• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-supervised segmentation using synthetic datasets via L-system

    2023-12-01 09:51:54JuntaoHuangXianhuiWuHongshengQi
    Control Theory and Technology 2023年4期

    Juntao Huang·Xianhui Wu·Hongsheng Qi

    Abstract Vessel segmentation plays a crucial role in the diagnosis of many diseases,as well as assisting surgery.With the development of deep learning, many segmentation methods have been proposed, and the results have become more and more accurate.However,most of these methods are based on supervised learning,which require a large amount of labeled data as training data.To overcome this shortcoming,unsupervised and self-supervised methods have also received increasing attention.In this paper,we generate a synthetic training datasets through L-system,and utilize adversarial learning to narrow the distribution difference between the generated data and the real data to obtain the ultimate network.Our method achieves state-of-the-art(SOTA)results on X-ray angiography artery disease(XCAD)by a large margin of nearly 10.4%.

    Keywords L-system·Adversarial learning·Vessel segmentation

    1 Introduction

    For recent years, medical image segmentation [1, 2] has become a very active research filed,which is now dominated by the technique of deep learning[3]but is still full of various challenges.Vessel segmentation is a mainstream direction of this filed and attracts much attention from researchers.The reasons why vessel segmentation is so welcomed by researchers are mainly from the following two aspects:one is that it has huge medical value,the other is that there exist so many challenging problems about vessel segmentation and researchers can be rewarded with fulfillment by solving these problems.Vessel segmentation can involve different types of vessels,for example,retinal vessels or vessel structures from coronary angiograms.The morphological characteristics of vessels can be affected by some diseases, thus vessel segmentation can help doctors diagnose some specific diseases correctly.For example, diabetic retinopathy can cause the proliferation of retinal vessels and the distribution of vessels from X-ray angiography [4] is a main factor to be utilized to diagnose coronary artery disease which causes millions of deaths every year.X-ray angiography helps doctors diagnose coronary artery disease by injecting a certain amount of radioactive contrast agent into the patient’s body to make the blood vessel system present a clear image.

    As early as 1998,neural networks[5]were used to solve partial differential equations.Alwan and Hussain[6]found that if the deep learning controller is deep enough, it can outperform conventional controllers in terms of the settling time of the system output transient response to the unit step reference signal.After so many years of development, the relationship between deep learning and control system had become increasingly close[7].

    Vessel segmentation is a special semantic segmentation and in fact it not only faces the difficulties of usual semantic segmentation but also must settle the specific difficulties of its own[8].Different from usual semantic segmentation,the structures of vessels are more intricate and contents of medical images are duller compared with natural images.By analogy, it seems to ask neural networks to do more work with fewer resources.Besides, in the process of vessel imaging, it is possible to produce background artifacts which is hardly distinguished from real vessels.Further,like usual semantic segmentation, supervised vessel segmentation need pixel-level annotations.However, annotations of medical images need more expertise than natural images,which is extremely time-consuming and laborious.All of these make vessel segmentation more challenging than usual semantic segmentation.In this paper, we try to settle these difficulties by a method of self-supervised learning which do not need vessel ground truth avoiding laborious annotations.The idea of our method is from CycleGAN[9].

    Our contributions in the paper can be summarized into the following three points.

    1.We are the first to introduce L-system into vessel segmentation.We used the L-system to generate ground truths images of blood vessels, and performed style transfer with CycleGAN to fuse the background of the target data with the generated blood vessels to obtain a relatively realistic training datasets.

    2.As the number of iterations increases, the classification loss gradually decreases, and the loss produced by the discriminator is much larger than that produced by the classifier, which makes the training process more difficult.Therefore,in the middle of training,we modify the loss function of the discriminator to keep it at a suitable scale.

    3.We achieve the results of SOTA with great advantage on the X-ray angiography artery disease(XCAD)datasets,our Dice coefficient and Jaccard coefficient are both improved by ten percentage points over [4].Similar improvements are also reflected in the X-ray coronary angiography(XCA)dataset,which proves the effectiveness of our method.

    2 Related works

    As mentioned above,medical image segmentations are now dominated by the technique of deep learning and vessel segmentations are not special case.Therefore, we mainly introduce the related works of vessel segmentation based on deep learning.We classify all researches into two categories,which are supervised methods and unsupervised methods.Their difference lies in whether vessel ground truths are used or not,at the same time we make no difference between selfsupervised methods and unsupervised methods and consider them as a category.

    2.1 Supervised methods

    UNet[3]may be the most welcomed neural network in the fieldofmedicalimagesegmentationeveninthewholefieldof image segmentation.It consists of two paths,one is the contracting path and the other is expansive.The expansive path is gradually upsampling process which has a large number of feature channels and allow the network to propagate context information to high resolution layers.UNet and its variants are also frequently applied to vessel segmentation.For example,DeepMind[10]utilized a 3D UNet to realize a segmentation of 15 kinds of pathological areas from retinal OCT images in 2018,achieving the international leading level.Fan et al.[11] applied octave convolution to UNet’s promotion for accurate retinal vessel segmentation.Another common segmentation model is SegNet[12],which has similar structures with UNet but saves more computational resources by a different upsampling method in decoder.A series of models based atrous convolution are also used to medical image segmentation like DeepLab series[13,14].Atrous convolution can relieve the resolution reduction in the process of training of neural networks and handle the problem of segmenting objects at multiple scales.

    2.2 Unsupervised domain adaptation methods

    Domain adaptation[15]is a commonly used method for processing unlabeled datasets,which requires a similarly labeled datasets.This method is widely used in classification[15]and segmentation[16].The core of this method is to reduce the difference between the source domain and the target domain.Approaches derived from this idea include maximum mean discrepancy [17], adversarial learning [18], etc.Roels et al.[19] incorporated regularized encoder features into the network structure,thereby extending the domain adaptation technique of classification-based classification to segmentation networks.Ma et al.[4] proposed a self-supervised framework in the field of vessel segmentation, where they fused CycleGAN and adversarial learning together to obtain an end-to-end segmentation network.But we split it into two steps:first use CycleGAN to generate synthetic datasets,and then use adversarial learning for training.

    3 Proposed method

    For vessel segmentation, self-supervised vessel segmentation(SSVS)[4]proposed that utilize the fractal algorithm to generate ground truths images which is a wise idea.However,its deficiencies are also obvious.First, the form of ground truth(GT)drawn based on fractal algorithm is limited,and it is difficult to obtain rich GT pictures,thus it limits the generalization ability of the model.Second,since the thickness of blood vessels is very abrupt when using fractal algorithm to generate GT pictures,the same problem also occurs when the real data is segmented.Finally,when the synthetic image is generated,it needs to use a background images which similar to the real datasets.Nevertheless,the acquisition of the back-ground is also a very difficult process.As shown in Fig.1,we can clearly see that the width of blood vessels in the segmented image suddenly becomes thinner.

    Fig.1 The picture is taken from[4].The left side of the dotted line is the GT image generated by the fractal algorithm,and the right side of the dotted line is the segmentation result obtained by the method in[4]

    3.1 L-System

    In order to solve the first two shortcomings, we introduce the L-system[20]in the generation of GT pictures,which is often used in the simulated growth of tree crowns or roots.We know that paired vessel images are difficult to acquire,but unpaired vessel images may be easily generated in some way.This is because vessel structure is a fractal structure which can be easily simulated by L-system.Specifically,the L-system is an ordered tripletG= 〈V,ω,P〉, whereVrepresents the character set of the system,ωis the initial string or axiom of the system, andPis a finite set of production rules.For example,suppose we define the following:V={a,b},ω=b,P={a→b,b→ab}.In other words,we let the character set be{a,b},the initial character string beband we have the two following generating expressions{p1:a→b,p2:b→ab}.Through constant iterations,the process of producing a series of character strings by the defined L-system is as follows:

    The above process can be illustrated by Fig.2.

    The general L-system combined with the turtle interpretation method can draw many fractal images.For example,Fig.2 is similar to a fractal tree.Its deficiency lies in that morphologies it can express are too monotonous to present the diversity of plants and represent finer part of structures of plants and blood vessels.To overcome this deficiency,people introduced stochastic L-system [20] and parameter L-system[21].Stochastic L-system mainly changes the way of using generating expressions.At every iteration, it no longer uses all generating expressions at the same time but instead randomly chooses one generating expression among all generating expressions according to some given probability distribution.Parameter L-system adds a parameter set and every character in the character set is accompanied by some parameters in the parameter set.At every rewriting iteration, some conditional judgments are used according to the magnitudes of some parameters of some character.In other words, conditional judgments are integrated into generating expressions.By combining parameter L-system with stochastic L-system, people can simulate all kinds of structures of plants successfully and it enlightens us how to simulate vessel structures by L-system.

    Fig.2 The iterative process of L-system based on initial character string and generating expressions

    3.2 Generating synthetic datasets

    After acquiring unpaired vessel images from L-system,CycleGAN can be directly applied to a preliminary segmentation of vessels.The last row of Fig.3 is the GT image we synthesized through the L-system.The main idea is as follows.We know that CycleGAN mainly learns two mappings,one isFwhich is a mapping from a source domain to a target domain, the other is an inverse mappingGfrom the target domain to the source domain.In our task, the source domain is medical vessel images such as color fundus photos or coronary angiograms,the target domain is the synthetic images of vessel structures by L-system.And we expect the mappingFlearned by CycleGAN can serve as a preliminary vessel segmentation network.Next,we can useFproducing paired images which can be further applied to supervised learning.By these two steps,we achieved a satisfactory result in the task of vessel segmentation without using any annotated image.By the way,CycleGAN has been applied to vessel segmentation in[22],but they did not workverywell.First,their fractal syntheticmodulecannot produce vessel structures as good as L-system which causes a more severe deviation of the synthetic target domain from the truly desired target domain than ours.Second,they do not utilize CycleGAN to further produce paired images for supervised learning and in experiment we have verified that this step improves the segmentation ability of the neural network a lot.

    We can clearly see that the blood vessels of the images generated by the L-system are smoother and richer than the synthetic images generated by the fractal algorithm.At the same time,no background of real data is required.

    3.3 Network structure

    In the paper, we use DeepLabV3 [23] as the training network,in which the backbone part adopts ResNet50[24],and its overall framework is shown in Fig.4, which shows the structure of a typical domain adaptive network[18]based on adversarial learning.

    We assume that the unannotated datasets which can be calledtargetdomaintobesegmentedisDt={x1,x2,...,xm}.The synthetic annotated datasets called source domain isDs= {x1,x2,...,xn}and corresponding annotationsY={y1,y2,...,yn}.Our goal is to train a segmentation network with datasetsDtandDsto segment datasetsDt.G fis responsible for extracting the feature information of the input images,which include the source domain imagexsand the target domain imagext.The features obtained byG fcan be expressed as

    wherexs∈Dsandxt∈Dt.Gsconsists of Atrous Spatial Pyramid Pooling (ASPP) [14] layers, convolutional layers and an upsampling layer.The ASPP layer can perform convolution calculations on images with different scales,and can focus on fine blood vessels in the input image.Similar toG f,throughGswe can get

    Since the source domain data has corresponding annotations,we calculate its binary cross-entropy(BCE)loss:

    whereys∈Y.After we train the entire neural network, ?ytis the segmentation result we need.

    Gdis composed of a gradient reversal layer (GRL) [18]and a convolutional layer,and determines whether its input is real image or artificially synthesized image.The function of GRL is to change the sign of gradient when it is back propagated.We can mark the data of the source domain as 0 and the data of the target domain as 1,so that the network branch consisting ofG fandGdcan train a binary classifier.In this branch, we also use BCE loss function for training,and mark the loss asLd:

    wheresi,t jrepresent thei-th andj-th samples in the source and target domains, respectively.Therefore, the total loss function can be expressed as

    Fig.4 The overall structure of the network.Sub-network G f is responsible for extracting feature vectors from the original image,Gd is used to determine whether the data belongs to artificial synthesis,and Gs restores the obtained features to segmentation results

    whereλis a trade-off coefficient, and its value is 1 in this paper.

    As the training time increases,the discriminatorGdgradually becomes unable to correctly distinguish real samples from synthetic samples.At this time,the loss of the discriminatorGdis much greater than the loss of the classifierGs,which leads to a decrease in the accuracy of the classifier.Therefore,after training for a certain period of time,we modify the loss function as follows to prevent this phenomenon:

    4 Experiments and results

    4.1 Dataset and implementation details

    XCAD[4]is datasets of coronary angiography images generated by the General Electric Innova IGS 520 system.XCAD contains a total of 1621 training pictures,which can be used to generate artificially synthesized datasets.It also contains 126 test data annotated by experienced radiologists.The resolution of each picture is 512×512 pixels with one channel.

    XCA [25] and XCAD represent the same part of the human body, but obtained by different machines, and its background is obviously different from that of XCAD.It contains a total of 134 images with a resolution of 300×300,all of which we use as test data.

    The resolution of images used in the paper is 256×256.It is worth noting that when we train and test on XCAD or XCA,we do not use data from another datasets,and we do not need any background images as well.On both datasets,we use the Jaccard index,Dice coefficient,accuracy(Acc.),sensitivity(Sn.),and specificity(Sp.)as the evaluation metrics.

    We implement all deep methods based on the PyTorch framework.The backbone network is ResNet50, and the scale of the extracted features is 1/8,and then restored to the size of the original image through the ASPP layer and the upsampling layer.We employ the Adam[26]withβ1=0.9,β2= 0.999, and the learning rate strategy implemented as following: first, a small learning rate is used for warm-up.We set the epoch of warm-ups to 5, and then the learning rate increases linearly to the initial value of 2×10-4, and finally decreases according to the cosine function.When the learning rate is large,the network will swing back and forth when it converges to the local optimum, so we need to let the learning rate decrease continuously with the number of training rounds:

    whereNis the total number of epochs trained and its value is 200.eis the value of current epoch.As for the parameter of GRL, we gradually change from 0 to 1 according to the method of [27], which can prevent the introduction of noise in the initial training stage.We gradually change it by

    Table 1 Comparison of results performed on XCAD by different methods

    4.2 Results

    In Table 1, except for our proposed method, other results are directly used data in [4].We can see that except for a slight drop in Sp.,the other four metrics outperform all the remaining methods.Jaccard, Dice and Sn.all have significant improvements, 11.0, 10.4 and 12.6 percentage points,respectively,all of which are currently the SOTA results on XCAD.The above results illustrate the extremely important application of L-System in self-supervised blood vessel segmentation.

    Some results of [25] which releases XCA datasets are extracted and put in Table 2 for comparison.We can see that ourproposedself-supervisedmethod,althoughnotasgoodas the best supervised methods,has surpassed the performance of some supervised methods.The results on this datasets can demonstrate some generalization of our method.

    We put the partial segmentation results of the dataset in Fig.5,from which we can see that there is no sudden thinning of vascular branches in Fig.1 in our results.

    Ablation study Table 3 shows the results of ablation experiments on two different datasets.‘Base’consists of two partsG fandGsshown in Fig.4.‘Ad’stands for the adversarial learning part, which is theGdin Fig.4.We can see that the results of adding ‘Ad’ networks to all datasets and evaluation metrics have improved.

    Table 3 Ablation study

    Fig.6 The impact of different loss functions on the results

    We also analyzed the impact of different loss functions on the evaluation indicators,and the results are shown in Fig.6.The blue dotted line only uses Eq.(6) as the loss function,and the orange solid line uses Eq.(7)as the loss function after training to a certain extent.We can see that no matter which dataset is used, the results obtained by using the modified loss function are better than the results of the original loss function.

    5 Conclusion

    In this paper,we introduce the L-system into vessel segmentation.We generate GT of synthetic data through L-system,and then use CycleGAN to generate images similar to the target data.This constitutes a labeled artificial datasets,and then uses adversarial learning to do unsupervised domain adaptation training data.We achieve SOTA results for selfsupervised segmentation on the XCAD datasets, and even outperform some supervised methods on the XCA datasets.These illustrate the effectiveness of our method.

    Data Availability The data that support the finding of this study are openly available in Ref.[4]and Ref.[25].

    亚洲精品av麻豆狂野| 亚洲欧美精品综合一区二区三区| 欧美大码av| 精品一区二区三区av网在线观看| 色老头精品视频在线观看| 大型黄色视频在线免费观看| 亚洲成av片中文字幕在线观看| 亚洲七黄色美女视频| 99精品久久久久人妻精品| 日韩有码中文字幕| 国产免费现黄频在线看| 亚洲精品在线美女| 午夜激情av网站| 麻豆一二三区av精品| 国产欧美日韩一区二区精品| 亚洲黑人精品在线| 亚洲国产精品一区二区三区在线| 露出奶头的视频| 久久中文字幕人妻熟女| 亚洲精品粉嫩美女一区| 国产一区二区在线av高清观看| 国产一区二区三区综合在线观看| 免费av毛片视频| 国产午夜精品久久久久久| av网站免费在线观看视频| 国产精品亚洲av一区麻豆| 日日摸夜夜添夜夜添小说| 一边摸一边做爽爽视频免费| 午夜福利欧美成人| 性色av乱码一区二区三区2| 波多野结衣一区麻豆| 国产av一区在线观看免费| 久久 成人 亚洲| 热99国产精品久久久久久7| 女人精品久久久久毛片| 国产亚洲精品一区二区www| 韩国精品一区二区三区| 国产91精品成人一区二区三区| 欧美成人性av电影在线观看| 亚洲人成电影观看| 在线av久久热| 亚洲第一欧美日韩一区二区三区| 国产精品久久视频播放| 日韩一卡2卡3卡4卡2021年| 高清在线国产一区| 久久影院123| 看片在线看免费视频| 热re99久久国产66热| 久久伊人香网站| 丁香六月欧美| 无限看片的www在线观看| 中文亚洲av片在线观看爽| 人人妻,人人澡人人爽秒播| 国产欧美日韩一区二区三| 亚洲av电影在线进入| 久久精品国产亚洲av高清一级| 如日韩欧美国产精品一区二区三区| 国产精品成人在线| 69精品国产乱码久久久| 午夜精品在线福利| 老司机午夜福利在线观看视频| 国产精品永久免费网站| 黑人欧美特级aaaaaa片| 亚洲精品国产区一区二| 国产精品日韩av在线免费观看 | 长腿黑丝高跟| 久久这里只有精品19| 人人澡人人妻人| 手机成人av网站| 美女午夜性视频免费| 欧美激情高清一区二区三区| 色综合欧美亚洲国产小说| 久久久久国产精品人妻aⅴ院| 男人舔女人下体高潮全视频| 亚洲五月天丁香| 国产精品 欧美亚洲| 欧美激情久久久久久爽电影 | 亚洲一码二码三码区别大吗| 中出人妻视频一区二区| 一本综合久久免费| 久久狼人影院| 日韩高清综合在线| 亚洲 欧美一区二区三区| 亚洲精品国产区一区二| 淫秽高清视频在线观看| 成人国语在线视频| 老熟妇乱子伦视频在线观看| 黄色怎么调成土黄色| 欧美不卡视频在线免费观看 | 99久久久亚洲精品蜜臀av| 久久精品国产综合久久久| 国产精品电影一区二区三区| 99久久99久久久精品蜜桃| 欧美成人午夜精品| 啦啦啦在线免费观看视频4| 久久香蕉精品热| 久久欧美精品欧美久久欧美| 男女下面进入的视频免费午夜 | 欧美中文综合在线视频| 精品福利永久在线观看| 久久精品成人免费网站| 操出白浆在线播放| 午夜免费激情av| 国产成人欧美在线观看| 亚洲精品久久午夜乱码| 欧美激情久久久久久爽电影 | 一区福利在线观看| 国产精品爽爽va在线观看网站 | 久热爱精品视频在线9| 久久精品91蜜桃| 欧美在线黄色| 亚洲第一青青草原| 亚洲九九香蕉| 两性夫妻黄色片| 99热国产这里只有精品6| 亚洲黑人精品在线| 一区二区三区激情视频| 99国产极品粉嫩在线观看| 欧美av亚洲av综合av国产av| 亚洲,欧美精品.| 大型av网站在线播放| 国产成人一区二区三区免费视频网站| 久久热在线av| 国产精品一区二区在线不卡| 欧美激情久久久久久爽电影 | 婷婷丁香在线五月| e午夜精品久久久久久久| 久久伊人香网站| 欧美国产精品va在线观看不卡| 大型黄色视频在线免费观看| 国产精品免费一区二区三区在线| 国产亚洲精品久久久久5区| tocl精华| 欧美另类亚洲清纯唯美| 看黄色毛片网站| 一级黄色大片毛片| 涩涩av久久男人的天堂| 欧美日韩中文字幕国产精品一区二区三区 | 中文亚洲av片在线观看爽| 美女福利国产在线| 女人精品久久久久毛片| 久久热在线av| 在线观看www视频免费| 日韩 欧美 亚洲 中文字幕| 亚洲欧美一区二区三区黑人| 久久久久久大精品| 成人免费观看视频高清| 黄色视频不卡| 日韩视频一区二区在线观看| 亚洲国产精品999在线| 成年人免费黄色播放视频| 亚洲国产欧美一区二区综合| 免费不卡黄色视频| 久久 成人 亚洲| 日韩国内少妇激情av| 国产真人三级小视频在线观看| 1024视频免费在线观看| 99久久99久久久精品蜜桃| 日韩 欧美 亚洲 中文字幕| 一区二区三区精品91| 国产精品野战在线观看 | 成人18禁在线播放| 三上悠亚av全集在线观看| 久久久久久大精品| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩黄片免| 成人亚洲精品一区在线观看| 级片在线观看| 91成人精品电影| av网站免费在线观看视频| 日韩大尺度精品在线看网址 | 日韩欧美免费精品| 91老司机精品| 亚洲国产精品999在线| 高清毛片免费观看视频网站 | 国产欧美日韩精品亚洲av| 亚洲欧美激情综合另类| 妹子高潮喷水视频| 天天添夜夜摸| 久久国产精品人妻蜜桃| 婷婷精品国产亚洲av在线| 久久99一区二区三区| 久久影院123| 午夜免费成人在线视频| 国产精品成人在线| 99国产精品一区二区三区| 亚洲av美国av| 91麻豆av在线| 亚洲精品在线观看二区| 色精品久久人妻99蜜桃| 久久国产亚洲av麻豆专区| 国产不卡一卡二| 香蕉国产在线看| 亚洲一区二区三区不卡视频| 宅男免费午夜| 自拍欧美九色日韩亚洲蝌蚪91| 日韩免费高清中文字幕av| 日韩欧美国产一区二区入口| 国产蜜桃级精品一区二区三区| av有码第一页| 久久性视频一级片| 最近最新中文字幕大全电影3 | 成人免费观看视频高清| 久久久国产成人精品二区 | 午夜亚洲福利在线播放| 精品无人区乱码1区二区| 咕卡用的链子| 国产三级在线视频| 日韩三级视频一区二区三区| 热99re8久久精品国产| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩亚洲综合一区二区三区_| 麻豆国产av国片精品| 色尼玛亚洲综合影院| 91在线观看av| 成人国产一区最新在线观看| 国产精品爽爽va在线观看网站 | 午夜免费激情av| 国内久久婷婷六月综合欲色啪| 久久久久国产精品人妻aⅴ院| 巨乳人妻的诱惑在线观看| 最近最新中文字幕大全免费视频| 欧美成人免费av一区二区三区| 国产精品美女特级片免费视频播放器 | 亚洲情色 制服丝袜| 亚洲成a人片在线一区二区| svipshipincom国产片| 国产精品乱码一区二三区的特点 | 欧美午夜高清在线| 日韩大码丰满熟妇| 两个人看的免费小视频| 日韩国内少妇激情av| 搡老岳熟女国产| 日韩人妻精品一区2区三区| 日韩欧美在线二视频| 黄色成人免费大全| 国产蜜桃级精品一区二区三区| 国产黄色免费在线视频| 看免费av毛片| 欧美一区二区精品小视频在线| 大陆偷拍与自拍| 性欧美人与动物交配| 亚洲一区中文字幕在线| 欧美日韩亚洲高清精品| 国产精品免费一区二区三区在线| 午夜精品久久久久久毛片777| 国产精品永久免费网站| 大香蕉久久成人网| 熟女少妇亚洲综合色aaa.| 欧美人与性动交α欧美软件| 国产亚洲精品第一综合不卡| 88av欧美| av超薄肉色丝袜交足视频| 欧美另类亚洲清纯唯美| 黑人巨大精品欧美一区二区mp4| 国产主播在线观看一区二区| 黄片大片在线免费观看| 免费观看精品视频网站| 纯流量卡能插随身wifi吗| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一区高清亚洲精品| 色综合欧美亚洲国产小说| 国产亚洲精品久久久久久毛片| 国产乱人伦免费视频| 激情在线观看视频在线高清| 日韩成人在线观看一区二区三区| av视频免费观看在线观看| 国产精品爽爽va在线观看网站 | 国产一区二区在线av高清观看| av欧美777| 亚洲成人精品中文字幕电影 | 在线播放国产精品三级| 日韩中文字幕欧美一区二区| 国产欧美日韩精品亚洲av| aaaaa片日本免费| 女性被躁到高潮视频| 日韩欧美一区二区三区在线观看| 超色免费av| 免费在线观看视频国产中文字幕亚洲| 午夜福利,免费看| 狂野欧美激情性xxxx| 999久久久精品免费观看国产| 亚洲aⅴ乱码一区二区在线播放 | 久久午夜亚洲精品久久| 亚洲精品成人av观看孕妇| 亚洲av第一区精品v没综合| 久久久久久久久中文| 午夜福利一区二区在线看| 亚洲精品在线观看二区| 无人区码免费观看不卡| 老汉色∧v一级毛片| 久久伊人香网站| 一级作爱视频免费观看| 男女高潮啪啪啪动态图| 水蜜桃什么品种好| 亚洲欧美日韩另类电影网站| 80岁老熟妇乱子伦牲交| 国产成人精品在线电影| 真人一进一出gif抽搐免费| 国产精品一区二区在线不卡| 男人舔女人的私密视频| 国产一区二区激情短视频| 狂野欧美激情性xxxx| 一边摸一边抽搐一进一出视频| 亚洲成人国产一区在线观看| 99久久精品国产亚洲精品| 亚洲中文字幕日韩| 俄罗斯特黄特色一大片| 高潮久久久久久久久久久不卡| 久久国产精品男人的天堂亚洲| 亚洲aⅴ乱码一区二区在线播放 | 黄色毛片三级朝国网站| 日韩 欧美 亚洲 中文字幕| 国产精品 国内视频| 男男h啪啪无遮挡| 精品少妇一区二区三区视频日本电影| 一个人观看的视频www高清免费观看 | 国产精品久久久久久人妻精品电影| 日韩三级视频一区二区三区| 熟女少妇亚洲综合色aaa.| 日韩精品中文字幕看吧| 国产精品综合久久久久久久免费 | 黄网站色视频无遮挡免费观看| 一二三四社区在线视频社区8| 精品欧美一区二区三区在线| 夜夜看夜夜爽夜夜摸 | 在线av久久热| 精品福利观看| 久久亚洲精品不卡| 欧美精品一区二区免费开放| 窝窝影院91人妻| 国产精品久久久av美女十八| 69精品国产乱码久久久| www日本在线高清视频| 国产欧美日韩精品亚洲av| 久久久国产成人精品二区 | 在线观看午夜福利视频| 好看av亚洲va欧美ⅴa在| 日本欧美视频一区| 91成年电影在线观看| 国产精品 欧美亚洲| 亚洲 国产 在线| 一级片免费观看大全| 亚洲欧美精品综合久久99| 黄色 视频免费看| 母亲3免费完整高清在线观看| 伦理电影免费视频| 亚洲专区中文字幕在线| 黑丝袜美女国产一区| e午夜精品久久久久久久| 黄网站色视频无遮挡免费观看| 国产精品自产拍在线观看55亚洲| 国产激情久久老熟女| 欧美一区二区精品小视频在线| 久久99一区二区三区| 国产99久久九九免费精品| 丁香欧美五月| 国产av又大| 国产日韩一区二区三区精品不卡| 免费在线观看完整版高清| 最新美女视频免费是黄的| 国产蜜桃级精品一区二区三区| 日本三级黄在线观看| av欧美777| 亚洲国产中文字幕在线视频| 国产精品国产av在线观看| 人妻久久中文字幕网| 国产又爽黄色视频| www.精华液| 婷婷六月久久综合丁香| 最近最新中文字幕大全电影3 | 午夜两性在线视频| 大香蕉久久成人网| 亚洲精品国产区一区二| 午夜精品久久久久久毛片777| 少妇粗大呻吟视频| 国产欧美日韩综合在线一区二区| 韩国精品一区二区三区| 桃色一区二区三区在线观看| 亚洲国产精品999在线| 91麻豆av在线| 黄色女人牲交| 黄片播放在线免费| 国产三级黄色录像| 91在线观看av| 久久99一区二区三区| 手机成人av网站| 亚洲黑人精品在线| 午夜两性在线视频| 99香蕉大伊视频| 日本免费一区二区三区高清不卡 | netflix在线观看网站| 亚洲人成77777在线视频| 精品久久久精品久久久| 国产成人精品久久二区二区91| 手机成人av网站| 99久久国产精品久久久| 三上悠亚av全集在线观看| 日韩有码中文字幕| 国产三级在线视频| 成人三级做爰电影| 婷婷六月久久综合丁香| 黑人欧美特级aaaaaa片| av有码第一页| 午夜91福利影院| 香蕉丝袜av| 欧美国产精品va在线观看不卡| cao死你这个sao货| 黄网站色视频无遮挡免费观看| 午夜精品在线福利| 人人妻人人澡人人看| ponron亚洲| 国产精品秋霞免费鲁丝片| 黑人巨大精品欧美一区二区蜜桃| 国产成人欧美在线观看| 男女做爰动态图高潮gif福利片 | 真人做人爱边吃奶动态| 欧美激情高清一区二区三区| 成年版毛片免费区| 亚洲人成电影观看| 精品电影一区二区在线| 国产成人欧美在线观看| 国产蜜桃级精品一区二区三区| xxx96com| 亚洲av日韩精品久久久久久密| 好看av亚洲va欧美ⅴa在| 在线看a的网站| 国产乱人伦免费视频| 亚洲人成电影观看| 精品电影一区二区在线| 国产单亲对白刺激| 丰满的人妻完整版| 人人澡人人妻人| av有码第一页| 日韩国内少妇激情av| 电影成人av| 天堂俺去俺来也www色官网| 欧美色视频一区免费| 自线自在国产av| 国产精品亚洲av一区麻豆| av欧美777| 久久人妻av系列| 99热只有精品国产| 国产成人精品久久二区二区免费| 狠狠狠狠99中文字幕| 在线永久观看黄色视频| 中文字幕人妻熟女乱码| 搡老熟女国产l中国老女人| 国产精品 欧美亚洲| 久久国产精品男人的天堂亚洲| 精品无人区乱码1区二区| 韩国精品一区二区三区| 午夜老司机福利片| 久久国产精品影院| 18禁美女被吸乳视频| av有码第一页| 啪啪无遮挡十八禁网站| 精品高清国产在线一区| 一二三四社区在线视频社区8| 搡老乐熟女国产| 两个人免费观看高清视频| 美女 人体艺术 gogo| 99久久久亚洲精品蜜臀av| 国产av又大| 超碰97精品在线观看| 色精品久久人妻99蜜桃| 日本黄色视频三级网站网址| 国产极品粉嫩免费观看在线| 国产xxxxx性猛交| 91大片在线观看| 视频区欧美日本亚洲| 在线十欧美十亚洲十日本专区| 十八禁人妻一区二区| 少妇粗大呻吟视频| 精品欧美一区二区三区在线| 岛国视频午夜一区免费看| 精品高清国产在线一区| 免费人成视频x8x8入口观看| 身体一侧抽搐| 国产精品亚洲av一区麻豆| 国产免费av片在线观看野外av| 脱女人内裤的视频| 日本a在线网址| 亚洲欧美日韩另类电影网站| 午夜老司机福利片| 国产高清激情床上av| 脱女人内裤的视频| 亚洲精品中文字幕一二三四区| 亚洲成人免费电影在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲精品久久成人aⅴ小说| 午夜免费鲁丝| 性色av乱码一区二区三区2| 国产视频一区二区在线看| 一进一出抽搐动态| 日韩精品免费视频一区二区三区| 亚洲欧美日韩高清在线视频| 黄频高清免费视频| 热re99久久精品国产66热6| 色婷婷av一区二区三区视频| 久久精品国产亚洲av香蕉五月| 国产激情欧美一区二区| 国产成人精品无人区| 午夜激情av网站| 在线观看日韩欧美| 国产不卡一卡二| xxxhd国产人妻xxx| 久久精品国产亚洲av高清一级| 天堂俺去俺来也www色官网| 日本撒尿小便嘘嘘汇集6| 80岁老熟妇乱子伦牲交| 热re99久久国产66热| 久久亚洲真实| 亚洲 国产 在线| 亚洲国产中文字幕在线视频| 亚洲中文av在线| 免费日韩欧美在线观看| 青草久久国产| 国产成人系列免费观看| 黄片播放在线免费| 天堂中文最新版在线下载| 亚洲精品一卡2卡三卡4卡5卡| 女警被强在线播放| 99re在线观看精品视频| 国产激情欧美一区二区| 交换朋友夫妻互换小说| 欧美一区二区精品小视频在线| 成人亚洲精品av一区二区 | 亚洲国产中文字幕在线视频| 国产亚洲欧美在线一区二区| 精品福利观看| 久久这里只有精品19| 少妇被粗大的猛进出69影院| 麻豆一二三区av精品| 母亲3免费完整高清在线观看| 日本免费一区二区三区高清不卡 | 国产精品1区2区在线观看.| tocl精华| 一a级毛片在线观看| 黄色怎么调成土黄色| 丝袜美腿诱惑在线| 亚洲精品在线美女| 操美女的视频在线观看| 在线免费观看的www视频| 成人永久免费在线观看视频| 如日韩欧美国产精品一区二区三区| 亚洲国产毛片av蜜桃av| 成人18禁在线播放| 日韩视频一区二区在线观看| 黄网站色视频无遮挡免费观看| 亚洲一区高清亚洲精品| 亚洲精品美女久久久久99蜜臀| 免费日韩欧美在线观看| 在线观看免费午夜福利视频| 两个人免费观看高清视频| 色播在线永久视频| 嫁个100分男人电影在线观看| 午夜影院日韩av| 91老司机精品| 亚洲av熟女| 久热爱精品视频在线9| 99久久精品国产亚洲精品| 欧美黄色片欧美黄色片| 又黄又粗又硬又大视频| 欧美人与性动交α欧美精品济南到| 国产xxxxx性猛交| 久久 成人 亚洲| 中国美女看黄片| 91成人精品电影| 怎么达到女性高潮| 一个人观看的视频www高清免费观看 | 丰满迷人的少妇在线观看| 日韩视频一区二区在线观看| 久久精品91蜜桃| 婷婷丁香在线五月| 亚洲av日韩精品久久久久久密| 女同久久另类99精品国产91| 欧美黄色淫秽网站| 亚洲精品美女久久av网站| 亚洲va日本ⅴa欧美va伊人久久| 麻豆国产av国片精品| 一区二区日韩欧美中文字幕| 欧美日韩国产mv在线观看视频| 亚洲人成电影观看| 国产又爽黄色视频| 美女福利国产在线| 国产精品偷伦视频观看了| 亚洲少妇的诱惑av| 亚洲欧美日韩高清在线视频| 久久亚洲真实| 涩涩av久久男人的天堂| 亚洲精品久久午夜乱码| 日本a在线网址| 伊人久久大香线蕉亚洲五| 国产精品永久免费网站| 中文字幕人妻丝袜制服| 欧美亚洲日本最大视频资源| 免费久久久久久久精品成人欧美视频| 天堂俺去俺来也www色官网| 成人三级做爰电影| 午夜福利在线免费观看网站| 一级黄色大片毛片| 狂野欧美激情性xxxx| 琪琪午夜伦伦电影理论片6080| 亚洲欧美激情在线| 人妻久久中文字幕网| 90打野战视频偷拍视频| 精品一区二区三区视频在线观看免费 | 丰满迷人的少妇在线观看| 亚洲精品中文字幕一二三四区| 自线自在国产av| 亚洲情色 制服丝袜| 一个人观看的视频www高清免费观看 | 欧美国产精品va在线观看不卡| 国产欧美日韩综合在线一区二区|