• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Contracted product of hypermatrices via STP of matrices

    2023-11-16 10:13:00DaizhanChengMinMengXiaoZhangZhengpingJi
    Control Theory and Technology 2023年3期

    Daizhan Cheng·Min Meng·Xiao Zhang,3·Zhengping Ji,4

    Abstract An equivalent definition of hypermatrices is introduced.The matrix expression of hypermatrices is proposed.Using permutation matrices,the conversion between different matrix expressions is revealed.The various kinds of contracted products of hypermatrices are realized by semi-tensor products(STP)of matrices via matrix expressions of hypermatrices.

    Keywords d-hypermatrix·Matrix expression·Permutation matrices·Contracted product·Semi-tensor product(STP)

    1 Introduction

    The hypermatrix is an extension of the matrix to the higher order case (orderd≥3).It has found wide application in many fields,including computer science[1],signal processing [2], statistics [3], etc.We refer to [4] for a systematic introduction to the hypermatrices,and to[5,6]for some later developments.

    A generalized matrix product,called the semi-tensor product(STP),was proposed two decades ago[7].Since then it has been rapidly developed both in theoretical aspects and in various applications[8,9].For example,it has been applied to the study of Boolean and finite-valued networks(see survey papers [10–13]); finite games (see survey paper [14]);finite automata (see survey paper [15]); dimension-varying systems[16,17],etc.

    Later, in addition to the original matrix-matrix STP,the matrix–vector STP was proposed [18] and applied to dimension-varying dynamic (control) systems [17, 19].Recently,the STP of hypermatrices has also been introduced[20].It seems possible that some new unknown STPs will appear in the future.In the early days, the (matrix-matrix)STP is said to be a generalization of the conventional matrix product.With the appearance of new STPs,this explanation does not seem to be sufficient.

    The purpose of this article is to show that in essence,STPs are representations of multilinear mappings over hypermatrices.More precisely,the hypermatrices are first expressed in their matrix forms,then the multilinear mappings over them can be executed by STP over their matrix expressions.For this purpose,the conversion of different matrix expressions of hypermatrices plays an important role.

    The rest of this paper is organized as follows: Section 2 considers how to transform a hypermatrix into its distinct matrix expressions.The permutation matrix is also introduced for transforming among different matrix expressions.Section 3 shows how to realize the contracted product of hypermatrices over their matrix expressions.In Section 4,the STP is used to perform the contracted product of hypermatrices,which shows that STPs are essentially multilinear operators over hypermatrices.

    Before ending this section,we give a list of the notations used in this paper:

    2 Matrix expression of hypermatrices

    2.1 Set-based hypermatrix

    Definition 1 [4] Forn1,...,nd∈N, a functionf: Fn1×···×Fnd→F is called ad-th order hypermatrix of dimensionsn1,n2,...,nd(over F), or an orderdhypermatrix or ad-hypernatrix.Ad-hypermatrix is also denoted byA=[ai1,...,id].

    From a set point of view, a hypermatrix consists of two ingredients:

    (i) a set of data

    (ii) an order overDA,which makesDAa totally ordered set.In other words,each element inDAhas a fixed position,just as in the case of a matrix.

    To make the order ofDAprecise, we introduce a set of ordered indices,ID,as follows:

    which stands for a set of data as in(1),where(α1,...,αd)is a permutation of〈d〉.The order of ID is determined as follows:ap1,...,pd?aq1,...,qdif and only if there is ans∈〈d〉,such thatpi=qi,i

    If(α1,...,αd)=(1,2,...,d),thecorrespondingordered set of indices is called a natural order,denoted byi〈d〉.

    Based on the above argument, a hypermatrix can be defined alternatively as follows.

    Definition 2 Forn1,...,nd∈N,a hypermatrix(over F),is a set of orderddata as in(1)with a set of ordered indices as ID(i〈d〉;n1,...,nd).

    To apply classical matrix analysis to hypermatrices, the matrix expression of hypermatrices is a key issue.

    Letr=(r1,r2,...,rd)be a set of indices,and

    be a partition,wherer1∩r2=?,andp+q=d.For ease of notation,we will assume that the elements in two subsets inherit the element order of the original set,unless otherwise stated.

    Definition 3 Given a hypermatrixA=[ar1,r2,...,rd].For each partition

    there is a matrix expression ofA,denoted by

    where

    Moreover, the elements inare {ar1,r2,...,rd}, which are arranged by ID(r1;nri1,nri2,...,nri p)for rows,and by ID(r2;nr j1,nr j2,...,nr jq)for columns.

    Remark 1(i)pis called the contra-variant order ofandqis called the co-variant order of

    (ii) Ifp= 0,then we sets= 1,and ifq= 0,then we sett=1.

    (iii) Particularly,in(3)we require a natural order unless it is otherwise stated.That is,ri1

    Example 1GivenA=[ai1i2i3]∈F2×3×2.Then

    Definition 4 (i)VA:=is called the(row)vector expression of hypermatrixA.

    (ii)MA:=is called the contra-variant 1 matrix expression(briefly,matrix-1 expression)of hypermatrixA.

    Definition 5 Letxi∈Fni,i∈〈d〉.

    (i)x:=is called a hypervector of orderd.

    (ii) The set of orderdhypervectors with corresponding dimensions is denoted by Fn1■···■nd.

    Note that the components ofxcan be expressed as

    whereis their-th component ofxr.Hence it is clear that com(x)(or briefly hypervectorx)is a hypermatrix of orderd.Moreover,it is obvious that

    Proposition 1 Fn1■···■nd?Fn1×···×nd is a subset of hypermatrices.

    2.2 σ-transpose of hypermatrices

    Definition 6 [4]

    (i) Givenad-hypermatrixassumeσ∈Sd.Theσ-transpose ofAis

    It is obvious that a matrix is a 2-hypermatrix,so the above general definitions coincide with the corresponding definitions for matrices.

    Proposition 2A2-hypercubic A∈Fn×n is(skew-)symmetric,if and only if,MA is(skew-)symmetric.

    Proposition 3Let A∈Fn1×···×nd and r?d=〈d〉.Then

    Remark 2The above arguments stand true even when F is a set of perfect hypercomplex numbers (PHNs) [21].In fact,most of arguments throughout this paper also hold for PHNs.

    Next, we recall the permutation matrix [22], which is a generalization of swap matrix.

    ? Step 1:Define

    ? Step 2: Arrange {σ(i)|i∈ [1,d]} into an increasing sequence as

    That is,

    Set an index order as

    ? Step 3:

    Example 2Letd= 3,n1= 2,n2= 3, andn3= 5.We constructWσ:=Wσ[2,3,5].

    (1)σ1= identity (i.e., [1,2,3] → [1,2,3]): We haveWσ1 =I30.

    (2)σ2=(2,3)(i.e.,[1,2,3]→[1,3,2]):Then

    (3)σ3=(1,2)(i.e.,[1,2,3]→[2,1,3]):

    Similarly,we have

    (4)σ4=(1,2,3)(i.e.,[1,2,3]→[2,3,1]):

    We have

    (5)σ5=(1,3,2)(i.e.,[1,2,3]→[3,1,2]):

    Then

    (6)σ6=(1,3)(i.e.,[1,2,3]→[3,2,1]):

    Then

    Whenn1=n2= ··· =nd:=nthe corresponding permutation is briefly denoted by

    Since this kind of permutation matrices are of particular importance, we write some of them explicitly in the“Appendix”.

    Some basic properties of permutation matrices are presented in the following proposition,which follows from the definition immediately.

    Proposition 4 (i)

    (ii)Let σ,μ∈Sd.Then

    The following proposition shows the basic function of permutation matrices.

    Proposition 5 [22]Assume xi∈Fni,i∈〈d〉,σ∈Sd.Then

    As an immediate consequence, we have the following result,which shows how to calculateAσ.

    Proposition 6Let A∈Fn1×···×nd be a hypermatrix of order d.Then

    ProofProposition 5 implies that

    Taking transpose on both sides yields(10).

    2.3 Conversion of matrix expressions

    Definition 8 (i) LetA=[ai,j]∈Fm×nbe a matrix.Then

    is called the column stacking form ofA.

    (ii) Letx∈Fnands|n.Say,n=st.Then

    (iii) LetA∈Fm×nands|(mn).Then

    is called thes-row stacking form ofA.

    is called thes-column stacking form ofA.

    Proposition 7 [23]Let A∈Fm×n,X∈Fn×q,and Y∈Fp×m.Then

    Denote by

    Proposition 8Let A∈Fm×n.Then

    Conversely,

    Proof(19) and (20) come from Proposition 7 immediately.(21)follows from the definition.■

    By definition and(21),we have

    Setir=(i1,...,ir)?d=〈d〉,and denote

    The following proposition shows how to convert the matrix expression of a hypermatrix to its vector form and vise versa.

    Proposition 9Given A= [ai1,...,id] ∈ Fn1×···×nd,ir=(i1,...,ir)?d=〈d〉,and σir is as in(23),

    Then

    (i)(Vector form to matrix form)

    (ii)(Matrix form to vector form)

    ProofFor(i),we have

    As for(ii),using(10)and(19),we have

    Using(24)and(25),we obtain the formula transforming one matrix form to another.

    Corollary 10Let ir,σir be as in Proposition9,and js=(j1,...,js)and σ js:d→(js,djs).Then

    3 Contracted product of hypermatrices

    where the×between MA and MB is the conventional matrix product.

    Definition 9 can be extended to the case of multiple common indices.

    Definition 10 LetA= [ai1,...,id] ∈ Fn1×···×nd,B=[b j1,...,jr]∈Fm1×···×mrwith

    wheres≤ min(d,r) is the number of equal dimension indices.Define

    where

    where a caret over any entry means that the respective entry is omitted.

    Proposition 12

    where the×between MA and MB is the conventional matrix product.

    Example 3AssumeA= [ai1,i2,i3] ∈ F2×3×4,B=[b j1,j2,j3]∈F4×5×3with natural ID,calculate

    We have

    ThenC∈F2×5with

    A particular case isA= [ai1,...,id] ∈Fn1×···×nd,B=[bir1,...,irs] ∈Fnr1×···×nrs, andrs:= {r1,...,rs} ?d:=〈d〉.Then we briefly denote

    We call this kind of product the onto contracted product.They are of particular importance.

    In the onto contracted product,Acan be considered as a multilinearmappingfromFnr1×···×nrstoFn1×···×?nr1×···×?nrs×···×nd.

    Proposition 13Assume A∈Fn1×···×nd and B∈Fnr1×···×nrs,where rs:= {r1,...,rs} ?d.The contracted product of A and B,denoted by

    can be obtained by one of the following two equivalent formulae:

    (i)LetThen

    (ii)Let σ∈Sd be the permutation

    Then

    Definition 11 (i) LetA∈ Fn1×···×nd×nd+1×···×n2d,B∈Fn1×···×nd, wherend+i=ni,i∈ 〈d〉.ThenA:Fn1×···×nd→Fn1×···×ndis defined by

    This contracted product is called a unary operator on Fn1×···×nd.

    (ii) LetA∈Fn1×···×n3d,B,C∈Fn1×···×nd,wheren2d+i=nd+i=ni,i∈〈d〉.ThenA:Fn1×···×nd×Fn1×···×nd→Fn1×···×ndis defined by

    This contracted product is called a binary operator on Fn1×···×nd.

    (iii) Similarly,we can definekargument(i.e.,khypermatrix)operators fork≥3.

    4 STP realization of contracted product of hypermatrices

    This section shows that a fundamental faculty of STP is to realize the contracted product of hypermatrices.This may help us to understand what is the essential meaning of STP.For this purpose, the hypermatrices are first expressed in their matrix expressions.The STPs are operators on matrices.When the hypermatrices are transformed into their matrix forms, the action of operators (especially of certain contracted products) on their objective hypermatrices can be realized by the action of STPs on the matrix expressions of the corresponding hypermatrices.Figure1 shows this process.

    Since there are many possible multilinear operators,including contracted products,over different hypermatrices,the corresponding operators over their matrix expressions are diverse.To express these operators,the STPs are also diverse.

    4.1 Classical STPs

    From linear algebra one sees that the matrix product has two fundamental types: (1) Matrix-matrix (M-M) product:it represents the composition of two linear mappings.(2)Matrix–vector (M-V) product: it realizes a linear mapping over a vector space (or between two vector spaces).Fortunately, when the dimensions are compatible, the classical matrix product can realize these two functions simultaneously.

    When the conventional matrix product is extended to STP,where the dimensions are not compatible, an STP cannot realize these two functions simultaneously.Therefore, we need to distinguish between M-M STP and M-V products.First,we review the classical STPs[17]:

    Definition 12 (i) LetA∈Fm×n,B∈Fp×qandt=lcm(n,p).The M-M STP ofAandBis defined as

    (ii) LetA∈Fm×n,x∈Fpandt= lcm(n,p).The M-V STP ofAandxis defined as

    (iii) Letx∈Fm,y∈Fnandt= lcm(m,n).The vectorvector(V-V)STP ofxandyis defined as

    Define

    Then the M-M STP can be considered as the product overM;the M-V STP can be considered as the action ofMon R∞;and the V-V STP can be considered as an inner product over R∞.It is obvious that they are the generalizations of the corresponding matrices with matrix-matrix or matrix–vector product, or vectors with vector product.Furthermore, they satisfy the following general properties.

    Proposition 14 (i)(Associativity)

    (ii)(Distributivity)For A,B,C∈M,x,y,z∈R∞,

    Remark 3M-V and V-V STPs are not so commonly used as M-M STP.We elaborate on this a little bit more.

    ? Topology on R∞:

    Considerx∈Rp,y∈Rq,(x,y∈R∞),t= lcm(p,q).Define

    then R∞becomes a(pseudo-)vector space.

    Furthermore,we define

    (i) (Inner product):

    (ii) (Norm):

    (iii) (Distance):

    With this distance R∞becomes a topological space[17].

    ? Linear dynamic systems over R∞:

    A linear dynamic system over R∞is defined by

    It is a cross-dimensional system[24].

    4.2 STP for vector expression of hypermatrices

    LetΠ:= [ci1,...,id]where ID = ID(i1,...,id;n1,...,nd)is a hypermatrix of orderd.Then the following result is well known.

    Proposition 15Themultilinearmappingπ canbecalculated by

    4.3 STP for matrix-1 expression of hypermatrices

    Proposition 16Themultilinearmappingπ canbecalculated by

    Example 5(i) Cross product on R3:

    Consider the cross product onR3,denoted by →×.Denote by

    It follows that

    (ii) General linear algebra gl(2,R).Denote by

    Remark 4(i) Roughly speaking,in classical sense,an STP of matrices is a multilinear operator over hypermatrices.To be precise,when the hypermatrices are expressed into their matrix forms,the STP works as a matrix product.

    (ii) Since multilinear mappings over hypermatrices can be various,there can also be various STPs.

    (iii) When partial arguments are known,an operator becomes a restricted operator over the remaining arguments.In this case, STP combined with swap matrices becomes more powerful.

    4.4 STP for general matrix expression of hypermatrices

    We give two examples for this.

    Example 6AssumeVis ann-dimensional vector space over F.T:Vr×(V?)s→F is a tensor of covariant orderrand contra-variant orders.Let,i∈〈n〉 be a basis ofVandωi=()T,i∈〈n〉be the dual basis of the dual spaceV?,and set

    Then

    is a hypermatrix of orderr+s.

    Construct, wherejs:=(j1,...,js),ir:=(i1,...,ir).

    Forω1,...,ωs∈V?,x1,...,xr∈V,we have

    Example 7[4] In statistical mechanics, the Yang–Baxter equation is given as follows: LetR= [ri1,i2,i3,i4] ∈FN×N×N×N.Then we have(in our notation):

    We express(40)into matrix form as follows:

    ExpressingRinto matrix form,we have

    Fig.2 ×versus

    Hence,the RHS of(40)becomes

    Hence,(40)implies that

    5 Conclusion

    In this paper, the matrix expression of hypermatrices was first proposed.As an auxiliary tool, the permutation matrices have also been discussed in detail.It is utilised to reveal certain properties of the matrix expression of hypermatrices.Then we showed that the STPs of matrices are essentially the multilinear operators of hypermatrices(including hypervectors).The operators over hypermatrices including contracted products,are realized by STPs through the matrix expression of hypermatrices.In fact,the actions of STP over hypermatrices can be considered as a generalization of the actions of the conventional matrix product over matrices.This fact can be demonstrated by Fig.2.

    The aforementioned hypermatrix product are called“contracted type", since it contracts an index of both hypermatrices and concatenate them together; there is another type of hypermatrix product of “compound type", which can be viewed as a natural generalization of the STP to hypermatrices;we will discuss them as well as give applications in our future work.

    Appendix

    In the following,some permutation matrices are listed.

    1.d=3,n=2:

    国产真实乱freesex| 国产成人aa在线观看| 国内精品宾馆在线| av又黄又爽大尺度在线免费看 | 大又大粗又爽又黄少妇毛片口| 久久久国产成人精品二区| 国产成人a∨麻豆精品| 直男gayav资源| 国产一区二区亚洲精品在线观看| 亚洲美女视频黄频| 日本黄色视频三级网站网址| 日韩视频在线欧美| 日韩一区二区视频免费看| 一级爰片在线观看| 麻豆av噜噜一区二区三区| 久久精品久久久久久久性| 成人鲁丝片一二三区免费| 欧美另类亚洲清纯唯美| 国产精品伦人一区二区| 亚洲av不卡在线观看| 麻豆乱淫一区二区| 中文亚洲av片在线观看爽| 国产在视频线在精品| 不卡视频在线观看欧美| 26uuu在线亚洲综合色| 在线观看美女被高潮喷水网站| 午夜激情福利司机影院| 国产激情偷乱视频一区二区| 精品人妻偷拍中文字幕| 黄片wwwwww| 国产黄a三级三级三级人| 国产伦精品一区二区三区视频9| av免费观看日本| 国产不卡一卡二| 五月伊人婷婷丁香| av免费观看日本| 99久久中文字幕三级久久日本| 变态另类丝袜制服| 国产高清国产精品国产三级 | 简卡轻食公司| 少妇的逼水好多| 中文天堂在线官网| 有码 亚洲区| 亚洲国产色片| kizo精华| 欧美日韩精品成人综合77777| 免费观看人在逋| 久久精品久久久久久久性| 日日摸夜夜添夜夜添av毛片| 日日啪夜夜撸| 嫩草影院新地址| 超碰97精品在线观看| 国产伦在线观看视频一区| 国产三级在线视频| 女人十人毛片免费观看3o分钟| 免费看日本二区| 欧美激情国产日韩精品一区| 国产精品av视频在线免费观看| 欧美成人a在线观看| 日本三级黄在线观看| 国产黄片美女视频| 亚州av有码| 免费观看的影片在线观看| av在线老鸭窝| 精品人妻偷拍中文字幕| 少妇裸体淫交视频免费看高清| 欧美丝袜亚洲另类| 欧美高清成人免费视频www| 91午夜精品亚洲一区二区三区| 久久久久久久午夜电影| 超碰97精品在线观看| 日韩国内少妇激情av| 日韩中字成人| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美精品综合久久99| 国产毛片a区久久久久| 欧美bdsm另类| 99久久精品国产国产毛片| 十八禁国产超污无遮挡网站| 精品人妻偷拍中文字幕| 久久99热这里只频精品6学生 | 国产乱人视频| 校园人妻丝袜中文字幕| 内地一区二区视频在线| 国产成人精品久久久久久| 久久人人爽人人爽人人片va| 能在线免费观看的黄片| 国产伦一二天堂av在线观看| 热99在线观看视频| 2021少妇久久久久久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 精品酒店卫生间| 菩萨蛮人人尽说江南好唐韦庄 | 日韩,欧美,国产一区二区三区 | 99久久成人亚洲精品观看| 色网站视频免费| 久久久久久伊人网av| 日本一二三区视频观看| 人人妻人人看人人澡| 亚洲精品,欧美精品| 青青草视频在线视频观看| 嘟嘟电影网在线观看| 欧美激情久久久久久爽电影| 精品一区二区免费观看| 国产淫片久久久久久久久| 亚洲av中文字字幕乱码综合| 久久精品久久久久久噜噜老黄 | 日韩av不卡免费在线播放| 国产亚洲午夜精品一区二区久久 | 欧美色视频一区免费| 秋霞伦理黄片| 精华霜和精华液先用哪个| av卡一久久| 国产在视频线在精品| 寂寞人妻少妇视频99o| 男女边吃奶边做爰视频| 18禁动态无遮挡网站| 精品酒店卫生间| 亚洲欧美成人综合另类久久久 | 欧美变态另类bdsm刘玥| 男女下面进入的视频免费午夜| 丰满少妇做爰视频| 可以在线观看毛片的网站| 麻豆成人av视频| 亚洲成人中文字幕在线播放| 99久久精品国产国产毛片| 国产伦精品一区二区三区四那| 2022亚洲国产成人精品| 一个人观看的视频www高清免费观看| 亚洲国产精品国产精品| 日本黄大片高清| 久久久久久久午夜电影| 欧美成人午夜免费资源| 边亲边吃奶的免费视频| 狠狠狠狠99中文字幕| 亚洲国产精品久久男人天堂| 日本免费一区二区三区高清不卡| av在线播放精品| 尤物成人国产欧美一区二区三区| 亚洲精品自拍成人| 精品久久久久久久末码| 天堂网av新在线| 又粗又爽又猛毛片免费看| 免费观看人在逋| 内地一区二区视频在线| 亚洲精品自拍成人| 97热精品久久久久久| 日韩视频在线欧美| 中文欧美无线码| av在线播放精品| 最近最新中文字幕大全电影3| 日本免费一区二区三区高清不卡| 精品免费久久久久久久清纯| 亚洲在线观看片| 2022亚洲国产成人精品| 午夜免费激情av| av专区在线播放| 欧美日本亚洲视频在线播放| 亚洲欧美清纯卡通| 国产伦在线观看视频一区| 99久久精品热视频| 国产成人aa在线观看| 内射极品少妇av片p| 久久精品夜夜夜夜夜久久蜜豆| 午夜免费激情av| 看黄色毛片网站| 亚洲成人中文字幕在线播放| 国产精品一区www在线观看| 高清视频免费观看一区二区 | 亚洲高清免费不卡视频| 国产色婷婷99| 久久精品久久久久久噜噜老黄 | 国产午夜精品久久久久久一区二区三区| 女人十人毛片免费观看3o分钟| 99热这里只有是精品50| 日韩中字成人| 99热6这里只有精品| 国产白丝娇喘喷水9色精品| 国产精品一区二区三区四区久久| 国产单亲对白刺激| 亚洲精品aⅴ在线观看| 日韩成人av中文字幕在线观看| 在线播放国产精品三级| 日本与韩国留学比较| 六月丁香七月| 91狼人影院| 亚洲真实伦在线观看| 91久久精品国产一区二区三区| 日韩中字成人| 一级黄色大片毛片| 成人毛片60女人毛片免费| 又粗又爽又猛毛片免费看| 在线观看一区二区三区| 长腿黑丝高跟| 国产精品三级大全| 亚洲aⅴ乱码一区二区在线播放| 99热全是精品| 最近的中文字幕免费完整| 亚洲三级黄色毛片| 国产老妇女一区| 26uuu在线亚洲综合色| 欧美zozozo另类| 久久精品国产亚洲av天美| 国产伦在线观看视频一区| 日产精品乱码卡一卡2卡三| 国产精品女同一区二区软件| 美女高潮的动态| 国产成人freesex在线| 国产乱人视频| 性插视频无遮挡在线免费观看| 欧美色视频一区免费| 欧美一级a爱片免费观看看| 99久久九九国产精品国产免费| 少妇人妻一区二区三区视频| 最近视频中文字幕2019在线8| 免费观看性生交大片5| 久久99热6这里只有精品| 可以在线观看毛片的网站| 日韩精品青青久久久久久| 男女国产视频网站| 男插女下体视频免费在线播放| 日日摸夜夜添夜夜爱| 男人的好看免费观看在线视频| av视频在线观看入口| 69av精品久久久久久| 午夜精品在线福利| 成人亚洲精品av一区二区| 欧美激情国产日韩精品一区| 小说图片视频综合网站| av播播在线观看一区| 亚洲欧洲日产国产| 久99久视频精品免费| 国产色婷婷99| 国产在线男女| 精品久久久噜噜| 可以在线观看毛片的网站| 国产毛片a区久久久久| 日本-黄色视频高清免费观看| 一区二区三区高清视频在线| 少妇人妻一区二区三区视频| 亚洲熟妇中文字幕五十中出| 免费大片18禁| 欧美另类亚洲清纯唯美| 亚洲av中文字字幕乱码综合| 十八禁国产超污无遮挡网站| 日韩成人伦理影院| 韩国高清视频一区二区三区| av黄色大香蕉| 中文亚洲av片在线观看爽| 成人国产麻豆网| 日本爱情动作片www.在线观看| 国产片特级美女逼逼视频| 国产av一区在线观看免费| 国产又色又爽无遮挡免| 亚洲中文字幕日韩| 日韩欧美三级三区| 午夜免费激情av| 成人美女网站在线观看视频| 欧美三级亚洲精品| 我的女老师完整版在线观看| 亚洲综合精品二区| 可以在线观看毛片的网站| 欧美又色又爽又黄视频| 亚洲熟妇中文字幕五十中出| 一夜夜www| 国产美女午夜福利| 国产精品嫩草影院av在线观看| 美女高潮的动态| 国产伦一二天堂av在线观看| 日韩一本色道免费dvd| 日日撸夜夜添| 日韩高清综合在线| 色尼玛亚洲综合影院| 伊人久久精品亚洲午夜| 少妇丰满av| 毛片一级片免费看久久久久| videos熟女内射| 国产高潮美女av| 一级二级三级毛片免费看| 久久精品国产99精品国产亚洲性色| 大又大粗又爽又黄少妇毛片口| 人妻制服诱惑在线中文字幕| 午夜福利在线在线| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产欧洲综合997久久,| 丰满少妇做爰视频| 欧美成人免费av一区二区三区| 国产成人一区二区在线| 国产精品国产三级专区第一集| 一级二级三级毛片免费看| 精品一区二区三区视频在线| 天堂影院成人在线观看| 大香蕉久久网| 91午夜精品亚洲一区二区三区| 国产一区二区在线观看日韩| 免费观看性生交大片5| 成人二区视频| 亚洲在久久综合| 婷婷色综合大香蕉| av国产久精品久网站免费入址| 久久久久久久亚洲中文字幕| 国产白丝娇喘喷水9色精品| 免费电影在线观看免费观看| 水蜜桃什么品种好| 成人高潮视频无遮挡免费网站| 久久99热这里只有精品18| 男人的好看免费观看在线视频| 精品久久久久久久人妻蜜臀av| av免费观看日本| 日韩高清综合在线| 人人妻人人看人人澡| 亚洲美女视频黄频| 欧美xxxx性猛交bbbb| 搞女人的毛片| 男女下面进入的视频免费午夜| 一个人免费在线观看电影| 人妻系列 视频| 久久久久久久久中文| 只有这里有精品99| 久久久久久久久大av| 久久韩国三级中文字幕| 成人鲁丝片一二三区免费| 中文资源天堂在线| h日本视频在线播放| 日本五十路高清| 少妇的逼好多水| 国内精品宾馆在线| 国产一级毛片在线| 国产又色又爽无遮挡免| 日本午夜av视频| 女人十人毛片免费观看3o分钟| 国产69精品久久久久777片| 一级毛片aaaaaa免费看小| 国产探花极品一区二区| 男女啪啪激烈高潮av片| 亚洲欧洲日产国产| 国产精品精品国产色婷婷| 精品久久久久久成人av| 亚洲电影在线观看av| 亚洲欧洲日产国产| 啦啦啦啦在线视频资源| 内射极品少妇av片p| 最近最新中文字幕免费大全7| 热99re8久久精品国产| 国产精品电影一区二区三区| 午夜福利在线观看免费完整高清在| 婷婷色麻豆天堂久久 | 亚洲综合精品二区| 国产av一区在线观看免费| 日韩一本色道免费dvd| 国产精品精品国产色婷婷| 欧美丝袜亚洲另类| 日韩国内少妇激情av| 亚洲精品乱久久久久久| 午夜激情福利司机影院| 成人高潮视频无遮挡免费网站| 欧美精品国产亚洲| 日韩一区二区三区影片| 波野结衣二区三区在线| 精品国产三级普通话版| 少妇裸体淫交视频免费看高清| 国产中年淑女户外野战色| 可以在线观看毛片的网站| 国内少妇人妻偷人精品xxx网站| 欧美性猛交黑人性爽| 国产精品久久久久久久久免| 亚洲性久久影院| 精品久久久久久电影网 | 国产探花极品一区二区| 七月丁香在线播放| 国产淫片久久久久久久久| 久久精品国产鲁丝片午夜精品| 联通29元200g的流量卡| 国产精品麻豆人妻色哟哟久久 | 十八禁国产超污无遮挡网站| 国产高潮美女av| 免费观看性生交大片5| 日韩欧美国产在线观看| 国产精品福利在线免费观看| 六月丁香七月| 在线天堂最新版资源| 亚洲综合精品二区| 亚洲国产高清在线一区二区三| 观看美女的网站| 精品久久久噜噜| av.在线天堂| 精品国产三级普通话版| 搡老妇女老女人老熟妇| 水蜜桃什么品种好| 国产在视频线在精品| 国产黄片美女视频| 在线免费观看的www视频| 亚洲人与动物交配视频| 一级黄色大片毛片| 国产亚洲精品久久久com| 熟女电影av网| 免费观看性生交大片5| 大又大粗又爽又黄少妇毛片口| 亚洲真实伦在线观看| 日韩av在线大香蕉| 婷婷色av中文字幕| 久久精品国产亚洲av涩爱| 蜜臀久久99精品久久宅男| 午夜福利在线观看吧| 国产高清三级在线| 久久精品人妻少妇| 超碰av人人做人人爽久久| 亚洲在线自拍视频| 国产一区二区在线av高清观看| 赤兔流量卡办理| 成年女人永久免费观看视频| 天堂影院成人在线观看| 亚洲成人中文字幕在线播放| 一个人观看的视频www高清免费观看| 国产v大片淫在线免费观看| 欧美日韩国产亚洲二区| 亚洲精品亚洲一区二区| 亚洲av熟女| 国产在视频线在精品| 国产亚洲5aaaaa淫片| 在现免费观看毛片| 中国美白少妇内射xxxbb| 亚洲精品乱久久久久久| 欧美色视频一区免费| 啦啦啦观看免费观看视频高清| 在线观看av片永久免费下载| 26uuu在线亚洲综合色| 亚洲欧美清纯卡通| 国产在线一区二区三区精 | 美女国产视频在线观看| 又爽又黄无遮挡网站| 欧美激情久久久久久爽电影| 亚洲精品,欧美精品| 国产av不卡久久| 国产老妇伦熟女老妇高清| 啦啦啦韩国在线观看视频| av在线观看视频网站免费| 国产淫片久久久久久久久| 一个人看的www免费观看视频| 在线观看美女被高潮喷水网站| 日本一本二区三区精品| 国产乱人视频| 18禁在线播放成人免费| 久久精品国产99精品国产亚洲性色| av专区在线播放| 黄片wwwwww| 国产精品熟女久久久久浪| 亚洲国产精品合色在线| 国产高清国产精品国产三级 | 少妇丰满av| 人妻系列 视频| .国产精品久久| 九九热线精品视视频播放| 成人特级av手机在线观看| 少妇的逼水好多| 中文精品一卡2卡3卡4更新| 性色avwww在线观看| 91av网一区二区| 一本久久精品| 在线播放无遮挡| 国产成人福利小说| av黄色大香蕉| 国产真实伦视频高清在线观看| 亚洲国产欧洲综合997久久,| 国产精华一区二区三区| 乱码一卡2卡4卡精品| 亚洲精品日韩在线中文字幕| 久久精品久久精品一区二区三区| 成人欧美大片| 久久精品国产自在天天线| 成人二区视频| 中文字幕av成人在线电影| 日韩高清综合在线| 国产探花在线观看一区二区| 亚洲精品aⅴ在线观看| 综合色丁香网| 久久精品国产鲁丝片午夜精品| 日韩欧美精品v在线| 国产精品一区www在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 又粗又硬又长又爽又黄的视频| 亚洲天堂国产精品一区在线| 五月伊人婷婷丁香| 欧美3d第一页| 国产av在哪里看| av女优亚洲男人天堂| 麻豆久久精品国产亚洲av| 一本久久精品| 国产精品国产高清国产av| 国产精品爽爽va在线观看网站| 中文字幕亚洲精品专区| 久久欧美精品欧美久久欧美| 美女cb高潮喷水在线观看| 伊人久久精品亚洲午夜| 国产高清国产精品国产三级 | 免费av观看视频| 岛国在线免费视频观看| 少妇高潮的动态图| 午夜亚洲福利在线播放| 国产淫语在线视频| 爱豆传媒免费全集在线观看| 丝袜喷水一区| 亚洲自拍偷在线| 国产麻豆成人av免费视频| 免费观看在线日韩| 69人妻影院| 国产伦理片在线播放av一区| 中国国产av一级| 男女那种视频在线观看| 婷婷六月久久综合丁香| 干丝袜人妻中文字幕| 麻豆久久精品国产亚洲av| 丰满少妇做爰视频| 看免费成人av毛片| 欧美性感艳星| 中文在线观看免费www的网站| 免费播放大片免费观看视频在线观看 | 亚洲性久久影院| 国产高清视频在线观看网站| 国产在线一区二区三区精 | 女人十人毛片免费观看3o分钟| a级一级毛片免费在线观看| 精品国产三级普通话版| 中文字幕亚洲精品专区| 汤姆久久久久久久影院中文字幕 | 亚洲一级一片aⅴ在线观看| 久久精品国产99精品国产亚洲性色| 欧美日本亚洲视频在线播放| 桃色一区二区三区在线观看| 午夜福利在线在线| 亚洲成人久久爱视频| 久久精品91蜜桃| 久久精品久久精品一区二区三区| 欧美日本视频| 亚洲内射少妇av| 国产综合懂色| 免费电影在线观看免费观看| 国产在线一区二区三区精 | 深爱激情五月婷婷| 波野结衣二区三区在线| 秋霞在线观看毛片| 美女国产视频在线观看| 色5月婷婷丁香| 国产精华一区二区三区| 中文字幕av成人在线电影| 国产中年淑女户外野战色| 男女啪啪激烈高潮av片| 亚洲av免费高清在线观看| 看免费成人av毛片| 搡老妇女老女人老熟妇| 天天一区二区日本电影三级| 亚洲最大成人av| 天堂av国产一区二区熟女人妻| 变态另类丝袜制服| 国产精品野战在线观看| 国产高清国产精品国产三级 | 亚洲精品国产成人久久av| 在线播放无遮挡| 成人漫画全彩无遮挡| 国产伦精品一区二区三区四那| 亚洲国产欧洲综合997久久,| 男女那种视频在线观看| 爱豆传媒免费全集在线观看| 天堂影院成人在线观看| 色综合亚洲欧美另类图片| 日本一本二区三区精品| 欧美精品国产亚洲| 大又大粗又爽又黄少妇毛片口| 天堂√8在线中文| 欧美变态另类bdsm刘玥| 色播亚洲综合网| 婷婷色麻豆天堂久久 | 国产成人精品婷婷| 天天一区二区日本电影三级| 精品久久久久久久末码| 大话2 男鬼变身卡| 最近的中文字幕免费完整| 久久精品人妻少妇| 51国产日韩欧美| av在线老鸭窝| av在线观看视频网站免费| 久久精品国产99精品国产亚洲性色| 草草在线视频免费看| 日韩成人伦理影院| 国产精品嫩草影院av在线观看| 亚洲成人精品中文字幕电影| 99久久人妻综合| 亚洲国产欧洲综合997久久,| 麻豆一二三区av精品| 精品久久国产蜜桃| 人人妻人人看人人澡| 欧美一区二区亚洲| 欧美+日韩+精品| 日日摸夜夜添夜夜爱| 欧美不卡视频在线免费观看| 国产免费视频播放在线视频 | 99久久精品一区二区三区| 一级二级三级毛片免费看| 日本熟妇午夜| 国模一区二区三区四区视频| 欧美日韩综合久久久久久| 久久国内精品自在自线图片| .国产精品久久| 亚洲欧美清纯卡通| 寂寞人妻少妇视频99o| 人妻少妇偷人精品九色| 久久久午夜欧美精品| 亚洲一区高清亚洲精品| 午夜a级毛片| 久久人妻av系列| 亚洲内射少妇av| 免费av不卡在线播放| 国产精品伦人一区二区| 男女国产视频网站| 国语自产精品视频在线第100页|