• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Short-term tunnel-settlement prediction based on Bayesian wavelet: a probability analysis method

    2023-11-18 08:43:02YangDINGXiaoweiYEZhiDINGGangWEIYunliangCUIZhenHANTaoJIN
    關(guān)鍵詞:浙大先驗(yàn)貝葉斯

    Yang DING, Xiaowei YE, Zhi DING, Gang WEI, Yunliang CUI, Zhen HAN, Tao JIN

    Research Article

    Short-term tunnel-settlement prediction based on Bayesian wavelet: a probability analysis method

    1Key Laboratory of Safe Construction and Intelligent Maintenance for Urban Shield Tunnels of Zhejiang Province, Hangzhou City University, Hangzhou 310015, China2Zhejiang Engineering Research Center of Intelligent Urban Infrastructure, Hangzhou City University, Hangzhou 310015, China3Department of Civil Engineering, Hangzhou City University, Hangzhou 310015, China4Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China5Nanjing Metro Operation Co., Ltd., Nanjing 210012, China

    As urbanization accelerates, the metro has become an important means of transportation. Considering the safety problems caused by metro construction, ground settlement needs to be monitored and predicted regularly, especially when a new metro line crosses an existing one. In this paper, we propose a settlement-probability prediction model with a Bayesian emulator (BE) based on the Gaussian prior (GP), that is, a GPBE. In addition, considering the distortion characteristics of monitoring data, the data is denoised using wavelet decomposition (WD), so the final prediction model is WD-GPBE. In particular, the effects of different prediction ratios and moving windows on prediction performance are explored, and the optimal number of moving windows is determined. In addition, the predicted value for GPBE based on the original data is compared with the predicted value for WD-GPBE based on the denoised data. One year of settlement-monitoring data collected by a structural health monitoring (SHM) system installed on the Nanjing Metro is used to demonstrate the effectiveness of WD-GPBE and GPBE for predicting settlement.

    Metro construction; Settlement probability prediction; Structural health monitoring (SHM); Wavelet denoising; Gaussian prior (GP); Bayesian emulator (BE)

    1 Introduction

    Metro is an important part of urban rail transit (Cheng et al., 2020; Qu et al., 2023). In recent years, it has become the trend in urban development, and is an effective way to solve urban traffic congestion, save energy, and reduce pollution. However, the ground settlement caused by its construction process is an urgent problem to be solved (Kong et al., 2020; Liang et al., 2022). For example, on Mar. 28, 2007, construction of Beijing Metro Line 10 resulted in the collapse of the project. On July 1, 2003, construction of Shanghai Metro Line 4 caused a high-rise building to collapse. The sand layer of Qingdao Metro Line 2 collapsed on Apr. 13, 2018 (Wu et al., 2018). Sysyn et al. (2021b) studied the mechanism of sleeper?–?ballast dynamic impact in the void zone. The results of experimental in situ measurements of rail deflections showed significant impact accelerations in the zone even for lightweight, slow vehicles. Furthermore, the group presented theoretical and experimental studies directed at the development of methods for sleeper-support identification (Sysyn et al., 2020a). Among other approaches, they used track-side and on-board monitoring methods to avoid or delay the development of local instabilities such as ballast breakdown, white spots, and subgrade defects. For example, they used high-speed video-recording and digital-imaging correlation methods to measure dynamic rail displacements (Sysyn et al., 2021a). In addition, they proposed a practical method of void parameter quantification (Sysyn et al., 2020b). Obviously, irregular rates of settlement will lead to an increase in maintenance costs, thereby affecting the reliability and availability of transportation. Therefore, it is necessary to conduct long-term monitoring of settlement and predict it based on massive data to avoid potential accidents.

    At present, structural health monitoring (SHM) systems are mainly used for real-time monitoring of settlement; these include level gauges, strain gauges, and other sensors that can obtain real data (Ng et al., 2013; Gómez et al., 2020). For settlement prediction, theoretical analysis methods and machine learning methods are used (Samui, 2008; Yao et al., 2018; Li et al., 2021). For example, Mu et al. (2021) used the numerical model to simulate and predict the tunnel-lining deformation of Foshan Metro Line 2, and compared it with the monitoring data. Qu et al. (2021) combined the measured deformation data with the circular sliding theory to study the deformation based on the limit equilibrium method. Xiang et al. (2008) estimated the possible additional settlement of pile foundation using empirical and theoretical analysis and numerical simulation of the construction process.

    Obviously, the expressions of theoretical prediction models are complex and difficult to solve. In addition, a large number of soil parameters are required, which increases the uncertainty of the predicted value (Liu et al., 2022; Wang et al., 2022; Ding et al., 2023e, 2023f). In contrast, the settlement-prediction model based on machine learning algorithms only requires settlement data, that is, the machine-learning algorithm can fully mine the information from the data and then predict the next settlement value (Gong et al., 2014; Li et al., 2019; Ye et al., 2019, 2020; Ding et al., 2023c). Machine-learning prediction models are primarily divided into two categories: deterministic prediction and uncertain prediction (Chitsazan et al., 2015; Chen et al., 2019; Law et al., 2020). For deterministic methods, the predicted settlement is a definite value, while for the uncertain method, it is an interval value. For example, Ji et al. (2014) proposed a time-series method based on least square support vector regression (LSSVR) to predict dynamic lateral deformation and surface subsidence of support structures in deep foundation pit engineering. Wang et al. (2013) used the smooth correlation vector machine with wavelet kernel to study how the land subsidence caused by tunnel excavation develops. Shahin et al. (2005) presented the uncertainties associated with settlement prediction and combined Monte Carlo simulations with deterministic neural network models to obtain possible distributions of predicted settlements.

    The SHM system faces two major difficulties during operation, namely that it powers off, which leads to data loss, and it is subjected to external interference, which leads to data distortion (Farrar et al., 2006). Therefore, it is necessary to reduce noise and supplement monitoring subsidence data. Tay (2021) developed a recursive graph median filter that can be highly localized and implemented through distributed processing. Huang et al. (2019) proposed a new approach that combines displacement entropy and spectral substitution with integrated empirical mode decomposition (EMD). Jiang et al. (2007) developed a Bayesian discrete wavelet packet transform denoising method and studied the influence of noise in measured data on structural system identification. Zhang et al. (2017) proposed a new hybrid approach that integrates wavelet packet transform and an LSSVM to improve the accuracy and reliability of daily tuning-induced land-settlement estimates. Ding et al. (2011) established a stochastic model and regarded the settlement data as a time series and the measurement error as a stable and normally distributed random process.

    In this study, a settlement-probability prediction model is established with a Bayesian emulator (BE) based on the Gaussian prior (GP), that is, a GPBE. Specifically, the BE probability prediction model is derived based on the Bayesian theorem and GP. The original settlement-monitoring data are denoised based on wavelet decomposition (WD), and thus the final model is WD-GPBE. The application of GPBE and WD-GPBE models of settlement is verified based on SHM data collected from the Nanjing Metro.

    2 Methodology

    2.1 Wavelet decomposition method

    In general, monitoring sequence data has waveform characteristics, while real-time sequence data has repeatability characteristics (Sandham et al., 1998). Therefore, sequence data can be represented as an infinite waveform function (He et al., 2010). The WD method decomposes monitoring data step by step by way of high and low frequencies, that is, it decomposes time-series data by wavelet function (Wang and van der Schaar, 2006):

    whereis the time,is the scale factor,is the translation factor,is the scale coefficient, andis the translation coefficient.

    By setting the thresholdfor the above wavelet coefficients, the high-frequency data in the monitoring data can be filtered out; the noise information contained in the wavelet function which surpasses the threshold is completely eliminated (Hashemi and Beheshti, 2014). Nowadays, the Bayes Shrink threshold-estimation method is used to determine the threshold (Sendur and Selesnick, 2002). With this method, the wavelet function is modeled based on the statistical characteristics, and then the thresholdis obtained according to Bayesian estimation (Hashemi and Beheshti, 2010):

    wherenis the standard deviation of noise, andwis the standard deviation of the initial wavelet function.

    2.2 Bayesian emulator

    The BE is a probability model based on Bayesian theory, which can be expressed by

    Furthermore, when there arerandom events, that is, A1, A2, …, A, then

    2.3 Gaussian prior

    When all parameters in Eq. (5) can be expressed by Gaussian distribution, the posterior distribution of prediction output can also be expressed by Gaussian distribution, that is, by a GPBE prediction model (Ye et al., 2021; Ding et al., 2023b).

    In addition, it can be seen from Eq. (6) that determination of the covariance function is the key to calculating the predicted value. Possible approaches include the squared-exponential (SE) method, Matern (MA) covariance function, and periodic (PE) covariance function. Here, we select SE covariance function to derive the mean and variance of the predicted value, that is,

    The SE covariance function is clearly smooth, that is, with continuous variableinput, the output curve is very smooth, without singular characteristics. Therefore, when the original data is processed by the WD method, it can be perfectly combined with the GPBE.

    3 Illustrative application: Zhongsheng Station of Nanjing Metro

    Tunnel-settlement monitoring is a necessary method of understanding and controlling changes in tunnel structure, finding dysfunction in time, and judging the safety risks. During operation, due to the reciprocating movement of subway trains, dynamic fatigue load will form, leading to settlement of the tunnel. Therefore, real-time monitoring of settlement is needed. During the maintenance phase, when the settlement value returns to the safe range after reinforcement measures, maintenance can be stopped and the tunnel can continue to operate. The early warning index of subsidence is formulated according to the technical specification for safety protection of urban rail transit structure (MOHURD, 2013) and monitoring regulation of urban rail transit engineering of Jiangsu Province of China (Jiangsu Provincial Department of Housing and Urban Rural Development, 2015). Once the early warning value is exceeded, the tunnel needs to be reinforced and maintained. Therefore, sedimentation can be used as a preventive index during operation. In the maintenance phase, it can be used as a target indicator.

    The Zhongsheng Station on the new Nanjing Metro Line 7, which is planned to open to traffic in 2023, crosses the existing Zhongsheng Station of Metro Line 10, with a station scale of 270 m×21.9 m×21.1 m (Ding et al., 2023d). The Zhongsheng Station, on the existing Metro Line 10, was completed in 2004, and the initial value monitoring during the operation period was completed in Aug. 2005. The SHM system at Zhongsheng Station includes 31 settlement-monitoring points before the construction of Metro Line 7 (J1?–?J31) and four settlement-monitoring points after the construction of Metro Line 7 (M1?–?M4) (Ding et al., 2023b). The reinforced and existing columns and monitoring system at Zhongsheng Station are shown in Fig. 1.

    Fig. 1 Photographs at Zhongsheng Station: (a) reinforced columns (M1?–?M4) and existing columns (J1?–?J31); (b) monitoring system. The distance between adjacent existing columns is 10 m, and the distance between adjacent existing and reinforced columns is 5 m

    Therefore, the settlement of monitoring points M1?–?M4 can represent the impact of the new metro on the existing metro. The original settlement-monitoring data from Mar. 19, 2021 to Jan. 19, 2022 is shown in Fig. 2a (Ding et al., 2023b) and the denoised data from Mar. 19, 2021 to Jan. 19, 2022 is shown in Fig. 2b. It can be seen from Fig. 2 that the settlement value at the monitoring point first increases and then decreases, that is, the settlement value in the growth phase is about 1.0?–?3.0 mm, while it is about 1.0?–?1.5 mm in the stable stage. This is because the settlement value increases due to disturbance of excavation construction in the growth stage. In order to avoid excessive settlement, the operation unit reinforced the column by the metro jet system (MJS) method and established subway protection measures, so as to control settlement changes and stabilize the tunnel. By comparing Figs. 2a and 2b, we can see that the settlement curve was smoother after noise reduction by the WD method; the WD method was able to delete anomalous data present in the monitoring data.

    Fig. 2 Settlement data for M1–M4: (a) original data (Ding et al., 2023b); (b) denoised data

    In the settlement-prediction probability model based on GPBE, there are two key parameters that need to be determined: prediction ratios and the moving window. The prediction ratios are the proportion of the predicted ratios in the data set. The moving window is the correlation between the settlement value and the firstdata;indicates the moving window. For example, when the moving window is 10, the first 10 data values are selected to predict the next data values. Also, the prediction curve is drawn by starting from the 11 original data points, which leads to the starting points of the-axis in the prediction curve and original data being different.

    In this section, we discuss the influence of different moving windows and prediction ratios on the prediction performance of the proposed model. When the moving window is 1 and the predicted ratio is 1%, the prediction results based on the GPBE model are as shown in Fig. 3. Specifically, Fig. 3a shows the prediction results for the original data, and Fig. 3b shows the prediction results for the denoised data.

    Similarly, when the moving window is 1 and the predicted ratio is 5%, the prediction results of the GPBE model are as shown in Fig. 4. Fig. 5 shows the prediction results with a moving window of 1 and predicted ratio of 10%. Fig. 6 shows the prediction results with a moving window of 5 and predicted ratio of 1%. With a moving window of 5 and a predicted ratio of 5%, the prediction results are as shown in Fig. 7. When the moving window is 5 and the predicted ratio is 10%, the prediction results based on GPBE model are shown in Fig. 8. When the moving window is 10 and the predicted ratio is 1%, the prediction results based on GPBE model are shown in Fig. 9. When the moving window is 10 and the predicted ratio is 5%, the prediction results based on GPBE model are shown in Fig. 10. When the moving window is 10 and the predicted ratio is 10%, the prediction results based on GPBE model are shown in Fig. 11.

    Fig. 3 Settlement probability prediction with a moving window of 1 and predicted ratio of 1%: (a) probability prediction based on original data; (b) probability prediction based on denoised data

    Fig. 4 Settlement probability prediction with a moving window of 1 and predicted ratio of 5%: (a) probability prediction based on original data; (b) probability prediction based on denoised data

    Fig. 5 Settlement probability prediction with a moving window of 1 and predicted ratio of 10%: (a) probability prediction based on original data; (b) probability prediction based on denoised data

    Fig. 6 Settlement probability prediction with a moving window of 5 and predicted ratio of 1%: (a) probability prediction based on original data; (b) probability prediction based on denoised data

    Fig. 7 Settlement probability prediction with a moving window of 5 and predicted ratio of 5%: (a) probability prediction based on original data; (b) probability prediction based on denoised data

    Fig. 8 Settlement probability prediction with a moving window of 5 and predicted ratio of 10%: (a) probability prediction based on original data; (b) probability prediction based on denoised data

    Fig. 9 Settlement probability prediction with a moving window of 10 and predicted ratio of 1%: (a) probability prediction based on original data; (b) probability prediction based on denoised data

    It is clear from these figures that the proposed GPBE probability prediction method satisfactorily describes the variation law of settlement and gives a 95% confidence interval to the settlement value. In other words, the predicted settlement values are in the 95% confidence interval, which fully consider the uncertainty of settlement data.

    Fig. 10 Settlement probability prediction with a moving window of 10 and predicted ratio of 5%: (a) probability prediction based on original data; (b) probability prediction based on denoised data

    Fig. 11 Settlement probability prediction with a moving window of 10 and predicted ratio of 10%: (a) probability prediction based on original data; (b) probability prediction based on denoised data

    In addition, the root mean square error (RMSE) is used to assess the performance of the prediction model in quantitative settlement prediction (Ye et al., 2020).

    whereyis the predicted settlement, andMis the measured settlement.

    Figs. 12–15 compare the prediction performances for the original data and denoised data using the GPBE model, with different moving windows. The figures demonstrate that as the prediction proportion increases, the prediction performance of the proposed GPBE model gradually deteriorates. This is because higher prediction ratios lead to a decrease in the ratios of the training set, which prevent full mining of the information in the measured data. In addition, different moving windows have different effects on prediction performance because the robustness of moving windows is unstable. The comprehensive calculation results show that a moving window of 5 provides the best prediction performance in the proposed model. Meanwhile, the prediction performance of the proposed model is worse for the original data than for the denoised data produced by WD; the settlement-prediction performance based on WD-GPBE is the best.

    4 Conclusions

    In this paper, we propose a probability settlement-prediction model with a BE based on the GP with WD, that is, WD-GPBE. A BE probability-prediction model based on GP is derived based on the Bayesian theorem. We discuss the effects of prediction proportion and moving windows on the model's prediction performance. Furthermore, we compare the prediction performances of GPBE and WD-GPBE models, and verify them based on SHM data from the Nanjing Metro. Some conclusions are as follows:

    Fig. 12 Influence of moving window and prediction ratios on prediction performance with M1 data: (a) RMSE of M1-original data with GPBE; (b) RMSE of M1-denoised data with GPBE

    Fig. 13 Influence of moving window and prediction ratios on prediction performance with M2 data: (a) RMSE of M2-original data with GPBE; (b) RMSE of M2-denoised data with GPBE

    Fig. 14 Influence of moving window and prediction ratios on prediction performance with M3 data: (a) RMSE of M3-original data with GPBE; (b) RMSE of M3-denoised data with GPBE

    Fig. 15 Influence of moving window and prediction ratios on prediction performance with M4 data: (a) RMSE of M4-original data with GPBE; (b) RMSE of M4-denoised data with GPBE

    (1) The proposed GPBE probability-prediction model can obtain the development law of settlement and predict settlement change well. The settlement change is within the 95% confidence interval, and thus fully describes the uncertainty of settlement.

    (2) The larger the prediction ratios of settlement, the worse the prediction performance of the GPBE model. A moving window of 5 offers the best prediction performance within the model.

    (3) The prediction performance of the WD-GPBE model is better than that of the GPBE model, demonstrating that it is necessary to denoise the original settlement-monitoring data before using it in the model.

    In future research, we will analyze how to use the proposed model to evaluate the safety status (the useful life) of tunnel structures and improve the settlement warning function.

    Acknowledgments

    This work is supported by the Humanities and Social Sciences Research Project of Ministry of Education of China (No. 23YJCZH037), the Educational Science Planning Project of Zhejiang Province (No. 2023SCG222), the Foundation of the State Key Laboratory of Mountain Bridge and Tunnel Engineering of China (No. SKLBT-2210), the National Key R&D Program of China (No. 2022YFC3802301), the National Natural Science Foundation of China (No. 52178306), and the Scientific Research Project of Zhejiang Provincial Department of Education (No. Y202248682), China.

    Author contributions

    Yang DING designed the research. Yang DING and Zhen HAN processed the corresponding data. Yang DING wrote the first draft of the manuscript. Zhi DING, Gang WEI, and Yunliang CUI helped to organize the manuscript. Yang DING, Xiaowei YE, and Tao JIN revised and edited the final version.

    Conflict of interest

    Yang DING, Xiaowei YE, Zhi DING, Gang WEI, Yunliang CUI, Zhen HAN, and Tao JIN declare that they have no conflict of interest.

    Chen RP, Zhang P, Wu HN, et al., 2019. Prediction of shield tunneling-induced ground settlement using machine learning techniques., 13(6):1363-1378. https://doi.org/10.1007/s11709-019-0561-3

    Cheng Y, Ye XF, Fujiyama T, 2020. Identifying crowding impact on departure time choice of commuters in urban rail transit., 2020:8850565. https://doi.org/10.1155/2020/8850565

    Chitsazan N, Nadiri AA, Tsai FTC, 2015. Prediction and structural uncertainty analyses of artificial neural networks using hierarchical Bayesian model averaging., 528:52-62. https://doi.org/10.1016/j.jhydrol.2015.06.007

    Ding LY, Ma L, Luo HB, et al., 2011. Wavelet analysis for tunneling-induced ground settlement based on a stochastic model., 26(5):619-628. https://doi.org/10.1016/j.tust.2011.03.005

    Ding Y, Ye XW, Guo Y, 2023a. Data set from wind, temperature, humidity and cable acceleration monitoring of the Jiashao bridge., 13(2-3):579-589. https://doi.org/10.1007/s13349-022-00662-5

    Ding Y, Hang D, Wei YJ, et al., 2023b. Settlement prediction of existing metro induced by new metro construction with machine learning based on SHM data: a comparative study., in press. https://doi.org/10.1007/s13349-023-00714-4

    Ding Y, Ye XW, Guo Y, 2023c. A multistep direct and indirect strategy for predicting wind direction based on the EMD-LSTM model., 2023:4950487. https://doi.org/10.1155/2023/4950487

    Ding Y, Ye XW, Guo Y, et al., 2023d. Probabilistic method for wind speed prediction and statistics distribution inference based on SHM data-driven., 73:103475. https://doi.org/10.1016/j.probengmech.2023.103475

    Ding Y, Ye XW, Guo Y, 2023e. Copula-based JPDF of wind speed, wind direction, wind angle, and temperature with SHM data., 73:103483. https://doi.org/10.1016/j.probengmech.2023.103483

    Ding Y, Ye XW, Guo Y, 2023f. Wind load assessment with the JPDF of wind speed and direction based on SHM data., 47:2074-2080. https://doi.org/10.1016/j.istruc.2022.12.028

    Ding Y, Ye XW, Su YH, et al., 2023g. A framework of cable wire failure mode deduction based on Bayesian network., 57:104996. https://doi.org/10.1016/j.istruc.2023.104996

    Farrar CR, Park G, Allen DW, et al., 2006. Sensor network paradigms for structural health monitoring., 13(1):210-225. https://doi.org/10.1002/stc.125

    Gómez J, Casas JR, Villalba S, 2020. Structural health monitoring with distributed optical fiber sensors of tunnel lining affected by nearby construction activity., 117:103261. https://doi.org/10.1016/j.autcon.2020.103261

    Gong WP, Luo Z, Juang CH, et al., 2014. Optimization of site exploration program for improved prediction of tunneling-induced ground settlement in clays., 56:69-79. https://doi.org/10.1016/j.compgeo.2013.10.008

    Hashemi M, Beheshti S, 2010. Adaptive noise variance estimation in BayesShrink., 17(1):12-15. https://doi.org/10.1109/LSP.2009.2030856

    Hashemi M, Beheshti S, 2014. Adaptive Bayesian denoising for general Gaussian distributed signals., 62(5):1147-1156. https://doi.org/10.1109/TSP.2013.2296272

    He XH, Fang J, Scanlon A, et al., 2010. Wavelet-based nonstationary wind speed model in Dongting lake cable-stayed bridge., 2(11):895-903. https://doi.org/10.4236/eng.2010.211113

    Huang SX, Wang XP, Li CF, et al., 2019. Data decomposition method combining permutation entropy and spectral substitution with ensemble empirical mode decomposition., 139:438-453. https://doi.org/10.1016/j.measurement.2019.01.026

    Ji ZW, Wang B, Deng SP, et al., 2014. Predicting dynamic deformation of retaining structure by LSSVR-based time series method., 137:165-172. https://doi.org/10.1016/j.neucom.2013.03.073

    Jiang XM, Mahadevan S, Adeli H, 2007. Bayesian wavelet packet denoising for structural system identification., 14(2):333-356. https://doi.org/10.1002/stc.161

    Jiangsu Provincial Department of Housing and Urban Rural Development, 2015. Technical Specification for Monitoring Measurement of Urban Rail Transit Engineering in Jiangsu Province, DGJ32/J 195??2015. Jiangsu Provincial Department of Housing and Urban Rural Development, China (in Chinese).

    Kong LH, Wu ZC, Chen GH, et al., 2020. Crowdsensing-based cross-operator switch in rail transit systems., 68(12):7938-7947. https://doi.org/10.1109/TCOMM.2020.3019527

    Law YZ, Santo H, Lim KY, et al., 2020. Deterministic wave prediction for unidirectional sea-states in real-time using artificial neural network., 195:106722. https://doi.org/10.1016/j.oceaneng.2019.106722

    Li SH, Zhang MJ, Li PF, 2021. Analytical solutions to ground settlement induced by ground loss and construction loadings during curved shield tunneling., 22(4):296-313. https://doi.org/10.1631/jzus.A2000120

    Li X, Liu X, Li CZ, et al., 2019. Foundation pit displacement monitoring and prediction using least squares support vector machines based on multi-point measurement., 18(3):715-724. https://doi.org/10.1177/1475921718767935

    Liang JX, Tang XW, Wang TQ, et al., 2022. Numerical analysis of the influence of a river on tunnelling-induced ground deformation in soft soil., 23(7):564-578. https://doi.org/10.1631/jzus.A2100683

    Liu WF, Wu ZZ, Li CY, et al., 2022. Prediction of ground-borne vibration induced by a moving underground train based on excitation experiments., 523:116728. https://doi.org/10.1016/j.jsv.2021.116728

    MOHURD (Ministry of Housing and Urban-Rural Development of the People’s Republic of China), 2013. Technical Code for Protection Structures of Urban Rail Transit, CJJ/T 202?2013. MOHURD, China (in Chinese).

    Mu BG, Xie XK, Li X, et al., 2021. Monitoring, modelling and prediction of segmental lining deformation and ground settlement of an EPB tunnel in different soils., 113:103870. https://doi.org/10.1016/j.tust.2021.103870

    Ng CWW, Liu GB, Li Q, 2013. Investigation of the long-term tunnel settlement mechanisms of the first metro line in Shanghai., 50(6):674-684. https://doi.org/10.1139/cgj-2012-0298

    Ni YQ, Wang YW, Zhang C, 2020. A Bayesian approach for condition assessment and damage alarm of bridge expansion joints using long-term structural health monitoring data., 212:110520. https://doi.org/10.1016/j.engstruct.2020.110520

    Qu HF, Wang LH, Feng CL, et al., 2021. Study on deformation and stability of rock-like materials retaining structure during collaborative construction of super-adjacent underground project., 2021:5558544. https://doi.org/10.1155/2021/5558544

    Qu K, Xu YY, Huang JX, et al., 2023. Numerical simulation of hydrodynamic characteristics of submerged floating tunnels under the action of focused waves., (04):127-141 (in Chinese). https://doi.org/10.19951/j.cnki.1672-9331.20220425001

    Samui P, 2008. Support vector machine applied to settlement of shallow foundations on cohesionless soils., 35(3):419-427. https://doi.org/10.1016/j.compgeo.2007.06.014

    Sandham W, Hamilton D, Fisher A, et al., 1998. Multiresolution wavelet decomposition of the seismocardiogram., 46(9):2541-2543. https://doi.org/10.1109/78.709542

    Sendur L, Selesnick IW, 2002. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency., 50(11):2744-2756. https://doi.org/10.1109/TSP.2002.804091

    Shahin MA, Jaksa MB, Maier HR, 2005. Neural network based stochastic design charts for settlement prediction., 42(1):110-120. https://doi.org/10.1139/T04-096

    Sysyn M, Nabochenko O, Kovalchuk V, 2020a. Experimental investigation of the dynamic behavior of railway track with sleeper voids., 28(3):290-304. https://doi.org/10.1007/s40534-020-00217-8

    Sysyn M, Gerber U, Kluge F, et al., 2020b. Turnout remaining useful life prognosis by means of on-board inertial measurements on operational trains., 8(4):347-369. https://doi.org/10.1080/23248378.2019.1685918

    Sysyn M, Przybylowicz M, Nabochenko O, et al., 2021a. Identification of sleeper support conditions using mechanical model supported data-driven approach., 21(11):3609. https://doi.org/10.3390/s21113609

    Sysyn M, Przybylowicz M, Nabochenko O, et al., 2021b. Mechanism of sleeper–ballast dynamic impact and residual settlements accumulation in zones with unsupported sleepers., 13(14):7740. https://doi.org/10.3390/su13147740

    Tay DB, 2021. Sensor network data denoising via recursive graph median filters., 189:108302. https://doi.org/10.1016/j.sigpro.2021.108302

    Wang CH, Wang K, Tang DF, et al., 2022. Spatial random fields-based Bayesian method for calibrating geotechnical parameters with ground surface settlements induced by shield tunneling., 17:1503-1519. https://doi.org/10.1007/s11440-021-01407-2

    Wang F, Gou BC, Qin YW, 2013. Modeling tunneling-induced ground surface settlement development using a wavelet smooth relevance vector machine., 54:125-132. https://doi.org/10.1016/j.compgeo.2013.07.004

    Wang MS, van der Schaar M, 2006. Operational rate-distortion modeling for wavelet video coders., 54(9):3505-3517. https://doi.org/10.1109/TSP.2006.879273

    Wu YQ, Wang K, Zhang LZ, et al., 2018. Sand-layer collapse treatment: an engineering example from Qingdao Metro subway tunnel., 197:19-24. https://doi.org/10.1016/j.jclepro.2018.05.260

    Xiang YY, Jiang ZP, He HJ, 2008. Assessment and control of metro-construction induced settlement of a pile-supported urban overpass., 23(3):300-307. https://doi.org/10.1016/j.tust.2007.06.008

    Yao YP, Qi SJ, Che LW, et al., 2018. Postconstruction settlement prediction of high embankment of silty clay at Chengde airport based on one-dimensional creep analytical method: case study., 18(7):05018004. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001191

    Ye XW, Ding Y, Wan HP, 2019. Machine learning approaches for wind speed forecasting using long-term monitoring data: a comparative study., 24(6):733-744. https://doi.org/10.12989/sss.2019.24.6.733

    Ye XW, Ding Y, Wan HP, 2020. Statistical evaluation of wind properties based on long-term monitoring data., 10(5):987-1000. https://doi.org/10.1007/s13349-020-00430-3

    Ye XW, Ding Y, Wan HP, 2021. Probabilistic forecast of wind speed based on Bayesian emulator using monitoring data., 28(1):e2650. https://doi.org/10.1002/stc.2650

    Zhang LM, Wu XG, Ji WY, et al., 2017. Intelligent approach to estimation of tunnel-induced ground settlement using wavelet packet and support vector machines., 31(2):04016053. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000621

    題目:基于小波-貝葉斯的隧道短期沉降預(yù)測(cè):一種概率分析方法

    作者:丁楊1,2,3,葉肖偉4,丁智1,魏綱1,崔允亮1,韓震5,金濤1

    機(jī)構(gòu):1浙大城市學(xué)院,土木工程學(xué)系,中國(guó)杭州,310015;2浙大城市學(xué)院,城市基礎(chǔ)設(shè)施智能化浙江省工程研究中心,中國(guó)杭州,310015;3浙大城市學(xué)院,浙江省城市盾構(gòu)隧道安全建造與智能養(yǎng)護(hù)重點(diǎn)實(shí)驗(yàn)室,中國(guó)杭州,310015;4浙江大學(xué),建筑工程學(xué)院,中國(guó)杭州,310058;5南京地鐵運(yùn)營(yíng)有限責(zé)任公司,中國(guó)南京,210012

    目的:隧道沉降是會(huì)嚴(yán)重影響隧道結(jié)構(gòu)及其臨近建筑的安全隱患。本文旨在建立一種沉降預(yù)測(cè)模型用于實(shí)時(shí)預(yù)測(cè)南京地鐵隧道的沉降情況,并通過(guò)探討沉降數(shù)據(jù)的預(yù)處理方法和所提模型中的網(wǎng)絡(luò)結(jié)構(gòu)(移動(dòng)窗口和預(yù)測(cè)比例)對(duì)預(yù)測(cè)性能的影響,確定模型的最優(yōu)結(jié)構(gòu)組成。

    創(chuàng)新點(diǎn):1. 考慮未知沉降值的不確定性,并結(jié)合高斯先驗(yàn)和協(xié)方差函數(shù)推導(dǎo)出沉降預(yù)測(cè)值的均值和方差表達(dá)式;2. 基于現(xiàn)場(chǎng)實(shí)測(cè)數(shù)據(jù),驗(yàn)證所提出模型的有效性。

    方法:1. 通過(guò)理論推導(dǎo),構(gòu)建考慮沉降不確定性的貝葉斯預(yù)測(cè)模型,并結(jié)合高斯先驗(yàn)過(guò)程計(jì)算得到沉降預(yù)測(cè)值的均值和方差表達(dá)式;2. 通過(guò)南京地鐵現(xiàn)場(chǎng)實(shí)測(cè)數(shù)據(jù)驗(yàn)證所提模型的有效性,并通過(guò)參數(shù)敏感性分析,確定最優(yōu)移動(dòng)窗口及預(yù)測(cè)比例;3. 通過(guò)數(shù)值計(jì)算,探討數(shù)據(jù)預(yù)處理方法對(duì)模型預(yù)測(cè)精度的影響。

    結(jié)論:1. 本文提出的概率預(yù)測(cè)模型能夠預(yù)測(cè)沉降的發(fā)展規(guī)律,且沉降變化值均在95%的置信區(qū)間內(nèi)。2. 移動(dòng)窗口過(guò)大會(huì)導(dǎo)致概率預(yù)測(cè)模型過(guò)擬合,而移動(dòng)窗口過(guò)小則會(huì)導(dǎo)致概率預(yù)測(cè)模型欠擬合;針對(duì)本文的沉降數(shù)據(jù),最佳移動(dòng)窗口為5。3. 對(duì)原始沉降數(shù)據(jù)進(jìn)行小波降噪處理,能夠提高概率預(yù)測(cè)模型的預(yù)測(cè)精度。

    關(guān)鍵詞:地鐵建設(shè);沉降概率預(yù)測(cè);結(jié)構(gòu)健康監(jiān)測(cè);小波去噪;高斯先驗(yàn);貝葉斯仿真

    https://doi.org/10.1631/jzus.A2200599

    https://doi.org/10.1631/jzus.A2200599

    ? Zhejiang University Press 2023

    Dec. 20, 2022;

    May 27, 2023;

    Oct. 23, 2023

    猜你喜歡
    浙大先驗(yàn)貝葉斯
    基于無(wú)噪圖像塊先驗(yàn)的MRI低秩分解去噪算法研究
    有趣!浙大的實(shí)踐課讓網(wǎng)友羨慕不已
    Jin Yong’s ZJU Years: “Wisdom is the Goal”
    文化交流(2019年1期)2019-01-11 01:34:26
    浙大全球農(nóng)商研究院
    基于自適應(yīng)塊組割先驗(yàn)的噪聲圖像超分辨率重建
    貝葉斯公式及其應(yīng)用
    基于貝葉斯估計(jì)的軌道占用識(shí)別方法
    一種基于貝葉斯壓縮感知的說(shuō)話人識(shí)別方法
    電子器件(2015年5期)2015-12-29 08:43:15
    基于平滑先驗(yàn)法的被動(dòng)聲信號(hào)趨勢(shì)項(xiàng)消除
    先驗(yàn)的廢話與功能的進(jìn)路
    51国产日韩欧美| 极品人妻少妇av视频| 欧美xxⅹ黑人| 国产福利在线免费观看视频| 国产成人精品婷婷| av电影中文网址| 国产69精品久久久久777片| 免费少妇av软件| 岛国毛片在线播放| 国产国语露脸激情在线看| 国产综合精华液| 中文字幕精品免费在线观看视频 | 你懂的网址亚洲精品在线观看| 国产一区二区在线观看日韩| 青春草亚洲视频在线观看| 久久久久精品性色| 午夜免费男女啪啪视频观看| 国产黄频视频在线观看| 天堂8中文在线网| 韩国av在线不卡| 国产淫语在线视频| 视频在线观看一区二区三区| 久久综合国产亚洲精品| 欧美亚洲日本最大视频资源| 伦理电影大哥的女人| 美女主播在线视频| 18禁在线无遮挡免费观看视频| 18禁动态无遮挡网站| 午夜免费男女啪啪视频观看| 香蕉国产在线看| 在线观看国产h片| 九色亚洲精品在线播放| 国产一级毛片在线| 久久精品国产亚洲av天美| 天天躁夜夜躁狠狠躁躁| 免费看av在线观看网站| 亚洲伊人色综图| 国产深夜福利视频在线观看| 久久午夜福利片| 51国产日韩欧美| 久久精品久久久久久久性| 美女中出高潮动态图| 亚洲,欧美精品.| 99re6热这里在线精品视频| 亚洲国产精品一区二区三区在线| 街头女战士在线观看网站| 日韩人妻精品一区2区三区| 亚洲av国产av综合av卡| 欧美+日韩+精品| 免费观看av网站的网址| 国产国语露脸激情在线看| www.色视频.com| 日韩中文字幕视频在线看片| 黑人猛操日本美女一级片| 亚洲 欧美一区二区三区| 午夜福利视频精品| 精品国产国语对白av| 欧美亚洲日本最大视频资源| 日韩制服丝袜自拍偷拍| 免费人成在线观看视频色| 不卡视频在线观看欧美| 国产色婷婷99| 99视频精品全部免费 在线| 香蕉国产在线看| 国产亚洲午夜精品一区二区久久| 国产1区2区3区精品| 秋霞在线观看毛片| 在线观看美女被高潮喷水网站| 最近手机中文字幕大全| 欧美国产精品va在线观看不卡| 熟女av电影| 日韩制服丝袜自拍偷拍| av视频免费观看在线观看| 肉色欧美久久久久久久蜜桃| 99热国产这里只有精品6| 国国产精品蜜臀av免费| 99久久综合免费| 久久国内精品自在自线图片| 高清欧美精品videossex| 天天躁夜夜躁狠狠躁躁| 国产伦理片在线播放av一区| 插逼视频在线观看| 欧美精品一区二区免费开放| 免费av中文字幕在线| 亚洲精品日本国产第一区| videos熟女内射| 亚洲成人av在线免费| 日本色播在线视频| 欧美精品av麻豆av| 中文乱码字字幕精品一区二区三区| 乱码一卡2卡4卡精品| 成人亚洲欧美一区二区av| 免费播放大片免费观看视频在线观看| 久久99热这里只频精品6学生| 久久精品夜色国产| 热99久久久久精品小说推荐| 精品福利永久在线观看| 一本色道久久久久久精品综合| 91精品伊人久久大香线蕉| 精品99又大又爽又粗少妇毛片| 亚洲精品美女久久av网站| 99香蕉大伊视频| 日日爽夜夜爽网站| 国产无遮挡羞羞视频在线观看| 国产精品国产av在线观看| 欧美精品人与动牲交sv欧美| 一级a做视频免费观看| av女优亚洲男人天堂| 一个人免费看片子| 免费高清在线观看日韩| 日韩伦理黄色片| 国产综合精华液| a级毛色黄片| 日韩一区二区视频免费看| 久久人妻熟女aⅴ| 亚洲国产av新网站| 免费观看无遮挡的男女| 婷婷成人精品国产| 亚洲精华国产精华液的使用体验| 亚洲国产精品一区二区三区在线| www.色视频.com| 午夜福利视频精品| 黄色 视频免费看| 欧美激情 高清一区二区三区| 边亲边吃奶的免费视频| 亚洲综合色惰| 精品少妇久久久久久888优播| 国产精品一区www在线观看| 乱人伦中国视频| 亚洲精品美女久久av网站| 大香蕉久久成人网| 精品一区在线观看国产| 亚洲av免费高清在线观看| 伊人久久国产一区二区| av有码第一页| 亚洲天堂av无毛| 国产精品女同一区二区软件| av卡一久久| 人妻人人澡人人爽人人| 99热这里只有是精品在线观看| 免费黄频网站在线观看国产| 人人妻人人爽人人添夜夜欢视频| 国产熟女欧美一区二区| 如日韩欧美国产精品一区二区三区| 一本色道久久久久久精品综合| 高清不卡的av网站| xxxhd国产人妻xxx| 国产成人免费观看mmmm| 午夜久久久在线观看| 亚洲精品国产av成人精品| 亚洲图色成人| 国产又爽黄色视频| 黑丝袜美女国产一区| 七月丁香在线播放| 亚洲国产最新在线播放| 一个人免费看片子| 中文字幕另类日韩欧美亚洲嫩草| 26uuu在线亚洲综合色| 两个人看的免费小视频| 一二三四在线观看免费中文在 | 十八禁网站网址无遮挡| 只有这里有精品99| 搡老乐熟女国产| 黄色 视频免费看| 夫妻性生交免费视频一级片| 国产成人精品久久久久久| 国产成人精品婷婷| 熟女人妻精品中文字幕| 考比视频在线观看| 欧美精品一区二区大全| 日韩精品有码人妻一区| 久久青草综合色| 免费黄网站久久成人精品| 大香蕉久久网| 精品一区二区三区四区五区乱码 | 中文字幕精品免费在线观看视频 | 午夜激情久久久久久久| 女性被躁到高潮视频| 美女中出高潮动态图| 久久久久久久久久久久大奶| 一边亲一边摸免费视频| 久久久久网色| 国产色婷婷99| 国产熟女欧美一区二区| 各种免费的搞黄视频| a级毛片黄视频| 一级爰片在线观看| 满18在线观看网站| 亚洲国产精品专区欧美| 亚洲成人手机| 亚洲欧美中文字幕日韩二区| 国产亚洲最大av| 最后的刺客免费高清国语| 国内精品宾馆在线| 久久人人97超碰香蕉20202| 精品人妻在线不人妻| 在线天堂最新版资源| 又粗又硬又长又爽又黄的视频| 麻豆乱淫一区二区| 亚洲欧美色中文字幕在线| 国产成人精品久久久久久| 亚洲欧洲国产日韩| 久久97久久精品| 韩国高清视频一区二区三区| 免费人成在线观看视频色| 最近最新中文字幕大全免费视频 | 国产成人精品婷婷| 99久国产av精品国产电影| 国产成人欧美| 欧美 亚洲 国产 日韩一| 建设人人有责人人尽责人人享有的| 少妇被粗大的猛进出69影院 | 国产精品免费大片| 99热这里只有是精品在线观看| 久久久久久久久久成人| 成人手机av| 国产精品一区二区在线不卡| 麻豆乱淫一区二区| 国产毛片在线视频| 一区二区三区精品91| 国产精品女同一区二区软件| 亚洲精品中文字幕在线视频| 国产在线视频一区二区| 亚洲精品,欧美精品| 男女高潮啪啪啪动态图| 精品少妇内射三级| 97在线人人人人妻| 中文字幕人妻丝袜制服| 各种免费的搞黄视频| 成年人午夜在线观看视频| 巨乳人妻的诱惑在线观看| 高清黄色对白视频在线免费看| 大片电影免费在线观看免费| 国产 精品1| a级片在线免费高清观看视频| 大香蕉久久成人网| 久久青草综合色| 黑人巨大精品欧美一区二区蜜桃 | 亚洲国产最新在线播放| 久久久a久久爽久久v久久| 男女免费视频国产| 多毛熟女@视频| 麻豆精品久久久久久蜜桃| 亚洲,欧美精品.| 婷婷色综合大香蕉| av卡一久久| 丝袜喷水一区| 亚洲精品aⅴ在线观看| 欧美另类一区| 黄网站色视频无遮挡免费观看| 在线天堂中文资源库| av免费在线看不卡| av女优亚洲男人天堂| 青春草视频在线免费观看| 在线看a的网站| 久久久久视频综合| 亚洲欧美清纯卡通| 夜夜爽夜夜爽视频| 国产女主播在线喷水免费视频网站| 一区二区av电影网| 中文字幕av电影在线播放| 国产在线一区二区三区精| 欧美最新免费一区二区三区| 美女国产视频在线观看| 最近手机中文字幕大全| 国产色婷婷99| 亚洲av欧美aⅴ国产| 少妇的逼好多水| 亚洲精品一区蜜桃| av播播在线观看一区| 亚洲欧美中文字幕日韩二区| 亚洲欧美一区二区三区黑人 | 久久久久久久国产电影| 免费观看a级毛片全部| 欧美xxxx性猛交bbbb| 在线天堂最新版资源| 黄色怎么调成土黄色| av视频免费观看在线观看| 各种免费的搞黄视频| 熟妇人妻不卡中文字幕| 美女主播在线视频| 蜜桃国产av成人99| 91aial.com中文字幕在线观看| 欧美日韩av久久| 国产精品久久久久久久电影| 精品久久久精品久久久| 黑丝袜美女国产一区| 91在线精品国自产拍蜜月| 人妻 亚洲 视频| 七月丁香在线播放| 国产精品久久久久久久久免| 国产av码专区亚洲av| 少妇的逼好多水| 在线 av 中文字幕| 国产精品久久久av美女十八| 亚洲精品自拍成人| 一区二区三区四区激情视频| 亚洲美女搞黄在线观看| 在线精品无人区一区二区三| 免费观看a级毛片全部| 精品国产国语对白av| 在线观看一区二区三区激情| 久久99一区二区三区| 国产国拍精品亚洲av在线观看| 少妇熟女欧美另类| av有码第一页| 黑人高潮一二区| 黄色视频在线播放观看不卡| 亚洲欧美成人精品一区二区| 免费在线观看黄色视频的| 国产在视频线精品| 免费人成在线观看视频色| 亚洲精品乱码久久久久久按摩| av又黄又爽大尺度在线免费看| 国产乱来视频区| 欧美精品一区二区大全| 9热在线视频观看99| 国产av码专区亚洲av| 国产精品久久久久久av不卡| 日韩成人伦理影院| 搡老乐熟女国产| 秋霞伦理黄片| 国产精品欧美亚洲77777| 久久国产精品男人的天堂亚洲 | 亚洲人成网站在线观看播放| 伦理电影免费视频| 少妇被粗大的猛进出69影院 | 波多野结衣一区麻豆| 久久人人爽人人片av| 欧美精品一区二区大全| 老司机亚洲免费影院| 插逼视频在线观看| 春色校园在线视频观看| 午夜福利在线观看免费完整高清在| 亚洲婷婷狠狠爱综合网| 欧美日韩综合久久久久久| 久久 成人 亚洲| 亚洲精品美女久久久久99蜜臀 | 久久精品人人爽人人爽视色| 国产1区2区3区精品| 日本黄色日本黄色录像| 亚洲情色 制服丝袜| 宅男免费午夜| 黑人欧美特级aaaaaa片| 久久精品国产亚洲av涩爱| 国产精品欧美亚洲77777| 美女中出高潮动态图| av片东京热男人的天堂| 少妇精品久久久久久久| 国产男人的电影天堂91| 精品国产一区二区三区四区第35| 一边亲一边摸免费视频| 考比视频在线观看| 中国国产av一级| 国产精品人妻久久久久久| 男女高潮啪啪啪动态图| 熟女av电影| 在线观看国产h片| kizo精华| 色视频在线一区二区三区| 人人妻人人爽人人添夜夜欢视频| 最近中文字幕高清免费大全6| 国产探花极品一区二区| 亚洲精品av麻豆狂野| www.av在线官网国产| 观看美女的网站| 亚洲,欧美精品.| 久久热在线av| 久久久久精品人妻al黑| 国产成人a∨麻豆精品| 女性生殖器流出的白浆| 咕卡用的链子| 大话2 男鬼变身卡| 亚洲人与动物交配视频| 国产精品偷伦视频观看了| 丰满饥渴人妻一区二区三| 日产精品乱码卡一卡2卡三| 国产精品国产三级国产专区5o| 国产极品天堂在线| 国产成人欧美| av福利片在线| 亚洲五月色婷婷综合| 亚洲经典国产精华液单| 国产视频首页在线观看| 午夜精品国产一区二区电影| 九九在线视频观看精品| 成人漫画全彩无遮挡| 一级爰片在线观看| 国产一区二区在线观看日韩| 美国免费a级毛片| 97在线人人人人妻| 视频在线观看一区二区三区| 最近手机中文字幕大全| 熟女av电影| 大码成人一级视频| 久久99热6这里只有精品| 免费高清在线观看日韩| 免费av中文字幕在线| 高清在线视频一区二区三区| 黄片无遮挡物在线观看| 国语对白做爰xxxⅹ性视频网站| www.av在线官网国产| 国产免费视频播放在线视频| 在线天堂最新版资源| 春色校园在线视频观看| 天天躁夜夜躁狠狠久久av| 一边摸一边做爽爽视频免费| 观看av在线不卡| 熟妇人妻不卡中文字幕| 18禁裸乳无遮挡动漫免费视频| 夜夜爽夜夜爽视频| 国产视频首页在线观看| 亚洲精品美女久久av网站| 久久韩国三级中文字幕| 你懂的网址亚洲精品在线观看| 老司机亚洲免费影院| 精品人妻偷拍中文字幕| 国产无遮挡羞羞视频在线观看| 美女主播在线视频| 新久久久久国产一级毛片| av又黄又爽大尺度在线免费看| 久久精品熟女亚洲av麻豆精品| 黑人猛操日本美女一级片| 中国美白少妇内射xxxbb| 国产综合精华液| 精品酒店卫生间| 日韩欧美精品免费久久| 中文天堂在线官网| 人妻系列 视频| 日本色播在线视频| 97在线人人人人妻| 国产男女内射视频| 免费在线观看完整版高清| 色视频在线一区二区三区| 伦理电影大哥的女人| 一级毛片我不卡| 免费观看在线日韩| 少妇人妻精品综合一区二区| 哪个播放器可以免费观看大片| 亚洲美女搞黄在线观看| 777米奇影视久久| 80岁老熟妇乱子伦牲交| 午夜免费鲁丝| 人人妻人人澡人人爽人人夜夜| 午夜福利影视在线免费观看| 日韩人妻精品一区2区三区| 99热这里只有是精品在线观看| 少妇被粗大猛烈的视频| 新久久久久国产一级毛片| 亚洲综合色网址| 18+在线观看网站| 91在线精品国自产拍蜜月| 久久久久久久久久人人人人人人| 五月天丁香电影| 亚洲精品久久久久久婷婷小说| 妹子高潮喷水视频| 美女国产视频在线观看| 精品人妻在线不人妻| 色视频在线一区二区三区| 久久女婷五月综合色啪小说| 曰老女人黄片| 国产精品成人在线| 日韩制服丝袜自拍偷拍| 2018国产大陆天天弄谢| 亚洲成av片中文字幕在线观看 | av女优亚洲男人天堂| 久久99精品国语久久久| av线在线观看网站| 午夜激情久久久久久久| 欧美+日韩+精品| 国产免费一区二区三区四区乱码| 久久久久久久国产电影| 日本vs欧美在线观看视频| 男女无遮挡免费网站观看| 9色porny在线观看| 黑丝袜美女国产一区| 下体分泌物呈黄色| 国产精品无大码| 黑人巨大精品欧美一区二区蜜桃 | 午夜免费男女啪啪视频观看| 亚洲精品av麻豆狂野| 免费观看av网站的网址| 三级国产精品片| 又大又黄又爽视频免费| 免费人成在线观看视频色| 综合色丁香网| 中文字幕另类日韩欧美亚洲嫩草| 秋霞在线观看毛片| 精品一区二区三区四区五区乱码 | 日韩大片免费观看网站| av视频免费观看在线观看| 免费观看性生交大片5| 最近中文字幕2019免费版| 国产精品99久久99久久久不卡 | 汤姆久久久久久久影院中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 国产在线视频一区二区| av不卡在线播放| 亚洲av国产av综合av卡| 久久精品国产a三级三级三级| 国产男女内射视频| 黄色配什么色好看| 免费日韩欧美在线观看| 91国产中文字幕| 久久精品国产亚洲av天美| 午夜久久久在线观看| 日韩,欧美,国产一区二区三区| 日韩成人伦理影院| 美国免费a级毛片| 丝袜人妻中文字幕| 高清毛片免费看| 色哟哟·www| 捣出白浆h1v1| 国产老妇伦熟女老妇高清| 91aial.com中文字幕在线观看| 精品亚洲成国产av| 9色porny在线观看| 肉色欧美久久久久久久蜜桃| 激情视频va一区二区三区| 国产成人免费观看mmmm| 尾随美女入室| 一本大道久久a久久精品| 一区二区三区精品91| 国产日韩欧美亚洲二区| 亚洲国产精品一区三区| 在线天堂最新版资源| 99热全是精品| 久久久久久伊人网av| 国产精品人妻久久久久久| 久久午夜福利片| freevideosex欧美| 男女午夜视频在线观看 | 国产精品一区二区在线观看99| 国产黄色视频一区二区在线观看| 搡女人真爽免费视频火全软件| 午夜福利乱码中文字幕| 美女福利国产在线| 亚洲精品视频女| 久久精品国产a三级三级三级| 激情五月婷婷亚洲| 90打野战视频偷拍视频| 一边摸一边做爽爽视频免费| 我的女老师完整版在线观看| 久久av网站| 亚洲综合精品二区| av播播在线观看一区| 又黄又爽又刺激的免费视频.| 欧美日韩视频高清一区二区三区二| 久久人妻熟女aⅴ| 999精品在线视频| 国产精品人妻久久久影院| 亚洲精品美女久久久久99蜜臀 | 国产黄色免费在线视频| 国产日韩欧美亚洲二区| 黄片播放在线免费| 午夜福利在线观看免费完整高清在| 成人二区视频| 少妇的逼好多水| videosex国产| 欧美成人午夜精品| 各种免费的搞黄视频| 久久精品国产亚洲av涩爱| 中文乱码字字幕精品一区二区三区| 精品国产乱码久久久久久小说| 久久这里有精品视频免费| 男男h啪啪无遮挡| 丝袜人妻中文字幕| 国产色爽女视频免费观看| 人人妻人人添人人爽欧美一区卜| 亚洲一码二码三码区别大吗| 在线亚洲精品国产二区图片欧美| 免费av中文字幕在线| 99精国产麻豆久久婷婷| 久久精品久久久久久久性| 777米奇影视久久| av有码第一页| 秋霞在线观看毛片| 亚洲成国产人片在线观看| 欧美激情国产日韩精品一区| 曰老女人黄片| 精品一区二区免费观看| 高清视频免费观看一区二区| 午夜福利视频精品| 国产免费福利视频在线观看| 黄网站色视频无遮挡免费观看| 最黄视频免费看| 老熟女久久久| 亚洲精品色激情综合| 久久这里有精品视频免费| 久久ye,这里只有精品| 精品人妻熟女毛片av久久网站| 王馨瑶露胸无遮挡在线观看| 永久网站在线| 日韩 亚洲 欧美在线| 男人操女人黄网站| 精品人妻一区二区三区麻豆| 一边亲一边摸免费视频| 亚洲性久久影院| 国产成人a∨麻豆精品| 制服丝袜香蕉在线| 国产日韩欧美视频二区| 免费播放大片免费观看视频在线观看| 精品亚洲成a人片在线观看| 夫妻午夜视频| 日本黄色日本黄色录像| 一本久久精品| 国产黄色免费在线视频| 亚洲精品国产av蜜桃| 亚洲成国产人片在线观看| 午夜福利乱码中文字幕| 亚洲精品久久午夜乱码| 全区人妻精品视频| 秋霞在线观看毛片| 亚洲av成人精品一二三区| 国产又爽黄色视频|