example 1Consider the following system

    Fig.1 Trajectories of x1 and x2 in systems(47)–(51)

    whereN(u)denotes the dead-zone input

    It is easy to see the nonlinearities satisfy Assumption 2 withγbeing an unknown constant.To dispose of the difficulty brought by the uncertain dead-zone input and uncertain nonlinearities in system (47), one can construct the following state feedback control scheme according to Theorem 1:

    whereLis the state of system

    Fig.2 Trajectory of L in systems(47)–(51)

    Fig.3 Trajectories of u and N(u)in systems(47)–(51)

    Fig.4 Trajectories of ?γ1, ?θ1, ?θ2 in systems(47)–(51)

    One can obtain that the control scheme can guarantee the boundedness of all states of the closed-loop system.Particularly,one can make the region of convergence of states small enough by adjusting the values of parametersρ,?1,σ1,?2,σ2,?3,σ3andε.Besides, it is clear that dynamic gain and controller are bounded by Figs.2 and 3.Example 2Consider the following system

    whereN(u)has the following form

    It is easy to see the nonlinearities satisfy Assumption 3 withγbeing an unknown constant.One can employ the following state feedback controller from Theorem 2 to deal with the uncertain dead-zone characteristics as well as nonlinearities

    Fig.5 Trajectories of x1 and x2 in systems(52)–(56)

    Fig.6 Trajectory of L in systems(52)–(56)

    of system(52)and achieve the control goal.

    withLbeing the state of system

    and updated laws of ?γ1, ?θ1and ?θ2are as follows:

    Similarly with Example 1, selectingKa= [1,3, 2],one gets.Then, choose the parametersρ= 0.9,?1= 11,σ1= 0.02,?2= 1,σ2= 0.001,?3= 150,σ3= 0.001,ε= 2.5 and set the initial valuesx1(0),x2(0),x2(0),L(0), ?γ1(0), ?θ1(0), ?θ2(0)T=[-1,1,2,1,0,0,5]T.Figures5,6,7 and 8 show the results and illustrate the validity of control strategies(54)–(56).

    Fig.7 Trajectories of u and N(u)in systems(52)–(56)

    Fig.8 Trajectories of ?γ1, ?θ1, ?θ2 in systems(52)–(56)

    It can be observed from Fig.5 that the control scheme proposed for nonlinear upper-triangular system can also accomplish the control goal.Besides,from Figs.6 and 7,one can see that dynamic gain and the controller are bounded.

    Remark 7In fact,different parameters have variable effects on the convergence region,one can make the region of convergence of all states small enough by adjusting the values of parametersρ,?1,σ1,?2,σ2,?3,σ3andε.Besides,recalling control strategies we proposed,it is clear that dynamic gain and adaptive laws are also dependent on the design parameters,one can obtain appropriate dynamic gain and adaptive estimator by adjusting design parameters properly.

    5 Conclusion

    Inthispaper,wehaveinvestigatedtheissueofuncertaindeadzone input for nonlinear triangular system with unknown nonlinearities.Due to the lack of precise priori knowledge about the dead-zone feature and growth rate of nonlinearity for the considered system,a dynamic gain has been adopted to deal with the unknown growth rate,and the adaptive estimation approach has been employed to tackle the dead-zone characteristic without constructing the dead-zone inverse.Combined with hyperbolic functions and sign functions,two new adaptive state feedback control schemes have been proposed to ensure the global boundedness of all signals in the closed-loop system.The performance of the control scheme has been illustrated through two given simulation examples.

    波多野结衣高清无吗| 亚洲成国产人片在线观看| 啦啦啦观看免费观看视频高清 | 狠狠狠狠99中文字幕| 啪啪无遮挡十八禁网站| 中亚洲国语对白在线视频| 亚洲国产毛片av蜜桃av| 美女免费视频网站| 俄罗斯特黄特色一大片| 日本vs欧美在线观看视频| 啦啦啦韩国在线观看视频| 亚洲三区欧美一区| 午夜福利,免费看| 中亚洲国语对白在线视频| 精品久久久久久成人av| av免费在线观看网站| 啦啦啦免费观看视频1| 成人亚洲精品一区在线观看| 日本vs欧美在线观看视频| 中文字幕高清在线视频| 亚洲国产高清在线一区二区三 | 久久中文看片网| 日韩av在线大香蕉| 国产亚洲欧美精品永久| 一本大道久久a久久精品| 大型黄色视频在线免费观看| 国产三级黄色录像| 久久九九热精品免费| www.熟女人妻精品国产| 女同久久另类99精品国产91| 国产av一区二区精品久久| 99国产精品一区二区蜜桃av| 日本在线视频免费播放| 女性被躁到高潮视频| 亚洲国产精品999在线| 大陆偷拍与自拍| 国产成人av教育| 日日爽夜夜爽网站| 国产一区二区三区视频了| 宅男免费午夜| 久久午夜亚洲精品久久| 日日夜夜操网爽| 身体一侧抽搐| 亚洲中文av在线| 久久香蕉激情| 亚洲中文日韩欧美视频| 亚洲伊人色综图| 欧美日韩中文字幕国产精品一区二区三区 | 成人国语在线视频| 欧美日韩瑟瑟在线播放| 日韩欧美一区视频在线观看| 色精品久久人妻99蜜桃| av天堂久久9| 在线观看免费视频日本深夜| 中文字幕人妻丝袜一区二区| 国产欧美日韩综合在线一区二区| 99国产精品99久久久久| 欧美av亚洲av综合av国产av| 亚洲黑人精品在线| svipshipincom国产片| 曰老女人黄片| 久久精品国产亚洲av香蕉五月| 亚洲一码二码三码区别大吗| 午夜成年电影在线免费观看| 日韩中文字幕欧美一区二区| 久久香蕉国产精品| 十分钟在线观看高清视频www| netflix在线观看网站| 自线自在国产av| 国产精品日韩av在线免费观看 | 日韩成人在线观看一区二区三区| 国产精品 国内视频| 亚洲国产中文字幕在线视频| 午夜激情av网站| 国产主播在线观看一区二区| 成人手机av| 9色porny在线观看| 12—13女人毛片做爰片一| 在线天堂中文资源库| 在线观看免费午夜福利视频| 看片在线看免费视频| 精品电影一区二区在线| 91av网站免费观看| 国产片内射在线| 欧美成人午夜精品| 99国产精品免费福利视频| 99在线视频只有这里精品首页| 国内精品久久久久精免费| 妹子高潮喷水视频| 成人亚洲精品一区在线观看| 成熟少妇高潮喷水视频| 动漫黄色视频在线观看| 在线天堂中文资源库| 三级毛片av免费| 国产成人精品久久二区二区免费| 日本欧美视频一区| 中亚洲国语对白在线视频| 最新美女视频免费是黄的| 一级黄色大片毛片| 国产一区二区三区综合在线观看| 女人被狂操c到高潮| 99国产精品一区二区三区| 国产又色又爽无遮挡免费看| 国产色视频综合| 久久国产精品人妻蜜桃| 日韩欧美国产一区二区入口| 久久久久久久午夜电影| 老司机午夜福利在线观看视频| 欧美激情久久久久久爽电影 | 在线播放国产精品三级| 国产高清视频在线播放一区| 国产精品精品国产色婷婷| 国产单亲对白刺激| 日本黄色视频三级网站网址| 久久精品人人爽人人爽视色| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品在线美女| 午夜福利免费观看在线| 美女扒开内裤让男人捅视频| 侵犯人妻中文字幕一二三四区| 宅男免费午夜| 日韩有码中文字幕| 9热在线视频观看99| 男女做爰动态图高潮gif福利片 | av免费在线观看网站| 精品乱码久久久久久99久播| 日本撒尿小便嘘嘘汇集6| 亚洲最大成人中文| 91精品三级在线观看| 非洲黑人性xxxx精品又粗又长| 国产熟女xx| 日本欧美视频一区| 欧美人与性动交α欧美精品济南到| 国产成人免费无遮挡视频| 99国产极品粉嫩在线观看| 欧美日韩亚洲综合一区二区三区_| 精品欧美一区二区三区在线| 悠悠久久av| 国产精品av久久久久免费| 99久久综合精品五月天人人| 色哟哟哟哟哟哟| 免费人成视频x8x8入口观看| 成人欧美大片| 亚洲精品久久成人aⅴ小说| 国产精华一区二区三区| 亚洲中文日韩欧美视频| 日韩成人在线观看一区二区三区| 国产精华一区二区三区| 精品久久久精品久久久| 黄色女人牲交| 日本vs欧美在线观看视频| 手机成人av网站| 久久中文看片网| 国产麻豆成人av免费视频| 亚洲专区字幕在线| 99国产精品免费福利视频| 很黄的视频免费| 岛国在线观看网站| 亚洲熟妇中文字幕五十中出| 精品欧美一区二区三区在线| 亚洲色图av天堂| 深夜精品福利| 大码成人一级视频| 老汉色∧v一级毛片| 大陆偷拍与自拍| 久久伊人香网站| 丝袜在线中文字幕| 电影成人av| 成人欧美大片| 免费av毛片视频| 中文字幕人妻熟女乱码| 中文字幕精品免费在线观看视频| 欧美黄色片欧美黄色片| 少妇的丰满在线观看| 精品不卡国产一区二区三区| 99国产综合亚洲精品| 午夜成年电影在线免费观看| 亚洲精品在线观看二区| 一区二区三区精品91| 在线国产一区二区在线| 国产高清激情床上av| 男人操女人黄网站| 国产精品一区二区精品视频观看| 日韩三级视频一区二区三区| 日本三级黄在线观看| 亚洲一区二区三区色噜噜| 国产av精品麻豆| www.精华液| 丝袜在线中文字幕| 国产精品久久视频播放| 在线观看舔阴道视频| 日韩欧美一区视频在线观看| 国产成人一区二区三区免费视频网站| 精品福利观看| or卡值多少钱| 午夜久久久久精精品| 此物有八面人人有两片| 午夜免费激情av| 国产熟女xx| 欧美午夜高清在线| 少妇的丰满在线观看| 久久精品91蜜桃| 亚洲性夜色夜夜综合| 国产av一区在线观看免费| 91字幕亚洲| 最近最新中文字幕大全免费视频| 热re99久久国产66热| 亚洲,欧美精品.| 1024视频免费在线观看| 看黄色毛片网站| 国产主播在线观看一区二区| 欧美丝袜亚洲另类 | 久久性视频一级片| 老司机在亚洲福利影院| 日韩欧美免费精品| 怎么达到女性高潮| 婷婷六月久久综合丁香| 女警被强在线播放| 日韩中文字幕欧美一区二区| 亚洲七黄色美女视频| 黄片播放在线免费| 久久精品国产亚洲av香蕉五月| bbb黄色大片| 欧美精品亚洲一区二区| 欧美激情高清一区二区三区| 国产成人免费无遮挡视频| 久热这里只有精品99| 美女 人体艺术 gogo| 少妇 在线观看| 国产一区二区三区在线臀色熟女| 久久青草综合色| 国产xxxxx性猛交| 在线观看免费午夜福利视频| 在线观看www视频免费| 久久中文字幕一级| 日日摸夜夜添夜夜添小说| 国产精品香港三级国产av潘金莲| av片东京热男人的天堂| 亚洲精品国产区一区二| 18美女黄网站色大片免费观看| 久久精品国产综合久久久| 欧美激情 高清一区二区三区| 成人国语在线视频| 神马国产精品三级电影在线观看 | 制服丝袜大香蕉在线| 久久热在线av| 男女做爰动态图高潮gif福利片 | 少妇粗大呻吟视频| 桃红色精品国产亚洲av| 欧美精品亚洲一区二区| 国产高清有码在线观看视频 | 非洲黑人性xxxx精品又粗又长| 黑人巨大精品欧美一区二区mp4| 久久人妻福利社区极品人妻图片| 免费一级毛片在线播放高清视频 | 男男h啪啪无遮挡| 国产免费av片在线观看野外av| 国产亚洲欧美98| 亚洲精品在线美女| a在线观看视频网站| 欧美乱色亚洲激情| 免费高清在线观看日韩| 窝窝影院91人妻| 日韩欧美一区二区三区在线观看| 中出人妻视频一区二区| 欧美+亚洲+日韩+国产| 大香蕉久久成人网| 手机成人av网站| 国产精品精品国产色婷婷| 人妻丰满熟妇av一区二区三区| 久久狼人影院| 大码成人一级视频| 日韩成人在线观看一区二区三区| 黄色片一级片一级黄色片| 亚洲欧美激情在线| 久久精品成人免费网站| 又黄又爽又免费观看的视频| 欧美日韩亚洲综合一区二区三区_| 日日夜夜操网爽| 国产一卡二卡三卡精品| 午夜成年电影在线免费观看| 在线观看一区二区三区| 亚洲欧美精品综合久久99| 自线自在国产av| 亚洲成av人片免费观看| 一边摸一边做爽爽视频免费| 久久精品91无色码中文字幕| 一边摸一边抽搐一进一出视频| 亚洲性夜色夜夜综合| 啦啦啦韩国在线观看视频| 他把我摸到了高潮在线观看| 成人18禁在线播放| 久久狼人影院| 欧美另类亚洲清纯唯美| 日韩 欧美 亚洲 中文字幕| 日韩一卡2卡3卡4卡2021年| 亚洲中文字幕一区二区三区有码在线看 | 精品国产乱子伦一区二区三区| 国产不卡一卡二| 97超级碰碰碰精品色视频在线观看| 色哟哟哟哟哟哟| 亚洲精品久久国产高清桃花| 国产精品一区二区精品视频观看| 免费人成视频x8x8入口观看| 一边摸一边抽搐一进一出视频| 久久中文字幕一级| 好看av亚洲va欧美ⅴa在| АⅤ资源中文在线天堂| 国内精品久久久久精免费| 国产精品久久久久久精品电影 | 国语自产精品视频在线第100页| 国内毛片毛片毛片毛片毛片| 9191精品国产免费久久| 色综合站精品国产| 国产成人精品久久二区二区免费| 91成年电影在线观看| 精品国产乱子伦一区二区三区| 亚洲激情在线av| 免费在线观看亚洲国产| 神马国产精品三级电影在线观看 | 一区二区三区精品91| 九色亚洲精品在线播放| 男女下面插进去视频免费观看| 国产伦一二天堂av在线观看| 久久中文字幕一级| 国产成人系列免费观看| 亚洲人成伊人成综合网2020| 午夜免费成人在线视频| 日本vs欧美在线观看视频| 亚洲 国产 在线| 国产熟女午夜一区二区三区| 色哟哟哟哟哟哟| 久久性视频一级片| 国产99白浆流出| 一本久久中文字幕| 久久精品91蜜桃| 久久久久九九精品影院| 一区二区三区激情视频| 黄片大片在线免费观看| 激情视频va一区二区三区| 亚洲精华国产精华精| 欧美日韩精品网址| 老鸭窝网址在线观看| 在线十欧美十亚洲十日本专区| av在线天堂中文字幕| 男男h啪啪无遮挡| 美女高潮到喷水免费观看| 精品国产乱子伦一区二区三区| 日韩欧美三级三区| 怎么达到女性高潮| 亚洲熟妇熟女久久| 窝窝影院91人妻| 国产黄a三级三级三级人| 中文字幕久久专区| 在线天堂中文资源库| 免费观看精品视频网站| 啦啦啦 在线观看视频| 日韩大尺度精品在线看网址 | 黑人操中国人逼视频| 久久久久久久午夜电影| 91在线观看av| 久久人妻熟女aⅴ| 搞女人的毛片| 免费人成视频x8x8入口观看| 侵犯人妻中文字幕一二三四区| 夜夜爽天天搞| 亚洲欧美日韩另类电影网站| 国产亚洲av嫩草精品影院| 精品少妇一区二区三区视频日本电影| 女人被狂操c到高潮| 波多野结衣av一区二区av| 性欧美人与动物交配| 亚洲成人精品中文字幕电影| 91麻豆av在线| 久久精品国产亚洲av香蕉五月| 日本在线视频免费播放| 免费在线观看完整版高清| 黑人欧美特级aaaaaa片| 十八禁网站免费在线| 久久热在线av| 日韩三级视频一区二区三区| 丝袜美足系列| 91av网站免费观看| 手机成人av网站| 亚洲国产欧美一区二区综合| 九色亚洲精品在线播放| 男人的好看免费观看在线视频 | 手机成人av网站| 老鸭窝网址在线观看| 一二三四在线观看免费中文在| 亚洲国产欧美一区二区综合| 亚洲国产高清在线一区二区三 | 十分钟在线观看高清视频www| 亚洲自拍偷在线| 久久草成人影院| 99re在线观看精品视频| 正在播放国产对白刺激| 国产一卡二卡三卡精品| 啦啦啦韩国在线观看视频| 久久久久久国产a免费观看| 一级毛片高清免费大全| 黄色视频,在线免费观看| 一本大道久久a久久精品| 两个人视频免费观看高清| 美女国产高潮福利片在线看| 国产精品久久视频播放| 欧美成人午夜精品| 一级作爱视频免费观看| 亚洲精品一区av在线观看| 十分钟在线观看高清视频www| 亚洲国产精品999在线| 亚洲av电影不卡..在线观看| 国产精品久久久久久精品电影 | 亚洲中文字幕一区二区三区有码在线看 | 国产精品99久久99久久久不卡| 一边摸一边抽搐一进一小说| 激情视频va一区二区三区| 久久久国产成人免费| 国产欧美日韩一区二区三区在线| 亚洲免费av在线视频| 国产一区在线观看成人免费| 色尼玛亚洲综合影院| 国产精品免费一区二区三区在线| 亚洲欧美日韩高清在线视频| 国产一区二区三区在线臀色熟女| 一本大道久久a久久精品| 国产成人精品无人区| 九色亚洲精品在线播放| 后天国语完整版免费观看| 91字幕亚洲| 亚洲一区高清亚洲精品| 男女下面进入的视频免费午夜 | 真人做人爱边吃奶动态| 免费女性裸体啪啪无遮挡网站| 久久久久久久久中文| 国产一区二区三区在线臀色熟女| 色婷婷久久久亚洲欧美| 黄片大片在线免费观看| 亚洲专区中文字幕在线| www国产在线视频色| av欧美777| av天堂久久9| 变态另类丝袜制服| 一本大道久久a久久精品| av网站免费在线观看视频| 夜夜看夜夜爽夜夜摸| 99在线视频只有这里精品首页| 老司机靠b影院| 免费在线观看亚洲国产| av欧美777| 黑人欧美特级aaaaaa片| 90打野战视频偷拍视频| 日韩精品中文字幕看吧| 在线观看午夜福利视频| 999久久久国产精品视频| 首页视频小说图片口味搜索| 国产主播在线观看一区二区| 免费观看精品视频网站| 免费观看人在逋| 成年版毛片免费区| 国产欧美日韩一区二区精品| 人人妻人人澡欧美一区二区 | 长腿黑丝高跟| 美国免费a级毛片| 电影成人av| 亚洲一区二区三区色噜噜| 精品一区二区三区四区五区乱码| 一a级毛片在线观看| 亚洲天堂国产精品一区在线| 色综合站精品国产| 激情在线观看视频在线高清| 给我免费播放毛片高清在线观看| www.自偷自拍.com| 精品午夜福利视频在线观看一区| 亚洲男人天堂网一区| 色播在线永久视频| 母亲3免费完整高清在线观看| 日韩中文字幕欧美一区二区| 免费在线观看亚洲国产| 久久婷婷人人爽人人干人人爱 | 亚洲av第一区精品v没综合| 中文字幕精品免费在线观看视频| 这个男人来自地球电影免费观看| 好男人电影高清在线观看| 91麻豆av在线| 国产精品一区二区三区四区久久 | 国产精品98久久久久久宅男小说| 午夜精品久久久久久毛片777| 亚洲成人精品中文字幕电影| 国产精品一区二区在线不卡| 成人亚洲精品一区在线观看| 精品福利观看| 在线观看日韩欧美| 美女午夜性视频免费| 亚洲情色 制服丝袜| 免费高清在线观看日韩| 亚洲国产精品合色在线| 禁无遮挡网站| 人人妻人人澡欧美一区二区 | 久久久久久久午夜电影| 曰老女人黄片| 99精品久久久久人妻精品| 亚洲国产精品sss在线观看| 最近最新中文字幕大全电影3 | 久久久久久久精品吃奶| 国产成人欧美| 久久久久国产一级毛片高清牌| 1024香蕉在线观看| 国产亚洲精品av在线| 久久亚洲真实| 久久人人97超碰香蕉20202| 欧美一级毛片孕妇| 老汉色av国产亚洲站长工具| 两性午夜刺激爽爽歪歪视频在线观看 | 丁香欧美五月| 久久人人爽av亚洲精品天堂| 叶爱在线成人免费视频播放| 一边摸一边做爽爽视频免费| 99久久精品国产亚洲精品| 久久精品国产亚洲av香蕉五月| 丁香六月欧美| 老鸭窝网址在线观看| 午夜福利高清视频| 午夜久久久在线观看| 国产午夜精品久久久久久| 岛国在线观看网站| 在线观看日韩欧美| 亚洲片人在线观看| 久久 成人 亚洲| 大型av网站在线播放| 亚洲成人久久性| 精品日产1卡2卡| 人人妻人人爽人人添夜夜欢视频| 又黄又粗又硬又大视频| a在线观看视频网站| 日本五十路高清| 黄色丝袜av网址大全| 亚洲人成77777在线视频| 国产精品1区2区在线观看.| 女警被强在线播放| 国产蜜桃级精品一区二区三区| 麻豆一二三区av精品| 亚洲精华国产精华精| 黑人巨大精品欧美一区二区蜜桃| 在线播放国产精品三级| 嫩草影院精品99| 国产视频一区二区在线看| 日本撒尿小便嘘嘘汇集6| 国产91精品成人一区二区三区| 国产熟女xx| 午夜福利视频1000在线观看 | 最近最新中文字幕大全电影3 | 一本久久中文字幕| 日韩成人在线观看一区二区三区| 夜夜躁狠狠躁天天躁| 免费女性裸体啪啪无遮挡网站| 欧美日韩黄片免| 人妻久久中文字幕网| 日韩三级视频一区二区三区| 国产乱人伦免费视频| bbb黄色大片| 精品国产美女av久久久久小说| 亚洲国产日韩欧美精品在线观看 | 看免费av毛片| 国产成人精品久久二区二区91| 少妇粗大呻吟视频| 国产精品 欧美亚洲| 国产精品自产拍在线观看55亚洲| 国产视频一区二区在线看| 国产精品亚洲av一区麻豆| 深夜精品福利| 色老头精品视频在线观看| 欧美日韩一级在线毛片| 在线观看免费视频网站a站| 久久久久久久久中文| 一本久久中文字幕| 免费少妇av软件| 国产精品电影一区二区三区| 日本 欧美在线| 亚洲精品一区av在线观看| 精品一区二区三区av网在线观看| 51午夜福利影视在线观看| 国产欧美日韩一区二区三区在线| 国产av一区在线观看免费| 91av网站免费观看| 一进一出抽搐gif免费好疼| 成人18禁在线播放| 久久人妻福利社区极品人妻图片| 丝袜在线中文字幕| 日本在线视频免费播放| 香蕉丝袜av| 国产精品综合久久久久久久免费 | 美女免费视频网站| 国产成人免费无遮挡视频| a在线观看视频网站| 免费少妇av软件| 精品久久久久久久人妻蜜臀av | 免费无遮挡裸体视频| aaaaa片日本免费| 十八禁网站免费在线| 国产精品98久久久久久宅男小说| 国产区一区二久久| 一二三四社区在线视频社区8| 九色亚洲精品在线播放| 欧美丝袜亚洲另类 | 手机成人av网站| 欧美色欧美亚洲另类二区 | 国产精品亚洲美女久久久| 99精品久久久久人妻精品| 国产欧美日韩一区二区三| 欧美国产精品va在线观看不卡| 在线观看免费午夜福利视频| 18禁国产床啪视频网站| 天天一区二区日本电影三级 | 两个人免费观看高清视频|