• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    State observers of quasi-reversible discrete-time switched linear systems

    2023-11-16 10:12:36ZhendongSunQiangZhang
    Control Theory and Technology 2023年3期

    Zhendong Sun·Qiang Zhang

    Abstract This work addresses observer design for the general class of quasi-reversible discrete-time switched linear systems.Under the mild assumption that the switched system is observable,we present constructive approaches to design state observers to estimate the state.Two types of observers are designed:one is with full order and the other is with reduced order,both could reconstruct the system state in finite times.A numerical example is presented to illustrate the effectiveness of the proposed approaches.

    Keywords Switched linear systems·Observer·Observability

    1 Introduction

    A linear switched system consists of a set of linear subsystems and a switching signal that coordinates the switching among the subsystems.The state of the subsystems is continuous in nature, while the state of the switching signal is discrete/logic in nature.The interaction between continuous state and logic state is an appealing topic that attracts numerousattention[1,2].Asafundamentalclassofhybridsystems,switched linear systems are powerful in both representability and control ability.Interested readers are referred to the monographs[3–5]for progress of switched and hybrid systems.

    For a switched linear system, the major topics include stability analysis,stabilizing design,and performance optimization.As a dominant approach for addressing stability and stabilizing design, many Lyapunov-like methods have been developed for dealing with switched systems.For example, the well-known multiple Lyapunov function technique[6] and the composite Lyapunov function technique [7]were successfully applied to switched systems.However,it has been revealed that, even for a planar switched linear autonomous system,stabilizability does not imply the existence of a convex Lyapunov function[8].For discrete-time switchedlinearsystems,thedynamicprogrammingapproach provides constructive design for the stabilization problem[9].Other approaches including the automata-driven switching scheme [10] and the dissipativity approach [11] were proposed to investigate stability/stabilizability for specific classes of switched systems.

    In many practical scenarios,the system state is not totally available, and we have to design state observers/estimators to reconstruct/approximate the state.It has been revealed that, for switched linear systems, the observer design is dual with the state feedback stabilizing design [1, 12].As the state feedback stabilization problem is still unsolved for general switched linear systems,the observer design is also open.For continuous-time switched linear systems,a hybrid observer with impulse was designed for achieving finite-time reconstruction of the state[13].For reversible discrete-time switched autonomous systems, a switched observer was designed for achieving finite-time reconstruction of the state[14].It is interesting to note that, switched observers were also used for parameter identifying of adaptive control[15]and linear time-varying systems[16].

    In this work, we study the observer design problem for the general class of quasi-reversible discrete-time switched linear systems with measured outputs.To estimate the state,two types of observers are proposed: one is of full order and the other is of reduced order.In both observers the gain matrices are explicitly designed such that the state transition matrices of the error systems are deadbeat in finite times.In this way,the initial state is exactly reconstructed for any control input.Compared with the work[14],the current work extends the system framework from reversible autonomous systems to quasi-reversible controlled systems.Besides,this work also designs a reduced-order observer, which has not been addressed in the literature.

    2 Preliminaries

    Let R be the set of real numbers, and N+be the set of non-negative integers.For positive integerk, letk={0,1,...,k-1}.LetInbe then-dimensional identity matrix.

    2.1 System description

    In this work, we address the discrete-time switched linear system given by

    wherex(t) ∈Rnis the continuous state,σ(t) ∈M={1,2,...,m}is the switching signal,u(t)∈Rqis the control input,y(t)∈Rpis the system output.Ai,Bi,Ci,i∈Mare real constant matrices with compatible dimensions.For convenience,the system is denoted byΣ(Ci,Ai,Bi)M.Without loss of generality,we assume thatt0=0.

    Letφ(t;t0,x0,σ,u) be the state of system (1) at timetstarting fromx0att0with switching lawσand control inputu.It is clear that

    whereψis the open-loop state transfer matrix

    A switching path is a time-driven switching signal defined over a finite-time interval.Suppose thatθis switching path defined overs,then the length ofθis|θ|=s.

    2.2 Definitions

    Definition 1 Statex0is said to be unobservable if it is indistinguishable from the origin,that is,for any switching signalσand control inputu,we have

    The switched system is said to be completely (switched)observable if the unobservable set is{0}.

    Definition 2 A state observer for switched system (1) is a dynamical system

    wherefis a proper vector function.For a switching signalσ,the observer is said to beσ-asymptotic if limt→+∞(x(t)-z(t)) = 0 for anyx0,z0,andu.When there exists aT>t0such thatx(t)=z(t)for allt≥T,the observer is said to beσ-T-deadbeat.

    Definition 3 Theswitchedsystemissaidtobe(output)quasireversible,if

    2.3 Assumptions and supporting lemma

    Throughout the work,we made the following assumptions:

    Assumption 1 Switched system(1)is quasi-reversible.

    Assumption 2 Switched system (1) is completely observable.

    Remark 1When the switched system is quasi-reversible,the unobservable set is a subspace of the total state space.Furthermore, if the pair(C,A) is quasi-reversible, there is a matrixE∈Rn×psuch thatA+ECis nonsingular.By abuse of notation,we defineC A-1=C(A+EC)-1.Note thatC A-1relies explicitly onE,yet its image space is the same for all possibleE.

    Lemma 1Under Assumptions1and2,there is a positive integer,and a switching path θ defined over T,such that the observability matrix

    is of full rank.

    ProofIt has been established in[17–19]that,for any completely controllable reversible discrete-time switched linear system, the full controllability could be realized through a switching path with less thanswitches.By virtual of the duality between controllability and observability,the lemma follows.■

    3 Main results

    In this section, we propose two kinds of state observers to estimate the state.The former is in full order,while the latter is in reduced order.Both could exactly reconstruct the state in finite times.

    3.1 Full-order observer

    Note that the observability matrix in(5)is in nested structure.Without loss of generality, we assume that rankCθ(0)≥1.By searching linearly independent rows from the top to the bottom,we havelblock rows 0=ν1<ν2<···<νl≤Tsuch that

    Letik=θ(νk),k=1,...,l,we have indicesκ1,...,κnandj1,...,jlwithj1+···+jl=n,such that the matrix

    is square and nonsingular,whereCi,jdenotes thejth row of matrixCi.

    DenoteGk=Ψ(νk+1,0,θ),k= 1,...,l-1.Let ?Cikbe the matrix composed by theκth rows ofCik,k=1,...,l.We could re-write matrixQby

    Letζibe thej-th column of matrixQ-1.Furthermore,define

    To estimate the state,we propose the following observer:

    Theorem 1SupposethattheswitchedsystemsatisfiesAssumptions1and2.For any initial state x0and control input u,we have

    ProofLet ?x(t) =x(t) -z(t),t= 0,1,...,T.It can be verified that

    As a result,we have

    Simple calculation gives

    where

    Utilizing the fact thatH1is orthogonal to ˉCi2G1,we have

    Continue this process gives

    In the same manner,we could calculate that

    Therefore,we have

    which directly leads toΛ=0.■

    3.2 Reduced-order observer

    In this section, we propose a reduced-order observer that achieves deadbeat reconstruction of the state.The motivation of introducing reduced-order observers is twofold:(i)compared with a full-order observer, the transient performance of the lower-order observer usually could be improved as the system order is reduced;and(ii)in a reduced-order observer,the switching law design is much simpler with fewer switches in the observation period.

    We assume that the output is independent of the switching law,that is,y=CxwithC/=0.

    system could be re-written by

    where

    Lemma 2Under Assumptions1and2,switched systemisquasi-reversibleandcompletelyobservable.

    ProofFirst, it is clear thatis quasireversible.

    Second,note that the transformed switched system(12)is completely observable.This means that the matrix

    is of full rank.As the result,we have

    Construct the observer that is the(n-p)th-order switched linear system given by

    where

    Theorem 2SupposethattheswitchedsystemsatisfiesAssumptions1and2.For any initial state x0and control input u,we have

    ProofDefine the error variable

    It can be verified that

    Thus,the error dynamics is a switched autonomous system.Note the state transition matrix of the error system along switching path ˉθis exactly the left-hand matrix in (13).It follows straightforwardly that Eq.(16)holds true for anyx0andu.■

    Remark 3The reduced-order observer could reconstruct the state inυn-psteps.Note thatCompared with the full-order observer, the upper bound of the observation period is smaller.

    Remark 4While the design procedure could be extended to more general situation that the output relies on the switching law,there are still some specific cases that are quite involved.For instance,examine the planar switched linear system with

    The switched system is completely observable,yet we do not know whether it admits a reduced-order observer or not.

    3.3 Numerical example

    Let us examine the fifth-order switched linear system with two subsystems,whose system matrices are

    It can be easily verified that both Assumptions 1 and 2 are satisfied.

    Simple calculation shows that the switching pathθ=(1,2,1,2,1,2,1) is an observability switching path.By applying the design procedure,we have observer gain matrices

    Fig.1 Full-order dynamics

    The observer is

    which could achieve deadbeat reconstruction of the state in 7 steps.Figure 1 depicts the state,observer,and error trajectories with initial statex0= [-1 2 1 -2 1]Tand control inputu(t)=cos(t),t=0,1,2,....

    Next, assume that bothx1andx2could be consistently measured, that isC=C1.Let ˉθ=(2,1,2,1,2), and the gain matrices are

    The reduced-order observer is

    whereL(0)=L(2)=L1,L(4)=L3,andL(1)=L(3)=03×2.This could reconstruct the state in 5 steps.Figure 2 depicts the state, observer, and error trajectories with the same initial state and control input as in Fig.1.It can be seen that the error dynamics is much smaller than that with the full-order observer.

    Fig.2 Reduced-order dynamics

    4 Conclusion

    In this work, the problem of observer design has been addressed for quasi-reversible discrete-time switched linear systems with measured outputs.We proposed two kinds of state observers,and proved that the observers could achieve finite-time reconstruction of the state.

    It should be noted that,the observer could achieve exact state reconstruction in a finite time,thus any state feedback control/switching laws could be replaced by observer-driven control/switching laws.However,when the switched system undergoes uncertainty/perturbation, the state estimate will be inexact.In this case, it is an interesting issue to develop observer-driven control/switching laws for achieving stability of the overall system.

    Acknowledgements The authors are grateful to the anonymous reviewers for their constructive comments.

    亚洲视频免费观看视频| 欧美黄色淫秽网站| www.999成人在线观看| 久热这里只有精品99| 国产真人三级小视频在线观看| 午夜精品国产一区二区电影| 中文字幕精品免费在线观看视频| av国产精品久久久久影院| 黄片播放在线免费| 人人妻人人澡人人看| 久久久久国内视频| 国产成人精品久久二区二区91| 露出奶头的视频| 亚洲av美国av| 岛国毛片在线播放| 精品乱码久久久久久99久播| 亚洲精品在线观看二区| 国产高清视频在线播放一区| 侵犯人妻中文字幕一二三四区| 手机成人av网站| 国产精品欧美亚洲77777| 亚洲伊人久久精品综合| 操美女的视频在线观看| 国产极品粉嫩免费观看在线| 18在线观看网站| 这个男人来自地球电影免费观看| 亚洲国产精品一区二区三区在线| 91av网站免费观看| 国产精品九九99| 国产精品二区激情视频| 一进一出好大好爽视频| 久久狼人影院| 久久精品国产a三级三级三级| 亚洲五月色婷婷综合| 亚洲欧美精品综合一区二区三区| 色老头精品视频在线观看| 激情在线观看视频在线高清 | 色婷婷av一区二区三区视频| 人人妻人人澡人人看| 无人区码免费观看不卡 | 欧美精品亚洲一区二区| 成年人午夜在线观看视频| 久久精品国产综合久久久| 亚洲国产欧美网| 亚洲av成人一区二区三| 制服人妻中文乱码| 久久人妻av系列| 成人三级做爰电影| 精品欧美一区二区三区在线| 亚洲国产av新网站| 一区在线观看完整版| 国产黄频视频在线观看| 麻豆av在线久日| 这个男人来自地球电影免费观看| 超色免费av| 久久99一区二区三区| 亚洲av电影在线进入| 极品教师在线免费播放| 国产免费福利视频在线观看| 亚洲精品中文字幕一二三四区 | 久久99热这里只频精品6学生| 脱女人内裤的视频| 亚洲av片天天在线观看| 色播在线永久视频| 免费在线观看视频国产中文字幕亚洲| 女性被躁到高潮视频| 亚洲专区字幕在线| 在线观看舔阴道视频| 欧美 亚洲 国产 日韩一| 99精品在免费线老司机午夜| 美女福利国产在线| 久久精品国产综合久久久| 亚洲va日本ⅴa欧美va伊人久久| 99九九在线精品视频| 我要看黄色一级片免费的| 午夜福利影视在线免费观看| 91九色精品人成在线观看| 热99国产精品久久久久久7| 中国美女看黄片| 男女边摸边吃奶| 在线观看免费日韩欧美大片| 黄片大片在线免费观看| 99精品久久久久人妻精品| 久9热在线精品视频| 麻豆av在线久日| 国产精品美女特级片免费视频播放器 | 午夜成年电影在线免费观看| 国产色视频综合| 亚洲人成伊人成综合网2020| av片东京热男人的天堂| 精品一区二区三区四区五区乱码| 一本—道久久a久久精品蜜桃钙片| 18禁裸乳无遮挡动漫免费视频| 美女扒开内裤让男人捅视频| 国产一区二区 视频在线| 久久青草综合色| 免费在线观看视频国产中文字幕亚洲| 在线观看66精品国产| 又紧又爽又黄一区二区| 动漫黄色视频在线观看| 91字幕亚洲| 国产不卡一卡二| 日韩欧美一区二区三区在线观看 | av免费在线观看网站| 欧美日韩av久久| 国产亚洲av高清不卡| 少妇粗大呻吟视频| 日韩制服丝袜自拍偷拍| 97在线人人人人妻| h视频一区二区三区| 天堂动漫精品| 亚洲性夜色夜夜综合| 人成视频在线观看免费观看| 麻豆av在线久日| 日本一区二区免费在线视频| 成人黄色视频免费在线看| 一区二区av电影网| 亚洲成a人片在线一区二区| 老司机午夜福利在线观看视频 | 欧美日韩av久久| 丝袜在线中文字幕| 日本五十路高清| 国产一区有黄有色的免费视频| 久久久精品免费免费高清| 欧美变态另类bdsm刘玥| 亚洲av美国av| 人人妻人人澡人人爽人人夜夜| 久久久久久久精品吃奶| 欧美亚洲 丝袜 人妻 在线| 别揉我奶头~嗯~啊~动态视频| 久久这里只有精品19| 高潮久久久久久久久久久不卡| 久久青草综合色| 在线观看舔阴道视频| 老司机在亚洲福利影院| 蜜桃国产av成人99| 亚洲国产毛片av蜜桃av| 天堂动漫精品| 黄频高清免费视频| 在线观看免费日韩欧美大片| 女警被强在线播放| 大码成人一级视频| 人人澡人人妻人| 黑人操中国人逼视频| 欧美 亚洲 国产 日韩一| 午夜两性在线视频| 免费看a级黄色片| 国产免费av片在线观看野外av| 国产欧美亚洲国产| 男女下面插进去视频免费观看| 一区在线观看完整版| 法律面前人人平等表现在哪些方面| 日日爽夜夜爽网站| 色老头精品视频在线观看| 黄色 视频免费看| 在线观看一区二区三区激情| 亚洲第一青青草原| 黑丝袜美女国产一区| 男人操女人黄网站| av又黄又爽大尺度在线免费看| 国产一区二区 视频在线| 一本大道久久a久久精品| 蜜桃国产av成人99| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成av片中文字幕在线观看| 肉色欧美久久久久久久蜜桃| 超色免费av| 成人国语在线视频| 国产激情久久老熟女| 咕卡用的链子| 曰老女人黄片| av线在线观看网站| 久久狼人影院| 叶爱在线成人免费视频播放| 成人黄色视频免费在线看| 国产高清videossex| 99国产精品99久久久久| 一边摸一边做爽爽视频免费| 大型黄色视频在线免费观看| 久久精品熟女亚洲av麻豆精品| 性高湖久久久久久久久免费观看| 国产有黄有色有爽视频| 大型黄色视频在线免费观看| 欧美av亚洲av综合av国产av| 日韩成人在线观看一区二区三区| 亚洲,欧美精品.| 人成视频在线观看免费观看| 亚洲熟女精品中文字幕| 免费久久久久久久精品成人欧美视频| 99国产精品一区二区三区| 国产成人欧美| 亚洲国产看品久久| 18禁国产床啪视频网站| 国产午夜精品久久久久久| 黄片小视频在线播放| 久久中文字幕一级| 青草久久国产| 高清av免费在线| 啦啦啦在线免费观看视频4| 下体分泌物呈黄色| 女人高潮潮喷娇喘18禁视频| a级片在线免费高清观看视频| 亚洲九九香蕉| 午夜精品久久久久久毛片777| 欧美日韩亚洲国产一区二区在线观看 | 最近最新中文字幕大全电影3 | 少妇精品久久久久久久| 亚洲视频免费观看视频| 俄罗斯特黄特色一大片| 久久亚洲真实| 国产av又大| 欧美一级毛片孕妇| 免费一级毛片在线播放高清视频 | 如日韩欧美国产精品一区二区三区| 欧美在线黄色| 国产日韩欧美亚洲二区| 建设人人有责人人尽责人人享有的| 欧美精品啪啪一区二区三区| 777久久人妻少妇嫩草av网站| 婷婷成人精品国产| kizo精华| 久久亚洲真实| 狂野欧美激情性xxxx| 一级毛片精品| 久久久精品区二区三区| 巨乳人妻的诱惑在线观看| 露出奶头的视频| 两性夫妻黄色片| 亚洲精品乱久久久久久| 黄色毛片三级朝国网站| 亚洲成人免费电影在线观看| 国产精品香港三级国产av潘金莲| 国产精品av久久久久免费| 成人国语在线视频| 国精品久久久久久国模美| 在线观看www视频免费| 亚洲精品久久成人aⅴ小说| 最近最新中文字幕大全免费视频| 十分钟在线观看高清视频www| 国产在线精品亚洲第一网站| 麻豆成人av在线观看| 丁香欧美五月| 色94色欧美一区二区| 麻豆国产av国片精品| 欧美一级毛片孕妇| 亚洲自偷自拍图片 自拍| 狠狠精品人妻久久久久久综合| 久久中文看片网| 亚洲av欧美aⅴ国产| 一本色道久久久久久精品综合| 成人精品一区二区免费| 中文字幕制服av| 日韩欧美一区视频在线观看| 交换朋友夫妻互换小说| 国产精品亚洲av一区麻豆| 一区二区三区国产精品乱码| 国产在线一区二区三区精| 国产三级黄色录像| 操出白浆在线播放| 高潮久久久久久久久久久不卡| 黄色视频在线播放观看不卡| 99国产极品粉嫩在线观看| 国产精品一区二区在线观看99| 久9热在线精品视频| 少妇猛男粗大的猛烈进出视频| 女人被躁到高潮嗷嗷叫费观| 国产欧美亚洲国产| 免费在线观看黄色视频的| av国产精品久久久久影院| 999久久久国产精品视频| 深夜精品福利| 欧美日韩视频精品一区| 成人18禁高潮啪啪吃奶动态图| 水蜜桃什么品种好| 久久国产精品男人的天堂亚洲| 欧美在线一区亚洲| 亚洲avbb在线观看| 在线 av 中文字幕| 新久久久久国产一级毛片| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品粉嫩美女一区| 国产免费现黄频在线看| 欧美精品一区二区免费开放| 欧美久久黑人一区二区| 亚洲三区欧美一区| 久久精品熟女亚洲av麻豆精品| 亚洲黑人精品在线| 一级片'在线观看视频| 热99国产精品久久久久久7| 一个人免费看片子| 午夜福利在线免费观看网站| bbb黄色大片| 香蕉久久夜色| 国产在线观看jvid| 视频在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品国产区一区二| 日本黄色日本黄色录像| 99久久国产精品久久久| 久久人人爽av亚洲精品天堂| 国产成人精品久久二区二区免费| 91成人精品电影| 天堂中文最新版在线下载| 国产成人一区二区三区免费视频网站| 国产亚洲欧美精品永久| 高清欧美精品videossex| 少妇被粗大的猛进出69影院| 如日韩欧美国产精品一区二区三区| 久久 成人 亚洲| 麻豆成人av在线观看| 亚洲视频免费观看视频| 久久精品国产亚洲av高清一级| 欧美中文综合在线视频| 精品少妇内射三级| 国产在视频线精品| 激情视频va一区二区三区| 欧美黑人精品巨大| 成在线人永久免费视频| 国产精品久久久av美女十八| 亚洲一码二码三码区别大吗| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利影视在线免费观看| 在线亚洲精品国产二区图片欧美| 久久亚洲精品不卡| 欧美在线一区亚洲| 久久中文字幕人妻熟女| 国产精品美女特级片免费视频播放器 | av片东京热男人的天堂| 十八禁人妻一区二区| bbb黄色大片| 无限看片的www在线观看| 国产视频一区二区在线看| 精品人妻熟女毛片av久久网站| 久久天躁狠狠躁夜夜2o2o| 50天的宝宝边吃奶边哭怎么回事| 精品高清国产在线一区| 欧美 日韩 精品 国产| 国产精品九九99| 成人黄色视频免费在线看| 99久久99久久久精品蜜桃| 亚洲精品在线美女| 欧美变态另类bdsm刘玥| 纵有疾风起免费观看全集完整版| 精品熟女少妇八av免费久了| 国产在线精品亚洲第一网站| 在线观看免费高清a一片| 亚洲专区国产一区二区| a级片在线免费高清观看视频| 欧美日韩亚洲综合一区二区三区_| 性少妇av在线| 法律面前人人平等表现在哪些方面| 搡老熟女国产l中国老女人| 无遮挡黄片免费观看| 18禁国产床啪视频网站| 汤姆久久久久久久影院中文字幕| 怎么达到女性高潮| 又黄又粗又硬又大视频| 欧美日韩精品网址| 久久精品国产亚洲av香蕉五月 | 精品国产超薄肉色丝袜足j| 在线观看一区二区三区激情| 久久久久久久久久久久大奶| 久久九九热精品免费| 热re99久久国产66热| 国产精品久久久久久精品古装| 精品一品国产午夜福利视频| 十八禁人妻一区二区| 一级毛片电影观看| 老司机靠b影院| 男女床上黄色一级片免费看| 三级毛片av免费| 国产在线精品亚洲第一网站| 五月天丁香电影| 啦啦啦 在线观看视频| 一本—道久久a久久精品蜜桃钙片| 色尼玛亚洲综合影院| 中文字幕高清在线视频| 国产主播在线观看一区二区| 黄色视频不卡| 国产一区二区在线观看av| 国产成人免费观看mmmm| 水蜜桃什么品种好| 男人舔女人的私密视频| 亚洲欧美一区二区三区黑人| 久久午夜亚洲精品久久| 精品久久久精品久久久| 极品少妇高潮喷水抽搐| 亚洲精品自拍成人| 法律面前人人平等表现在哪些方面| 日本黄色视频三级网站网址 | 成人永久免费在线观看视频 | 啦啦啦 在线观看视频| 99久久99久久久精品蜜桃| 男女无遮挡免费网站观看| 高清毛片免费观看视频网站 | 成人影院久久| 黑人巨大精品欧美一区二区蜜桃| 天天操日日干夜夜撸| 后天国语完整版免费观看| 国产在视频线精品| 自线自在国产av| 男女免费视频国产| 国产97色在线日韩免费| 天天躁日日躁夜夜躁夜夜| 999久久久国产精品视频| 成人免费观看视频高清| 正在播放国产对白刺激| 成人永久免费在线观看视频 | 黄频高清免费视频| 久久热在线av| 无限看片的www在线观看| 欧美激情 高清一区二区三区| 欧美精品一区二区大全| 精品少妇久久久久久888优播| 国产无遮挡羞羞视频在线观看| 黑丝袜美女国产一区| 最新在线观看一区二区三区| 国产精品99久久99久久久不卡| 久久精品国产亚洲av香蕉五月 | 久久国产精品影院| 日韩熟女老妇一区二区性免费视频| 欧美日韩视频精品一区| 亚洲欧美一区二区三区久久| 老汉色∧v一级毛片| 欧美黄色片欧美黄色片| 日本vs欧美在线观看视频| 不卡av一区二区三区| 国产免费av片在线观看野外av| 18禁美女被吸乳视频| 国产精品一区二区免费欧美| 日本黄色视频三级网站网址 | netflix在线观看网站| 极品少妇高潮喷水抽搐| 亚洲精品国产精品久久久不卡| 老司机福利观看| 五月天丁香电影| 五月开心婷婷网| 一本色道久久久久久精品综合| 国产激情久久老熟女| 多毛熟女@视频| 丁香六月天网| 精品国产乱码久久久久久男人| 国产在线精品亚洲第一网站| 国产精品98久久久久久宅男小说| 大香蕉久久网| 久久九九热精品免费| www日本在线高清视频| 久久毛片免费看一区二区三区| 成人国语在线视频| 欧美日韩av久久| 精品国产乱码久久久久久男人| 在线av久久热| 欧美国产精品va在线观看不卡| 欧美在线黄色| 热99re8久久精品国产| 一级毛片女人18水好多| 精品一区二区三区视频在线观看免费 | 欧美久久黑人一区二区| 国产在线观看jvid| 免费女性裸体啪啪无遮挡网站| 高潮久久久久久久久久久不卡| 纯流量卡能插随身wifi吗| 亚洲精品国产精品久久久不卡| 黑人猛操日本美女一级片| 午夜免费鲁丝| 国产高清激情床上av| 欧美日韩视频精品一区| 亚洲欧美精品综合一区二区三区| 亚洲视频免费观看视频| 老司机福利观看| 亚洲成人免费电影在线观看| 亚洲精品中文字幕一二三四区 | 自线自在国产av| 欧美激情极品国产一区二区三区| 香蕉国产在线看| 国产精品98久久久久久宅男小说| 午夜福利乱码中文字幕| 操美女的视频在线观看| 在线十欧美十亚洲十日本专区| 欧美日本中文国产一区发布| 操出白浆在线播放| 不卡一级毛片| 久久久久久久久久久久大奶| 国产成人欧美在线观看 | 丝袜喷水一区| 国产av一区二区精品久久| 99香蕉大伊视频| 一区二区三区激情视频| 19禁男女啪啪无遮挡网站| 国产一区二区 视频在线| 黄色视频在线播放观看不卡| 国产亚洲精品久久久久5区| 久久久精品94久久精品| 免费黄频网站在线观看国产| 高清毛片免费观看视频网站 | 国产精品久久电影中文字幕 | 两人在一起打扑克的视频| 一边摸一边抽搐一进一出视频| 免费高清在线观看日韩| 91麻豆av在线| 国产在线一区二区三区精| 一边摸一边抽搐一进一小说 | 人妻久久中文字幕网| 国产精品久久久久久精品电影小说| 中文字幕另类日韩欧美亚洲嫩草| 国产1区2区3区精品| 欧美在线黄色| 首页视频小说图片口味搜索| 国产精品久久久久成人av| 人人妻人人澡人人爽人人夜夜| 成人18禁在线播放| 亚洲国产看品久久| 操出白浆在线播放| 少妇粗大呻吟视频| 亚洲性夜色夜夜综合| 日日摸夜夜添夜夜添小说| 亚洲精品久久成人aⅴ小说| 老司机福利观看| 欧美亚洲日本最大视频资源| 黄片大片在线免费观看| 真人做人爱边吃奶动态| 99在线人妻在线中文字幕 | 最新在线观看一区二区三区| 亚洲少妇的诱惑av| 一进一出抽搐动态| 天天躁夜夜躁狠狠躁躁| 在线观看免费午夜福利视频| 飞空精品影院首页| 欧美日韩福利视频一区二区| 男人舔女人的私密视频| 国产亚洲精品久久久久5区| 亚洲成人手机| 色94色欧美一区二区| 成人三级做爰电影| 国产成人系列免费观看| 首页视频小说图片口味搜索| 女人被躁到高潮嗷嗷叫费观| 欧美日韩视频精品一区| 精品卡一卡二卡四卡免费| 国产免费现黄频在线看| 婷婷丁香在线五月| 国产高清视频在线播放一区| tocl精华| 黑人操中国人逼视频| 黑丝袜美女国产一区| 久久人人爽av亚洲精品天堂| 久久精品aⅴ一区二区三区四区| 久久香蕉激情| 久久久久久人人人人人| 高清毛片免费观看视频网站 | 亚洲精品av麻豆狂野| 精品亚洲乱码少妇综合久久| 一进一出抽搐动态| 日日爽夜夜爽网站| av有码第一页| 亚洲avbb在线观看| 久久精品国产亚洲av香蕉五月 | 精品国产一区二区三区四区第35| 国产区一区二久久| 免费在线观看影片大全网站| 青草久久国产| 美国免费a级毛片| 香蕉丝袜av| av天堂久久9| 午夜福利,免费看| 淫妇啪啪啪对白视频| 精品视频人人做人人爽| 多毛熟女@视频| 亚洲国产欧美日韩在线播放| 后天国语完整版免费观看| 中文字幕精品免费在线观看视频| 美女高潮喷水抽搐中文字幕| 久久人妻av系列| 狠狠精品人妻久久久久久综合| 99精品久久久久人妻精品| 两性午夜刺激爽爽歪歪视频在线观看 | 色播在线永久视频| 国产精品.久久久| 制服人妻中文乱码| 老司机亚洲免费影院| 午夜福利欧美成人| 国产精品 欧美亚洲| 97人妻天天添夜夜摸| 中亚洲国语对白在线视频| 黑人欧美特级aaaaaa片| 国产又色又爽无遮挡免费看| 国产精品成人在线| www.熟女人妻精品国产| 午夜福利视频在线观看免费| av在线播放免费不卡| a级毛片在线看网站| 不卡av一区二区三区| 日本a在线网址| 黑人巨大精品欧美一区二区mp4| 青草久久国产| 少妇粗大呻吟视频| 午夜老司机福利片| 下体分泌物呈黄色| 国产黄频视频在线观看| 成人永久免费在线观看视频 | 精品熟女少妇八av免费久了| 嫩草影视91久久| 高清黄色对白视频在线免费看| 一二三四在线观看免费中文在| 90打野战视频偷拍视频| 又黄又粗又硬又大视频| 女人久久www免费人成看片| 一本综合久久免费| 女性生殖器流出的白浆| 久久精品国产综合久久久| 天天躁狠狠躁夜夜躁狠狠躁| 色尼玛亚洲综合影院| 亚洲久久久国产精品| 91大片在线观看| 岛国毛片在线播放|