• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feedback control for stochastic finite-time/fixed-time synchronization of stochastic coupled nonlinear systems

    2023-11-16 10:13:06HongxiaoHuWenjingYangZhengtaoDing
    Control Theory and Technology 2023年3期

    Hongxiao Hu·Wenjing Yang·Zhengtao Ding

    Abstract A novel feedback control is proposed to investigate the stochastic finite-time/fixed-time synchronization between two stochastic coupled nonlinear systems(SCNSs).Based on graph theory and Lyapunov function methods,some effective stochastic finite-time/fixed-time synchronization criteria for SCNSs are established.Finally,the examples are included to demonstrate our analytical results.

    Keywords Stochastic finite-time synchronization·Stochastic fixed-time synchronization·Stochastic settling time

    1 Introduction

    Over the past decades, coupled nonlinear systems (CNSs)have attracted significant attention due to their extensive applications in variety of real systems, such as communication networks, social networks, microgrids, biological systems and so on [1–4].As one of the most important dynamical behaviors of CNSs,synchronization indicates two or more equivalent or nonequivalent systems by adjusting each other can reach to a common dynamical behavior.It has a broad application in practice such as electronic systems[5, 6], secure communication [7], neural networks [8].At the same time,many different types of synchronization have been put forward to CNSs such as Quasi-synchronization[9],lag synchronization[10,11],anti-synchronization[12],exponential synchronization[13,14].As we know,all kinds of these synchronization are investigated over an infinity time interval.Nevertheless, in a large number of practical engineering fields, the CNSs might always be desired to reach synchronization as fast as possible in a finite time interval.Generally,synchronization over a finite time interval is more physically realizable compared with the concerning infinite time[15,16].There are two concepts of synchronization over finite time interval, i.e.finite-time synchronization [17–20]and fixed-time synchronization[21–23].

    Moreover, due to the variability and uncertainty of the system environment, CNSs are affected by various types of environmental noises, which may destroy the dynamical behaviors of CNSs [24].Therefore, it is necessary to study synchronization of CNSs with stochastic perturbations.In fact, there are many researches related to the synchronization of SCNSs[25–27].In[25],some sufficient criteria were obtained to guarantee the synchronization of SCNSs in the sense of mean-square asymptotical synchronization by using the Lyapunov function methods.Applying Lyapunov method along with the Kirchhoff’s Matrix Tree Theorem, the exponential synchronization of SCNSs with time-varying coupling structure on networks were studied and two sufficient criteria were obtained by [26].Unfortunately, to the best of the authors knowledge, the stochastic finite-time/fixed-time synchronization for SCNSs has not been properly investigated so far.

    Summarizing the above discussions,in this paper,we aim to deal with the stochastic finite-time/fixed-time synchronization problems for SCNSs by using feedback control.The remainder of this paper is organized as follows.Section2 introduces some preliminaries and the model descriptions.Then, stochastic finite-time/fixed-time synchronization of SNSCs are considered by Sect.3.Finally,Sect.4 gives some simulation examples.

    2 Preliminaries and problem formulation

    Denotem-dimensional Brownian motion byB(t) =vec[Bi(t)]m,t≥0.Let E[·] denote the expectation of the stochastic process.Letz(t):=z(t,z0)bendimensional It? process ont≥0 with the initial valuez(0)=z0∈Rn,which satisfies the following stochastic nonlinear system(SNS):

    whereΥ∈C1(Rn;Rn),Φ∈C2(Rn;Rn×m),Υ(0) = 0,Φ(0)=0.For H ∈C2(Rn,R+),we denote[24]

    where

    Lemma 1 (See [28])LetH ∈C2(Rn,R+)be a radially unbounded positive definite function.If there is a positive scalar c such that

    and

    for all z∈Rn{0},where μ: R+→R+is a positive continuous differentiable function with the derivative μ′(s)≥0for any s>0and

    then for any z0∈Rn we haveP(τz0<∞)=1and

    where τz0is the stochastic settling time of z(t,z0),i.e.τz0=inf{t≥0:z(t,z0)=0},z(t,z0)is the solution of(1).

    Lemma 2LetH ∈C2(Rn,R+)be a radially unbounded positive definite function.If there is a constant α> 0such that

    where0

    ProofWe choosec=αandμ(u) =upin Lemma 1.By(5),(2)and(3)are satisfied.Sinceit follows from(4)that(6)holds.By Lemma 1,the proof is completed.■

    Lemma 3LetH ∈C2(Rn,R+)be a radially unbounded positive definite function.If there are two constants α,β>0such that

    where0 1,then the result in Lemma 1 is true and the inequality(4)is replaced by

    ProofWe choosec= 1 andμ(u) =αup+βuqin Lemma 1.By(7),(2)and(3)are satisfied.Since

    it follows from(4)that(8)holds.By Lemma 1,the proof is completed.■

    Let L = {1,2,...,N}, we introduce a directed graphG=(L,E), whereEare the vertices set and the arcs set,respectively.We define(i,j) ∈Eif vertexitoj.LetB=[bi j]N×Nbe the weight matrix.(j,i) ∈Efori,j∈L if and only ifbi j> 0.A weighted digraph(G,B)is strongly connected if and only if the weight matrixBis irreducible.The Laplacian matrixLof(G,B)is defined as

    Lemma 4 (see[29])Let ci be the cofactor of the ith diagonal element of L.If N≥2,then we have

    where Ki j:Rmi×Rm j→Rare the arbitrary functions,Q is the set of all spanning unicyclic graphs of digraph(G,B),W(Q)is the weight of Q,and CQ stands for the directed cycle of Q.Particularly,ci is a positive constant for all i∈L,when B is irreducible.

    Lemma 5For any y∈Rn and0

    In this paper,we consider the following drive system,which is defined on the digraph(G,B)withN(N≥2)vertices:

    fori∈L, whereYi(t) ∈Rmi,fi: Rmi→Rmiis a continuously nonlinear function,k>0 is the coupling strength,B= [bi j]N×Nis the unknown weight configuration matrix of the system(9),Hi j:Rmi×Rm j→Rmiis the influence of thejth vertex on theith vertex.ui(t) ∈Rmiis the feedback controller,σi(Y1,Y2,...,YN)∈Rmi×nidescribes the unknown coupling of the complex networks.ωi(t) ∈Rnioscillates randomly around its unknown average value,i.e.

    fori∈L, whereαiis a constant vector,?i(t) ∈Rni×nican be arbitrary known bounded matrix, andBi(t) is anidimensional Brownian motion.

    The response system is considered as following:

    fori∈L, whereZi(t) ∈Rmiis the response state of theith node.For convenient writing, letY(t) = vec[Yi(t)]N,Z(t)=vec[Zi(t)]Nandκ(t)=Y(t)-Z(t).

    Let the synchronization errorsκi(t) =Yi(t)-Zi(t)fori∈L.Then we can obtain the error dynamical system as follows

    Definition 1 Drive system(9)is said to be stochastic finitetime synchronized onto response system (10), if the error dynamical system(11)admits a solution for any initial dataκ0∈Rn, and any solutionκ(t,κ0), the stochastic settling timeτκ0=inf{t≥0:κ(t,κ0)=0},is finite almost surely,that is P(τκ0<∞)=1;Furthermore,

    Definition 2 Drive system(9)is said to be stochastic fixedtime synchronized onto response system (10), if the drive network (9) is stochastic finite-time synchronized onto the response network(10)and there exists a constantTmax> 0 such that E[τκ0] ≤Tmax, for allκ0∈Rn, whereτκ0is the stochastic settling time of the solution of error dynamical system(11)with initial valueκ0.

    In this paper,some assumptions are given as following:(A1) Fori∈L, there exitsδi> 0 such that functionfi:Rn→Rnsatisfies

    (A2) For anyi,j∈L,there exitπi,ξi>0,such that

    for any(ζi,ζ j),(?i,? j)∈Rmi×Rm j.

    (A3) For anyi,j∈L, there areβi≥0,ai j≥0 andri j≥0 such that‖αi‖≤βi,

    forYi,Zi∈Rmi,Y=vec[Yi]N,Z=vec[Zi]N.

    For convenience,we denote

    3 Main results

    3.1 Stochastic finite-time synchronization for SCNSs

    In order to achieve the stochastic finite-time synchronization,the controllers are designed as following

    fori∈L, wherehi> 0 anddi> 0 are control gains,0<θ< 1 is a tunable constant,forz=vec[z j]mi∈Rmi.

    We introduce the following assumption for the functionψ.

    (A4)For anyi∈L,there existsμi>0 such that for anyj=1,2,...,mi,

    Theorem 1Supposing Assumptions(A1)–(A4)are satisfied.If B is irreducible and there are positive constants hi such that

    Then,drive system(9)and response system(10)arrive stochastic finite-time synchronization under controller(13)with stochastic settling time τ satisfying

    where

    ProofConsider the Lyapunov function given by

    One obtains

    By Assumptions(A1)–(A3),we can show that

    Since

    It follows from Assumption(A4)and Lemma 5 that

    Consequently,by(18)and(19),we get

    It follows from the strongly connected property of the weighted digraph(G,B) that ?C> 0.Consequently, by the inequality(14),yields

    By the definition of ?ci,we can obtain that ?ciis the cofactor of theith diagonal element of ?L:= diag[ξi]N·L.Then it follows from Lemma 4 that

    By Lemma 2,the proof is completed.■For the special case, suppose thatπi=ξi=λ≥0 for alli∈L.Then Assumption (A2) can be replaced by the following assumption.

    (A′2)there is a nonnegative constantλsuch that

    for anyi,j∈L and(ζi,ζ j),(?i,? j)∈Rmi×Rm j.

    Corollary 1Supposing Assumptions(A1)–(A4)are satisfied with Assumption(A2)replaced by Assumption(A′2).If B is irreducible and there exist constants hi>0such that

    Then drive system(9)and response system(10)arrive stochastically finite-time synchronization under controller(13)with stochastic settling time τ satisfying

    Remark 1IfHi j(ζi,ζ j)=Λ(ζ j-ζi)forζi,ζ j∈Rm,i,j∈L.Then Assumption(A′2)is satisfied withλ=‖Λ‖.

    Theorem 2Suppose Assumptions(A1),(A3)and(A4)hold,H(ζi,ζ j) =ζ j-ζi for ζi,ζ j∈Rm,i,j∈L.If B is irreducible and there are positive constants hi such that

    Then drive system(9)and response system(10)arrive stochastically finite-time synchronization under controller(13)with stochastic settling time τ satisfying

    where

    ProofLet,it has

    Based on the Lemma 4,yields

    Therefore,

    By Lemma 2,the proof is completed.■

    Theorem 3Suppose Assumptions(A1)–(A4)are satisfied.If there exist constants hi>0such that

    Then drive system(9)and response system(10)are stochastically finite-time synchronization under controller with stochastic settling time τ satisfying

    where

    ProofLetIt has

    It follows from the condition(22)that

    By Lemma 2,the proof is completed.■

    Remark 2The topological structure of the(G,B) is not requested in Theorem 3.Hence, the strongly connected digraph is not necessary in this theorem.

    3.2 Stochastic fixed-time synchronization

    In this section,to achieve the control goal of stochastic fixedtime synchronization,we design the controller as following

    where 01 and the control gainshi,γi,di>0.

    Theorem 4Suppose Assumptions(A1)–(A4)are satisfied.If B is irreducible and there are positive constants hi such that

    Then,drive system(9)and response system(10)are stochastically fixed-time synchronization under controller(23)with stochastic settling time τ satisfying

    ProofConstruct a Lyapunov function as (16) and take the same discussion as the Theorem 1,we can obtain

    By Lemma 4 and(24),yields

    By Lemma 3,the proof is completed.■

    Corollary 2Supposing all of Assumptions(A1)–(A4)are satisfied with Assumption(A2)replaced by Assumption(A′2).If B is irreducible and there are positive constants hi such that

    Then,drive system(9)and response system(10)are stochastically fixed-time synchronization under the controllers(23)with a stochastic settling time τ,which satisfies

    Remark 3For the special case,we can chooseHi j(ζi,ζ j)=Λ(ζ j-ζi)forζi,ζ j∈Rm,i,j∈L.Then Assumption(A′2)is satisfied withλ=‖Λ‖.

    Especially,choosingH(ζi,ζ j)=ζ j-ζiforζi,ζ j∈Rmand taking the same discussion with the Theorem 2,we have

    Theorem 5Suppose Assumptions(A1),(A3)and(A4)hold,H(ζi,ζ j)=ζ j-ζi for ζi,ζ j∈Rm.If B is irreducible and there exist constants hi>0such that

    Then,the drive-response systems(9)and(10)are stochastically fixed-time synchronized under the controllers(23)with stochastic settling time τ satisfying

    Corollary 3Suppose Assumptions(A1)–(A4)hold.If there exist positive constants hi such that

    Then,the drive-response systems(9)and(10)are stochastically fixed-time synchronized with stochastic settling time τ satisfying

    Remark 4Exponential synchronization,whose convergence time is infinite, was studied for SCNSs by [25, 26].In this paper, the stochastic finite-time and fixed-time controllers are introduced to synchronize SCNSs,which means that the system can achieve better performance.

    Remark 5If we takeψi(v)=vfori∈L andv∈Rm,then the controllers(13)and(23)can be degraded into

    and

    which have been studied in [30, 31], respectively.WhenHi j(ζi,ζ j) =Λ(ζ j-ζi)fori,j∈L andζi,ζ j∈Rm,the fixed-time synchronization for SCNSs(9)and (10)without considering the topological structure of(G,B) are studied by[30,31].Therefore,our results are more richer than their.

    4 Numerical example

    In this section, some numerical examples are presented to demonstrate validity of the proposed criteria.

    The isolated node is a R?ssler-like system [32] or a 3Dneural network[33]described by:

    (1)The R?ssler-like system is presented as

    wherev=[v1,v2,v3]T∈R3is the state vector,

    (2)the 3Dneural network is given as

    wherev=[v1,v2,v3]T∈R3is the state vector,

    In this section,we denoteN=10 and L={1,2,...,10}.The derive-response complex dynamical network is defined as

    Fig.1 Digrph(G,B)with ten vertices

    and

    whereYi,Zi∈R3fori∈L.Fori∈L,choosing

    withY10+1=Y1, the coupling strengthk= 1,?i(t) =diag[1,1,1],αi=[1,1,1]T,the control functionψi(v)=vfori= 1,2,...,10 andv∈R3and the weight matrixBis irreducible(see Fig.1)with

    Therefore,

    By the analysis in[32],we have

    where ˉδ= 0.492.Letζi=vi-wiand?i= tanh(vi)-tanh(wi)fori=1,2,3,for the ?f,we have

    where ?δ= 4.875.Consequently, we haveΔ= diag[ˉδI5,?δI5].By the analysis in[31],we obtain

    and

    where‖eN+1(t)‖:=‖e1(t)‖.Hence,fori=1,2,...,N-1,ai j=2 andri j=4 whenj=i,i+1,aN N=aN1=2,rN N=rN1=4,elseai j=ri j=0.Then we have

    We can choose

    then the conditions(20)and(25)hold.Therefore,by Corollaries 1 and 2, the drive systems (27) and (28) reach stochastically finite-time and fixed-time synchronization.

    Fig.2 The trajectory of the total synchronization error ‖κ(t)‖ of the complex system without control with initial values of the nodes Yi(0)=0.1·i[10,10,10]T and Zi(0)=0.1·i[1,1,1]T for i ∈L

    Fig.3 The trajectories of the total synchronization error‖κ(t)‖of the complex systems(27)and(28)with initial values of the nodes Yi(0)=0.1·i ·[10,10,10]T and Zi(0)=0.1·i ·[1,1,1]T for i ∈L

    The trajectories of the total synchronization error‖κ(t)‖of complex systems (27) and (28) without the control inputs are showed in Fig.2.In the following,two examples present the numerical results of the stochastic finite-time and fixed-time synchronization for the derive-response complex dynamical networks(27)and(28),respectively.

    Stochastic finite-time synchronization:Let the parametersd= 10 andθ= 0.3.By Corollary 1, the derive-response complex dynamical network can achieve stochastic finitetime synchronization with a stochastic settling timeτ,which satisfies E[τ]≤5.35 with initial values of the nodesxi(0)=0.1·i·[10,10,10]Tandyi(0)=0.1·i·[1,1,1]Tfori∈L(see Fig.3).

    Fixed-time synchronization:Fori=1,2,...,N,letγi=40,di= 10,p= 0.3 andq= 1.25.Then, by Corollary 2, the systems (27) and (28) can achieve stochastic fixedtime synchronization with a stochastic settling timeτ,which satisfies E[τ]≤0.996 under controller(23)(see Fig.4).

    Fig.4 200 trajectories of the total synchronization error‖κ(t)‖of the complex systems (27) and (28).The initial values of the nodes are chosen from[-10,10]randomly

    Data availability Data sharing is not applicable to this article as no new data were created or analyzed in this study.

    Declarations

    Conflict of interest We declare that we do not have any commercial or associative interest that represents a contradict of interest in connection with the work submitted

    波多野结衣一区麻豆| av国产久精品久网站免费入址| 成人国语在线视频| xxx大片免费视频| 日本wwww免费看| 香蕉国产在线看| 久久免费观看电影| 免费高清在线观看视频在线观看| av在线观看视频网站免费| 交换朋友夫妻互换小说| 国产成人91sexporn| av在线播放精品| 建设人人有责人人尽责人人享有的| 少妇精品久久久久久久| 色网站视频免费| 五月伊人婷婷丁香| 少妇猛男粗大的猛烈进出视频| 天堂俺去俺来也www色官网| 日韩一区二区视频免费看| 欧美日韩一区二区视频在线观看视频在线| 爱豆传媒免费全集在线观看| 亚洲av免费高清在线观看| 精品亚洲乱码少妇综合久久| 色94色欧美一区二区| 欧美人与性动交α欧美精品济南到 | 欧美老熟妇乱子伦牲交| 这个男人来自地球电影免费观看 | 最新中文字幕久久久久| 国产精品久久久久久av不卡| 日日啪夜夜爽| 肉色欧美久久久久久久蜜桃| 99久久中文字幕三级久久日本| 毛片一级片免费看久久久久| 乱人伦中国视频| 人妻一区二区av| 这个男人来自地球电影免费观看 | 桃花免费在线播放| 大香蕉97超碰在线| 日韩视频在线欧美| av网站免费在线观看视频| 一本—道久久a久久精品蜜桃钙片| 久久韩国三级中文字幕| 国产爽快片一区二区三区| 精品人妻熟女毛片av久久网站| 丝袜人妻中文字幕| 黑人欧美特级aaaaaa片| 香蕉精品网在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 1024视频免费在线观看| 久久综合国产亚洲精品| 婷婷成人精品国产| 亚洲中文av在线| av福利片在线| 久久97久久精品| 国产精品久久久久久久久免| 久久久久久久久久久免费av| 99久久中文字幕三级久久日本| 咕卡用的链子| 日韩精品免费视频一区二区三区 | 国产免费一区二区三区四区乱码| 亚洲欧美色中文字幕在线| 精品国产露脸久久av麻豆| av片东京热男人的天堂| 欧美日韩国产mv在线观看视频| 久久人人97超碰香蕉20202| 久久久久久人人人人人| 人人妻人人澡人人爽人人夜夜| 日韩伦理黄色片| av国产精品久久久久影院| 国产成人欧美| 色网站视频免费| 日日撸夜夜添| 一本大道久久a久久精品| 免费黄频网站在线观看国产| 成人毛片60女人毛片免费| av又黄又爽大尺度在线免费看| 99九九在线精品视频| av黄色大香蕉| 边亲边吃奶的免费视频| 亚洲精品国产色婷婷电影| 97精品久久久久久久久久精品| 两个人免费观看高清视频| 中文天堂在线官网| 中国国产av一级| 麻豆精品久久久久久蜜桃| 国产精品不卡视频一区二区| 看非洲黑人一级黄片| 亚洲欧美日韩卡通动漫| 日本91视频免费播放| 国产av码专区亚洲av| av免费在线看不卡| 2021少妇久久久久久久久久久| 国产深夜福利视频在线观看| 欧美xxⅹ黑人| 狂野欧美激情性xxxx在线观看| 欧美成人午夜精品| 黄色配什么色好看| 国产麻豆69| 精品少妇久久久久久888优播| 国产成人a∨麻豆精品| 高清毛片免费看| 九九在线视频观看精品| 国产国拍精品亚洲av在线观看| 美女国产高潮福利片在线看| 亚洲久久久国产精品| 国产一区二区在线观看日韩| 美国免费a级毛片| 国产精品麻豆人妻色哟哟久久| 亚洲第一区二区三区不卡| 欧美精品国产亚洲| 国产精品一二三区在线看| 亚洲精品美女久久av网站| 日韩不卡一区二区三区视频在线| av国产久精品久网站免费入址| 免费黄频网站在线观看国产| 亚洲精品视频女| 国产精品女同一区二区软件| 国产精品久久久久久久久免| 午夜福利在线观看免费完整高清在| 啦啦啦在线观看免费高清www| 亚洲国产精品成人久久小说| 亚洲,欧美精品.| 亚洲美女黄色视频免费看| 久久精品久久精品一区二区三区| 久久久a久久爽久久v久久| 成年美女黄网站色视频大全免费| 午夜久久久在线观看| 欧美成人午夜精品| 大香蕉久久网| 国产激情久久老熟女| 99热全是精品| 不卡视频在线观看欧美| 一本—道久久a久久精品蜜桃钙片| 亚洲精品日本国产第一区| 亚洲人成网站在线观看播放| 亚洲国产av新网站| 国产精品99久久99久久久不卡 | 青春草视频在线免费观看| 国产永久视频网站| 亚洲精品av麻豆狂野| av在线app专区| 亚洲国产精品一区二区三区在线| 黄片播放在线免费| 国产一区有黄有色的免费视频| 日韩人妻精品一区2区三区| 久久影院123| 飞空精品影院首页| 99国产综合亚洲精品| 亚洲av福利一区| 在线免费观看不下载黄p国产| 色5月婷婷丁香| 日韩精品有码人妻一区| 欧美精品亚洲一区二区| 久久久久久久久久久免费av| www.熟女人妻精品国产 | 一级毛片 在线播放| av女优亚洲男人天堂| 午夜福利,免费看| 免费在线观看黄色视频的| 日韩欧美精品免费久久| 日韩在线高清观看一区二区三区| 久久精品国产自在天天线| 一级毛片我不卡| 国产淫语在线视频| 只有这里有精品99| 高清欧美精品videossex| 赤兔流量卡办理| 99香蕉大伊视频| 春色校园在线视频观看| 国产成人一区二区在线| 最近最新中文字幕免费大全7| 美女国产高潮福利片在线看| 国产免费现黄频在线看| 高清av免费在线| 韩国高清视频一区二区三区| 国产成人精品久久久久久| 国产亚洲欧美精品永久| 纯流量卡能插随身wifi吗| 全区人妻精品视频| 国产成人av激情在线播放| 高清在线视频一区二区三区| 中文欧美无线码| av国产久精品久网站免费入址| 在线观看免费视频网站a站| 69精品国产乱码久久久| 九色亚洲精品在线播放| 亚洲精品美女久久av网站| 成人国语在线视频| 久久久久久久大尺度免费视频| 日本-黄色视频高清免费观看| 亚洲精品国产色婷婷电影| 狠狠精品人妻久久久久久综合| 中文字幕人妻丝袜制服| 一区二区三区四区激情视频| 国产高清三级在线| 免费观看a级毛片全部| 一本大道久久a久久精品| 欧美老熟妇乱子伦牲交| 日日撸夜夜添| 国产精品蜜桃在线观看| 美女大奶头黄色视频| 精品少妇久久久久久888优播| 精品亚洲成国产av| 国产 一区精品| av电影中文网址| 日韩成人伦理影院| 亚洲av福利一区| 婷婷成人精品国产| 日韩av在线免费看完整版不卡| a级毛片黄视频| 午夜福利,免费看| 国产精品国产三级国产av玫瑰| 久久人人爽人人片av| 岛国毛片在线播放| 国产国拍精品亚洲av在线观看| 国产精品蜜桃在线观看| 这个男人来自地球电影免费观看 | 视频中文字幕在线观看| 久久婷婷青草| 亚洲欧美成人综合另类久久久| 男人爽女人下面视频在线观看| 久久精品国产亚洲av涩爱| 最近最新中文字幕免费大全7| 建设人人有责人人尽责人人享有的| 美女脱内裤让男人舔精品视频| 成人18禁高潮啪啪吃奶动态图| 男女午夜视频在线观看 | 另类精品久久| 18禁国产床啪视频网站| 日韩人妻精品一区2区三区| www.熟女人妻精品国产 | 在线看a的网站| 一边亲一边摸免费视频| 亚洲精品日本国产第一区| h视频一区二区三区| 成人毛片60女人毛片免费| 国产男人的电影天堂91| 国产精品熟女久久久久浪| 日本91视频免费播放| 肉色欧美久久久久久久蜜桃| 精品午夜福利在线看| 免费日韩欧美在线观看| 日韩精品免费视频一区二区三区 | 有码 亚洲区| 黄色怎么调成土黄色| 亚洲精品第二区| 亚洲欧美成人精品一区二区| 只有这里有精品99| 黄色怎么调成土黄色| 欧美成人午夜免费资源| 18在线观看网站| 9191精品国产免费久久| 黄色配什么色好看| 国产片内射在线| 精品亚洲成国产av| 久久这里只有精品19| a级毛色黄片| 午夜福利在线观看免费完整高清在| 免费观看性生交大片5| 久久精品熟女亚洲av麻豆精品| 久久这里只有精品19| 激情视频va一区二区三区| 满18在线观看网站| 精品卡一卡二卡四卡免费| 亚洲,欧美,日韩| 2018国产大陆天天弄谢| 在线观看一区二区三区激情| av免费在线看不卡| 亚洲精品一区蜜桃| 一区二区三区精品91| 国产老妇伦熟女老妇高清| 日韩熟女老妇一区二区性免费视频| av天堂久久9| 国产日韩欧美在线精品| 亚洲av成人精品一二三区| 久久久精品区二区三区| 汤姆久久久久久久影院中文字幕| 美女国产高潮福利片在线看| 成人亚洲欧美一区二区av| 日本av手机在线免费观看| 两个人免费观看高清视频| 成人国语在线视频| 丝瓜视频免费看黄片| 成人手机av| 久久久久网色| 大话2 男鬼变身卡| 丝袜美足系列| 亚洲成av片中文字幕在线观看 | av国产精品久久久久影院| 久久毛片免费看一区二区三区| 各种免费的搞黄视频| 天天躁夜夜躁狠狠躁躁| 69精品国产乱码久久久| 久热久热在线精品观看| 亚洲美女黄色视频免费看| 日韩 亚洲 欧美在线| 国产熟女欧美一区二区| 丰满少妇做爰视频| 亚洲成色77777| 看免费av毛片| 在线精品无人区一区二区三| 国产日韩一区二区三区精品不卡| 赤兔流量卡办理| 亚洲av福利一区| 涩涩av久久男人的天堂| 亚洲伊人久久精品综合| 久久精品国产鲁丝片午夜精品| 制服诱惑二区| 热re99久久精品国产66热6| 亚洲av欧美aⅴ国产| 一本久久精品| 黑丝袜美女国产一区| 亚洲精品久久午夜乱码| 不卡视频在线观看欧美| 看免费av毛片| 黄色配什么色好看| 久久 成人 亚洲| 亚洲成av片中文字幕在线观看 | 男男h啪啪无遮挡| 欧美+日韩+精品| 有码 亚洲区| 国产xxxxx性猛交| 十分钟在线观看高清视频www| 自线自在国产av| 一区在线观看完整版| 久久久精品区二区三区| 欧美精品一区二区免费开放| 热re99久久精品国产66热6| 亚洲精品自拍成人| 少妇熟女欧美另类| 一区二区三区精品91| 侵犯人妻中文字幕一二三四区| 交换朋友夫妻互换小说| 水蜜桃什么品种好| 一级,二级,三级黄色视频| 成年人午夜在线观看视频| 亚洲第一区二区三区不卡| 一级毛片我不卡| 波野结衣二区三区在线| 国产免费一区二区三区四区乱码| 成人亚洲欧美一区二区av| 国产精品久久久久久av不卡| 亚洲在久久综合| 黑人高潮一二区| av在线app专区| 国产一区二区在线观看av| 亚洲美女搞黄在线观看| 草草在线视频免费看| 18禁观看日本| 成人国产麻豆网| 欧美日韩亚洲高清精品| 五月伊人婷婷丁香| 国产日韩欧美视频二区| 高清视频免费观看一区二区| 免费大片18禁| 国产不卡av网站在线观看| www.熟女人妻精品国产 | 精品久久蜜臀av无| 美女中出高潮动态图| 亚洲精品乱久久久久久| 亚洲第一av免费看| 九色成人免费人妻av| 久久国产精品男人的天堂亚洲 | 人人妻人人爽人人添夜夜欢视频| 黄色怎么调成土黄色| 国产淫语在线视频| 国产片内射在线| 亚洲国产精品一区二区三区在线| av一本久久久久| 国产在线一区二区三区精| 亚洲激情五月婷婷啪啪| 国产精品99久久99久久久不卡 | 国产一区二区激情短视频 | 日韩av免费高清视频| 欧美亚洲日本最大视频资源| 国产一区二区在线观看日韩| 老熟女久久久| 亚洲av.av天堂| 国产日韩欧美亚洲二区| 日韩中文字幕视频在线看片| 久久狼人影院| 伦理电影免费视频| 伦精品一区二区三区| 久久人人爽av亚洲精品天堂| 亚洲精品美女久久久久99蜜臀 | 99精国产麻豆久久婷婷| 日本欧美国产在线视频| 人成视频在线观看免费观看| 久久人人爽人人片av| 亚洲精品日韩在线中文字幕| 99热这里只有是精品在线观看| 91国产中文字幕| 欧美丝袜亚洲另类| 久久精品久久久久久噜噜老黄| 天天躁夜夜躁狠狠躁躁| av免费在线看不卡| 成人综合一区亚洲| 国产精品欧美亚洲77777| 国产午夜精品一二区理论片| 亚洲av电影在线观看一区二区三区| 国产不卡av网站在线观看| 国产日韩一区二区三区精品不卡| 欧美日本中文国产一区发布| 王馨瑶露胸无遮挡在线观看| 日本-黄色视频高清免费观看| www日本在线高清视频| 日本黄大片高清| 老司机影院成人| 欧美精品一区二区大全| 一二三四在线观看免费中文在 | 亚洲国产色片| 丝袜人妻中文字幕| 欧美日韩亚洲高清精品| 久久久久久伊人网av| 丁香六月天网| 国产亚洲欧美精品永久| 午夜免费男女啪啪视频观看| 亚洲精品久久午夜乱码| 国产高清不卡午夜福利| 久久久久网色| 大香蕉久久成人网| 18禁观看日本| 久久久久视频综合| 国产午夜精品一二区理论片| 亚洲精品久久午夜乱码| 色网站视频免费| 亚洲av免费高清在线观看| 中文天堂在线官网| 国产69精品久久久久777片| 美女主播在线视频| 丁香六月天网| 国产精品欧美亚洲77777| 中国美白少妇内射xxxbb| 看免费av毛片| 国产av精品麻豆| 亚洲欧美清纯卡通| 一级片免费观看大全| 久久精品夜色国产| av免费观看日本| 久久精品国产亚洲av天美| av免费在线看不卡| 两个人免费观看高清视频| 成人漫画全彩无遮挡| 伦精品一区二区三区| 久久国产亚洲av麻豆专区| 亚洲人成77777在线视频| 99久久精品国产国产毛片| 永久免费av网站大全| 国产 精品1| 成人手机av| 久久人人97超碰香蕉20202| 亚洲av.av天堂| 日韩电影二区| 亚洲欧洲精品一区二区精品久久久 | av天堂久久9| 欧美日本中文国产一区发布| 欧美日韩国产mv在线观看视频| 久久久久久久国产电影| 2022亚洲国产成人精品| 欧美日韩亚洲高清精品| 免费不卡的大黄色大毛片视频在线观看| 青春草视频在线免费观看| 搡老乐熟女国产| 黄色配什么色好看| 一区二区三区乱码不卡18| av.在线天堂| 日韩 亚洲 欧美在线| 如日韩欧美国产精品一区二区三区| 飞空精品影院首页| 国产精品国产三级国产av玫瑰| 天天影视国产精品| av又黄又爽大尺度在线免费看| 亚洲图色成人| 免费播放大片免费观看视频在线观看| 亚洲图色成人| 亚洲av福利一区| 国产成人午夜福利电影在线观看| 免费观看性生交大片5| 免费av不卡在线播放| 成年人午夜在线观看视频| 亚洲精品久久久久久婷婷小说| 在线亚洲精品国产二区图片欧美| 亚洲一级一片aⅴ在线观看| 成年女人在线观看亚洲视频| 日本av手机在线免费观看| 99国产综合亚洲精品| 亚洲国产最新在线播放| 成人免费观看视频高清| 毛片一级片免费看久久久久| 制服丝袜香蕉在线| 麻豆乱淫一区二区| 精品一区二区免费观看| 男人舔女人的私密视频| 免费播放大片免费观看视频在线观看| 夜夜爽夜夜爽视频| 亚洲国产精品一区三区| 99国产综合亚洲精品| 亚洲欧美一区二区三区国产| 亚洲天堂av无毛| 涩涩av久久男人的天堂| 久久ye,这里只有精品| 欧美激情极品国产一区二区三区 | 亚洲av国产av综合av卡| 亚洲国产色片| 精品福利永久在线观看| 亚洲精品日本国产第一区| 午夜福利网站1000一区二区三区| 男女免费视频国产| 久久国内精品自在自线图片| 精品国产露脸久久av麻豆| 精品少妇内射三级| 欧美日本中文国产一区发布| 黑人欧美特级aaaaaa片| 国产成人午夜福利电影在线观看| 搡老乐熟女国产| 久久av网站| 综合色丁香网| 精品人妻熟女毛片av久久网站| 黄片播放在线免费| 亚洲精品美女久久久久99蜜臀 | 成人二区视频| 波多野结衣一区麻豆| 最近2019中文字幕mv第一页| 91午夜精品亚洲一区二区三区| 黄色视频在线播放观看不卡| 国产永久视频网站| 99热6这里只有精品| 亚洲色图 男人天堂 中文字幕 | 国产白丝娇喘喷水9色精品| 9191精品国产免费久久| 免费高清在线观看日韩| av卡一久久| 色网站视频免费| av不卡在线播放| 满18在线观看网站| 亚洲人与动物交配视频| 亚洲精品视频女| 久久精品久久久久久久性| 黄片无遮挡物在线观看| 国产无遮挡羞羞视频在线观看| 亚洲色图 男人天堂 中文字幕 | 人人妻人人爽人人添夜夜欢视频| 久久热在线av| 18禁国产床啪视频网站| 有码 亚洲区| 成人二区视频| freevideosex欧美| 亚洲精品第二区| 日产精品乱码卡一卡2卡三| 韩国av在线不卡| 国产 一区精品| 国产成人欧美| 最新的欧美精品一区二区| 久久综合国产亚洲精品| 久久鲁丝午夜福利片| 久久影院123| 日韩一区二区视频免费看| 搡老乐熟女国产| 国产一区二区三区综合在线观看 | 国产男女超爽视频在线观看| 热99国产精品久久久久久7| 人成视频在线观看免费观看| 国产精品一二三区在线看| 国产 一区精品| 伊人久久国产一区二区| 各种免费的搞黄视频| 美女中出高潮动态图| 夫妻午夜视频| 97超碰精品成人国产| 黄色怎么调成土黄色| 性高湖久久久久久久久免费观看| 天美传媒精品一区二区| 黄色一级大片看看| 午夜老司机福利剧场| 久久99一区二区三区| 国产片特级美女逼逼视频| 日韩人妻精品一区2区三区| 蜜桃国产av成人99| 亚洲国产精品专区欧美| 亚洲少妇的诱惑av| 777米奇影视久久| 成人午夜精彩视频在线观看| 成人18禁高潮啪啪吃奶动态图| 国产成人一区二区在线| av在线播放精品| 亚洲人成77777在线视频| 欧美人与性动交α欧美软件 | 日韩欧美精品免费久久| 亚洲欧美一区二区三区黑人 | 99久久精品国产国产毛片| 满18在线观看网站| 国产精品99久久99久久久不卡 | 黑人巨大精品欧美一区二区蜜桃 | 成年av动漫网址| 久久精品国产自在天天线| av黄色大香蕉| 亚洲av福利一区| 久久久欧美国产精品| 色视频在线一区二区三区| 日韩熟女老妇一区二区性免费视频| 啦啦啦中文免费视频观看日本| 九草在线视频观看| 国产成人免费无遮挡视频| 色94色欧美一区二区| 夜夜骑夜夜射夜夜干| 男的添女的下面高潮视频| 99热这里只有是精品在线观看| 国产精品一国产av| 狠狠精品人妻久久久久久综合| 桃花免费在线播放| 国产色婷婷99| www.熟女人妻精品国产 | 国产一区亚洲一区在线观看| 国产免费又黄又爽又色| 在线观看国产h片|