• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    State observers of quasi-reversible discrete-time switched linear systems

    2023-11-16 10:12:36ZhendongSunQiangZhang
    Control Theory and Technology 2023年3期

    Zhendong Sun·Qiang Zhang

    Abstract This work addresses observer design for the general class of quasi-reversible discrete-time switched linear systems.Under the mild assumption that the switched system is observable,we present constructive approaches to design state observers to estimate the state.Two types of observers are designed:one is with full order and the other is with reduced order,both could reconstruct the system state in finite times.A numerical example is presented to illustrate the effectiveness of the proposed approaches.

    Keywords Switched linear systems·Observer·Observability

    1 Introduction

    A linear switched system consists of a set of linear subsystems and a switching signal that coordinates the switching among the subsystems.The state of the subsystems is continuous in nature, while the state of the switching signal is discrete/logic in nature.The interaction between continuous state and logic state is an appealing topic that attracts numerousattention[1,2].Asafundamentalclassofhybridsystems,switched linear systems are powerful in both representability and control ability.Interested readers are referred to the monographs[3–5]for progress of switched and hybrid systems.

    For a switched linear system, the major topics include stability analysis,stabilizing design,and performance optimization.As a dominant approach for addressing stability and stabilizing design, many Lyapunov-like methods have been developed for dealing with switched systems.For example, the well-known multiple Lyapunov function technique[6] and the composite Lyapunov function technique [7]were successfully applied to switched systems.However,it has been revealed that, even for a planar switched linear autonomous system,stabilizability does not imply the existence of a convex Lyapunov function[8].For discrete-time switchedlinearsystems,thedynamicprogrammingapproach provides constructive design for the stabilization problem[9].Other approaches including the automata-driven switching scheme [10] and the dissipativity approach [11] were proposed to investigate stability/stabilizability for specific classes of switched systems.

    In many practical scenarios,the system state is not totally available, and we have to design state observers/estimators to reconstruct/approximate the state.It has been revealed that, for switched linear systems, the observer design is dual with the state feedback stabilizing design [1, 12].As the state feedback stabilization problem is still unsolved for general switched linear systems,the observer design is also open.For continuous-time switched linear systems,a hybrid observer with impulse was designed for achieving finite-time reconstruction of the state[13].For reversible discrete-time switched autonomous systems, a switched observer was designed for achieving finite-time reconstruction of the state[14].It is interesting to note that, switched observers were also used for parameter identifying of adaptive control[15]and linear time-varying systems[16].

    In this work, we study the observer design problem for the general class of quasi-reversible discrete-time switched linear systems with measured outputs.To estimate the state,two types of observers are proposed: one is of full order and the other is of reduced order.In both observers the gain matrices are explicitly designed such that the state transition matrices of the error systems are deadbeat in finite times.In this way,the initial state is exactly reconstructed for any control input.Compared with the work[14],the current work extends the system framework from reversible autonomous systems to quasi-reversible controlled systems.Besides,this work also designs a reduced-order observer, which has not been addressed in the literature.

    2 Preliminaries

    Let R be the set of real numbers, and N+be the set of non-negative integers.For positive integerk, letk={0,1,...,k-1}.LetInbe then-dimensional identity matrix.

    2.1 System description

    In this work, we address the discrete-time switched linear system given by

    wherex(t) ∈Rnis the continuous state,σ(t) ∈M={1,2,...,m}is the switching signal,u(t)∈Rqis the control input,y(t)∈Rpis the system output.Ai,Bi,Ci,i∈Mare real constant matrices with compatible dimensions.For convenience,the system is denoted byΣ(Ci,Ai,Bi)M.Without loss of generality,we assume thatt0=0.

    Letφ(t;t0,x0,σ,u) be the state of system (1) at timetstarting fromx0att0with switching lawσand control inputu.It is clear that

    whereψis the open-loop state transfer matrix

    A switching path is a time-driven switching signal defined over a finite-time interval.Suppose thatθis switching path defined overs,then the length ofθis|θ|=s.

    2.2 Definitions

    Definition 1 Statex0is said to be unobservable if it is indistinguishable from the origin,that is,for any switching signalσand control inputu,we have

    The switched system is said to be completely (switched)observable if the unobservable set is{0}.

    Definition 2 A state observer for switched system (1) is a dynamical system

    wherefis a proper vector function.For a switching signalσ,the observer is said to beσ-asymptotic if limt→+∞(x(t)-z(t)) = 0 for anyx0,z0,andu.When there exists aT>t0such thatx(t)=z(t)for allt≥T,the observer is said to beσ-T-deadbeat.

    Definition 3 Theswitchedsystemissaidtobe(output)quasireversible,if

    2.3 Assumptions and supporting lemma

    Throughout the work,we made the following assumptions:

    Assumption 1 Switched system(1)is quasi-reversible.

    Assumption 2 Switched system (1) is completely observable.

    Remark 1When the switched system is quasi-reversible,the unobservable set is a subspace of the total state space.Furthermore, if the pair(C,A) is quasi-reversible, there is a matrixE∈Rn×psuch thatA+ECis nonsingular.By abuse of notation,we defineC A-1=C(A+EC)-1.Note thatC A-1relies explicitly onE,yet its image space is the same for all possibleE.

    Lemma 1Under Assumptions1and2,there is a positive integer,and a switching path θ defined over T,such that the observability matrix

    is of full rank.

    ProofIt has been established in[17–19]that,for any completely controllable reversible discrete-time switched linear system, the full controllability could be realized through a switching path with less thanswitches.By virtual of the duality between controllability and observability,the lemma follows.■

    3 Main results

    In this section, we propose two kinds of state observers to estimate the state.The former is in full order,while the latter is in reduced order.Both could exactly reconstruct the state in finite times.

    3.1 Full-order observer

    Note that the observability matrix in(5)is in nested structure.Without loss of generality, we assume that rankCθ(0)≥1.By searching linearly independent rows from the top to the bottom,we havelblock rows 0=ν1<ν2<···<νl≤Tsuch that

    Letik=θ(νk),k=1,...,l,we have indicesκ1,...,κnandj1,...,jlwithj1+···+jl=n,such that the matrix

    is square and nonsingular,whereCi,jdenotes thejth row of matrixCi.

    DenoteGk=Ψ(νk+1,0,θ),k= 1,...,l-1.Let ?Cikbe the matrix composed by theκth rows ofCik,k=1,...,l.We could re-write matrixQby

    Letζibe thej-th column of matrixQ-1.Furthermore,define

    To estimate the state,we propose the following observer:

    Theorem 1SupposethattheswitchedsystemsatisfiesAssumptions1and2.For any initial state x0and control input u,we have

    ProofLet ?x(t) =x(t) -z(t),t= 0,1,...,T.It can be verified that

    As a result,we have

    Simple calculation gives

    where

    Utilizing the fact thatH1is orthogonal to ˉCi2G1,we have

    Continue this process gives

    In the same manner,we could calculate that

    Therefore,we have

    which directly leads toΛ=0.■

    3.2 Reduced-order observer

    In this section, we propose a reduced-order observer that achieves deadbeat reconstruction of the state.The motivation of introducing reduced-order observers is twofold:(i)compared with a full-order observer, the transient performance of the lower-order observer usually could be improved as the system order is reduced;and(ii)in a reduced-order observer,the switching law design is much simpler with fewer switches in the observation period.

    We assume that the output is independent of the switching law,that is,y=CxwithC/=0.

    system could be re-written by

    where

    Lemma 2Under Assumptions1and2,switched systemisquasi-reversibleandcompletelyobservable.

    ProofFirst, it is clear thatis quasireversible.

    Second,note that the transformed switched system(12)is completely observable.This means that the matrix

    is of full rank.As the result,we have

    Construct the observer that is the(n-p)th-order switched linear system given by

    where

    Theorem 2SupposethattheswitchedsystemsatisfiesAssumptions1and2.For any initial state x0and control input u,we have

    ProofDefine the error variable

    It can be verified that

    Thus,the error dynamics is a switched autonomous system.Note the state transition matrix of the error system along switching path ˉθis exactly the left-hand matrix in (13).It follows straightforwardly that Eq.(16)holds true for anyx0andu.■

    Remark 3The reduced-order observer could reconstruct the state inυn-psteps.Note thatCompared with the full-order observer, the upper bound of the observation period is smaller.

    Remark 4While the design procedure could be extended to more general situation that the output relies on the switching law,there are still some specific cases that are quite involved.For instance,examine the planar switched linear system with

    The switched system is completely observable,yet we do not know whether it admits a reduced-order observer or not.

    3.3 Numerical example

    Let us examine the fifth-order switched linear system with two subsystems,whose system matrices are

    It can be easily verified that both Assumptions 1 and 2 are satisfied.

    Simple calculation shows that the switching pathθ=(1,2,1,2,1,2,1) is an observability switching path.By applying the design procedure,we have observer gain matrices

    Fig.1 Full-order dynamics

    The observer is

    which could achieve deadbeat reconstruction of the state in 7 steps.Figure 1 depicts the state,observer,and error trajectories with initial statex0= [-1 2 1 -2 1]Tand control inputu(t)=cos(t),t=0,1,2,....

    Next, assume that bothx1andx2could be consistently measured, that isC=C1.Let ˉθ=(2,1,2,1,2), and the gain matrices are

    The reduced-order observer is

    whereL(0)=L(2)=L1,L(4)=L3,andL(1)=L(3)=03×2.This could reconstruct the state in 5 steps.Figure 2 depicts the state, observer, and error trajectories with the same initial state and control input as in Fig.1.It can be seen that the error dynamics is much smaller than that with the full-order observer.

    Fig.2 Reduced-order dynamics

    4 Conclusion

    In this work, the problem of observer design has been addressed for quasi-reversible discrete-time switched linear systems with measured outputs.We proposed two kinds of state observers,and proved that the observers could achieve finite-time reconstruction of the state.

    It should be noted that,the observer could achieve exact state reconstruction in a finite time,thus any state feedback control/switching laws could be replaced by observer-driven control/switching laws.However,when the switched system undergoes uncertainty/perturbation, the state estimate will be inexact.In this case, it is an interesting issue to develop observer-driven control/switching laws for achieving stability of the overall system.

    Acknowledgements The authors are grateful to the anonymous reviewers for their constructive comments.

    国产激情偷乱视频一区二区| 毛片一级片免费看久久久久 | 亚洲精品一区av在线观看| av在线蜜桃| 九九久久精品国产亚洲av麻豆| 亚洲精品色激情综合| 高清日韩中文字幕在线| 波多野结衣高清作品| 麻豆国产97在线/欧美| 国产成人影院久久av| 欧美日韩亚洲国产一区二区在线观看| 婷婷亚洲欧美| 精品人妻偷拍中文字幕| 国产av不卡久久| www.www免费av| 在现免费观看毛片| 国产探花在线观看一区二区| 99久久久亚洲精品蜜臀av| 国产91精品成人一区二区三区| 日韩av在线大香蕉| 欧美高清性xxxxhd video| 亚洲,欧美,日韩| 亚洲精品亚洲一区二区| 九九热线精品视视频播放| 日韩亚洲欧美综合| 成人一区二区视频在线观看| 欧美一区二区精品小视频在线| 免费电影在线观看免费观看| 欧美成狂野欧美在线观看| 黄色丝袜av网址大全| 国内精品一区二区在线观看| 国内精品美女久久久久久| 国产私拍福利视频在线观看| 亚洲最大成人手机在线| 国产精品电影一区二区三区| 国产一区二区三区视频了| 我的女老师完整版在线观看| 禁无遮挡网站| 欧美最黄视频在线播放免费| 日韩免费av在线播放| 国产精品一区二区三区四区久久| 麻豆国产av国片精品| 国产高清三级在线| 每晚都被弄得嗷嗷叫到高潮| 哪里可以看免费的av片| 很黄的视频免费| 亚洲av中文字字幕乱码综合| 国产精品影院久久| 国内毛片毛片毛片毛片毛片| 人妻久久中文字幕网| 久久久久久久久久成人| 少妇被粗大猛烈的视频| 国产成人福利小说| 一级作爱视频免费观看| 成人欧美大片| 波多野结衣高清无吗| 成年女人永久免费观看视频| 国产成人av教育| 国产av麻豆久久久久久久| 1000部很黄的大片| 欧美精品国产亚洲| 一级黄片播放器| 国产在线男女| 自拍偷自拍亚洲精品老妇| 亚洲av电影在线进入| 无人区码免费观看不卡| 91狼人影院| av在线观看视频网站免费| 亚洲最大成人av| 99热6这里只有精品| 色综合婷婷激情| 久久欧美精品欧美久久欧美| 成人特级av手机在线观看| 热99re8久久精品国产| 国产在线男女| 日韩欧美国产一区二区入口| 一夜夜www| 一级av片app| 欧美+日韩+精品| 亚洲成人精品中文字幕电影| 久久亚洲真实| 亚洲第一电影网av| 精品国产亚洲在线| 日韩欧美 国产精品| 内地一区二区视频在线| 高清在线国产一区| 中文字幕高清在线视频| 亚洲精品一卡2卡三卡4卡5卡| 99久久久亚洲精品蜜臀av| 一级a爱片免费观看的视频| 久久婷婷人人爽人人干人人爱| 亚洲内射少妇av| 色播亚洲综合网| 少妇人妻精品综合一区二区 | 久久久久性生活片| 看免费av毛片| 村上凉子中文字幕在线| 国产精品久久视频播放| 亚洲在线自拍视频| 亚洲专区中文字幕在线| 国产精品女同一区二区软件 | 国产伦在线观看视频一区| 亚洲美女黄片视频| 午夜福利在线观看吧| 乱码一卡2卡4卡精品| 亚洲电影在线观看av| 天堂动漫精品| 日本黄色片子视频| 欧美区成人在线视频| 精品午夜福利在线看| 国产淫片久久久久久久久 | 91麻豆精品激情在线观看国产| 俺也久久电影网| 国产色婷婷99| 亚洲自拍偷在线| 观看美女的网站| 欧美日韩亚洲国产一区二区在线观看| 精品一区二区三区人妻视频| 露出奶头的视频| 两人在一起打扑克的视频| 久久久久久久久久成人| 久久精品国产亚洲av香蕉五月| 免费观看的影片在线观看| 国产欧美日韩精品一区二区| 97人妻精品一区二区三区麻豆| 女人十人毛片免费观看3o分钟| 级片在线观看| 波多野结衣高清无吗| 性色av乱码一区二区三区2| 亚洲久久久久久中文字幕| 小说图片视频综合网站| 有码 亚洲区| 免费在线观看亚洲国产| 内射极品少妇av片p| 男女下面进入的视频免费午夜| 国模一区二区三区四区视频| 天堂网av新在线| 欧美又色又爽又黄视频| 最近最新免费中文字幕在线| 午夜视频国产福利| 少妇丰满av| 18禁裸乳无遮挡免费网站照片| 中出人妻视频一区二区| 99热这里只有是精品50| 淫秽高清视频在线观看| 欧美乱妇无乱码| 少妇人妻精品综合一区二区 | 欧美成人性av电影在线观看| 亚洲精品影视一区二区三区av| 麻豆国产av国片精品| www.熟女人妻精品国产| 欧美日本视频| av在线蜜桃| 黄色女人牲交| 亚洲av一区综合| 51国产日韩欧美| 日本一本二区三区精品| 内射极品少妇av片p| 男人舔奶头视频| 天堂动漫精品| 最后的刺客免费高清国语| 女人被狂操c到高潮| 一个人看的www免费观看视频| 亚洲av美国av| 欧美中文日本在线观看视频| 国产一级毛片七仙女欲春2| 90打野战视频偷拍视频| 一级作爱视频免费观看| 夜夜躁狠狠躁天天躁| 国产极品精品免费视频能看的| 五月玫瑰六月丁香| 国产淫片久久久久久久久 | 一区二区三区激情视频| 免费av毛片视频| 最近中文字幕高清免费大全6 | 国模一区二区三区四区视频| 亚洲第一电影网av| 亚洲精品一卡2卡三卡4卡5卡| 热99在线观看视频| 国产蜜桃级精品一区二区三区| 全区人妻精品视频| 亚洲精品日韩av片在线观看| 女人十人毛片免费观看3o分钟| 99热这里只有精品一区| 日韩国内少妇激情av| 亚洲av成人不卡在线观看播放网| www.999成人在线观看| 国产精品久久视频播放| 亚洲欧美日韩高清在线视频| 免费在线观看影片大全网站| 有码 亚洲区| 国产视频内射| 日本熟妇午夜| 国产av在哪里看| 97人妻精品一区二区三区麻豆| 亚洲av免费在线观看| 欧美性猛交黑人性爽| 精品久久久久久久久亚洲 | 免费无遮挡裸体视频| 一进一出抽搐gif免费好疼| 丁香欧美五月| 超碰av人人做人人爽久久| 老司机午夜十八禁免费视频| 淫妇啪啪啪对白视频| 婷婷精品国产亚洲av| 91av网一区二区| 免费观看人在逋| 最新在线观看一区二区三区| 久久久久久久久中文| 欧美一区二区精品小视频在线| 长腿黑丝高跟| 一本久久中文字幕| 又爽又黄a免费视频| 白带黄色成豆腐渣| 国产一区二区在线观看日韩| 男女视频在线观看网站免费| 亚洲天堂国产精品一区在线| 自拍偷自拍亚洲精品老妇| 俺也久久电影网| 亚洲一区二区三区不卡视频| 国产一区二区在线av高清观看| 人妻久久中文字幕网| 欧美一区二区精品小视频在线| 69av精品久久久久久| 啦啦啦观看免费观看视频高清| 亚洲欧美日韩无卡精品| 在线免费观看不下载黄p国产 | 久久久久久久久大av| 在线看三级毛片| 在线天堂最新版资源| 国内毛片毛片毛片毛片毛片| 精品国内亚洲2022精品成人| 国产高清激情床上av| 美女 人体艺术 gogo| 欧美最新免费一区二区三区 | 99热这里只有是精品50| 亚洲美女视频黄频| 国产亚洲欧美98| 欧美三级亚洲精品| а√天堂www在线а√下载| 国内精品久久久久精免费| 搡老岳熟女国产| 成人性生交大片免费视频hd| 波野结衣二区三区在线| 18禁在线播放成人免费| 国产在线男女| 久久久久久久久久黄片| 亚洲精品乱码久久久v下载方式| 亚洲专区中文字幕在线| 国产精华一区二区三区| 老熟妇乱子伦视频在线观看| 美女xxoo啪啪120秒动态图 | 岛国在线免费视频观看| 在线播放无遮挡| 国产精品免费一区二区三区在线| 蜜桃亚洲精品一区二区三区| 久久热精品热| 亚洲五月婷婷丁香| 精品福利观看| 午夜亚洲福利在线播放| 久久久久久久久中文| 亚洲,欧美精品.| 中出人妻视频一区二区| 午夜福利18| 最近在线观看免费完整版| 亚洲色图av天堂| 露出奶头的视频| 亚洲在线自拍视频| 精品一区二区免费观看| 精品久久久久久成人av| 亚洲国产精品999在线| 亚洲成人久久爱视频| 一级黄色大片毛片| 女人十人毛片免费观看3o分钟| 色综合婷婷激情| 美女高潮喷水抽搐中文字幕| 亚洲天堂国产精品一区在线| 黄色女人牲交| 亚洲精品456在线播放app | 久久久久久久午夜电影| 国产在线精品亚洲第一网站| 一区福利在线观看| xxxwww97欧美| 亚洲精品在线观看二区| 三级毛片av免费| 亚洲国产高清在线一区二区三| 一夜夜www| 人人妻人人看人人澡| 亚洲自偷自拍三级| 亚洲人成网站高清观看| 精品乱码久久久久久99久播| 天堂影院成人在线观看| 草草在线视频免费看| 首页视频小说图片口味搜索| 亚洲精品在线观看二区| 麻豆成人午夜福利视频| 日本黄大片高清| 久久天躁狠狠躁夜夜2o2o| 成人永久免费在线观看视频| or卡值多少钱| 日韩欧美在线乱码| a级毛片a级免费在线| 日本一本二区三区精品| 久久久久久久久久黄片| 国产高清三级在线| 99热只有精品国产| 久久人妻av系列| 午夜a级毛片| 日本黄色片子视频| 亚洲精品在线观看二区| 老司机午夜十八禁免费视频| 欧美又色又爽又黄视频| 亚洲人成伊人成综合网2020| 亚洲精品在线观看二区| xxxwww97欧美| 亚洲美女黄片视频| 欧美中文日本在线观看视频| 人人妻,人人澡人人爽秒播| 简卡轻食公司| 一区二区三区高清视频在线| 最近在线观看免费完整版| 全区人妻精品视频| 青草久久国产| 日本成人三级电影网站| 在线观看午夜福利视频| 亚洲人成网站在线播放欧美日韩| 午夜老司机福利剧场| 婷婷亚洲欧美| 亚洲国产精品成人综合色| 好看av亚洲va欧美ⅴa在| 90打野战视频偷拍视频| 赤兔流量卡办理| 国产国拍精品亚洲av在线观看| av在线老鸭窝| 色综合亚洲欧美另类图片| 欧美日韩亚洲国产一区二区在线观看| 男女下面进入的视频免费午夜| 免费看日本二区| av在线观看视频网站免费| 热99re8久久精品国产| 欧美一区二区精品小视频在线| 成年人黄色毛片网站| 精品不卡国产一区二区三区| 性插视频无遮挡在线免费观看| 国产毛片a区久久久久| 少妇裸体淫交视频免费看高清| 看黄色毛片网站| 欧美性猛交黑人性爽| 免费一级毛片在线播放高清视频| 精品久久国产蜜桃| 人人妻人人看人人澡| 久久久久久久午夜电影| 9191精品国产免费久久| 乱人视频在线观看| 搡老熟女国产l中国老女人| 国产精品爽爽va在线观看网站| 天堂av国产一区二区熟女人妻| 国产av不卡久久| 啦啦啦观看免费观看视频高清| 深夜精品福利| 国产色婷婷99| 久久久久久国产a免费观看| 成人欧美大片| 国产精品爽爽va在线观看网站| 国产一区二区三区视频了| 男插女下体视频免费在线播放| 国产黄片美女视频| 欧美在线一区亚洲| 黄色配什么色好看| 毛片一级片免费看久久久久 | 国内精品美女久久久久久| 99久久无色码亚洲精品果冻| 欧美+日韩+精品| 国产精品精品国产色婷婷| 欧美日本视频| а√天堂www在线а√下载| 亚洲最大成人中文| 毛片一级片免费看久久久久 | 两个人的视频大全免费| av女优亚洲男人天堂| 两个人的视频大全免费| 51国产日韩欧美| 日韩精品青青久久久久久| 51国产日韩欧美| 日韩欧美国产一区二区入口| 首页视频小说图片口味搜索| 国产不卡一卡二| 精品久久久久久成人av| 亚洲av.av天堂| 又爽又黄a免费视频| 国产精品一及| 脱女人内裤的视频| 国产一区二区三区在线臀色熟女| 欧美日韩国产亚洲二区| 一夜夜www| 国产毛片a区久久久久| 99久久无色码亚洲精品果冻| 日韩中文字幕欧美一区二区| 简卡轻食公司| 人人妻人人澡欧美一区二区| 特大巨黑吊av在线直播| 九九久久精品国产亚洲av麻豆| 尤物成人国产欧美一区二区三区| 在线免费观看的www视频| 亚洲在线观看片| www.999成人在线观看| 日日夜夜操网爽| 欧美性猛交黑人性爽| 91九色精品人成在线观看| 偷拍熟女少妇极品色| 国产免费男女视频| 亚洲精品影视一区二区三区av| 女同久久另类99精品国产91| 亚洲最大成人手机在线| 91午夜精品亚洲一区二区三区 | netflix在线观看网站| 极品教师在线免费播放| 欧美不卡视频在线免费观看| 午夜免费激情av| 国产午夜福利久久久久久| 亚洲国产色片| 午夜影院日韩av| 色综合欧美亚洲国产小说| 热99在线观看视频| 成人美女网站在线观看视频| 九九热线精品视视频播放| 91在线观看av| 亚洲黑人精品在线| 午夜福利在线观看免费完整高清在 | 国产真实乱freesex| 此物有八面人人有两片| 91麻豆av在线| 免费av毛片视频| 天堂网av新在线| 欧美日韩中文字幕国产精品一区二区三区| 好看av亚洲va欧美ⅴa在| 成人午夜高清在线视频| 日本成人三级电影网站| 国产真实乱freesex| 亚洲精品在线观看二区| 中文字幕免费在线视频6| www.色视频.com| 精品久久久久久久久久免费视频| 国产精品爽爽va在线观看网站| 特级一级黄色大片| 女人十人毛片免费观看3o分钟| 麻豆成人av在线观看| 久久午夜亚洲精品久久| 国产av在哪里看| 欧美成人免费av一区二区三区| 丰满的人妻完整版| 99久久精品一区二区三区| 乱人视频在线观看| 一个人看的www免费观看视频| 午夜福利视频1000在线观看| 亚洲专区中文字幕在线| 亚洲欧美精品综合久久99| 他把我摸到了高潮在线观看| 99精品在免费线老司机午夜| 日本免费a在线| 国产精品1区2区在线观看.| 一本一本综合久久| 国产三级在线视频| 国产精品永久免费网站| 麻豆国产97在线/欧美| 色5月婷婷丁香| 欧美在线一区亚洲| 三级国产精品欧美在线观看| 桃色一区二区三区在线观看| 国产免费av片在线观看野外av| 日韩大尺度精品在线看网址| 超碰av人人做人人爽久久| .国产精品久久| 成年人黄色毛片网站| 亚洲精品在线观看二区| 日韩欧美免费精品| 九色国产91popny在线| 国产高清视频在线观看网站| 欧美高清成人免费视频www| 亚洲欧美日韩卡通动漫| 亚洲一区二区三区色噜噜| 国产中年淑女户外野战色| www日本黄色视频网| 国产大屁股一区二区在线视频| 少妇的逼好多水| 亚洲一区二区三区不卡视频| 日韩欧美精品免费久久 | 欧美3d第一页| 久久久成人免费电影| 欧美最黄视频在线播放免费| 嫩草影院新地址| 全区人妻精品视频| xxxwww97欧美| 欧美午夜高清在线| 日韩欧美在线乱码| 最近最新免费中文字幕在线| 久久久久久九九精品二区国产| 日本黄色片子视频| 我的女老师完整版在线观看| 国产精品人妻久久久久久| 国产精品久久久久久人妻精品电影| 国产极品精品免费视频能看的| 在线看三级毛片| 九九久久精品国产亚洲av麻豆| 可以在线观看毛片的网站| 在线观看美女被高潮喷水网站 | 69人妻影院| 亚洲成人免费电影在线观看| 欧美色欧美亚洲另类二区| 草草在线视频免费看| 啦啦啦韩国在线观看视频| 亚洲av第一区精品v没综合| 成人特级黄色片久久久久久久| 很黄的视频免费| 国产免费av片在线观看野外av| 看片在线看免费视频| 欧美激情在线99| 免费在线观看影片大全网站| 特大巨黑吊av在线直播| 国产av不卡久久| 天天一区二区日本电影三级| 给我免费播放毛片高清在线观看| 亚洲欧美日韩无卡精品| 淫妇啪啪啪对白视频| 观看美女的网站| 久久精品91蜜桃| 99热这里只有是精品在线观看 | 亚洲中文日韩欧美视频| 亚洲精品影视一区二区三区av| 精品人妻偷拍中文字幕| 亚洲国产精品久久男人天堂| 亚洲无线在线观看| av福利片在线观看| 亚洲欧美激情综合另类| 免费电影在线观看免费观看| 国产精品亚洲美女久久久| 国产精华一区二区三区| 美女大奶头视频| 夜夜躁狠狠躁天天躁| 日本a在线网址| 人妻夜夜爽99麻豆av| 欧美中文日本在线观看视频| 精品午夜福利在线看| 伊人久久精品亚洲午夜| 麻豆成人午夜福利视频| 午夜a级毛片| 麻豆一二三区av精品| 久久久精品欧美日韩精品| 亚洲精品一卡2卡三卡4卡5卡| 在线免费观看不下载黄p国产 | 国产成人影院久久av| 免费看a级黄色片| 国产色爽女视频免费观看| 国产精品精品国产色婷婷| 夜夜看夜夜爽夜夜摸| 国产单亲对白刺激| 国产av不卡久久| 欧美不卡视频在线免费观看| 三级毛片av免费| 国产欧美日韩一区二区三| 在线播放无遮挡| 午夜福利视频1000在线观看| 一级a爱片免费观看的视频| 啦啦啦韩国在线观看视频| 久久亚洲真实| av天堂在线播放| 一本精品99久久精品77| 亚洲av一区综合| 麻豆久久精品国产亚洲av| 国产精品久久久久久久久免 | 乱码一卡2卡4卡精品| 超碰av人人做人人爽久久| 欧美日韩黄片免| 人妻久久中文字幕网| 精品久久国产蜜桃| 一级黄色大片毛片| 美女高潮的动态| 免费高清视频大片| h日本视频在线播放| 很黄的视频免费| 欧美黄色片欧美黄色片| 少妇熟女aⅴ在线视频| 亚洲人成电影免费在线| 九九久久精品国产亚洲av麻豆| 亚洲成av人片在线播放无| 免费观看的影片在线观看| 欧美在线黄色| 少妇的逼水好多| 嫁个100分男人电影在线观看| 亚洲精品日韩av片在线观看| 成人欧美大片| 亚洲精品久久国产高清桃花| 亚洲欧美日韩无卡精品| 可以在线观看毛片的网站| 久久午夜福利片| 亚洲真实伦在线观看| 欧美一级a爱片免费观看看| 亚洲aⅴ乱码一区二区在线播放| 嫩草影视91久久| 国产色爽女视频免费观看| 久久6这里有精品| 日韩人妻高清精品专区| 国产综合懂色| 日本a在线网址| 又粗又爽又猛毛片免费看| 十八禁国产超污无遮挡网站| 99国产精品一区二区蜜桃av| 久久久久亚洲av毛片大全| 国产在线精品亚洲第一网站| 69av精品久久久久久| 99国产极品粉嫩在线观看| 精品久久久久久久久久免费视频| 51午夜福利影视在线观看| 动漫黄色视频在线观看| 中文字幕精品亚洲无线码一区|