• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental and theoretical analysis of a hybrid vibration energy harvester with integrated piezoelectric and electromagnetic interaction

    2023-11-18 09:14:16ShifanHUANGWeihaoLUOZongmingZHUZhenlongXUBanWANGMaoyingZHOUHuaweiQIN
    關(guān)鍵詞:非線性壓電電磁

    Shifan HUANG, Weihao LUO, Zongming ZHU, Zhenlong XU, Ban WANG, Maoying ZHOU, Huawei QIN

    Research Article

    Experimental and theoretical analysis of a hybrid vibration energy harvester with integrated piezoelectric and electromagnetic interaction

    Shifan HUANG, Weihao LUO, Zongming ZHU, Zhenlong XU, Ban WANG, Maoying ZHOU, Huawei QIN

    School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

    Harvesting vibration energy has attracted the attention of researchers in recent decades as a promising approach for powering wireless sensor networks. The hybridization of piezoelectricity and electromagnetism has proven helpful in the improvement of vibration energy harvesting. In this study, we explore the integration of piezoelectric and electromagnetic parts in one vibration energy harvesting device. Lumped-parameter models of the system are derived considering the different connection topologies of the piezoelectric and electromagnetic parts. Numerical predictions from these models are compared with experimental results to throw light on the nonlinearities in the system. Modifications of the system are also explored to provide insights into opportunities to improve its performance and that of future vibration energy harvesters.

    Hybrid energy harvesting; Nonlinear interaction; Magnetic spring; Piezoelectricity; Electromagnetism

    1 Introduction

    Recent years have witnessed the rapid development of wireless sensor networks and their vast applications in consumer electronics, industrial automation, and environmental monitoring (Kandris et al., 2020; Malik et al., 2020; Priyadarshi et al., 2020). In this process, a major concern has been the power supply of such networks, which currently relies on batteries and suffers from a high cost of maintenance (Priyadarshi et al., 2020). In view of the ubiquitous presence of vibration in the ambient environment, it is feasible in principle to harness available vibration energy and convert it into electricity for sensors. The so-called vibration energy harvester has emerged from this idea and has attracted the attention of numerous researchers (Zhou et al., 2018; Malik et al., 2020; Miller et al., 2020; Yao et al., 2023). According to their underlying mechanisms of energy transduction, several sorts of vibration energy harvesters are found in the literature: electrostatic energy harvesters (Basset et al., 2014; Zhang et al., 2016, 2018), triboelectric energy harvesters (Zhu et al., 2013; Li et al., 2015; Qiu et al., 2020), electromagnetic energy harvesters (Zhang et al., 2015; Saravia, 2019; Shi et al., 2020; Wang W et al., 2022), and piezoelectric energy harvesters (Cao et al., 2015; Zhang and Qin, 2019; Wang ZM et al., 2022; Wu and Xu, 2022). Among these, piezoelectric vibration energy harvesters (PVEHs) have shown superior potential for application due to their high voltage output and simple structure.

    Physically, PVEHs operate in resonant mode to achieve high efficiency of energy conversion (Anton and Sodano, 2007; Safaei et al., 2019). One problem with these PVEHs has been their limited working frequency bandwidth. Great efforts have been made to enlarge the bandwidth of PVEHs, including the automatic tuning of their resonant frequencies (Challa et al., 2011), integration of multiple PVEHs with different resonant frequencies (Dechant et al., 2017), combination of PVEHs with other energy transduction mechanisms (Fan et al., 2018c; Liu et al., 2021), and intentional introduction of nonlinearity into PVEHs (Zou et al., 2017; Fan et al., 2018b). Of practical interest here is the combination of piezoelectric and electromagnetic energy harvesters. On the one hand, the frequency bandwidth is broadened due to the different resonant frequencies of piezoelectric and vibration electromagnetic energy harvesters. On the other hand, introduction of magnetic interaction provides an opportunity to further increase the frequency bandwidth with the help of nonlinearity.

    Hence, many researchers have tried to construct and investigate hybrid energy harvesters based on piezoelectricity and electromagnetism (HEHPEs) (Xia et al., 2015; Ahmad and Khan, 2021). Magnetic interactions between permanent magnets and conducting coils have been introduced to conventional piezoelectric energy harvesters (Challa et al., 2009). Under the action of base excitation, the piezoelectric beam undergoes elastic vibration. As a result, the permanent magnets oscillate relative to the conducting coil. Electrical output can then be expected from the coil according to the principles of electromagnetism. Different arrangements between the magnets and the coils have been explored, based on spiral coils (Yang et al., 2010; Zhang et al., 2019) or helical coils (Sang et al., 2012; Xu et al., 2017b). Magnetic springs formed by the nonlinear interactions between different magnets have also been used to connect the piezoelectric and electromagnetic parts of the HEHPEs (Xu et al., 2016; Xia et al., 2017). The optimal operation frequency of the HEHPE can be easily tuned by the nonlinear magnetic spring introduced. An interesting approach to integrate the piezoelectric and electromagnetic parts in an HEHPE is to add an electromagnetic energy harvesting unit to the free end of a piezoelectric energy harvesting unit (Shan et al., 2013; Mahmoudi et al., 2014; Li et al., 2016; Liu et al., 2019). In this case, a multi-degree of freedom (DOF) vibration system is formed, increasing the power output of the hybrid system. Other investigations have focused on the introduction of impact or contact to tune the operation frequency of HEHPEs (Fan et al., 2018a, 2018b; Halim et al., 2019; Maamer et al., 2019; Iqbal et al., 2021). Nonetheless, it seems that the full potential of HEHPEs has not yet been revealed. Due to the mismatching characteristics of stand-alone piezoelectric and electromagnetic energy harvesters (Arroyo et al., 2012), nearly all the proposed and investigated HEHPEs disconnect the output of the piezoelectric part from that of the electromagnetic part. Hence, the outputs of these two parts are considered and evaluated separately. Meanwhile, due to the capacitive property of a piezoelectric energy harvester, addition of an external inductor alters the vibration characteristics of the device (Wang B et al., 2022). Noting that coils are typical electrical inductors, the electrical connection between the piezoelectric and electromagnetic parts inside an HEHPE may also alter and enhance the performance of an HEHPE (Huang et al., 2022).

    In this study, we investigated the direct integration of piezoelectric and electromagnetic energy harvesting units in one HEHPE. An electromagnetic part based on magnetic springs was attached to the free end of a piezoelectric part in an HEHPE. Lumped-parameter models of the HEHPE were established considering different connection topologies between the piezoelectric and electromagnetic parts. Experimental results were obtained and compared with theoretical predictions considering the nonlinearities in the HEHPE. Modifications of the HEHPE were also explored to provide insights into the potential to improve the performance of HEHPEs and that of future vibration energy harvesters.

    2 Structure and working principle

    Fig. 2 Different connection topologies: (a) connection topology 1; (b) connection topology 2; (c) connection topology 3; (d) connection topology 4

    3 Theoretical model of the HEHPE

    3.1 Lumped-parameter representation of the system

    As indicated above, the dynamic behavior of the HEHPE is affected by the connection topology between the electromagnetic and piezoelectric parts. Four connection topologies were considered: connection topology 1, connection topology 2, connection topology 3, and connection topology 4.

    4 Numerical analysis and experiments

    4.1 Experimental setup

    Based on the above analysis, a prototype of the studied HEHPE was prepared (as shown in the enlarged inset located in the upper right corner of Fig. 3). Related structural and material parameters are shown in Table 1. The prototype consists of a 3D-printed base made of resin materials, a 3D-printed frame made of transparent resin materials (Future Factory, China), a base beam made of red copper (Taizhou Shunkuo Hardware Products Co., Ltd., China), a ring magnet (Shanghai Strong Magnetic Material Factory, China), an induction coil, a copper bar guide, and some screws and nuts.

    Fig. 3 Schematic diagram of the studied HEHPE (PC: personal computer; NI: National Instruments)

    The main bimorph beam is composed of two PZT-5H ceramic plates (Baoding Hongsheng Electronics Co., Ltd., China) and the base beam. The two piezoelectric ceramic plates were attached to the base beam in parallel using AB glue. Both surfaces of the piezoelectric ceramic plate are covered with electrodes. The frame is attached to the free end of the base beam with the help of screws and nuts. An induction coil is wound in the middle of the frame. Two ring magnets are fixed at the upper and lower ends of the frame using solid sol. The ring magnets fixed at the upper and lower ends are connected by a thin copper rail, which guides the motion of the moving magnet.

    Table 1 Parameters of the experimental prototype HEHPE

    sandsare the width and thickness of the base beam, respectively;pandpare the width and thickness of the piezoelectric plates, respectively;oandiare the outer diameter and inner diameter of the magnets, respectively;andmare the thicknesses of fixed magnets and moving magnets, respectively

    The test rig of the HEHPE is shown in Fig. 3. A vibration exciter is used to provide periodic base excitation, and its waveform and frequency are adjusted by a vibration controller, the control computer, and a power amplifier. The experimental prototype is fixed on the vibration exciter by screws. Two acceleration sensors are fixed to the base, one for detecting feedback signal and the other for monitoring the vibration controller. Voltage generated by the prototype is collected by the computer through a data acquisition card.

    4.2 Comparisons of the models and the experiments

    Since the lumped-parameter model described in the ESM is based on the first resonant vibration mode of the studied HEHPE, in subsequent analysis we use only the experimental data collected for the first-order harmonic. Under different connection topologies and given external load resistance, the output voltages of the piezoelectric and electromagnetic parts, if available, are normalized with respect to the amplitude of base excitation accelerations. Results were also obtained using the lumped-parameter model with parameters tuned to match the experimental results.

    Fig. 4 Comparison of the frequency responses of RMS voltage and average power of the HEHPE obtained with different connection topologies: (a) and (b) for connection 1 and (c) and (d) for connection 2

    For condition 3, the piezoelectric and electromagnetic parts of the HEHPE were electrically disconnected from each other. The external load resistance of the piezoelectric part was 70 k?, while that of the electromagnetic part was 150 ?. The normalized output RMS voltage and average power of the piezoelectric part are shown in Figs. 5a and 5b, respectively, and those of the electromagnetic part in Figs. 5c and 5d, respectively. For both the piezoelectric and electromagnetic parts, two resonant peaks are present at the base excitation frequencies of 6.4 and 9.6 Hz, respectively. For the piezoelectric part, the normalized RMS voltages for the two resonant peaks were 2.624 and 10.850, respectively, while those for the average power were 0.91 and 1.68, respectively. For the electromagnetic part, the normalized RMS voltages for the two resonant peaks were 0.733 and 0.892, respectively, while those for average power were 3.585 and 5.300, respectively.

    Fig. 5 Comparison of the frequency responses of RMS voltage and average power of the piezoelectric part (a and b) and electromagnetic part (c and d) obtained with connection topology 3

    Note that although the experimental results obtained are in good qualitative agreement with the numerical predictions from the developed models, there are quantitative errors. One reason for this is the oversimplification of the 3D motion of the HEHPE 1D linear motion. Rotational elastic vibration of the piezoelectric cantilever beam is ignored. The swing of the electromagnetic part and revolution of the moving magnetic with respect to the copper guide rail are also neglected. A second concern is the simplified expression of the magnetic force and electromagnetic damping shown before. Moreover, although the copper guide rail was made as smooth as possible before the experiment, friction and collision between the moving magnet and the copper guide rail contribute to the differences.

    where

    Fig. 6 Comparison of the frequency responses of RMS voltage (a) and average power (b) of the HEHPE obtained with connection topology 4

    Fig. 7 Schematic diagram of the resistor-capacitor-inductor (RCL) circuit in the energy harvester device

    As stated previously (Huang et al., 2022), the complex coupling between the electrical resonator, the piezoelectric part, and the electromagnetic part is seen to have the most influence on device performance. Calculations show that in our situation, the electrical resonant frequency was around 631 Hz. As this frequency is far outside the considered frequency range, the effect of the electrical resonance is not shown in our experiments. However, extra tuning of the external load circuits can help tune the output performance of HEHPEs (Huang et al., 2022). Because of the limited choice of piezoelectric and electromagnetic materials, the effect of electrical resonance has not been fully recognized. Further research is needed urgently, and this will be a topic of future investigations.

    As a final characterization, considering the HEHPE in connection topology 3, different external load resistances were applied to the piezoelectric part (1–1000 k?) and electromagnetic part (10–5000 ?), respectively. The RMS voltage and average power of the HEHPE are shown in Fig. 8. With increasing load resistance, the output voltage amplitude gradually increases, and finally approaches a limit (Figs. 8a and 8c). The average output power first reaches the maximum value at the optimal load, and then decreases monotonically with the further increase of load resistance (Figs. 8b and 8d). The predictions from our lumped-parameter models are also shown.

    Fig. 8 Outputs of the HEHPE with connection topology 3 at excitation frequencies of 6.0, 7.5, and 9.0 Hz: RMS voltage (a) and average power (b) for the piezoelectric part; RMS voltage (c) and average power (d) for the electromagnetic part

    Note that when the base excitation frequency is far from the resonant frequencies (here we aimed for a resonant frequency of around 6.4 Hz), the numerical predictions are in good agreement with the experiment results. However, when the base excitation frequency is close to the resonance, numerical predictions deviate from experimental results. This is consistent with our model assumption that the electromagnetic and piezoelectric parts weakly interact with each other. Close to resonance, however, the interaction between these two parts is strong with dramatic energy exchange, which is not accounted for in the simplified model. Nonlinearity and mutual coupling in the HEHPE need extra attention in future investigations.

    4.3 Modifications of the electromagnetic part

    Results from previous experiments gave us the impression that a moving magnet in the electromagnetic part does not move far from its balanced position. As a consequence, the RMS output voltage of the electromagnetic part shown in Fig. 8 is far from satisfactory. A direct cause is that the magnetic force is too strong for the moving magnet to move easily. To strengthen the motion of the moving magnet, we replaced the upper fixed magnet in the electromagnetic part with an elastic spring. A schematic diagram of the modified system is shown in Fig. 9. The main idea is that when the moving magnet oscillates, it will collide with the elastic spring. Non-smooth nonlinearity is introduced into the system and the oscillating amplitude of the moving magnet can be increased (Xu et al., 2017a).

    Fig. 9 Diagram of the structure of the modified HEHPE with the upper fixed magnet replaced with a fixed spring

    To begin with, we were concerned about the distancebetween the elastic spring and the moving magnet (Fig. 9). Its influence upon device performance was explored. The values ofwere set to 0, 2, and 4 mm, respectively. Under connection topology 3, the RMS voltages of the piezoelectric part and the electromagnetic part were as shown in Figs. 10a and 10b, respectively, versus the base excitation frequency. Under connection topology 4, the RMS voltage of the HEHPE was as shown in Fig. 11.

    In Figs. 10a and 11, with increasing, the RMS voltage for the first resonant peak decreases gradually, while that for the second peak increases, while in Fig. 10b, the RMS voltage of both resonant peaks decreases with increasingand gradually approachs that of the original HEHPE prototype. Note that replacement of the upper fixed magnet with an elastic spring increased the output performance of the device for nearly all connection topologies. Besides, due to the introduction of collision between the moving magnet and the elastic spring, up-conversion of the frequency is apparent in Figs. 10 and 11.

    Fig. 10 Output performance of the modified HEHPE with different d with connection topology 3: (a) RMS voltage of the piezoelectric part; (b) RMS voltage of the electromagnetic part

    Fig. 11 Output voltage of the modified HEHPE with different d with connection topology 4

    Since the mathematical model of the modified HEHPE is not well established, detailed discussions are postponed. In future investigations, a search for an optimal value ofcould be of primary interest to improve device performance. In addition, the stiffness of the elastic spring was not carefully tuned in our small-scale experiments. Future investigations should be done to elucidate its effects.

    5 Conclusions

    With increasing attention being paid to PVEHs, researchers are attempting to increase their working bandwidths through the integration of piezoelectric and electromagnetic energy transduction mechanisms in a single HEHPE.

    This study focused on the nonlinear interaction in an HEHPE. Mathematical models of the proposed HEHPE were established considering different connection topologies. Prototypes were prepared and tested. Input and output signals of the HEHPE were firstly analyzed to stress the insufficiently understood features of containing multi-frequency components. Methods for characterizing such signals are put forward and discussed. With regard to different connection topologies, the RMS voltage and average power of the HEHPE were investigated and compared with numerical predictions based on a developed model. Good agreement was found. We also found that the electrical connection between the electromagnetic and piezoelectric parts in the HEHPE serves to tune the frequency characteristics of the device and alter its output performance. Nonlinearity due to the magnetic force introduced also changes the energy distribution between the electromagnetic and piezoelectric parts. Once system parameters are well tuned, better device performance in terms of working bandwidth and output power can be expected.

    Also, the original HEHPE was modified by replacing the upper fixed magnet with an elastic spring. An obvious performance improvement was witnessed and considerable frequency tuning observed. Changing the distancebetween the spring and the moving magnet was shown to greatly affect device behavior.

    Nonetheless, several points need attention in future research. The base beam in the piezoelectric part should be longer and thicker, to make it easier to match the resonant properties of the piezoelectric and electromagnetic parts. Besides, tuning of the resonant frequency due to the electrical connection between the piezoelectric part and the electromagnetic should be optimized. In addition, a detailed study of the modified HEHPE is needed to provide a thorough understanding of the effect of the introduced nonlinearity on device performance.

    Acknowledgments

    This work is supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY22E050013) and the China Postdoctoral Science Foundation (No. 2021M690545), and is also supported in part by the Zhejiang Provincial Natural Science Foundation of China (No. LZY22E050001) and the National Natural Science Foundation of China (No. 51805124).

    Author contributions

    Shifan HUANG, Zhenlong XU, and Maoying ZHOU designed the research. Shifan HUANG and Weihao LUO processed the corresponding data. Shifan HUANG wrote the first draft of the manuscript. Weihao LUO, Zongming ZHU, Ban WANG, and Huawei QIN helped to organize the manuscript. Maoying ZHOU and Shifan HUANG revised and edited the final version.

    Conflict of interest

    Shifan HUANG, Weihao LUO, Zongming ZHU, Zhenlong XU, Ban WANG, Maoying ZHOU, and Huawei QIN declare that they have no conflict of interest.

    Ahmad MM, Khan FU, 2021. Review of vibration?‐?based electromagnetic–piezoelectric hybrid energy harvesters., 45(4):5058-5097. https://doi.org/10.1002/er.6253

    Anton SR, Sodano HA, 2007. A review of power harvesting using piezoelectric materials (2003-2006)., 16(3):R1-R21. https://doi.org/10.1088/0964-1726/16/3/r01

    Arroyo E, Badel A, Formosa F, et al., 2012. Comparison of electromagnetic and piezoelectric vibration energy harvesters: model and experiments., 183:148-156. https://doi.org/10.1016/j.sna.2012.04.033

    Basset P, Galayko D, Cottone F, et al., 2014. Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact., 24(3):035001. https://doi.org/10.1088/0960-1317/24/3/035001

    Cao DX, Leadenham S, Erturk A, 2015. Internal resonance for nonlinear vibration energy harvesting., 224(14-15):2867-2880. https://doi.org/10.1140/epjst/e2015-02594-4

    Challa VR, Prasad MG, Fisher FT, 2009. A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching., 18(9):095029. https://doi.org/10.1088/0964-1726/18/9/095029

    Challa VR, Prasad MG, Fisher FT, 2011. Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications., 20(2):025004. https://doi.org/10.1088/0964-1726/20/2/025004

    Dechant E, Fedulov F, Fetisov LY, et al., 2017. Bandwidth widening of piezoelectric cantilever beam arrays by mass-tip tuning for low-frequency vibration energy harvesting., 7(12):1324. https://doi.org/10.3390/app7121324

    Erturk A, Inman DJ, 2009. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations., 18(2):025009. https://doi.org/10.1088/0964-1726/18/2/025009

    Fan KQ, Tan QX, Liu HY, et al., 2018a. Hybrid piezoelectric-electromagnetic energy harvester for scavenging energy from low-frequency excitations., 27(8):085001. https://doi.org/10.1088/1361-665X/aaae92

    Fan KQ, Tan QX, Zhang YW, et al., 2018b. A monostable piezoelectric energy harvester for broadband low-level excitations., 112(12):123901. https://doi.org/10.1063/1.5022599

    Fan KQ, Liu SH, Liu HY, et al., 2018c. Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester., 216:8-20. https://doi.org/10.1016/j.apenergy.2018.02.086

    Halim MA, Kabir MH, Cho H, et al., 2019. A frequency up-converted hybrid energy harvester using transverse impact-driven piezoelectric bimorph for human-limb motion., 10(10):701. https://doi.org/10.3390/mi10100701

    Huang SF, Zhou MY, Liu Y, 2022. Output performance of piezoelectric vibration energy harvester considering inductive loads. Proceedings of the Eighth Asia International Symposium on Mechatronics, p.167-172. https://doi.org/10.1007/978-981-19-1309-9_16

    Iqbal M, Nauman MM, Khan FU, et al., 2021. Vibration‐based piezoelectric, electromagnetic, and hybrid energy harvesters for microsystems applications: a contributed review., 45(1):65-102. https://doi.org/10.1002/er.5643

    Kandris D, Nakas C, Vomvas D, et al., 2020. Applications of wireless sensor networks: an up-to-date survey., 3(1):14. https://doi.org/10.3390/asi3010014

    Li P, Gao SQ, Cai HT, et al., 2016. Theoretical analysis and experimental study for nonlinear hybrid piezoelectric and electromagnetic energy harvester., 22(4):727-739. https://doi.org/10.1007/s00542-015-2440-8

    Li YF, Cheng G, Lin ZH, et al., 2015. Single-electrode-based rotationary triboelectric nanogenerator and its applications as self-powered contact area and eccentric angle sensors., 11:323-332. https://doi.org/10.1016/j.nanoen.2014.11.010

    Liu HC, Fu HL, Sun LN, et al., 2021. Hybrid energy harvesting technology: from materials, structural design, system integration to applications., 137:110473. https://doi.org/10.1016/j.rser.2020.110473

    Liu HP, Gao SQ, Wu JR, et al., 2019. Study on the output performance of a nonlinear hybrid piezoelectric-electromagnetic harvester under harmonic excitation., 1(2):382-392. https://doi.org/10.3390/acoustics1020021

    Maamer B, Boughamoura A, Fath El-Bab AMR, et al., 2019. A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes., 199:111973. https://doi.org/10.1016/j.enconman.2019.111973

    Mahmoudi S, Kacem N, Bouhaddi N, 2014. Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions., 23(7):075024. https://doi.org/10.1088/0964-1726/23/7/075024

    Malik BT, Doychinov V, Hayajneh AM, et al., 2020. Wireless power transfer system for battery-less sensor nodes., 8:95878-95887. https://doi.org/10.1109/access.2020.2995783

    Miller T, Oyewobi SS, Abu-Mahfouz AM, et al., 2020. Enabling a battery-less sensor node using dedicated radio frequency energy harvesting for complete off-grid applications., 13(20):5402. https://doi.org/10.3390/en13205402

    Priyadarshi R, Gupta B, Anurag A, 2020. Deployment techniques in wireless sensor networks: a survey, classification, challenges, and future research issues., 76(9):7333-7373. https://doi.org/10.1007/s11227-020-03166-5

    Qiu CK, Wu F, Lee C, et al., 2020. Self-powered control interface based on gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications., 70:104456. https://doi.org/10.1016/j.nanoen.2020.104456

    Safaei M, Sodano HA, Anton SR, 2019. A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008-2018)., 28(11):113001. https://doi.org/10.1088/1361-665X/ab36e4

    Sang YJ, Huang XL, Liu HX, et al., 2012. A vibration-based hybrid energy harvester for wireless sensor systems., 48(11):4495-4498. https://doi.org/10.1109/tmag.2012.2201452

    Saravia CM, 2019. A formulation for modeling levitation based vibration energy harvesters undergoing finite motion., 117:862-878. https://doi.org/10.1016/j.ymssp.2018.08.023

    Shan XB, Guan SW, Liu ZS, et al., 2013. A new energy harvester using a piezoelectric and suspension electromagnetic mechanism., 14(12):890-897. https://doi.org/10.1631/jzus.A1300210

    Shi G, Chen JF, Peng YS, et al., 2020. A piezo-electromagnetic coupling multi-directional vibration energy harvester based on frequency up-conversion technique., 11(1):80. https://doi.org/10.3390/mi11010080

    Tran N, Ghayesh MH, Arjomandi M, 2018. Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement., 127:162-185. https://doi.org/10.1016/j.ijengsci.2018.02.003

    Wang B, Zhou MY, Zhu DF, et al., 2022. Modeling and analysis of the piezoelectric vibration energy harvester with externally connected inductor., 233(7):2701-2717. https://doi.org/10.1007/s00707-022-03248-w

    Wang W, Wei HT, Wei ZH, 2022. Numerical analysis of a magnetic-spring-based piecewise nonlinear electromagnetic energy harvester., 137(1):56. https://doi.org/10.1140/epjp/s13360-021-02255-5

    Wang ZM, Du Y, Li TR, et al., 2022. Bioinspired omnidirectional piezoelectric energy harvester with autonomous direction regulation by hovering vibrational stabilization., 261:115638. https://doi.org/10.1016/j.enconman.2022.115638

    Wu ZH, Xu QS, 2022. Design of a structure-based bistable piezoelectric energy harvester for scavenging vibration energy in gravity direction., 162:108043. https://doi.org/10.1016/j.ymssp.2021.108043

    Xia HK, Chen RW, Ren L, 2015. Analysis of piezoelectric?–electromagnetic hybrid vibration energy harvester under different electrical boundary conditions., 234:87-98. https://doi.org/10.1016/j.sna.2015.08.014

    Xia HK, Chen RW, Ren L, 2017. Parameter tuning of piezoelectric–electromagnetic hybrid vibration energy harvester by magnetic force: modeling and experiment., 257:73-83. https://doi.org/10.1016/j.sna.2017.01.026

    Xu ZL, Shan XB, Chen DP, et al., 2016. A novel tunable multi-frequency hybrid vibration energy harvester using piezoelectric and electromagnetic conversion mechanisms., 6(1):10. https://doi.org/10.3390/app6010010

    Xu ZL, Wang W, Xie J, et al., 2017a. An impact-based frequency up-converting hybrid vibration energy harvester for low frequency application., 10(11):1761. https://doi.org/10.3390/en10111761

    Xu ZL, Shan XB, Yang H, et al., 2017b. Parametric analysis and experimental verification of a hybrid vibration energy harvester combining piezoelectric and electromagnetic mechanisms., 8(6):189. https://doi.org/10.3390/mi8060189

    Yang B, Lee C, Kee WL, et al., 2010. Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms., 9(2):023002. https://doi.org/10.1117/1.3373516

    Yao BK, Gao H, Zhang Y, et al., 2023. Maximum AoI minimization for target monitoring in battery-free wireless sensor networks., 22(8):4754-4772. https://doi.org/10.1109/TMC.2022.3161975

    Zhang GY, Gao SQ, Liu HP, et al., 2019. Design and performance of hybrid piezoelectric-electromagnetic energy harvester with trapezoidal beam and magnet sleeve., 125(8):084101. https://doi.org/10.1063/1.5087024

    Zhang JH, Qin LF, 2019. A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism., 240:26-34. https://doi.org/10.1016/j.apenergy.2019.01.261

    Zhang Y, Cai CS, Kong B, 2015. A low frequency nonlinear energy harvester with large bandwidth utilizing magnet levitation., 24(4):045019. https://doi.org/10.1088/0964-1726/24/4/045019

    Zhang YL, Wang TY, Zhang A, et al., 2016. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency., 87(12):125001. https://doi.org/10.1063/1.4968811

    Zhang YL, Wang TY, Luo AX, et al., 2018. Micro electrostatic energy harvester with both broad bandwidth and high normalized power density., 212:362-371. https://doi.org/10.1016/j.apenergy.2017.12.053

    Zhou MY, Al-Furjan MSH, Zou J, et al., 2018. A review on heat and mechanical energy harvesting from human?–principles, prototypes and perspectives., 82:3582-3609. https://doi.org/10.1016/j.rser.2017.10.102

    Zhu G, Lin ZH, Jing QS, et al., 2013. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator., 13(2):847-853. https://doi.org/10.1021/nl4001053

    Zou HX, Zhang WM, Li WB, et al., 2017. Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion., 148:1391-1398. https://doi.org/10.1016/j.enconman.2017.07.005

    Electronic supplementary materials

    Sections S1 and S2

    題目:壓電-電磁混合振動俘能器的實驗與理論分析

    作者:黃世帆,羅偉昊,朱宗明,徐振龍,王班,周茂瑛,秦華偉

    機構(gòu):杭州電子科技大學,機械工程學院,中國杭州,310018

    目的:振動俘能器作為一種富有前景的無線傳感器網(wǎng)絡(luò)供電方法,壓電與電磁的耦合有助于提高振動俘能器的輸出性能。本文旨在探討壓電和電磁在混合振動俘能器中的集成,考慮壓電和電磁不同的連接拓撲,并對該混合振動俘能器的優(yōu)化結(jié)構(gòu)進行探索,提出改進其性能的方法。

    創(chuàng)新點:1. 將壓電和電磁兩種能量收集裝置集成在一個系統(tǒng)中進行分析;2. 分析壓電與電磁之間不同的連接拓撲,建立其集總參數(shù)模型;3. 提出該混合振動俘能器的優(yōu)化結(jié)構(gòu)。

    方法:1. 首先對壓電-電磁混合振動俘能器的輸入和輸出信號進行分析,強調(diào)對其包含多頻成分的特征理解不夠充分,提出并討論表征這類信號的方法。2. 通過實驗分析壓電和電磁混合振動俘能器四種連接拓撲方式的輸出性能,推導出他們的集中參數(shù)模型。3. 將這些參數(shù)模型的數(shù)值預測結(jié)果與實驗結(jié)果進行比較(圖4~6),揭示系統(tǒng)中的非線性。4. 對優(yōu)化的混合振動俘能器進行了實驗分析探索,提出改進其性能的方法。

    結(jié)論:1.針對不同的連接拓撲,通過實驗研究的混合振動俘能器的均方根電壓和平均功率與所建立模型的數(shù)值預測結(jié)果一致。2. 電磁和壓電部件之間的電氣連接可以調(diào)節(jié)俘能器的頻率特性并改變其輸出性能。3. 用彈性彈簧取代原混合振動俘能器的上部固定磁鐵,性能得到了明顯的改善,并觀察到了相當大的頻率調(diào)整;改變彈簧和移動磁鐵之間的初始距離會極大地影響俘能器的輸出性能(圖10和11)。

    關(guān)鍵詞:混合能量收集;非線性;磁彈簧;壓電;電磁

    https://doi.org/10.1631/jzus.A2200551

    https://doi.org/10.1631/jzus.A2200551

    ? Zhejiang University Press 2023

    Nov. 20, 2022;

    Jan. 6, 2022;

    June 21, 2023;

    Aug. 1, 2023

    猜你喜歡
    非線性壓電電磁
    三維多孔電磁復合支架構(gòu)建與理化表征
    《壓電與聲光》征稿啟事
    壓電與聲光(2019年1期)2019-02-22 09:46:06
    新型壓電疊堆泵設(shè)計及仿真
    掌握基礎(chǔ)知識 不懼電磁偏轉(zhuǎn)
    電子節(jié)氣門非線性控制策略
    汽車科技(2016年5期)2016-11-14 08:03:52
    基于SolidWorksSimulation的O型圈錐面密封非線性分析
    科技視界(2016年23期)2016-11-04 08:14:28
    四輪獨立驅(qū)動電動汽車行駛狀態(tài)估計
    工業(yè)機器人鋁合金大活塞鑄造系統(tǒng)設(shè)計與研究
    科技視界(2016年24期)2016-10-11 12:53:13
    基于壓電激振的彈性模量測量方法
    壓電復合懸臂梁非線性模型及求解
    在线看a的网站| 亚洲国产av新网站| 少妇的逼好多水| 在线观看免费高清a一片| 男人狂女人下面高潮的视频| 十八禁网站网址无遮挡 | 成人一区二区视频在线观看| 边亲边吃奶的免费视频| 久久久久久久久大av| 国产黄片视频在线免费观看| 国产精品久久久久久精品古装| 精品久久久久久久人妻蜜臀av| 边亲边吃奶的免费视频| 日韩强制内射视频| 国产精品99久久99久久久不卡 | 国产精品精品国产色婷婷| 乱系列少妇在线播放| 国产日韩欧美在线精品| 国产女主播在线喷水免费视频网站| 国产精品一及| 久久久色成人| 久久这里有精品视频免费| 永久网站在线| 亚州av有码| 91精品伊人久久大香线蕉| 晚上一个人看的免费电影| 亚洲无线观看免费| 97人妻精品一区二区三区麻豆| 中国国产av一级| 亚洲人与动物交配视频| 欧美高清成人免费视频www| 国产乱人视频| 18禁在线播放成人免费| 中文字幕制服av| 伊人久久精品亚洲午夜| 国产伦精品一区二区三区视频9| av在线播放精品| 成人鲁丝片一二三区免费| 熟女av电影| 神马国产精品三级电影在线观看| 国产高清国产精品国产三级 | 国产又色又爽无遮挡免| 中文欧美无线码| 久久久精品欧美日韩精品| 51国产日韩欧美| 可以在线观看毛片的网站| av在线蜜桃| 国产男人的电影天堂91| 好男人在线观看高清免费视频| 国产色爽女视频免费观看| 欧美区成人在线视频| 久久99热这里只有精品18| 六月丁香七月| 一级爰片在线观看| 日韩一本色道免费dvd| 日本猛色少妇xxxxx猛交久久| 中文乱码字字幕精品一区二区三区| 免费少妇av软件| 日本黄大片高清| 国产成年人精品一区二区| 午夜福利视频1000在线观看| 大又大粗又爽又黄少妇毛片口| 校园人妻丝袜中文字幕| 成人亚洲精品av一区二区| 欧美激情久久久久久爽电影| 看非洲黑人一级黄片| av在线播放精品| 精品99又大又爽又粗少妇毛片| 欧美激情久久久久久爽电影| 亚洲av成人精品一二三区| 天天躁日日操中文字幕| 天堂网av新在线| 我的老师免费观看完整版| 国产av不卡久久| 久久久久精品性色| 亚洲精华国产精华液的使用体验| 2021天堂中文幕一二区在线观| 深爱激情五月婷婷| 亚洲不卡免费看| av天堂中文字幕网| 国产亚洲91精品色在线| 麻豆乱淫一区二区| 我的女老师完整版在线观看| 国产成人免费无遮挡视频| 免费黄网站久久成人精品| 三级经典国产精品| av又黄又爽大尺度在线免费看| 久久国内精品自在自线图片| 国产探花在线观看一区二区| 国产黄频视频在线观看| 日日摸夜夜添夜夜爱| 亚洲久久久久久中文字幕| 在线a可以看的网站| 亚洲av.av天堂| 2021少妇久久久久久久久久久| 免费人成在线观看视频色| 国内少妇人妻偷人精品xxx网站| 国产伦精品一区二区三区视频9| 爱豆传媒免费全集在线观看| 在线精品无人区一区二区三 | 亚洲精品乱码久久久v下载方式| 欧美潮喷喷水| 三级经典国产精品| 永久免费av网站大全| 久久久欧美国产精品| 人人妻人人爽人人添夜夜欢视频 | 欧美bdsm另类| 欧美精品国产亚洲| 91精品伊人久久大香线蕉| 秋霞在线观看毛片| 国产综合懂色| 久久久久久久久久成人| 永久免费av网站大全| 国产成人91sexporn| 国产成年人精品一区二区| 亚洲aⅴ乱码一区二区在线播放| 欧美一区二区亚洲| av卡一久久| 日韩成人av中文字幕在线观看| 亚洲欧美清纯卡通| 国产91av在线免费观看| 亚洲精华国产精华液的使用体验| 三级国产精品欧美在线观看| 精品久久久久久久久亚洲| 综合色av麻豆| 日本欧美国产在线视频| 午夜精品国产一区二区电影 | 视频区图区小说| 噜噜噜噜噜久久久久久91| 亚洲四区av| 亚洲图色成人| av福利片在线观看| 日韩欧美精品v在线| 亚洲内射少妇av| 精品久久久精品久久久| 蜜桃亚洲精品一区二区三区| 青春草视频在线免费观看| 国产精品一区二区在线观看99| 日韩人妻高清精品专区| 亚州av有码| 精品久久久久久久末码| 三级国产精品片| 久久久a久久爽久久v久久| 99久久九九国产精品国产免费| 午夜福利高清视频| 色吧在线观看| 久久97久久精品| 熟女人妻精品中文字幕| 亚洲精品一区蜜桃| 亚洲国产精品999| 肉色欧美久久久久久久蜜桃 | 特大巨黑吊av在线直播| 午夜视频国产福利| 日本-黄色视频高清免费观看| 免费av毛片视频| 听说在线观看完整版免费高清| 能在线免费看毛片的网站| 美女视频免费永久观看网站| 国产伦精品一区二区三区四那| 美女脱内裤让男人舔精品视频| 日韩伦理黄色片| 日本av手机在线免费观看| 麻豆乱淫一区二区| 国产欧美日韩精品一区二区| 波野结衣二区三区在线| 成人黄色视频免费在线看| 国产精品精品国产色婷婷| 国产美女午夜福利| 在线观看人妻少妇| 人人妻人人澡人人爽人人夜夜| 中文欧美无线码| 丰满乱子伦码专区| 久久久久精品性色| 观看免费一级毛片| 看十八女毛片水多多多| 国产精品成人在线| 夫妻午夜视频| 国产片特级美女逼逼视频| 亚洲精品乱码久久久v下载方式| 亚洲性久久影院| 我的老师免费观看完整版| av免费在线看不卡| 欧美激情在线99| 亚洲欧美日韩另类电影网站 | 国语对白做爰xxxⅹ性视频网站| 亚洲国产成人一精品久久久| 欧美日本视频| 日本黄大片高清| 在线观看三级黄色| 亚洲高清免费不卡视频| 国产中年淑女户外野战色| 一二三四中文在线观看免费高清| 色视频在线一区二区三区| 在线免费观看不下载黄p国产| 黄色欧美视频在线观看| 黄色一级大片看看| 久久99蜜桃精品久久| 综合色av麻豆| 好男人在线观看高清免费视频| 真实男女啪啪啪动态图| 欧美日韩综合久久久久久| 国产午夜精品久久久久久一区二区三区| 亚洲欧洲日产国产| 日韩亚洲欧美综合| 新久久久久国产一级毛片| 亚洲欧美日韩东京热| 街头女战士在线观看网站| 嫩草影院精品99| 日韩 亚洲 欧美在线| 精品亚洲乱码少妇综合久久| 女人久久www免费人成看片| 欧美日韩视频精品一区| 久久久精品欧美日韩精品| 51国产日韩欧美| 国产高清三级在线| 伦理电影大哥的女人| 欧美日韩视频精品一区| 久久久精品欧美日韩精品| 亚洲欧美日韩另类电影网站 | 亚洲成人久久爱视频| tube8黄色片| 精品熟女少妇av免费看| 日韩大片免费观看网站| 一区二区三区免费毛片| 日本三级黄在线观看| 少妇高潮的动态图| 亚洲天堂av无毛| 日韩强制内射视频| 国产视频内射| 亚洲精品一二三| 久久精品人妻少妇| 欧美少妇被猛烈插入视频| 在线免费十八禁| a级毛色黄片| 尤物成人国产欧美一区二区三区| 18+在线观看网站| 亚洲国产日韩一区二区| 自拍偷自拍亚洲精品老妇| 久久久精品94久久精品| 日韩亚洲欧美综合| 国产乱人偷精品视频| 国产男女超爽视频在线观看| 日日撸夜夜添| 高清欧美精品videossex| 天堂网av新在线| 两个人的视频大全免费| 97超视频在线观看视频| 久久久久九九精品影院| 观看免费一级毛片| 亚洲av日韩在线播放| 午夜激情久久久久久久| 国产精品久久久久久精品电影小说 | 久久久久久久久大av| 久久久久九九精品影院| 亚洲人成网站高清观看| 国产精品久久久久久久电影| 色哟哟·www| 熟女人妻精品中文字幕| 赤兔流量卡办理| 男女啪啪激烈高潮av片| 亚洲精品国产色婷婷电影| 日韩一区二区三区影片| 亚洲国产精品999| 亚洲欧美日韩无卡精品| 国精品久久久久久国模美| 久久精品国产a三级三级三级| 三级男女做爰猛烈吃奶摸视频| 日韩大片免费观看网站| 在现免费观看毛片| 国产淫语在线视频| 国内少妇人妻偷人精品xxx网站| 亚洲精品国产成人久久av| 成年免费大片在线观看| 麻豆成人av视频| 美女主播在线视频| 国产免费视频播放在线视频| 亚洲不卡免费看| 国产精品不卡视频一区二区| 街头女战士在线观看网站| 久久韩国三级中文字幕| 老师上课跳d突然被开到最大视频| 日韩国内少妇激情av| 99热国产这里只有精品6| 国模一区二区三区四区视频| 成人综合一区亚洲| freevideosex欧美| 天美传媒精品一区二区| 亚洲av在线观看美女高潮| 精品国产露脸久久av麻豆| 五月玫瑰六月丁香| 亚洲精品成人av观看孕妇| 国产探花极品一区二区| 少妇人妻久久综合中文| 久久久色成人| 亚洲欧美成人精品一区二区| 少妇丰满av| 国产亚洲av嫩草精品影院| 久久人人爽人人片av| 色5月婷婷丁香| 欧美日韩视频精品一区| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美精品专区久久| 我要看日韩黄色一级片| 国产91av在线免费观看| 在线a可以看的网站| 亚洲内射少妇av| 少妇人妻精品综合一区二区| 不卡视频在线观看欧美| 蜜臀久久99精品久久宅男| 亚洲内射少妇av| 久久精品久久久久久久性| 欧美最新免费一区二区三区| 免费电影在线观看免费观看| 51国产日韩欧美| 成人高潮视频无遮挡免费网站| 少妇人妻久久综合中文| 水蜜桃什么品种好| 日本熟妇午夜| 美女国产视频在线观看| 日本黄色片子视频| 国产毛片在线视频| 国产成人免费观看mmmm| 国产 精品1| 伊人久久精品亚洲午夜| 亚洲综合色惰| 免费黄色在线免费观看| 人妻一区二区av| 久久精品久久久久久噜噜老黄| 美女cb高潮喷水在线观看| 国产综合懂色| 麻豆久久精品国产亚洲av| 国产亚洲最大av| 欧美3d第一页| 欧美变态另类bdsm刘玥| 日本色播在线视频| 精品久久久久久久末码| 国产亚洲av片在线观看秒播厂| 在线观看av片永久免费下载| 青青草视频在线视频观看| 成人亚洲精品av一区二区| 欧美日韩综合久久久久久| 亚洲av免费在线观看| 99热6这里只有精品| www.av在线官网国产| 亚州av有码| 亚洲成人一二三区av| 看免费成人av毛片| 亚洲自偷自拍三级| 成年免费大片在线观看| 免费av不卡在线播放| 97在线视频观看| 中文字幕制服av| 亚洲av日韩在线播放| 欧美性猛交╳xxx乱大交人| 水蜜桃什么品种好| 日韩国内少妇激情av| 亚洲av男天堂| 99热全是精品| av天堂中文字幕网| 麻豆国产97在线/欧美| 婷婷色av中文字幕| 99精国产麻豆久久婷婷| 91久久精品国产一区二区三区| 一级av片app| 一级毛片黄色毛片免费观看视频| 噜噜噜噜噜久久久久久91| 亚洲精品乱码久久久v下载方式| 日韩人妻高清精品专区| 少妇猛男粗大的猛烈进出视频 | 亚洲伊人久久精品综合| 国产精品久久久久久精品电影小说 | 国产亚洲一区二区精品| 黄色一级大片看看| 又粗又硬又长又爽又黄的视频| 晚上一个人看的免费电影| 肉色欧美久久久久久久蜜桃 | 国产毛片在线视频| 精品一区二区免费观看| 国产精品熟女久久久久浪| 欧美老熟妇乱子伦牲交| 免费av毛片视频| 成年免费大片在线观看| 国产精品一区二区三区四区免费观看| 一本色道久久久久久精品综合| 韩国av在线不卡| .国产精品久久| 亚洲最大成人av| 亚洲精品一区蜜桃| 日日啪夜夜撸| 亚洲精品国产av成人精品| 久久亚洲国产成人精品v| 一本色道久久久久久精品综合| 男人狂女人下面高潮的视频| 免费观看av网站的网址| 中国国产av一级| 国产亚洲av片在线观看秒播厂| 亚洲精品,欧美精品| 2021少妇久久久久久久久久久| 欧美+日韩+精品| 日韩三级伦理在线观看| 亚洲精品456在线播放app| 麻豆久久精品国产亚洲av| 欧美zozozo另类| 久久这里有精品视频免费| 久久精品久久久久久噜噜老黄| 下体分泌物呈黄色| 久久女婷五月综合色啪小说 | 麻豆乱淫一区二区| 黄色日韩在线| 激情五月婷婷亚洲| 涩涩av久久男人的天堂| 国产精品福利在线免费观看| 亚洲四区av| 大香蕉久久网| 97在线视频观看| 亚洲精品一区蜜桃| 亚洲真实伦在线观看| 亚洲婷婷狠狠爱综合网| 久久亚洲国产成人精品v| 啦啦啦在线观看免费高清www| 午夜精品国产一区二区电影 | 国产爱豆传媒在线观看| 亚洲欧美日韩卡通动漫| 成人一区二区视频在线观看| 黄片wwwwww| 51国产日韩欧美| 亚洲国产高清在线一区二区三| 少妇裸体淫交视频免费看高清| 可以在线观看毛片的网站| 国产精品一及| 女人被狂操c到高潮| 亚洲av日韩在线播放| 亚洲高清免费不卡视频| 尾随美女入室| 在线观看三级黄色| av线在线观看网站| av播播在线观看一区| 人妻少妇偷人精品九色| 亚洲成人av在线免费| 免费观看无遮挡的男女| 久久亚洲国产成人精品v| 国产男人的电影天堂91| 亚洲不卡免费看| 国产精品成人在线| 国产成人aa在线观看| 伦理电影大哥的女人| 18禁在线播放成人免费| 国产欧美日韩精品一区二区| 菩萨蛮人人尽说江南好唐韦庄| 蜜桃亚洲精品一区二区三区| 人妻夜夜爽99麻豆av| 91久久精品国产一区二区成人| 国产欧美日韩精品一区二区| 亚洲av男天堂| 婷婷色av中文字幕| 男女边摸边吃奶| 亚洲四区av| 老司机影院毛片| 精品少妇久久久久久888优播| 国产在线男女| 亚洲一级一片aⅴ在线观看| 国产欧美日韩一区二区三区在线 | 高清日韩中文字幕在线| 久久久久久久大尺度免费视频| 亚洲真实伦在线观看| 午夜老司机福利剧场| 亚洲,欧美,日韩| 丰满乱子伦码专区| 天美传媒精品一区二区| 亚洲精品中文字幕在线视频 | 亚洲国产最新在线播放| 九草在线视频观看| 久久久色成人| 中国国产av一级| 国产伦精品一区二区三区四那| 日韩欧美精品v在线| 最近2019中文字幕mv第一页| 亚洲国产高清在线一区二区三| 国模一区二区三区四区视频| 十八禁网站网址无遮挡 | 99视频精品全部免费 在线| 亚洲色图综合在线观看| 国产 一区 欧美 日韩| 精品久久久久久电影网| 狠狠精品人妻久久久久久综合| 亚洲天堂av无毛| 欧美丝袜亚洲另类| 国产永久视频网站| 好男人在线观看高清免费视频| 亚洲电影在线观看av| 最后的刺客免费高清国语| 成年版毛片免费区| 啦啦啦中文免费视频观看日本| 国产成人一区二区在线| 国产高清国产精品国产三级 | 中国美白少妇内射xxxbb| 日本猛色少妇xxxxx猛交久久| 精品久久久噜噜| 日韩中字成人| 亚洲怡红院男人天堂| 毛片一级片免费看久久久久| 国产成人freesex在线| 听说在线观看完整版免费高清| 人妻 亚洲 视频| 国产国拍精品亚洲av在线观看| 夜夜爽夜夜爽视频| xxx大片免费视频| 国产成人a区在线观看| 亚洲精品色激情综合| av在线老鸭窝| 各种免费的搞黄视频| 国产高清三级在线| 七月丁香在线播放| 日本三级黄在线观看| 国产精品av视频在线免费观看| 丝瓜视频免费看黄片| 国产精品av视频在线免费观看| 欧美 日韩 精品 国产| 亚洲精品日韩av片在线观看| 免费黄色在线免费观看| 亚洲精品日韩在线中文字幕| 国产中年淑女户外野战色| 日韩av不卡免费在线播放| 国产成人aa在线观看| 久久精品人妻少妇| 最近的中文字幕免费完整| 亚洲一区二区三区欧美精品 | 中文天堂在线官网| av女优亚洲男人天堂| 日韩欧美 国产精品| 熟女人妻精品中文字幕| 在线观看av片永久免费下载| 国内精品宾馆在线| 国内精品美女久久久久久| 日本一二三区视频观看| 国产午夜福利久久久久久| 国产精品嫩草影院av在线观看| 免费av不卡在线播放| 最后的刺客免费高清国语| 在线天堂最新版资源| 亚洲精品国产av成人精品| 成年女人看的毛片在线观看| 国产亚洲精品久久久com| 麻豆久久精品国产亚洲av| 久久久久网色| 天天躁夜夜躁狠狠久久av| 51国产日韩欧美| 国产亚洲5aaaaa淫片| 国产精品一二三区在线看| 亚洲熟女精品中文字幕| 欧美 日韩 精品 国产| 少妇人妻 视频| 成年av动漫网址| 26uuu在线亚洲综合色| 婷婷色综合www| 国产精品一区二区性色av| 简卡轻食公司| 日韩av不卡免费在线播放| 国产精品国产三级国产专区5o| 自拍偷自拍亚洲精品老妇| 超碰97精品在线观看| 99热国产这里只有精品6| 别揉我奶头 嗯啊视频| 日日撸夜夜添| 亚洲三级黄色毛片| 欧美另类一区| 亚洲无线观看免费| 亚洲欧美日韩卡通动漫| 久久久久久久久久久免费av| 日韩欧美精品免费久久| 亚洲av日韩在线播放| 国产精品一区www在线观看| 日日啪夜夜撸| 嘟嘟电影网在线观看| 美女主播在线视频| 欧美高清性xxxxhd video| 亚洲综合色惰| 老女人水多毛片| 高清日韩中文字幕在线| 蜜桃久久精品国产亚洲av| 午夜日本视频在线| 老司机影院成人| 伦精品一区二区三区| 久久久久久伊人网av| 欧美3d第一页| 制服丝袜香蕉在线| 69av精品久久久久久| av专区在线播放| 99热网站在线观看| 免费看av在线观看网站| 亚洲精品aⅴ在线观看| 欧美激情在线99| 成人亚洲精品一区在线观看 | 亚州av有码| 可以在线观看毛片的网站| av在线天堂中文字幕| 久久久久国产网址| 国模一区二区三区四区视频| 国产免费福利视频在线观看| 国产成人aa在线观看| 久久国产乱子免费精品| 成年av动漫网址| 18禁裸乳无遮挡动漫免费视频 | 爱豆传媒免费全集在线观看| 精品一区二区三卡| 久久影院123| 成人亚洲精品一区在线观看 | 欧美成人精品欧美一级黄| 又大又黄又爽视频免费| 尤物成人国产欧美一区二区三区| 高清av免费在线| 97超碰精品成人国产| 成人国产av品久久久| 街头女战士在线观看网站| 国产爽快片一区二区三区|