• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Semi-global weighted output average tracking of discrete-time heterogeneous multi-agent systems subject to input saturation and external disturbances

    2023-11-16 10:12:56QilinSongYuanlongLiYijingXieZongliLin
    Control Theory and Technology 2023年3期

    Qilin Song·Yuanlong Li·Yijing Xie·Zongli Lin

    Abstract In this paper, we revisit the semi-global weighted output average tracking problem for a discrete-time multi-agent system subject to input saturation and external disturbances.The multi-agent system consists of multiple heterogeneous linear systems as leader agents and multiple heterogeneous linear systems as follower agents.We design both the state feedback and output feedback control protocols for each follower agent.In particular, a distributed state observer is designed for each follower agent that estimates the state of each leader agent.In the output feedback case,state observer is also designed for each follower agent to estimate its own state.With these estimates,we design low gain-based distributed control protocols,parameterized in a scalar low gain parameter.It is shown that,for any bounded set of the initial conditions,these control protocols cause the follower agents to track the weighted average of the outputs of the leader agents as long as the value of the low gain parameter is tuned sufficiently small.Simulation results illustrate the validity of the theoretical results.

    Keywords Distributed average tracking·Input saturation·Low gain feedback·Heterogeneous multi-agent systems·Output regulation

    1 Introduction

    The problem of multiple agents each tracking the average of multiple time-varying signals, each associated with one agent, using the information of its neighboring agents is called distributed average tracking [1, 2].Distributed average tracking problem has numerous applications in multi-agent systems including distributed estimation, distributed optimization and distributed formation control.The continuous-time distributed average tracking problem has been widely studied [3, 4].Specifically, Reference [3] presented distributed discontinuous control algorithms that achieve distributed average tracking for time-varying signals with bounded derivatives.Reference [4] designed eventtriggered average tracking algorithms for heterogeneous agents to achieve average tracking of time-varying signals.Reference[5]studied the distributed average tracking problem in the discrete-time setting.

    Actuator limitation is ubiquitous in practice and, as a result, research on control systems with input saturation has been widely conducted.For example, low gain feedback laws[6]were proposed to achieve semi-global output regulation of the discrete-time linear systems that are asymptotically null controllable with bounded controls(ANCBC).A discrete-time linear system is said to be ANCBC if it is stabilizable and all its open-loop poles are on or inside the unit circle.Reference [7] studied cooperative output regulation for a discrete-time time-delay multi-agent system.Reference[8]presented an adaptive distributed observer for cooperative output regulation of a discrete-time multi-agent system so that the follower agents do not need the system matrix of the leader agent.Reference [9] studied the problem of semi-global leader-following output consensus whenthefolloweragentsarerepresentedbydiscrete-timelinear systems with input saturation and external disturbances.More recently, Reference [10] formulated and studied the semi-global weighted output average tracking problem for a multi-agent system, whose follower agents are heterogeneous and represented by continuous-time linear systems with input saturation and external disturbances.Both the reference signals, whose average is to be tracked by the follower agents, and the disturbances are generated by the leader agents that are also heterogeneous and represented by continuous-time linear systems.In addition, such a formulation does not require the number of leader agents and the number of follower agents to be the same.

    In this paper,we focus on the semi-global weighted output average tracking problem for a multi-agent system whose heterogeneous agents are described by discrete-time linear systems with input saturation and external disturbances.We first construct,for each follower agent,distributed observers to estimate the states of the leader agents.In the output feedback case, a state observer is also constructed for each follower agent to estimate its own state via output information.We then utilize the low gain feedback design technique and the output regulation theory to design distributed state feedback and output feedback control laws to achieve semiglobal weighted output average tracking.We note that the discrete-time results we are to present are not direct extensions of[10].In particular,the continuous-time leader state observers constructed in[10]rely on high-gain action.The value of the gain parameter in the distributed observer is chosen sufficiently high to ensure a Hurwitz system matrix in proving the stability of the error dynamics.However,the stability property of the corresponding system matrix in the discrete-time setting is much more complicated than the continuous-time case.As a result, we have to resort to more subtle property of the system matrix under an additional assumption on the system matrix of the leader agent to ensure its stability[7].Partial results from this paper were presented at a conference [11], which focuses on the state feedback results.

    Organization of the paper Sect.2 formulates the semiglobal weighted output average tracking problem for a multiagent system, where the leader agents are represented by discrete-time heterogeneous linear systems and the follower agents by discrete-time heterogeneous linear systems with input saturation and external disturbances.In Sects.3 and 4,we respectively design distributed state feedback and output feedback control protocols that solve the problem formulated in Sect.2.Section5 presents numerical examples to illustrate the theoretical results.Section6 concludes the paper.

    2 Problem formulation

    We focus on a multi-agent system containingMheterogeneous leader agentsvk,k∈I[1,M],andNheterogeneous follower agents,vi,i∈I[M+1,M+N].The dynamics of each leader agentvkis described by

    wherewk(t)∈Rskis the state,zk(t)∈Rqis the output,andWk0?Rskis bounded.LetW0=W10×W20×···×WM0.The dynamics of each follower agentviis described by

    Lemma 1 [12]Under Assumption 1,all the eigenvalues of Mk,k∈I[1,M],have a positive real part.

    Lemma 2 [13]For the matrix

    let aik> 0,i∈I[M+ 1,M+lk],and aik= 0,i∈I[M+lk+1,M+N],and the matrixLk be partitioned as

    Assumption 2 For eachk∈I[1,M], all eigenvalues ofSkare on or inside the unit circle.

    Assumption 3 For eachi∈I[M+1,M+N],(Ai,Bi)is stabilizable and all eigenvalues ofAiare on or inside the unit circle.

    Assumption 4 For eachk∈I[1,M],(Sk,Qk)is detectable.

    Assumption 5 For eachi∈I[M+1,M+N],(Ai,Ci)is detectable.

    Lemma 3 [14]Under Assumption 3,for any ε∈(0,1],there is a unique matrix Pi(ε)>0,i∈I[M+1,M+N],which solves the following algebraic Riccati equation(ARE):

    Assumption 7 For eachi∈I[M+1,M+N],there are a positive scalarδ<Δand a non-negative integerTsuch that,for allw(0)∈W0,‖Γiw(t)‖∞,T≤Δ-δ.

    Since not all follower agents know the states of all leader agents, we design, for each follower agentvi,i∈I[M+1,M+N],distributed leader state observers to estimate the states of the leader agentsvk,k∈I[1,M],as follows:

    whereμkis chosen according to Lemma 4.

    Note that for follower agents that have access to the leaders, state observers are not needed.For simplicity in presentation, we have built state observers for all follower agents.

    We introduce the following notation to help formulate the problem:

    The problem we are to solve for the multi-agent system consisting of(1)and(2)via state feedback can be formulated as follows.

    If the states of the leader agents and the follower agents are not available for the implementation of the control laws,we need to construct state observers to obtain the information of these states.

    For eachk∈I[1,M],define

    According to whether the follower agentvihas access to the information of the leader agentvk,we design the following two kinds of distributed leader state observers to estimate the states of the leader agents.They directly use the output information of the leader agentvkor the state of their neighbors’leader state observers to obtain their estimates of each leader’s state.

    where ?wik(t)is the estimate of the state of the leader agentvk, the value ofτkwill be determined later, andLkis such thatSk+Lk Qkis Schur.The existence ofLkis guaranteed as(Sk,Qk)is detectable.

    For each follower agentvi,i∈I[M+1,M+N], we design the following state observers to estimate its own statexi:

    The problem we are to solve for the multi-agent system consisting of(1)and(2)via output feedback can be formulated as follows.

    3 State feedback case

    Using the states of the distributed leader state observers(6),we construct,for each follower agentvi,i∈I[M+1,M+N],the following low gain feedback control protocol:

    where

    andPi>0 solves the ARE(4).

    Denote

    We have

    For notational brevity,we will denoteΥ(ε)byΥandΥi(ε)byΥi.

    Theorem 1Consider the multi-agent system(1)–(2).Suppose Assumptions 1,2,3,6 and 7 hold.Then,with the control protocols(10),for any a priori given,arbitrarily large,bounded sets of initial conditions X0?Rn andthere exists ε?∈(0,1]such that,for any ε∈(0,ε?,the output tracking errors satisfy

    ProofDenote the observer errors as

    Then,it follows from(1)and(6)that

    For eachk∈I[1,M],let

    Then,we have

    whereRk=(IN?Sk)-μk(Mk?Sk).Recall thatμkis chosen according to Lemma 4.By Lemma 4,Rkis Schur.We further let

    and have

    whereR=diag{R1,R2,...,RM}.Clearly,Ris Schur.

    We congregate the dynamics of all leader agents (1) as follows:

    whereS=diag{S1,S2,...,SM}.Similarly,the dynamics of all follower agents(2)can be congregated as follows:

    where

    and

    Let

    Then,the regulator Eq.(5)can be rearranged in a congregated form as

    Denoteξ(t)=x(t)-Πˉw(t).In view of(12)–(14),we have

    Letψi∈RNsbe the vector withith element being 1 and all other elements being 0.In view of the definitions of ˉw(t),?w(t)and ?w(t),we have

    whereE1=(Υ Π+Γ)Ψ.

    LetH=A-BΥ.In view of the ARE(4),

    and

    Since limε→0P(ε)=0,there is a constantη1>0 such that,for anyε∈(0,1],

    SinceRis Schur,there exists a positive definite matrixG1∈RNs×Nsand a constantκ1>0 such that

    Noting that

    we have

    and thus

    Define

    We have

    Consider the Lyapunov function

    SinceRis Schur,for any initial condition ?w(0)∈W0,there is a finite integerT1≥Tsuch that,for allε∈(0,1],

    Note thatξ(t) is the solution of a linear difference equation with bounded inputsσΔ(u) and?!.Clearly,ξ(T1)belongs to a bounded setXξ(T1), independent ofεfor all.Letcbe a positive constant such that

    Define

    Letε?∈(0,1]be such that,for allε∈(0,ε?,

    The existence ofε?is guaranteed since limε→0Υ(ε) = 0.Assumption 7 indicates that‖?!‖∞,T1≤Δ-δ,and hence,‖u‖∞,T1≤Δ,implying thatσΔ(u)=u,t≥T1.As a result,(15)simplifies to

    Substituting(16)into(17),we obtain

    Recall thatH=A-BΥ.Then,

    With(11),we derive

    Evaluating the time difference ofValong the trajectories ofξand ?winsideLV(c),we have

    which indicates that

    Thus,

    In view of(14),we have

    from which we have

    This completes the proof.■

    4 Output feedback case

    Whenthestateofthefolloweragentvi,i∈I[M+1,M+N],is not available for implementation of the feedback control law(10),we construct the following output feedback control protocol(18)using its state observer(9):

    Theorem 2Consider the multi-agent system(1)–(2).Suppose Assumptions 1-7 hold.Then,with the control protocols(18),for any a priori given,arbitrarily large,bounded sets of initial conditions X0?Rn,X0?Rn andW0?RNs,there exists ε?∈(0,1]such that,for any ε∈(0,ε?,the output tracking errors satisfy

    ProofDenote the observer errors as

    Fori∈Ik,by(1)and(7),we have

    Fori∈ˉIk,by(1)and(8),we have

    Fork∈I[1,M],denote

    Denote

    andLk∈RN×Nas the Laplacian matrix associated withAk.Let

    By Lemma 2,Lkcan be written as(3).With(20),it is proved that

    Thus,

    the matrix

    is Schur.Letqibe theith standard basis vector in RN.Note that

    Then,

    where

    is Schur.

    Denote the estimation errors as

    In view of(2)and(9),we have

    Denote

    Then,

    where

    SinceAi-L X,iCi,i=I[M+1,M+N],are Schur,H1is Schur.

    Let

    Then,in view of(23)and(24),we have

    where

    Since bothH1andHvare Schur,H0is Schur.Thus,system(25)is asymptotically stable.

    Note that ?w(t)- ˉw(t)=Ψ?w(t)and ?x(t)= ?x(t)-x(t).Let

    Following an analysis similar to the analysis in the proof of Theorem 1,we obtain

    and

    whereE2=[-Υ(Υ Π+Γ)Ψ].

    LetH=A-BΥ.Since limε→0P(ε) = 0,there exists a constantη2>0 that satisfies

    SinceH0is Schur,there exist positive definite matrixG2∈RNs×Nsand constantκ2>0 such that

    Noting that

    we have

    and thus

    Define

    We have

    Consider the following Lyapunov function:

    Recall that system (25) is asymptotically stable.Thus, for any initial valuesζ(0)and allε∈(0,1],there exists a finite integerT2≥Tsuch that

    Let

    Letε?∈(0,1]be such that,for allε∈(0,ε?,

    Since limε→0P(ε)=0,suchε?exists.By Assumption 7,

    Thus, we have ‖u‖∞,T2≤Δ, that is,σΔ(u) =u,t≥T2.Thus,Eq.(26)simplifies to

    Substituting(27)into(28),we have

    By(25)and(29),we have

    Evaluating the time difference of the Lyapunov functionValong the trajectories of(30)insideLV(c),we have

    Fig.1 The communication topology

    that is,

    Thus,limt→∞ξ(t)=0.In view of(14),we have

    Thus,

    This completes the proof.■

    5 Simulation

    Consider a multi-agent system of three leader agents and five follower agents with the communication topology represented by Fig.1,which satisfies Assumption 1.

    The matrices for the dynamics of the leader agents(1)are given by

    Assumption 2 holds since all eigenvalues ofSk,k∈I[1,3],are on the unit circle.For eachk∈I[1,3],(Sk,Qk)is observable and,hence,Assumption 4 is satisfied.

    Let

    and the weightings for the leader agent outputs be chosen asα1=0.2,α2=0.3 andα3=0.5.

    The dynamics of the follower agents are described by(2).The system matrices for follower agentsvi,i= 4,5, are given by

    The system matrices for the follower agentsvi,i= 6,7,8,are given by

    All eigenvalues ofAi,i∈I[4,8], are on the unit circle,(Ai,Bi)is stabilizable and(Ai,Ci)is detectable.Thus,Assumptions 3 and 5 are satisfied.LetΔ=8.

    Fori=4,5,we have

    and fori=6,7,8,we have

    which solve(5).It can be verified that Assumptions 6 and 7 are satisfied,withδ=0.1 andT=0.

    In the following two subsections, we present simulation results for the state feedback and the output feedback,respectively.For simulation,we set

    and

    5.1 State feedback case

    The Laplacian matrix of the communication topology among the follower agents is calculated as

    Thus,μk,k∈I[1,3],can all be chosen as 0.5.

    Let the initial conditions of the observers(6)be given by

    Shown in Fig.2 are the states of the observers(6).For eachk∈I[1,3], the states of the observers ?wik(t),i∈I[4,8],converge to the stateswk(t)of the leader agentsvk.

    We first letε= 0.1 in the control protocols (10).The solutions of the corresponding AREs(4)are

    Fori=4,5,Υi=[0.2940 0.9842 1.4509].Fori=6,7,8,Υi= [0.0301 0.5115 3.1577].Figure3 shows that the tracking errorseikfail to converge to 0 and Fig.4 shows that the outputs of the follower agents fail to track the signalˉz.

    We next choose a smaller value ofε= 0.01.With this,the solutions to AREs(4)are

    Fori=4,5,Υi=[0.0954 0.4411 0.9507].Fori=6,7,8,Υi= [0.0226 0.4061 2.7085].Figure5 shows that the tracking errors converge to 0 and Fig.6 shows that the outputs of the follower agents track the signal ˉz.

    5.2 Output feedback case

    Following the development in Sect.4, we design two types of leader state observers (7) and (8).The gain matrices for observers(7)are given by

    which are such thatSk+Lk Qk,k∈I[1,3],are Schur.We next determine the parameterτkin observers(8).We calculateL133,L233andL333as follows:

    Fig.2 The states wk =[wk1 wk2]T,k ∈I[1,3],of the leader agents and their estimates ?wik =[?wik1 ?wik2]T,i ∈I[4,8],by the observers(6)

    The eigenvalues ofLk33,k∈I[1,3], are all 1.Thus, by Lemma 4,

    in view of which we chooseτk=0.5.In the state observers(9),for follower agentsvi,i=4,5,we choose

    and,for follower agentsvi,i=6,7,8,we choose

    This choice ofL X,iguarantees thatAi-L X,iCi,i∈I[4,8],are all Schur.The initial states of the observers (7)–(9) are selected as

    Shown in Fig.7 are the states of the observers (7) and(8).For eachk∈I[1,3],the states of the observers ?wik(t),i∈I[4,8],converge to the stateswk(t)of the leader agentsvk.

    We first chooseε= 0.1 in (18).The solutions to the corresponding AREs (4) and the feedback gainΥiare as given in Sect.5.1.Figure8 shows that the tracking errorseikfail to converge to 0 and Fig.9 shows that the outputs of the follower agents fail to track the signal ˉz.

    We next choose a smaller valueε= 0.01.The solutions to the corresponding AREs(4)and the feedback gainΥiare as given in Sect.5.1.Figure10 shows that the tracking errorseikconverge to 0 and Fig.11 illustrates that the outputs of the follower agents can track the signal ˉz.

    Fig.3 The tracking errors ei =[ei1 ei2]T,i ∈I[4,8],under the state feedback control protocols(10)with ε =0.1

    Fig.4 The outputs yi = [yi1 yi2]T, i ∈I[4,8], of the follower agents and the reference signal ˉz = [ˉz1 ˉz2]T under the state feedback control protocols(10)with ε =0.1

    Fig.5 The tracking errors ei =[ei1 ei2]T,i ∈I[4,8],under the state feedback control protocols(10)with ε =0.01

    Fig.6 The outputs yi = [yi1 yi2]T, i ∈I[4,8], of the follower agents and the reference signal ˉz = [ˉz1 ˉz2]T under the state feedback control protocols(10)with ε =0.01

    Fig.7 The states wk =[wk1 wk2]T,k ∈I[1,3],of the leader agents and their estimates ?wik =[?wik1 ?wik2]T,i ∈I[4,8],by the observers(7)and(8)

    Fig.8 The tracking errors ei =[ei1 ei2]T,i ∈I[4,8],under the output feedback control protocols(18)with ε =0.1

    Fig.9 The outputs yi = [yi1 yi2]T,i ∈I[4,8],of the follower agents and the reference signal ˉz = [ˉz1 ˉz2]T under the output feedback control protocols(18)with ε =0.1

    Fig.10 The tracking errors ei =[ei1 ei2]T,i ∈I[4,8],under the output feedback control protocols(18)with ε =0.01

    6 Conclusions

    We revisited the semi-global weighted output average tracking problem for a discrete-time heterogeneous multi-agent system with input saturation and external disturbances.We assumed the existence of a directed path from each leader agent to each follower agent and designed low gain-based control protocols of both the state feedback and the output feedback types.It was shown that, for anya priorigiven,arbitrarily large,set of initial conditions,these control protocols cause the follower agents to track the weighted average of the outputs of the leader agents as long as the low gain parameter is tuned sufficiently small.

    Data availability Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

    亚洲欧美日韩卡通动漫| 久久久精品免费免费高清| 久久99热这里只频精品6学生| 99热网站在线观看| 国产熟女午夜一区二区三区 | 蜜桃在线观看..| 亚洲精品亚洲一区二区| 九九在线视频观看精品| www.av在线官网国产| 欧美变态另类bdsm刘玥| 国产在线一区二区三区精| 成人二区视频| 在现免费观看毛片| 中文字幕av电影在线播放| 国产精品秋霞免费鲁丝片| 精品国产乱码久久久久久小说| 亚洲真实伦在线观看| 日本-黄色视频高清免费观看| 三级经典国产精品| 大香蕉久久网| 国产在线男女| 少妇精品久久久久久久| 国产精品国产三级国产专区5o| 精品一区二区三区视频在线| 好男人视频免费观看在线| 在线观看免费高清a一片| 久久久久人妻精品一区果冻| 欧美精品国产亚洲| 桃花免费在线播放| 国产精品福利在线免费观看| 亚洲精品aⅴ在线观看| av有码第一页| 人人妻人人看人人澡| 日日摸夜夜添夜夜添av毛片| 午夜免费观看性视频| 亚洲av成人精品一区久久| 国产深夜福利视频在线观看| 国产69精品久久久久777片| 国产日韩欧美视频二区| 精品卡一卡二卡四卡免费| 亚洲内射少妇av| 精品久久国产蜜桃| 九九久久精品国产亚洲av麻豆| 日本午夜av视频| 69精品国产乱码久久久| 国产精品福利在线免费观看| 看非洲黑人一级黄片| 国产精品国产三级国产av玫瑰| 人人澡人人妻人| 免费观看的影片在线观看| 麻豆乱淫一区二区| 纯流量卡能插随身wifi吗| 美女中出高潮动态图| 不卡视频在线观看欧美| 22中文网久久字幕| 日韩伦理黄色片| 日韩伦理黄色片| 男女边摸边吃奶| 三级国产精品欧美在线观看| av福利片在线观看| 久久久久久久久久久免费av| 国产一区二区三区综合在线观看 | 婷婷色综合大香蕉| 天天操日日干夜夜撸| 波野结衣二区三区在线| 岛国毛片在线播放| 内射极品少妇av片p| 久久婷婷青草| 亚洲国产毛片av蜜桃av| 国产精品麻豆人妻色哟哟久久| 久久精品国产鲁丝片午夜精品| 天堂俺去俺来也www色官网| a 毛片基地| 美女cb高潮喷水在线观看| 欧美日韩视频高清一区二区三区二| 欧美另类一区| 黑人猛操日本美女一级片| 欧美精品国产亚洲| 天堂8中文在线网| 九九久久精品国产亚洲av麻豆| 汤姆久久久久久久影院中文字幕| 大话2 男鬼变身卡| 制服丝袜香蕉在线| 一级毛片黄色毛片免费观看视频| 精品国产露脸久久av麻豆| 在线天堂最新版资源| 一级毛片黄色毛片免费观看视频| 老司机影院毛片| 三级经典国产精品| 国产白丝娇喘喷水9色精品| 成人亚洲精品一区在线观看| 人妻 亚洲 视频| kizo精华| a级片在线免费高清观看视频| 日韩成人伦理影院| 国产欧美日韩精品一区二区| 一个人免费看片子| 久久久久久久亚洲中文字幕| 在线观看人妻少妇| 久久精品久久精品一区二区三区| 国国产精品蜜臀av免费| 国产国拍精品亚洲av在线观看| 高清av免费在线| 日本猛色少妇xxxxx猛交久久| 各种免费的搞黄视频| 少妇人妻 视频| 五月伊人婷婷丁香| 日本wwww免费看| 自拍欧美九色日韩亚洲蝌蚪91 | 国产美女午夜福利| 在线 av 中文字幕| 国产老妇伦熟女老妇高清| 在线 av 中文字幕| 欧美精品亚洲一区二区| 亚洲精品中文字幕在线视频 | 午夜影院在线不卡| 欧美97在线视频| 一级毛片aaaaaa免费看小| 精品视频人人做人人爽| 亚洲无线观看免费| 国产精品.久久久| 99精国产麻豆久久婷婷| h日本视频在线播放| 大陆偷拍与自拍| 亚洲av二区三区四区| 亚洲成色77777| 亚洲经典国产精华液单| 亚洲成色77777| 欧美日韩综合久久久久久| .国产精品久久| 欧美精品人与动牲交sv欧美| 国产熟女午夜一区二区三区 | 精品久久久久久久久亚洲| 亚洲精品乱久久久久久| 日韩中文字幕视频在线看片| 欧美另类一区| 日韩成人av中文字幕在线观看| 嫩草影院新地址| 嫩草影院入口| 人妻少妇偷人精品九色| 麻豆成人午夜福利视频| 青春草国产在线视频| 纯流量卡能插随身wifi吗| 男人狂女人下面高潮的视频| 女的被弄到高潮叫床怎么办| 亚洲美女搞黄在线观看| 久久久久久久亚洲中文字幕| 久久婷婷青草| 美女脱内裤让男人舔精品视频| 日本黄大片高清| 日韩人妻高清精品专区| 在线观看免费日韩欧美大片 | 日本免费在线观看一区| 午夜福利在线观看免费完整高清在| 高清午夜精品一区二区三区| 亚洲欧美精品自产自拍| 日韩欧美 国产精品| 交换朋友夫妻互换小说| 欧美精品人与动牲交sv欧美| 男女啪啪激烈高潮av片| 一区二区三区精品91| av播播在线观看一区| 99热国产这里只有精品6| 精品国产乱码久久久久久小说| 国产一区二区在线观看av| 成人国产av品久久久| 插阴视频在线观看视频| 乱人伦中国视频| 欧美最新免费一区二区三区| 最新的欧美精品一区二区| 日本vs欧美在线观看视频 | 亚洲av成人精品一区久久| 在线天堂最新版资源| 久久久久久伊人网av| 天堂8中文在线网| 麻豆成人午夜福利视频| 特大巨黑吊av在线直播| 久久精品国产亚洲av涩爱| av福利片在线观看| 91午夜精品亚洲一区二区三区| 国产一区二区在线观看日韩| 日本爱情动作片www.在线观看| 日韩 亚洲 欧美在线| 国产精品麻豆人妻色哟哟久久| 岛国毛片在线播放| 免费观看a级毛片全部| 色视频在线一区二区三区| 国产高清国产精品国产三级| av国产久精品久网站免费入址| 色婷婷久久久亚洲欧美| 在线亚洲精品国产二区图片欧美 | 天堂俺去俺来也www色官网| 三上悠亚av全集在线观看 | 国产在线视频一区二区| 午夜福利,免费看| 大香蕉久久网| 精品熟女少妇av免费看| 午夜福利网站1000一区二区三区| 国内少妇人妻偷人精品xxx网站| freevideosex欧美| 菩萨蛮人人尽说江南好唐韦庄| 色婷婷av一区二区三区视频| 自拍欧美九色日韩亚洲蝌蚪91 | 99久久人妻综合| 一级爰片在线观看| 精品久久久噜噜| a级片在线免费高清观看视频| 人妻一区二区av| 看十八女毛片水多多多| 国产av码专区亚洲av| 永久免费av网站大全| 日韩av在线免费看完整版不卡| 久久久久精品久久久久真实原创| 日本av手机在线免费观看| 欧美xxxx性猛交bbbb| 国产在线男女| 男的添女的下面高潮视频| 欧美日韩视频精品一区| 一区在线观看完整版| 女人精品久久久久毛片| 午夜日本视频在线| 亚洲欧美成人综合另类久久久| 亚洲av福利一区| 一级毛片我不卡| 99热这里只有精品一区| 人人妻人人看人人澡| 插逼视频在线观看| 久久精品久久久久久噜噜老黄| 免费久久久久久久精品成人欧美视频 | 91精品一卡2卡3卡4卡| 国产成人精品福利久久| a级毛片在线看网站| 国产一区二区在线观看av| 天堂8中文在线网| 久久人人爽人人片av| 在线观看人妻少妇| 欧美+日韩+精品| 成人毛片a级毛片在线播放| 国产一区二区在线观看日韩| 国产高清国产精品国产三级| 国产在视频线精品| 国产精品蜜桃在线观看| 18+在线观看网站| 亚洲av二区三区四区| 亚洲精品自拍成人| 一区二区av电影网| 国产精品欧美亚洲77777| 亚洲国产最新在线播放| 亚洲精品中文字幕在线视频 | 寂寞人妻少妇视频99o| 精品久久久久久久久亚洲| 91久久精品国产一区二区三区| 99久久综合免费| 一级黄片播放器| 丁香六月天网| 三级经典国产精品| 高清黄色对白视频在线免费看 | 亚洲精品中文字幕在线视频 | 99re6热这里在线精品视频| 人体艺术视频欧美日本| 日日啪夜夜撸| xxx大片免费视频| 一级毛片我不卡| 极品少妇高潮喷水抽搐| 国产在线视频一区二区| freevideosex欧美| 中文精品一卡2卡3卡4更新| 人妻人人澡人人爽人人| 中文字幕制服av| 人人妻人人澡人人爽人人夜夜| 国产伦精品一区二区三区视频9| 99九九线精品视频在线观看视频| 最近2019中文字幕mv第一页| 日日啪夜夜爽| 人妻一区二区av| 我的老师免费观看完整版| 日韩中字成人| 亚洲欧洲日产国产| 王馨瑶露胸无遮挡在线观看| 色视频www国产| 亚洲性久久影院| 在线观看av片永久免费下载| 精品久久久久久电影网| 午夜免费鲁丝| a 毛片基地| av在线app专区| 一个人看视频在线观看www免费| 在线看a的网站| 亚洲欧美成人综合另类久久久| 欧美性感艳星| av女优亚洲男人天堂| 高清在线视频一区二区三区| 国产毛片在线视频| 午夜福利网站1000一区二区三区| 3wmmmm亚洲av在线观看| 少妇的逼好多水| av卡一久久| 国产一级毛片在线| 午夜视频国产福利| 国产av码专区亚洲av| 亚洲精品456在线播放app| 亚洲av成人精品一区久久| 日韩欧美 国产精品| 青青草视频在线视频观看| av线在线观看网站| 男女免费视频国产| 亚洲精品国产成人久久av| 欧美成人精品欧美一级黄| 久久女婷五月综合色啪小说| 亚洲国产精品专区欧美| 男人和女人高潮做爰伦理| 国产在线男女| 国产熟女午夜一区二区三区 | av卡一久久| 成人午夜精彩视频在线观看| 69精品国产乱码久久久| 国产精品久久久久成人av| 亚洲精品一二三| 成人国产麻豆网| 热re99久久国产66热| 18禁在线播放成人免费| 观看免费一级毛片| 欧美精品一区二区大全| 久久久国产一区二区| 欧美丝袜亚洲另类| 熟女电影av网| 久久ye,这里只有精品| 嘟嘟电影网在线观看| 色网站视频免费| 亚洲内射少妇av| 一级av片app| 全区人妻精品视频| 我要看日韩黄色一级片| 极品教师在线视频| 亚洲第一区二区三区不卡| 亚洲欧洲精品一区二区精品久久久 | 亚洲av成人精品一区久久| 国产精品福利在线免费观看| 人妻人人澡人人爽人人| 熟女av电影| 日日撸夜夜添| 99热全是精品| 九九在线视频观看精品| 9色porny在线观看| av在线app专区| 久久99精品国语久久久| 人妻人人澡人人爽人人| 国产毛片在线视频| 日韩三级伦理在线观看| 妹子高潮喷水视频| 免费观看在线日韩| 在线观看美女被高潮喷水网站| 国产亚洲av片在线观看秒播厂| 久久99精品国语久久久| 婷婷色综合www| 成年人免费黄色播放视频 | 久久99热6这里只有精品| 亚洲精品视频女| 日韩 亚洲 欧美在线| 男的添女的下面高潮视频| 国产片特级美女逼逼视频| 大话2 男鬼变身卡| 人妻少妇偷人精品九色| 亚洲av国产av综合av卡| 三级国产精品片| 欧美亚洲 丝袜 人妻 在线| 一级黄片播放器| 亚洲一区二区三区欧美精品| 天堂俺去俺来也www色官网| 国产精品偷伦视频观看了| 国产视频内射| 五月伊人婷婷丁香| 黑人巨大精品欧美一区二区蜜桃 | av在线观看视频网站免费| 久久精品国产亚洲网站| 国产真实伦视频高清在线观看| 国产69精品久久久久777片| 在线观看免费日韩欧美大片 | 国产精品99久久久久久久久| 黄色怎么调成土黄色| 麻豆成人av视频| 在线观看美女被高潮喷水网站| 欧美+日韩+精品| 校园人妻丝袜中文字幕| 看十八女毛片水多多多| 午夜福利影视在线免费观看| 午夜福利网站1000一区二区三区| 少妇人妻精品综合一区二区| 欧美精品一区二区免费开放| 纯流量卡能插随身wifi吗| 视频区图区小说| 内地一区二区视频在线| 日韩大片免费观看网站| 精品视频人人做人人爽| 久久午夜综合久久蜜桃| 欧美日本中文国产一区发布| 嫩草影院入口| 国产精品久久久久久久电影| 亚洲国产精品成人久久小说| 汤姆久久久久久久影院中文字幕| 丝袜在线中文字幕| 日本wwww免费看| 伊人久久国产一区二区| 亚洲国产欧美在线一区| 日韩一区二区视频免费看| 成人特级av手机在线观看| 亚洲精品一二三| 久久综合国产亚洲精品| 精品酒店卫生间| av卡一久久| 插逼视频在线观看| 久久久久精品性色| 婷婷色麻豆天堂久久| 国产亚洲一区二区精品| 国产欧美日韩综合在线一区二区 | 久久国产乱子免费精品| 丝瓜视频免费看黄片| 99热网站在线观看| 美女中出高潮动态图| 欧美少妇被猛烈插入视频| 亚洲人成网站在线观看播放| 欧美日韩视频高清一区二区三区二| 欧美日本中文国产一区发布| 欧美日韩国产mv在线观看视频| 看十八女毛片水多多多| 天美传媒精品一区二区| 久久毛片免费看一区二区三区| 国产男女内射视频| 精品久久久噜噜| 七月丁香在线播放| 久久精品国产亚洲av天美| 亚洲天堂av无毛| 一级黄片播放器| 久久女婷五月综合色啪小说| 精品少妇久久久久久888优播| 国产在线男女| 欧美精品国产亚洲| 91久久精品国产一区二区成人| 啦啦啦啦在线视频资源| 看十八女毛片水多多多| 日韩成人av中文字幕在线观看| 国产在线男女| 亚洲综合色惰| 国产成人精品婷婷| 亚洲av在线观看美女高潮| 精华霜和精华液先用哪个| 国产精品久久久久久久久免| .国产精品久久| 王馨瑶露胸无遮挡在线观看| 人妻一区二区av| 一级a做视频免费观看| 中文在线观看免费www的网站| 久久99精品国语久久久| 亚洲国产精品成人久久小说| 一级毛片黄色毛片免费观看视频| 日日摸夜夜添夜夜爱| 99国产精品免费福利视频| 久久ye,这里只有精品| 青春草视频在线免费观看| 精品久久久久久电影网| 在线亚洲精品国产二区图片欧美 | 男女啪啪激烈高潮av片| 精品一区二区三区视频在线| 日本-黄色视频高清免费观看| tube8黄色片| 人人妻人人澡人人看| 国产精品久久久久久久久免| 国产精品无大码| 精品国产一区二区久久| 亚洲美女视频黄频| 国产视频内射| 美女大奶头黄色视频| 免费观看的影片在线观看| 波野结衣二区三区在线| 黄色毛片三级朝国网站 | 久久久久久伊人网av| 黑人巨大精品欧美一区二区蜜桃 | 80岁老熟妇乱子伦牲交| 啦啦啦在线观看免费高清www| 国产亚洲av片在线观看秒播厂| 精品国产一区二区久久| 中文字幕免费在线视频6| 亚洲精品日韩av片在线观看| 免费看av在线观看网站| 只有这里有精品99| 人妻系列 视频| 欧美亚洲 丝袜 人妻 在线| 少妇人妻精品综合一区二区| 最新的欧美精品一区二区| 久久久久国产精品人妻一区二区| 欧美精品人与动牲交sv欧美| av女优亚洲男人天堂| 亚洲国产精品一区二区三区在线| 欧美 亚洲 国产 日韩一| 欧美最新免费一区二区三区| av不卡在线播放| 国产亚洲5aaaaa淫片| 国产深夜福利视频在线观看| 一级片'在线观看视频| 久久av网站| 国模一区二区三区四区视频| 22中文网久久字幕| 香蕉精品网在线| 亚洲天堂av无毛| 如何舔出高潮| av免费在线看不卡| 尾随美女入室| 日韩欧美精品免费久久| 汤姆久久久久久久影院中文字幕| 精品亚洲乱码少妇综合久久| 国产精品欧美亚洲77777| 国产在线免费精品| 亚洲国产色片| 观看av在线不卡| 日本91视频免费播放| 在线观看国产h片| 成人亚洲欧美一区二区av| 狂野欧美白嫩少妇大欣赏| 人人妻人人澡人人看| 亚洲丝袜综合中文字幕| 国产成人免费无遮挡视频| 天天操日日干夜夜撸| 18禁动态无遮挡网站| 在线观看三级黄色| 国产成人freesex在线| 亚洲av免费高清在线观看| 亚洲美女黄色视频免费看| 免费黄频网站在线观看国产| 亚洲情色 制服丝袜| 高清午夜精品一区二区三区| 久久99热6这里只有精品| 一级毛片 在线播放| 亚洲精品一二三| 精品久久久精品久久久| 自拍偷自拍亚洲精品老妇| 久久久国产欧美日韩av| 欧美日韩视频高清一区二区三区二| av.在线天堂| 亚洲av综合色区一区| 最近最新中文字幕免费大全7| 中国美白少妇内射xxxbb| 亚洲综合精品二区| 国产精品无大码| 亚洲第一av免费看| 91在线精品国自产拍蜜月| 国产成人精品无人区| 国产欧美日韩一区二区三区在线 | 久久久久国产精品人妻一区二区| 99久久精品热视频| 91精品一卡2卡3卡4卡| 一本久久精品| 亚洲美女黄色视频免费看| 午夜影院在线不卡| 国产高清有码在线观看视频| 天天操日日干夜夜撸| 自线自在国产av| 国产视频首页在线观看| 国产有黄有色有爽视频| 欧美3d第一页| 久久久国产一区二区| 成人免费观看视频高清| 国产中年淑女户外野战色| 国产成人免费观看mmmm| 麻豆成人av视频| 久久久久网色| 精品国产一区二区久久| 欧美老熟妇乱子伦牲交| 亚洲综合精品二区| 久久国产乱子免费精品| 亚洲丝袜综合中文字幕| 一区二区三区免费毛片| 久久99蜜桃精品久久| 国产日韩欧美在线精品| 啦啦啦视频在线资源免费观看| a级毛片在线看网站| 精品人妻一区二区三区麻豆| 欧美日韩视频高清一区二区三区二| 亚洲av日韩在线播放| 久久久久久人妻| 亚洲欧洲精品一区二区精品久久久 | 午夜视频国产福利| 最后的刺客免费高清国语| 日本av免费视频播放| 久久国产精品男人的天堂亚洲 | 久久人人爽av亚洲精品天堂| 欧美xxⅹ黑人| 亚洲人成网站在线播| av天堂久久9| 国产免费福利视频在线观看| 成年av动漫网址| 在线观看国产h片| 永久网站在线| 亚洲人成网站在线播| 搡老乐熟女国产| 寂寞人妻少妇视频99o| 蜜桃久久精品国产亚洲av| 噜噜噜噜噜久久久久久91| 天堂中文最新版在线下载| 久久久久久久国产电影| 在线观看国产h片| 国产精品一区二区性色av| 久久精品国产亚洲av天美| 国产综合精华液| 国内少妇人妻偷人精品xxx网站| av在线app专区| 啦啦啦中文免费视频观看日本| 在线观看av片永久免费下载| 久久久国产欧美日韩av| 免费观看无遮挡的男女| 日产精品乱码卡一卡2卡三| 中文字幕久久专区| 18禁在线无遮挡免费观看视频| 街头女战士在线观看网站| 日韩一区二区视频免费看| 亚洲欧美清纯卡通|