• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation on cenosphere-aluminum syntactic foam-filled tubes under axial impact loading

    2023-11-18 08:45:02LiWANGBoyiZHANGJianZHANGYuexinJIANGWeiWANGGaohuiWU
    關(guān)鍵詞:力學性能

    Li WANG, Boyi ZHANG, Jian ZHANG, Yuexin JIANG, Wei WANG, Gaohui WU

    Research Article

    Experimental investigation on cenosphere-aluminum syntactic foam-filled tubes under axial impact loading

    1School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China2Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China3Center for Metal Matrix Composites Engineering Technology, Harbin Institute of Technology, Harbin 150006, China

    A new syntactic foam material was prepared by screening three different average particle sizes of cenospheres (150, 200, and 300 μm) from industrial waste fly ash. Axial impact testing on syntactic foam filler and foam-filled tubes was conducted using a drop hammer test machine. The effects of parameters, such as the size of cenospheres and the impact velocity, on the mechanism of deformation, mechanical characteristics, and capacity for energy absorption of the specimen were investigated. On this basis, the differences in compressive properties exhibited by the syntactic foam-filled tubes under the two loading conditions were investigated. The results indicate that with the decrease in the average diameter of cenospheres, the initial peak crushing load and mean crushing load of foam-filled tubes increase, while the compression efficiency decreases. The specific energy absorption (SEA) of the syntactic foam-filled tube can reach 25 J/g. With the increase of impact velocity, the SEA of the specimen increases slightly. It was demonstrated that the syntactic foam-filled tube exhibits a higher effective energy absorption ratio under impact loading compared to quasi-static loading.

    Cenosphere-aluminum syntactic foam; Crashworthiness; Mechanical properties; Absorption of energy

    1 Introduction

    Over the past decades, in the face of frequent traffic accidents, there has been much research on energy-absorbing components to prevent personal injuries. Thin-walled tubes have attracted extensive attention because of their convenient preparation and good energy absorption capacity (Xu et al., 2017; Zou et al., 2017; Sun et al., 2018; Ferdynus et al., 2019; Mansor et al., 2022; Zha et al., 2022). Significant research has been undertaken on the crushing behavior of thin-walled tubes with various cross-sections, including triangular tubes, round tubes, square tubes, and corrugated tubes (Wu et al., 2016; Zhang et al., 2018; Wang et al., 2019; Sadsighi et al., 2022; Ghahremanzadeh and Pirmohammad, 2023).

    To further improve the characteristics of components for energy absorption, metallic foams (Sun et al., 2016; Liu ZF et al., 2017; Zhang et al., 2021) and polymeric foams (Yan et al., 2014; Hussein et al., 2017; Liu Q et al., 2017; Sarkabiri et al., 2017; Ghamarian and Azarakhsh, 2019) are usually inserted in thin-walled tubes as fillers. Djamaluddin et al. (2015) used non-dominated sorting genetic algorithm (NSGA-II) to optimize the design of the crashing behavior of an empty double-tube, a foam-filled empty tube, and a foam-filled double-tube under axial and oblique impact loadings. Results showed that the crashworthiness of the foam-filled double-tube was about 12% better than that of the others. Hu et al. (2018) presented an aluminum foam-filled tri-tube and noted that the outer tube's diameter and wall thickness had a strong impact on the energy absorption capacity of specimens. The research by Hu et al. (2018) showed that for the aluminum foam-filled tri-tube, the influence of the outer tube's wall thickness on the energy absorption performance of the specimen was very obvious. Abedi et al. (2018) investigated polyurethane foam-filled grooved tubes with circular cross-sections. The results showed that when the groove distance is large, the manner of deformation of the foam-filled tube tends to be the diamond mode, and when the groove distance is small, the deformation mode tends to be the concertina mode. Movahedi and Linul (2017, 2021), Linul et al. (2018), and Movahedi et al. (2018) conducted much experimental research on the compression behavior of aluminum alloy foam-filled tubes at elevated temperatures. The effect of temperature on the mechanical properties of foam-filled tubes was explored in depth. Mohammadiha and Ghariblu (2018) studied the axial dynamic energy absorption properties of a foam-filled free inversion tube. According to deformation theory, they derived analytical formulas for the instantaneous reversal load of a foam-filled tube during free inversion by applying a new theoretical model. Duarte et al. (2018) analyzed the mechanical performance of extremely thin-walled aluminum alloy in-situ foam-filled tubes and pointed out that during the preparation process, the thermal treatment of the thin-walled tubes can enhance their ductility and reduce the probability of crack formation.

    Compared with traditional foam-filled tubes, the crashworthiness of syntactic foam-filled tubes needs further study. Several scholars have carried out research on the influences of the syntactic foam preparation method (Kemény et al., 2022) and loading direction (Su et al., 2019) on the compressive properties of foam-filled tubes. Movahedi et al. (2022) further discussed the deformation mode of functionally graded metal syntactic foams under high-speed impact loading. Fly ash cenosphere is a kind of common industrial waste, which is gradually being used in the preparation of composite materials (Mondal et al., 2009; Braszczyńska-Malik et al., 2017). The cenosphere-aluminum syntactic foam not only has excellent energy absorption capacity, but also has a certain bearing capacity (Doddamani et al., 2015; Manakari et al., 2016; Zhang et al., 2016; Garcia et al., 2018). Combining this material with metal tubes to prepare foam-filled tube specimens can both reduce environmental pollution and reduce the preparation cost of composite foam, and will have broad application potential.

    The crushing behavior of cenosphere-aluminum syntactic foam under an axial quasi-static load has been studied (Wang et al., 2021). This paper investigates the mechanical properties of syntactic foam-filled tubes under axial low-velocity impact loading. The effects of impact load velocity and the average particle size of cenospheres on the energy absorption capacity of the specimens are analyzed. The differences in deformation modes and energy absorption ratios of syntactic foam-filled tubes under different loading conditions are indicated. The organization of this paper is as follows. Section 2 introduces the preparation of the syntactic foam, the geometric parameters of specimens, and the loading scheme of the test. The evaluation indexes of the specimen under impact loading, such as initial peak crushing load, mean crushing load, and specific energy absorption (SEA), are analyzed in Section 3. Section 4 compares the foam-filled tube's crashworthiness under impact and quasi-static loads, and conclusions are presented in Section 5.

    2 Materials

    2.1 Material and specimen

    Pressure infiltration was employed to create the cenosphere-aluminum syntactic foam used in this test. There are three types of cenospheres (58.8% SiO2, 26.1% Al2O3) (mass fraction), with typical particle sizes of 150, 200, and 300 μm, which were obtained by screening industrial fly ash. Then, the molten 1199Al (0.005% Cu, 0.003% Fe, and 0.0025% Si (mass fraction) balanced with Al as the main alloying element) was injected into the mold with cenosphere preforms, and gradually pressurized so that the voids of preforms were filled with liquid aluminum. The preparation method of the material is shown in Fig. 1.

    The thin-walled empty tube used in the experiment is 6063 aluminum alloy seamless tube with outer diameter of 20 mm, wall thickness of 1.2 mm, and height of 30 mm. The material properties of 6063 aluminum alloy (0.51% Si, 0.64% Mg, and 0.27% Fe balanced with Al as the main alloying element) were obtained through uniaxial tension test, as shown in Fig. 2a. The stress?–?strain () curve of 6063 aluminum alloy shows four main stages: elastic stage, yield stage, strain-hardening stage, and fracture stage. Cenosphere-aluminum syntactic foam is used as the filler, and each type of cenosphere has an average particle size of 150, 200, and 300 μm. The stress?–?strain curves of the three types of cenosphere-aluminum syntactic foam (150SF, 200SF, and 300SF) are shown in Fig. 2b. The stress–strain curve of syntactic foam shows typical three-stage characteristics: linear elastic stage, plastic plateau stage, and compression densification stage (Duarte et al., 2018).

    Fig. 1 Preparation method of cenosphere-aluminum syntactic foam: (a) preparation flow chart; (b) preparation process diagram

    The syntactic foam specimens used in the experiment are shown in Fig. 3. Fig. 4 is the diameter distribution of cenospheres. The microstructure of syntactic foam is shown in Fig. 5. In the figure, bright areas are the aluminum matrix, and dark areas are cenospheres, which maintain a complete appearance and are spread equally throughout the aluminum matrix. The geometries and dimensions of specimens are listed in Table 1. In the specimen number, AX indicates axial impact, and T1.2 indicates that the tube wall thickness is 1.2 mm. The numbers 150, 200, and 300 indicate the different types of cenosphere-aluminum syntactic foam with varying average particle sizes. The numbers 5 and 6 represent the impact velocities of 5 and 6 m/s. AX-150-6, AX-200-6, and AX-300-6 respectively represent different syntactic foam cylinder specimens, and the others are foam-filled tubes.

    Fig. 2 σ?-?ε curves of material: (a) aluminum alloy; (b) syntactic foam

    Fig. 3 Specimens used in impact test: (a) syntactic foam filler; (b) syntactic foam-filled tubes

    Fig. 4 Diameter distribution of cenospheres

    Fig. 5 Microstructure of syntactic foam

    2.2 Experimental scheme

    The axial impact experiment was conducted on the INSTRON 9250HV drop hammer test machine. The experimental set-up is shown in Fig. 6. The maximum drop height of the drop hammer is 4 m. The upper part of the testing machine is additionally provided with a spring, which can increase the initial speed of the drop hammer. The maximum impact speed of the drop hammer can reach 10 m/s. Through the built-in optical acquisition system, the test machine can obtain the displacement of the drop hammer during the entire impact process. At the same time, the acceleration sensor installed on the indenter can collect the acceleration of the drop hammer. The testing machine can be controlled in two ways: impact speed and impact energy. After determining the weight of the drop hammer, the system will automatically adjust the height of the drop hammer and the compression length of the spring. The relationship between the impact speed of the drop hammer and the initial potential energy is as follows:

    wheretis the impact speed,is the initial height of the drop hammer,is the weight of the drop hammer, Δandare the compression and elastic modulus of the spring, respectively, andis the acceleration under gravity.

    Fig. 6 Experimental set-up

    In this experiment, the impact mass is 22.71 kg. The impact velocities are 5 and 6 m/s. Specific parameters are shown in Table 1.

    3 Impact experiment results

    3.1 Failure mode

    3.1.1Syntactic foam filler

    Fig. 7 illustrates the final shape of three syntactic foam fillers. Under the impact loading with a velocity of 6 m/s, the three kinds of filler were completely collapsed and expanded radially in a crushed shape.

    Table 1 Geometric parameters of specimens

    Fig. 7 Specimens after impact loading: (a) AX-150-6; (b) AX-200-6; (c) AX-300-6

    3.1.2Syntactic foam-filled tubes

    The foam-filled tubes also show concertina failure mode under impact loading, as shown in Fig. 8. Compared with the cenosphere-aluminum syntactic foam bearing the impact load alone, due to the restraining effect of the aluminum tube on the filler, the foam-filled tubes maintain their integrity without collapse. With the increase of impact velocity, the axial deformation of the specimen increases obviously, but the failure mode basically does not change. It is noteworthy that specimen AX-T1.2-300-5 exhibits different deformation mechanisms under impact loading. This may be due to errors in the preparation and processing of the syntactic foam, which makes the specimen have certain initial defects. Under the impact load, the folds are concentrated on one side of the specimen.

    Fig. 8 Specimens after impact loading: (a) AX-T1.2-150-5; (b) AX-T1.2-200-5; (c) AX-T1.2-300-5; (d) AX-T1.2-150-6; (e) AX-T1.2-200-6; (f) AX-T1.2-300-6

    Fig. 9 is a comparison between the final shape of specimen AX-T1.2-150-6 (Fig. 9a) and specimen AX-T1.2-300-6 (Fig. 9b). It was found that at the same impact velocity, the axial distortion of the foam-filled tube increases with the increase of the average particle size of cenospheres in the filler. The specimen AX-T1.2-150-6 only forms a fold in the middle, while the specimen AX-T1.2-300-6 forms a fold at the upper and lower ends. This is because part of the filler in the specimen AX-T1.2-150-6 is broken under the impact load, so that the deformation is concentrated in the middle part of the foam-filled tube. This indicates that the porosity of the syntactic foam rises as the diameter of the cenospheres in the filler grows, increasing the compression deformation capacity of the foam-filled tube.

    Fig. 9 Comparison between the final shapes of specimens: (a) AX-T1.2-150-6; (b) AX-T1.2-300-6

    3.2 Dynamic mechanical properties

    3.2.1Load-displacement curves

    The load-displacement curves of each set of specimens acquired in the experiment are shown in Fig. 10. Three kinds of syntactic foam filler exhibit typical three-stage features of elastic stage, plastic plateau stage, and densification stage under impact load (Fig. 10a). This may be because the impact resistance of the specimen is distinctly improved by the aluminum tube, so that the impact load fails to compress the specimen to the densification stage. Compared with the peak load, the load of three types of syntactic foam in the plateau stage is relatively close. In the densification stage, the load of 300SF far exceeds the load of the other two kinds of syntactic foam. This is because the porosity of 300SF is the largest and the specimen becomes the densest under the impact load.

    Fig. 10 Load-displacement curves of specimens: (a) AX-6; (b) AX-T1.2-5; (c) AX-T1.2-6

    The characteristics of load?–?displacement curves of syntactic foam-filled tubes (150SFFT, 200SFFT, 300SFFT) under two kinds of impact velocities are basically the same, but there is no densification stage in the curves (Figs. 10b and 10c). Unlike the syntactic foam that bears the impact load alone, the foam-filled tubes show obvious strength differences during the plateau stage. Of the different types of foam-filled tubes, the compression stroke of 300SFFT is the largest, while the compression stroke of 150SFFT is the smallest.

    In this study, a set of parameters are proposed and compared to assess the crashworthiness of energy-absorbing materials and components under impact load (Hanssen et al., 2000; Hou et al., 2007; Guler et al., 2010; Sun et al., 2010). The relevant experimental parameters for all specimens are summarized in Table 2. The following is the definition of the energy absorption efficiency(Hanssen et al., 2000):

    where() is the impact loading,is the compression stroke,maxis the maximum impact loading in the range [0,], andis the height of the specimen. As the compression stroke lengthens, so does the energy absorption efficiency. The effective compression strokeefis defined as the corresponding compression stroke when the energy absorption efficiency achieves its greatest value (Fig. 11). In the case of some load?–displacement curves with no densification tendency, the effective compression stroke is taken as the entire compression stroke.

    Table 2 Mechanical properties of the syntactic foam specimens

    CLE: crushing load efficiency

    Fig. 11 Energy absorption efficiency curve and load?–displacement curve

    3.2.2Peak crushing loading

    The peak crushing loadingpof foam-filled tubes and syntactic foam under axial impact loading is presented in Fig. 12. The figure shows that the peak crushing loading of 150SFFT is the highest, and the peak crushing loadings of 200SFFT and 300SFFT decrease sequentially. The aluminum tube restricts the cracking and radial expansion of the filler, which enhances the peak crushing loading of the foam-filled tube.

    Fig. 12 Peak crushing loading of specimens

    3.2.3Mean crushing loading

    The mean crushing loadingmprimarily represents the specimen's load level during the energy absorption process, which is described as (Sun et al., 2010):

    The mean crushing loading of syntactic foam and foam-filled tubes under axial impact load is shown in Fig. 13. The variation trend of the mean crushing loading of specimens is basically consistent with that of the initial peak crushing load. However, the mean crushing loads of three kinds of syntactic foam filler are closer, among which the mean crushing load of 150SF is only 13.6% higher than that of 200SF. The restraining effect of the aluminum tube on the syntactic foam filler can significantly increase the mean crushing loading of the specimen. The mean crushing loading of the foam-filled tube is enhanced by 156% on average when compared to the syntactic foam filler. The increase in impact velocity has little effect on the mean crushing loading of the specimen.

    Fig. 13 Mean crushing loading of specimens

    3.2.4Crushing load efficiency (CLE)

    The ideal energy-absorbing structure can not only fully absorb the impact energy, but also ensure the stability of the bearing capacity. CLE is an evaluation index of load consistency under impact load, defined as (Hanssen et al., 2000):

    Fig. 14 plots the CLE of each specimen. When the impact velocity is 5 m/s, the CLE of the three types of foam-filled tubes varies little. When the impact velocity is 6 m/s, it can be found that the syntactic foam and foam-filled tubes gradually increase in CLE as the particle size of the cenospheres increases, which means that the initial impact effect of the specimen decreases.

    Fig. 14 CLE of specimens

    3.3 Capacity for energy absorption

    3.3.1Effective energy absorption

    The effective energy absorptionefmainly measures the energy absorption capacity of the sample in the plastic deformation stage. Its definition is as follows (Sun et al., 2010):

    Fig. 15 depicts the effective energy absorption of each sample. Combined with the experimental phenomena, it can be found that the aluminum tube can restrain the deformation of the syntactic foam filler to avoid being crushed and can greatly boost the specimen's effective energy absorption. Since none of the load?–?displacement curves of the foam-filled tubes reaches the densification stage, the effective energy absorption of the specimen is only related to the impact velocity. Under the same impact velocity, the difference in effective energy absorption of various foam-filled tubes is not obvious.

    Fig. 15 Effective energy absorption of specimens

    Fig. 16 compares the load?–?displacement superposition curve of the syntactic foam filler (AX-150-6) and the empty aluminum tube (ET) with the load–displacement curve of specimen AX-T1.2-150-6. The shaded area is the increment of effective energy absorption caused by the interaction effect. The percentage of effective energy absorption due to the interaction effect in each specimen is shown in Fig. 17. It can be found that the interaction effect between the syntactic foam filler and the aluminum tube is gradually enhanced with the decrease of the average particle size of cenospheres under the impact load.

    Fig. 16 Interaction effect of specimen AX-T1.2-150-6

    Fig. 17 Percentage of effective energy absorption due to the interaction effect

    3.3.2Specific energy absorption (SEA)

    The SEA represents the amount of energy absorbed per unit mass of sample in the effective compression stroke, and is defined as follows (Sun et al., 2010):

    where Δis the mass of the specimen. The SEA of several types of specimens under impact loading is depicted in Fig. 18. The results indicate that, as the particle size in the filler increases, the SEA of the specimen decreases. Each syntactic foam-filled tube has an SEA of over 15 J/g, of which the SEA of 150SFFT reaches 25 J/g. As shown in Fig. 19, the syntactic foam-filled tube (specimen AX-T1.2-150-6) exhibited better energy absorption capacity under low-velocity impact loading compared to the polyurethane foam-filled tube (Pirmohammad et al., 2019), aluminum foam-filled tube (Salehi et al., 2021), and zinc foam-filled tube (Salehi et al., 2021). This is because the cenospheres in the syntactic foam can absorb more energy during the process of being crushed and compacted under impact load (Zhang et al., 2016). With the increase in impact velocity, the SEA of the specimen is slightly increased.

    Fig. 19 SEA of different kinds of foam-filled tubes

    Fig. 18 SEA of specimens

    4 Comparative analysis of foam-filled tubes under different loading

    To compare the deformation failure mode, mechanical characteristics, and energy absorption performance of foam-filled tubes under impact loading and quasi-static loading, specimen AX-T1.2-150 was selected for a quasi-static compression test. The quasi-static compression test was carried out on a universal testing machine with the loading speed of 1.8 mm/min.

    4.1 Comparison of deformation modes

    The deformation process of the specimen AX-T1.2-150 is presented in Fig. 20. The plastic deformation of the specimen is relatively concentrated, and only one fold is generated in the middle of the specimen under the impact loading. However, under quasi-static loading, three folds are uniformly formed along the height of the specimen, indicating that the plastic deformation of the specimen is greater. At the end of the quasi-static loading process, due to the asymmetric deformation of the specimen, the wall tube is partially torn. This is mainly due to machining errors and the inhomogeneity of materials, which lead to certain initial defects in the specimen. Compared with the impact load, the loading rate of the quasi-static load is lower, which leads to more internal defect development of the material, and the tube wall cracks.

    Fig. 20 Deformation mode of specimen AX-T1.2-150: (a) quasi-static loading; (b) impact loading

    4.2 Comparison of mechanical characteristics and energy absorption performance

    Fig. 21 shows the load?–?displacement curves of specimen AX-T1.2-150 under quasi-static loading and impact loading with impact velocity of 6 m/s. Table 3 is a comparison between the mechanical properties of specimen AX-T1.2-150 under two loading modes. As a result of the strain rate effect, the peak crushing load of the specimen under impact loading is 1.93 times of the quasi-static loading, and the mean crushing load also increases slightly.

    To compare the energy absorption capacity of specimens under different loading modes more intuitively, the effective energy absorption ratiois calculated as follows:

    Fig. 21 Load?–displacement curve of specimen AX-T1.2-150 under quasi-static loading and impact loading

    Table 3 Mechanical properties of specimen AX-T1.2-150 under quasi-static loading and impact loading

    wheretis the total energy applied by the test instrument during loading. The energy absorption capacity of specimen AX-T1.2-150 under two loading modes is shown in Fig. 22. It can be found that the effective energy absorption ratio of the syntactic foam-filled tube under impact loading is significantly higher than that under quasi-static loading, reaching 97.8%. Cenosphere-aluminum syntactic foam exhibits a higher stress level and energy absorption capacity under impact loading and is an excellent cushioning energy absorption material.

    Fig. 22 Energy absorption capacity of specimen AX-T1.2-150 under quasi-static loading and impact loading

    5 Conclusions

    In this study, axial impact tests were carried out on different types of cenosphere-aluminum syntactic foam-filled tubes, and the failure mode of deformation, mechanical characteristics, and energy absorption performance of specimens under impact loading were studied. The influence of parameters such as pore size in syntactic foam and impact velocity was analyzed. On this basis, the crushing characteristics of foam-filled tubes under different load conditions were compared and analyzed. The main findings include:

    (1) Three kinds of syntactic foam-filled tubes buckled outwards in a concertina mode under impact loading, but the position and number of folds were different. With the increase of the pore size of syntactic foam filler, the plastic deformation capacity of the specimen increased.

    (2) The aluminum tube can effectively limit the cracking of the filler, so that the initial peak crushing load and mean crushing load of the specimen were significantly improved. The increase in impact velocity had little effect on the mechanical properties of the specimen.

    (3) The SEA of all cenosphere-aluminum syntactic foam-filled tubes under two impact velocities was higher than 15 J/g, and the SEA of 150SFFT reached 25 J/g, which is better than that of ordinary aluminum foam components.

    (4) The peak load of 150SFFT under axial impact loading was 1.93 times that under quasi-static compression, and the mean crushing load increased slightly. The stress level of the material was increased under the impact loading, so the effective energy absorption ratio of the specimen reached 97.8%.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (Nos. 51578201 and 51778196) and the Heilongjiang Provincial Natural Science Foundation of China (No. LH2020E058).

    Author contributions

    Boyi ZHANG and Wei WANG designed the research. Gaohui WU processed the corresponding data. Li WANG wrote the first draft of the manuscript. Jian ZHANG helped to organize the manuscript. Yuexin JIANG revised and edited the final version.

    Conflict of interest

    Li WANG, Boyi ZHANG, Jian ZHANG, Yuexin JIANG, Wei WANG, and Gaohui WU declare that they have no conflict of interest.

    Abedi MM, Niknejad A, Liaghat GH, et al, 2018. Foam-filled grooved tubes with circular cross section under axial compression: an experimental study., 42(4):401-413. https://doi.org/10.1007/s40997-017-0106-0

    Braszczyńska-Malik KN, Kamieniak J, 2017. AZ91 magnesium matrix foam composites with fly ash cenospheres fabricated by negative pressure infiltration technique., 128:209-216. https://doi.org/10.1016/j.matchar.2017.04.005

    Djamaluddin F, Abdullah S, Ariffin AK, et al., 2015. Optimization of foam-filled double circular tubes under axial and oblique impact loading conditions., 87:1-11. https://doi.org/10.1016/j.tws.2014.10.015

    Doddamani M, Kishore, Shunmugasamy VC, et al., 2015. Compressive and flexural properties of functionally graded fly ash cenosphere?–?epoxy resin syntactic foams., 36(4):685-693. https://doi.org/10.1002/pc.22987

    Duarte I, Krstulovi?-Opara L, Vesenjak M, 2018. Axial crush behaviour of the aluminium alloy in-situ foam filled tubes with very low wall thickness., 192:184-192. https://doi.org/10.1016/j.compstruct.2018.02.094

    Ferdynus M, Kote?ko M, Urbaniak M, 2019. Crashworthiness performance of thin-walled prismatic tubes with corner dents under axial impact?–?numerical and experimental study., 144:106239. https://doi.org/10.1016/j.tws.2019.106239

    Garcia CD, Shahapurkar K, Doddamani M, et al., 2018. Effect of arctic environment on flexural behavior of fly ash cenosphere reinforced epoxy syntactic foams., 151:265-273. https://doi.org/10.1016/j.compositesb.2018.06.035

    Ghahremanzadeh Z, Pirmohammad S, 2023. Crashworthiness performance of square, pentagonal, and hexagonal thin-walled structures with a new sectional design., 30(12):2353-2370. https://doi.org/10.1080/15376494.2022.2053910

    Ghamarian A, Azarakhsh S, 2019. Axial crushing analysis of polyurethane foam-filled combined thin-walled structures: experimental and numerical analysis., 24(6):632-644. https://doi.org/10.1080/13588265.2018.1506604

    Guler MA, Cerit ME, Bayram B, et al., 2010. The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading., 15(4):?377-390. https://doi.org/10.1080/13588260903488750

    Hanssen AG, Langseth M, Hopperstad OS, 2000. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler., 24(5):475-507. https://doi.org/10.1016/S0734-743X(99)00170-0

    Hou SJ, Li Q, Long SY, et al., 2007. Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria., 43(6-7):555-565. https://doi.org/10.1016/j.finel.2006.12.008

    Hu DY, Wang YZ, Song B, et al., 2018. Energy absorption characteristics of a foam-filled tri-tube under axial quasi-static loading: experiment and numerical simulation., 23(4):417-432. https://doi.org/10.1080/13588265.2017.1331494

    Hussein RD, Ruan D, Lu GX, et al., 2017. Crushing response of square aluminium tubes filled with polyurethane foam and aluminium honeycomb., 110:140-154. https://doi.org/10.1016/j.tws.2016.10.023

    Kemény A, Movahedi N, Fiedler T, et al., 2022. The influence of infiltration casting technique on properties of metal syntactic foams and their foam-filled tube structures., 852:143706. https://doi.org/10.1016/j.msea.2022.143706

    Linul E, Movahedi N, Marsavina L, 2018. The temperature and anisotropy effect on compressive behavior of cylindrical closed-cell aluminum-alloy foams., 740:1172-1179. https://doi.org/10.1016/j.jallcom.2018.01.102

    Liu Q, Fu J, Wang JS, et al., 2017. Axial and lateral crushing responses of aluminum honeycombs filled with EPP foam., 130:236-247. https://doi.org/10.1016/j.compositesb.2017.07.041

    Liu ZF, Huang ZC, Qin QH, 2017. Experimental and theoretical investigations on lateral crushing of aluminum foam-filled circular tubes., 175:19-27. https://doi.org/10.1016/j.compstruct.2017.05.004

    Manakari V, Parande G, Gupta M, 2016. Effects of hollow fly-ash particles on the properties of magnesium matrix syntactic foams: a review., 5(1):116-131. https://doi.org/10.1520/MPC20150060

    Mansor MA, Ahmad Z, Abdullah MR, 2022. Crashworthiness capability of thin-walled fibre metal laminate tubes under axial crushing., 252:113660. https://doi.org/10.1016/j.engstruct.2021.113660

    Mohammadiha O, Ghariblu H, 2018. Crashworthiness study and optimisation of free inversion foam-filled tubes under dynamic loading., 23(6):605-617. https://doi.org/10.1080/13588265.2017.1368119

    Mondal DP, Das S, Ramakrishnan N, et al., 2009. Cenosphere filled aluminum syntactic foam made through stir-casting technique., 40(3):279-288. https://doi.org/10.1016/j.compositesa.2008.12.006

    Movahedi N, Linul E, 2017. Quasi-static compressive behavior of the ex-situ aluminum-alloy foam-filled tubes under elevated temperature conditions., 206:182-184. https://doi.org/10.1016/j.matlet.2017.07.018

    Movahedi N, Linul E, 2021. Radial crushing response of ex-situ foam-filled tubes at elevated temperatures., 277:114634. https://doi.org/10.1016/j.compstruct.2021.114634

    Movahedi N, Linul E, Marsavina L, 2018. The temperature effect on the compressive behavior of closed-cell aluminum-alloy foams., 27(1):99-108. https://doi.org/10.1007/s11665-017-3098-4

    Movahedi N, Fiedler T, Ta?demirci A, et al., 2022. Impact loading of functionally graded metal syntactic foams., 839:142831. https://doi.org/10.1016/j.msea.2022.142831

    Pirmohammad S, Ahmadi-Saravani S, Zakavi SJ, 2019. Crashworthiness optimization design of foam-filled tapered decagonal structures subjected to axial and oblique impacts., 26(10):2729-2745. https://doi.org/10.1007/s11771-019-4209-1

    Sadighi A, Azimi MB, Asgari M, et al., 2022. Crashworthiness of hybrid composite-metal tubes with lateral corrugations in axial and oblique loadings., 27(6):1813-1829. https://doi.org/10.1080/13588265.2021.2017654

    Salehi M, Mirbagheri SMH, Ramiani AJ, 2021. Efficient energy absorption of functionally-graded metallic foam-filled tubes under impact loading., 31(1):92-110. https://doi.org/10.1016/S1003-6326(20)65480-2

    Sarkabiri B, Jahan A, Rezvani MJ, 2017. Crashworthiness multi-objective optimization of the thin-walled grooved conical tubes filled with polyurethane foam., 39(7):2721-2734. https://doi.org/10.1007/s40430-017-0747-3

    Su MM, Wang H, Hao H, 2019. Axial and radial compressive properties of alumina-aluminum matrix syntactic foam filled thin-walled tubes., 226:111197. https://doi.org/10.1016/j.compstruct.2019.111197

    Sun GY, Li GY, Hou SJ, et al., 2010. Crashworthiness design for functionally graded foam-filled thin-walled structures., 527(7-8):1911-1919. https://doi.org/10.1016/j.msea.2009.11.022

    Sun GY, Li SF, Liu Q, et al., 2016. Experimental study on crashworthiness of empty/aluminum foam/honeycomb-filled CFRP tubes., 152:969-993. https://doi.org/10.1016/j.compstruct.2016.06.019

    Sun GY, Li SF, Li GY, et al., 2018. On crashing behaviors of aluminium/CFRP tubes subjected to axial and oblique loading: an experimental study., 145:47-56. https://doi.org/10.1016/j.compositesb.2018.02.001

    Wang L, Zhang BY, Zhang J, et al., 2021. Deformation and energy absorption properties of cenosphere-aluminum syntactic foam-filled tubes under axial compression., 160:107364. https://doi.org/10.1016/j.tws.2020.107364

    Wang Z, Jin XH, Li Q, et al., 2019. On crashworthiness design of hybrid metal-composite structures., 171:105380. https://doi.org/10.1016/j.ijmecsci.2019.105380

    Wu SY, Li GY, Sun GY, et al., 2016. Crashworthiness analysis and optimization of sinusoidal corrugation tube., 105:121-134. https://doi.org/10.1016/j.tws.2016.03.029

    Xu BY, Sun GY, Wu S, et al., 2017. Crashworthiness analysis and optimization of Fourier varying section tubes., 92:41-58. https://doi.org/10.1016/j.ijnonlinmec.2017.03.001

    Yan LB, Chouw N, Jayaraman K, 2014. Lateral crushing of empty and polyurethane-foam filled natural flax fabric reinforced epoxy composite tubes., 63:15-26. https://doi.org/10.1016/j.compositesb.2014.03.013

    Zha YB, Wang S, Ma QH, et al., 2022. Study on the axial impact of Al-CFRP thin-walled tubes with induced design., 43(7):4660-4686. https://doi.org/10.1002/pc.26720

    Zhang BY, Lin YF, Li S, et al., 2016. Quasi-static and high strain rates compressive behavior of aluminum matrix syntactic foams., 98:288-296. https://doi.org/10.1016/j.compositesb.2016.05.034

    Zhang BY, Zhang J, Wang L, et al., 2021. Bending behavior of cenosphere aluminum matrix syntactic foam-filled circular tubes., 243:112650. https://doi.org/10.1016/j.engstruct.2021.112650

    Zhang ZY, Sun W, Zhao YS, et al., 2018. Crashworthiness of different composite tubes by experiments and simulations., 143:86-95. https://doi.org/10.1016/j.compositesb.2018.01.021

    Zou X, Gao GJ, Dong HP, et al., 2017. Crashworthiness analysis and structural optimisation of multi-cell square tubes under axial and oblique loads., 22(2):129-147. https://doi.org/10.1080/13588265.2016.1235109

    題目:軸向沖擊載荷作用下鋁基復合泡沫填充管的實驗研究

    作者:王理1,2,張博一1,2,張箭1,2,蔣月新1,2,王偉1,2,武高輝3

    機構(gòu):1哈爾濱工業(yè)大學,土木工程學院,中國哈爾濱,150090;2哈爾濱工業(yè)大學,結(jié)構(gòu)工程災變與控制教育部重點實驗室,中國哈爾濱,150090;3哈爾濱工業(yè)大學,金屬基復合材料工程技術(shù)中心,中國哈爾濱,150006

    目的:本文旨在分析鋁基復合泡沫在軸向沖擊荷載作用下不同參數(shù)(泡沫芯材平均粒徑和沖擊速度等)對填充管力學性能和吸能能力的影響,并研究填充管試件的設計方法,以提高泡沫填充管試件的耐撞性。

    創(chuàng)新點:1. 利用三種新型鋁基復合泡沫材料與鋁管結(jié)合,制備具有優(yōu)異性能的鋁基復合泡沫填充管試件;2. 對比分析復合泡沫填充管在不同類型荷載作用下的吸能表現(xiàn)。

    方法:1. 通過沖擊加載實驗,研究軸向沖擊荷載作用下復合泡沫平均粒徑和加載速度對填充管試件力學性能的影響(圖12和13);2. 通過結(jié)合靜力加載實驗,對比分析填充管在兩種荷載作用下變形模式和吸能能力的特點,并驗證復合泡沫填充管緩沖吸能的優(yōu)越性(圖22)。

    結(jié)論:1. 隨著復合泡沫芯材平均孔徑的增加,試件的塑性變形能力增強。2. 鋁管能有效限制芯材的開裂,使試件的初始峰值壓碎載荷和平均壓碎載荷均有明顯提高。3. 所有鋁復合泡沫填充管在沖擊加載下的比吸能均高于15 J/g;其中150SFFT的比吸能可達25 J/g,優(yōu)于普通泡沫鋁試件。4. 150SFFT在軸向沖擊載荷下的峰值載荷是靜態(tài)壓縮載荷下的1.93倍;沖擊載荷下材料的應力水平提高,且填充管試件的有效吸能率可達97.8%。

    關(guān)鍵詞:鋁基復合泡沫;耐撞性;力學性能;能量吸收

    https://doi.org/10.1631/jzus.A2200430

    https://doi.org/10.1631/jzus.A2200430

    ? Zhejiang University Press 2023

    Sept. 15, 2022;

    Jan. 21, 2023;

    July 22, 2023; Online first Sept. 8, 2023

    猜你喜歡
    力學性能
    反擠壓Zn-Mn二元合金的微觀組織與力學性能
    Pr對20MnSi力學性能的影響
    云南化工(2021年11期)2022-01-12 06:06:14
    Mn-Si對ZG1Cr11Ni2WMoV鋼力學性能的影響
    山東冶金(2019年3期)2019-07-10 00:54:00
    采用稀土-B復合變質(zhì)劑提高ZG30MnSi力學性能
    碳纖維增強PBT/ABS—g—MAH復合材料的力學性能和流變行為
    中國塑料(2016年6期)2016-06-27 06:34:16
    紡織纖維彎曲力學性能及其應用
    MG—MUF包覆阻燃EPS泡沫及力學性能研究
    中國塑料(2015年12期)2015-10-16 00:57:14
    EHA/PE復合薄膜的力學性能和阻透性能
    中國塑料(2015年9期)2015-10-14 01:12:26
    PA6/GF/SP三元復合材料的制備及其力學性能研究
    中國塑料(2015年4期)2015-10-14 01:09:18
    INCONEL625+X65復合管的焊接組織與力學性能
    焊接(2015年9期)2015-07-18 11:03:53
    国产熟女午夜一区二区三区| 国产精品野战在线观看 | 久久国产精品影院| 热re99久久国产66热| 亚洲欧美日韩高清在线视频| 欧美丝袜亚洲另类 | 人人妻人人爽人人添夜夜欢视频| 久久欧美精品欧美久久欧美| av电影中文网址| 亚洲人成电影免费在线| 中文字幕人妻丝袜一区二区| 免费少妇av软件| 亚洲精品一区av在线观看| 91大片在线观看| 男人的好看免费观看在线视频 | 91精品三级在线观看| 国产成人系列免费观看| 动漫黄色视频在线观看| 国产精品一区二区在线不卡| 国产亚洲欧美98| 中国美女看黄片| 久久久水蜜桃国产精品网| 乱人伦中国视频| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲欧美精品永久| 超色免费av| 大陆偷拍与自拍| 精品人妻在线不人妻| 久久久久久人人人人人| 一本大道久久a久久精品| 久久久国产一区二区| 18美女黄网站色大片免费观看| 19禁男女啪啪无遮挡网站| 少妇被粗大的猛进出69影院| 色老头精品视频在线观看| 久久中文字幕一级| 国产亚洲欧美在线一区二区| 老汉色∧v一级毛片| 色播在线永久视频| www.熟女人妻精品国产| 狂野欧美激情性xxxx| 桃色一区二区三区在线观看| 久久九九热精品免费| 国产伦人伦偷精品视频| 午夜福利免费观看在线| 宅男免费午夜| 久久久国产欧美日韩av| 色综合婷婷激情| 国产色视频综合| 成人亚洲精品一区在线观看| 欧美黄色片欧美黄色片| 国产欧美日韩一区二区三| 国产亚洲av高清不卡| 亚洲av片天天在线观看| 午夜久久久在线观看| 亚洲色图 男人天堂 中文字幕| 又大又爽又粗| 午夜福利在线观看吧| 亚洲av熟女| 亚洲av成人av| 免费在线观看完整版高清| 99久久人妻综合| 女性被躁到高潮视频| 成人永久免费在线观看视频| 日日爽夜夜爽网站| 亚洲精品国产一区二区精华液| 丝袜美腿诱惑在线| 黄色女人牲交| 亚洲精品久久成人aⅴ小说| 丁香欧美五月| 日韩精品中文字幕看吧| 国产精品久久久久成人av| 一级毛片高清免费大全| 成人精品一区二区免费| svipshipincom国产片| 亚洲一区高清亚洲精品| 在线观看免费午夜福利视频| 日韩高清综合在线| 欧美日韩乱码在线| av欧美777| 无遮挡黄片免费观看| 少妇粗大呻吟视频| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美不卡视频在线免费观看 | xxx96com| 日韩欧美在线二视频| 亚洲欧美激情综合另类| 久久午夜亚洲精品久久| 夜夜爽天天搞| 黄色视频,在线免费观看| 99精品欧美一区二区三区四区| 国产一区在线观看成人免费| 男人舔女人的私密视频| 国产精品亚洲一级av第二区| 老司机深夜福利视频在线观看| 国产激情欧美一区二区| 中文字幕最新亚洲高清| 亚洲欧美精品综合久久99| 精品熟女少妇八av免费久了| 大香蕉久久成人网| 波多野结衣一区麻豆| 国内毛片毛片毛片毛片毛片| 在线天堂中文资源库| 日韩 欧美 亚洲 中文字幕| 国产在线观看jvid| 两个人免费观看高清视频| 99精品欧美一区二区三区四区| 国产欧美日韩一区二区三| 亚洲国产精品sss在线观看 | 黄色视频,在线免费观看| 亚洲国产精品一区二区三区在线| 99在线人妻在线中文字幕| 亚洲 国产 在线| 丝袜在线中文字幕| 妹子高潮喷水视频| 成人av一区二区三区在线看| 乱人伦中国视频| 99久久久亚洲精品蜜臀av| 一二三四在线观看免费中文在| 欧美乱码精品一区二区三区| 欧美日韩国产mv在线观看视频| 91九色精品人成在线观看| 欧美日韩一级在线毛片| 亚洲色图 男人天堂 中文字幕| 99香蕉大伊视频| 中文字幕人妻熟女乱码| 一进一出抽搐动态| 国产精品成人在线| 国产成人影院久久av| 午夜福利在线观看吧| a在线观看视频网站| 亚洲人成电影免费在线| 操出白浆在线播放| 男女午夜视频在线观看| 91成人精品电影| 精品人妻在线不人妻| av有码第一页| 男人舔女人下体高潮全视频| 国产又爽黄色视频| 啦啦啦免费观看视频1| 精品一品国产午夜福利视频| 精品人妻在线不人妻| 18禁国产床啪视频网站| 88av欧美| 亚洲精品美女久久av网站| 一个人免费在线观看的高清视频| 国产精品九九99| 日本a在线网址| 最近最新中文字幕大全免费视频| 国内毛片毛片毛片毛片毛片| 99精国产麻豆久久婷婷| 国产亚洲欧美在线一区二区| 老汉色av国产亚洲站长工具| 久久中文看片网| 亚洲第一青青草原| 少妇被粗大的猛进出69影院| 国产蜜桃级精品一区二区三区| 在线观看一区二区三区| 天天影视国产精品| 在线观看一区二区三区激情| av天堂在线播放| 精品人妻1区二区| 人人妻人人爽人人添夜夜欢视频| www.999成人在线观看| 亚洲激情在线av| 国产精品国产av在线观看| 亚洲激情在线av| 欧美黄色片欧美黄色片| www.999成人在线观看| 亚洲精品粉嫩美女一区| 欧美激情极品国产一区二区三区| 亚洲中文av在线| 亚洲国产精品一区二区三区在线| 免费观看人在逋| 久久精品91无色码中文字幕| 午夜亚洲福利在线播放| 久久中文字幕人妻熟女| 亚洲中文av在线| 在线视频色国产色| 亚洲视频免费观看视频| 精品乱码久久久久久99久播| 免费高清在线观看日韩| 免费人成视频x8x8入口观看| 18美女黄网站色大片免费观看| 人人妻人人澡人人看| 人妻久久中文字幕网| 黄色怎么调成土黄色| 成年版毛片免费区| 悠悠久久av| 国产99白浆流出| 九色亚洲精品在线播放| 午夜两性在线视频| 国产成人欧美| 亚洲精品久久成人aⅴ小说| 91成年电影在线观看| 欧美成人性av电影在线观看| 国产午夜精品久久久久久| 丝袜美腿诱惑在线| 中文字幕人妻丝袜制服| 香蕉丝袜av| 久久精品91无色码中文字幕| 欧美丝袜亚洲另类 | 精品国产一区二区久久| 亚洲精品国产一区二区精华液| 男男h啪啪无遮挡| 亚洲av五月六月丁香网| 新久久久久国产一级毛片| 两个人免费观看高清视频| 啦啦啦免费观看视频1| 亚洲精品久久成人aⅴ小说| 精品乱码久久久久久99久播| а√天堂www在线а√下载| 欧美日韩福利视频一区二区| 精品熟女少妇八av免费久了| 国产区一区二久久| 多毛熟女@视频| 脱女人内裤的视频| 久久精品亚洲熟妇少妇任你| 在线观看www视频免费| 午夜免费成人在线视频| 色婷婷av一区二区三区视频| 国产熟女午夜一区二区三区| 久久久国产一区二区| 99国产精品99久久久久| 亚洲欧美日韩另类电影网站| 丰满饥渴人妻一区二区三| 亚洲精品中文字幕在线视频| 成人国产一区最新在线观看| 搡老岳熟女国产| 欧美老熟妇乱子伦牲交| 女性生殖器流出的白浆| 欧美激情高清一区二区三区| av超薄肉色丝袜交足视频| tocl精华| 最新在线观看一区二区三区| 黑人猛操日本美女一级片| av国产精品久久久久影院| 91九色精品人成在线观看| 国产精品98久久久久久宅男小说| 黄色 视频免费看| 亚洲国产看品久久| 1024香蕉在线观看| 欧美日韩乱码在线| 99香蕉大伊视频| 在线播放国产精品三级| 亚洲专区字幕在线| 777久久人妻少妇嫩草av网站| 老司机靠b影院| 精品人妻在线不人妻| 免费观看人在逋| 很黄的视频免费| 亚洲 欧美一区二区三区| 欧美激情久久久久久爽电影 | 午夜91福利影院| 夜夜看夜夜爽夜夜摸 | videosex国产| 亚洲av日韩精品久久久久久密| 久久中文字幕人妻熟女| 亚洲一区二区三区欧美精品| 国产国语露脸激情在线看| 一级毛片女人18水好多| 成人特级黄色片久久久久久久| av在线播放免费不卡| 男女床上黄色一级片免费看| 亚洲一区二区三区欧美精品| 成人三级做爰电影| 久久精品亚洲熟妇少妇任你| 女同久久另类99精品国产91| 女人高潮潮喷娇喘18禁视频| 国产精品久久久人人做人人爽| 亚洲欧美一区二区三区黑人| 精品一区二区三区四区五区乱码| 怎么达到女性高潮| 欧美亚洲日本最大视频资源| 午夜福利欧美成人| 黄频高清免费视频| 国产精品美女特级片免费视频播放器 | 91老司机精品| a级毛片黄视频| 久久欧美精品欧美久久欧美| 天堂动漫精品| 亚洲中文av在线| 欧美乱妇无乱码| 国产精品久久电影中文字幕| 免费在线观看视频国产中文字幕亚洲| 韩国精品一区二区三区| 久久精品aⅴ一区二区三区四区| 长腿黑丝高跟| 一个人观看的视频www高清免费观看 | 在线观看免费午夜福利视频| 中文字幕最新亚洲高清| 老司机亚洲免费影院| 18禁观看日本| 国产av一区二区精品久久| 男女下面插进去视频免费观看| 欧美人与性动交α欧美精品济南到| 日韩欧美在线二视频| 欧美乱码精品一区二区三区| 国产无遮挡羞羞视频在线观看| 日韩精品免费视频一区二区三区| 国产精品爽爽va在线观看网站 | 在线av久久热| 国产精品野战在线观看 | 欧美激情高清一区二区三区| 久9热在线精品视频| 成人18禁在线播放| 国产成+人综合+亚洲专区| 丝袜在线中文字幕| 婷婷六月久久综合丁香| 国产精品久久视频播放| 久久伊人香网站| 韩国av一区二区三区四区| 亚洲国产欧美日韩在线播放| 久久精品国产清高在天天线| 国产精品自产拍在线观看55亚洲| 99热国产这里只有精品6| xxxhd国产人妻xxx| 12—13女人毛片做爰片一| 十八禁网站免费在线| 电影成人av| 中文字幕色久视频| 亚洲自偷自拍图片 自拍| 亚洲精品在线观看二区| 黄色视频,在线免费观看| x7x7x7水蜜桃| av国产精品久久久久影院| 精品日产1卡2卡| 久久人妻av系列| 成人特级黄色片久久久久久久| 精品国产美女av久久久久小说| 在线观看午夜福利视频| 亚洲男人的天堂狠狠| 麻豆成人av在线观看| 久久狼人影院| 久久中文字幕一级| 久久久久久亚洲精品国产蜜桃av| 国产成人精品久久二区二区免费| 精品国产超薄肉色丝袜足j| 88av欧美| 成人手机av| 窝窝影院91人妻| 国产亚洲精品第一综合不卡| 日日干狠狠操夜夜爽| 可以免费在线观看a视频的电影网站| 亚洲午夜理论影院| 最好的美女福利视频网| 俄罗斯特黄特色一大片| 操美女的视频在线观看| av电影中文网址| 亚洲国产精品sss在线观看 | 超色免费av| 脱女人内裤的视频| 大型黄色视频在线免费观看| 一个人免费在线观看的高清视频| 一级作爱视频免费观看| 最新美女视频免费是黄的| 国产成人欧美| 午夜福利免费观看在线| 夜夜夜夜夜久久久久| 女性被躁到高潮视频| 国产亚洲精品第一综合不卡| 欧美日韩亚洲综合一区二区三区_| 精品国产一区二区久久| 亚洲av成人一区二区三| av中文乱码字幕在线| 日韩欧美免费精品| www国产在线视频色| 女性被躁到高潮视频| 午夜a级毛片| 久久天躁狠狠躁夜夜2o2o| 中文字幕最新亚洲高清| 亚洲三区欧美一区| 欧美黑人精品巨大| 亚洲五月天丁香| 国产人伦9x9x在线观看| 精品福利观看| 一区二区日韩欧美中文字幕| 精品福利永久在线观看| 色综合欧美亚洲国产小说| 好看av亚洲va欧美ⅴa在| 美女大奶头视频| 51午夜福利影视在线观看| www.熟女人妻精品国产| 亚洲 欧美 日韩 在线 免费| 日韩三级视频一区二区三区| 性少妇av在线| 老熟妇乱子伦视频在线观看| 亚洲成av片中文字幕在线观看| 午夜免费激情av| 精品久久久久久久久久免费视频 | 久久久久久免费高清国产稀缺| 国产精品九九99| 久久久久久亚洲精品国产蜜桃av| 777久久人妻少妇嫩草av网站| 嫩草影视91久久| 欧美黄色片欧美黄色片| 18美女黄网站色大片免费观看| 免费不卡黄色视频| 777久久人妻少妇嫩草av网站| 久久精品影院6| 精品欧美一区二区三区在线| 女同久久另类99精品国产91| 午夜免费观看网址| 麻豆av在线久日| www.熟女人妻精品国产| 久热爱精品视频在线9| 国产又爽黄色视频| a在线观看视频网站| 亚洲午夜理论影院| 久久亚洲精品不卡| 亚洲人成电影免费在线| 91在线观看av| 村上凉子中文字幕在线| 老鸭窝网址在线观看| 国产av一区在线观看免费| 久久香蕉精品热| 亚洲熟妇熟女久久| 性少妇av在线| 一级a爱视频在线免费观看| 国产三级黄色录像| 免费久久久久久久精品成人欧美视频| 久久婷婷成人综合色麻豆| 国内毛片毛片毛片毛片毛片| 成人影院久久| 99久久人妻综合| a级毛片在线看网站| 91精品国产国语对白视频| 亚洲欧美日韩无卡精品| 丝袜人妻中文字幕| 真人做人爱边吃奶动态| 日韩 欧美 亚洲 中文字幕| 国产欧美日韩一区二区精品| 日韩国内少妇激情av| 免费在线观看完整版高清| 国产成人一区二区三区免费视频网站| 欧美国产精品va在线观看不卡| 一进一出好大好爽视频| 中文字幕人妻熟女乱码| 欧美性长视频在线观看| 国产精品二区激情视频| av片东京热男人的天堂| 动漫黄色视频在线观看| 亚洲中文av在线| 亚洲一区高清亚洲精品| 黑人巨大精品欧美一区二区mp4| 美女高潮到喷水免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品在线美女| 久久人妻福利社区极品人妻图片| 正在播放国产对白刺激| 乱人伦中国视频| 中国美女看黄片| 国产精品野战在线观看 | 桃红色精品国产亚洲av| 精品卡一卡二卡四卡免费| 两个人免费观看高清视频| 一区在线观看完整版| 神马国产精品三级电影在线观看 | 国产欧美日韩一区二区三| 在线观看免费午夜福利视频| 不卡av一区二区三区| 美女高潮喷水抽搐中文字幕| 久久草成人影院| 亚洲精品国产区一区二| 欧美激情高清一区二区三区| 精品一区二区三区av网在线观看| 国产又色又爽无遮挡免费看| 黄色片一级片一级黄色片| 变态另类成人亚洲欧美熟女 | av在线播放免费不卡| 日本wwww免费看| 天堂俺去俺来也www色官网| 国产成人精品无人区| 亚洲精品av麻豆狂野| 一级a爱片免费观看的视频| 69精品国产乱码久久久| 国产精品久久久久成人av| 在线免费观看的www视频| 夜夜夜夜夜久久久久| 久久香蕉精品热| 黄色视频,在线免费观看| 50天的宝宝边吃奶边哭怎么回事| 日韩 欧美 亚洲 中文字幕| 国产精品秋霞免费鲁丝片| 黑人巨大精品欧美一区二区mp4| 99精国产麻豆久久婷婷| 色尼玛亚洲综合影院| 亚洲精品在线观看二区| 青草久久国产| 亚洲色图av天堂| 国产精品自产拍在线观看55亚洲| 怎么达到女性高潮| av欧美777| 女人被狂操c到高潮| 999久久久国产精品视频| 嫁个100分男人电影在线观看| 岛国在线观看网站| 露出奶头的视频| 人人澡人人妻人| avwww免费| 最新在线观看一区二区三区| 亚洲国产欧美日韩在线播放| 亚洲精华国产精华精| 精品久久久精品久久久| 长腿黑丝高跟| 伦理电影免费视频| 精品久久久久久,| 免费在线观看黄色视频的| 亚洲精品在线美女| 母亲3免费完整高清在线观看| 亚洲午夜理论影院| 亚洲久久久国产精品| 校园春色视频在线观看| 韩国精品一区二区三区| tocl精华| 成人特级黄色片久久久久久久| 一个人观看的视频www高清免费观看 | 制服人妻中文乱码| 久久国产精品男人的天堂亚洲| 久久久国产成人免费| 一边摸一边做爽爽视频免费| 在线看a的网站| 香蕉久久夜色| 琪琪午夜伦伦电影理论片6080| 精品久久久久久久久久免费视频 | 51午夜福利影视在线观看| 色播在线永久视频| 亚洲熟妇熟女久久| 制服人妻中文乱码| 久久精品aⅴ一区二区三区四区| 女人被狂操c到高潮| 日本五十路高清| 美女 人体艺术 gogo| 纯流量卡能插随身wifi吗| 91国产中文字幕| 国产乱人伦免费视频| 91av网站免费观看| 成人精品一区二区免费| 免费高清视频大片| 中文字幕最新亚洲高清| 日韩 欧美 亚洲 中文字幕| 99久久精品国产亚洲精品| 12—13女人毛片做爰片一| 在线观看午夜福利视频| 日韩精品中文字幕看吧| 国产精品av久久久久免费| 国产成人免费无遮挡视频| 99精品欧美一区二区三区四区| 男女高潮啪啪啪动态图| 国产真人三级小视频在线观看| 性少妇av在线| 大型黄色视频在线免费观看| 一区在线观看完整版| 久久精品91蜜桃| 久久久久国内视频| 欧美日韩精品网址| 大型av网站在线播放| 日韩国内少妇激情av| 91av网站免费观看| 日韩免费高清中文字幕av| 99精国产麻豆久久婷婷| 在线观看免费高清a一片| 老汉色av国产亚洲站长工具| 国产aⅴ精品一区二区三区波| 丰满的人妻完整版| 午夜成年电影在线免费观看| 国产不卡一卡二| 熟女少妇亚洲综合色aaa.| 男女下面进入的视频免费午夜 | 女人爽到高潮嗷嗷叫在线视频| 午夜福利在线免费观看网站| 久久国产亚洲av麻豆专区| 欧美日本中文国产一区发布| 免费观看精品视频网站| 国产成年人精品一区二区 | 国产免费av片在线观看野外av| 熟女少妇亚洲综合色aaa.| 99re在线观看精品视频| 国产亚洲欧美精品永久| 国产真人三级小视频在线观看| 在线av久久热| 男女午夜视频在线观看| 美女 人体艺术 gogo| 国产深夜福利视频在线观看| 午夜老司机福利片| 日韩精品青青久久久久久| aaaaa片日本免费| www.自偷自拍.com| 老司机午夜十八禁免费视频| 99久久人妻综合| 免费不卡黄色视频| 国产男靠女视频免费网站| 成人国语在线视频| 巨乳人妻的诱惑在线观看| 精品久久久久久成人av| 欧美黑人精品巨大| 亚洲精品国产一区二区精华液| 国产精品久久久人人做人人爽| 色尼玛亚洲综合影院| 91麻豆精品激情在线观看国产 | 精品电影一区二区在线| 99精品久久久久人妻精品| 久久人人97超碰香蕉20202| 国产成人一区二区三区免费视频网站| 亚洲伊人色综图| 最新在线观看一区二区三区| 亚洲自拍偷在线| 亚洲欧美精品综合久久99| 国产精品香港三级国产av潘金莲| 日韩欧美在线二视频| 久久天堂一区二区三区四区| 国产在线精品亚洲第一网站| 99国产精品免费福利视频| 中文字幕av电影在线播放| 国产av精品麻豆|