• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Input-to-state stability and gain computation for networked control systems

    2023-11-16 10:12:56QianqianCaiMinyueFu
    Control Theory and Technology 2023年3期

    Qianqian Cai·Minyue Fu

    Abstract This paper studies the stability problem for networked control systems.A general result, called network gain theorem, is introduced to determine the input-to-state stability (ISS) for interconnected nonlinear systems.We show how this result generalises the previously known small gain theorem and cyclic small gain theorem for ISS.For the case of linear networked systems, a complete characterisation of the stability condition is provided, together with two distributed algorithms for computing the network gain: the classical Jacobi iterations and a message-passing algorithm.For the case of nonlinear networked systems,characterisation of the ISS condition can be done using M-functions,and Jacobi iterations can be used to compute the network gain.

    Keywords Small gain theorem·Networked systems·Input-to-state stability·Robust stability·Distributed algorithm

    1 Introduction

    The celebrated gain theorem is a pivotal tool in stability analysis and control design for nonlinear systems.This tool was initially introduced by Zames for linear feedback gains[1],but then widely extended to various types of nonlinear and uncertain systems[2–4].Many versions of the small gain theorem are available for input–output stability, input-to-state stability[5],nonlinear feedback design[6,7],just to name a few.A good review of the small gain theorem can be found in[8].

    This paper is interested in generalising the small gain theorem to networked control systems.Our work is inspired by thecyclic small gain theoremin[9]which provides a simple stability test for networked systems with a max-type gains for all the simple loops in the network.The aim of this paper is to study stability conditions for more general gain functions and study computational algorithms for testing network stability.Our work is also closely related to (1)thematrix small gain theoremof [10] where the network stability is assessed using a matrix of local gain functions,and(2)our recent work[11]where a unified framework is provided for network stability analysis under three notions of stability,namely global uniform boundedness,global asymptotic stability and input-to-state stability.In particular, [11] checks the network stability in terms of a scalar called the network gain.The result,callednetwork gain theorem,generalises the previously known matrix small gain theorem and cyclic small gain theorem for input-to-state stability (ISS).To make the computation of the network gain feasible,[11]also provides a characterisation of the network gain in terms of a discretetime system, which then allows the numerical computation of the network gain.

    The motivation of this paper stems from the fact that the results in[11]are for general networked systems;hence,their theoretical development and test algorithms are highly technically involved.In particular,the proof of the network gain theorem in[11]employs the tool of vector-valued Lyapunov functions.Moreover, a lot of the technical development in[11] is devoted to study the families of nonlinear networks rather than a single nonlinear network, so that the network stability conditions become necessary and sufficient.

    In this paper,we first restate the network gain theorem in[11]and gives an very intuitive proof sketch to reveal the key ideas in the proof.This will help to understand the network gain theorem much better.We then give a new and intuitive proof for the cyclic small gain theorem.The highlight of the paper will be on the computation of the network gain.For a linear network,we first give a necessary and sufficient boundedness condition for the network gain and show that this condition cannot be reduced to a cyclic small gain condition.This will be followed by two distributed computation algorithms, one based on Jacobi iterations and one using a message-passing algorithm.Distributed computation allows the stability to be assessed for a large networked system without central computation facilities or centralised knowledge of the whole network.Finally,we consider the nonlinear network case and suggest the use of Jacobi to test the network gain.

    The rest of the paper is organised as follows.This section will end with some notations and definitions.Section 2 reviews the well-known single-loop small gain theorem in the ISS setting.Section 3 formulates the network stability problem.Section 4 revisits the network gain theorem in[11]and studies some special cases, including the cyclic small gain theorem.Section 5 devotes to the network gain computation for linear networks,whereas Sect.6 comments on the nonlinear network case.Conclusions are reached in Sect.7.

    Notations and definitions R is the real field and R+is the non-negative part of R.col{x1,x2,...,xn}denotes a column vector ofxi.ρ(A) stands for the spectral radius of matrixA.|·|stands for the Euclidean norm and|·|∞stands for the maximum norm.Id denotes the identity function.For any measurable functionu: R+→Rm, ‖u‖ denotes ess.sup.{|u(t)|,t≥0}and,for any 0 ≤t1 0 for allx/= 0, and isproper(orradially unbounded)ifV(x)→∞as|x|→∞.A functionγ: R+→R+is said to be of classKif it is continuous and increasing withγ(0)=0.Suchγis of classK∞if it is also proper.A functionβ: R+×R+→R+is said to be of classKLif,for each fixedt∈R+,the functionβ(·,t) of classKand, for each fixeds∈R+, the functionβ(s,·)is non-increasing withβ(s,t) →0 ast→∞.Note that for any functionγof classK∞,its inverse functionγ-1is well defined and is also of classK∞.

    Consider the following system:

    withx∈Rnis the state,u∈Rmis the input,y∈Rpis the output,andfandhare smooth functions.The system is said to beinput-to-output stable(IOS) if there exists a functionβof classKLand a functionγof classKsuch that, for eachx(0),each measurable essentially boundeduand eachtin the right-maximally defined interval of the solution of(1)–(2),it holds

    In this case,γis said to be theinput-to-output gain(or simplygain).Ifyabove becomesx,the system is said to beinputto-state stable(ISS)andγis theinput-to-state gain.

    2 Single-loop small gain theorem

    The well-celebratedsmall gain theoremhas many forms.Here,we review one of the general forms developed in[5],expressed using Lyapunov functions.Consider the following interconnected system:

    where,fori,j=1,2,j/=i,xi∈Rniis the state,ui∈Rmiis the input,yi∈Rpiis the output, andfi,hiare locally Lipschitz functions satisfyingfi(0,0,0)=0 andhi(0)=0.A special output is the state,i.e.yi=xi.The system block diagram is depicted in Fig.1a, whereG1andG2represent the two subsystems,and the ⊕symbol can be interpreted as theaugmentation operator,i.e.u1⊕y2=(u1,y2).

    Suppose thei-th subsystem of (4)–(5)admits a continuously differentiable ISS-Lyapunov functionVi:Rni→R+satisfying the following conditions:

    C1:There existsαi,αˉi∈K∞such that

    C2:There exist,γi j∈Kforj/=iand a continuous,positive definiteαi∈K∞such that

    Lemma 1Suppose the interconnected system(4)–(5)is such that each i-th subsystem admits an ISS-Lyapunov function Vi satisfying(6)–(7).Then,the interconnected system is ISS if the following small gain condition holds:

    i.e.γ12(γ21(s))0.

    Fig.1 Small gain theorem:a Block diagram;b Graph Representation

    Fig.2 Examples of networked systems

    We use the graph representation in Fig.1b to represent the interconnected system(4)–(5).For notational simplicity,variablesui,yi,xiand functionsfi,hi,are suppressed.If necessary,the gainsγi jcan also be suppressed.

    3 Problem formulation

    We now generalise the single-loop system in Fig.1 to a networked system consisting ofnsubsystems:

    wherexi∈Rniis the state,ui∈Rmiis the control,x=col{xi}∈RNwith,andfi:RN+mi→Rniis locally Lipschitz function satisfyingf(0,0)=0.

    Denote byG={V,E}theinduced graphof the networked system as depicted in Fig.2,whereV={1,...,N}andEis a directed edge set with(i,j)∈Eindicating thatfidepends onxi.For eachi∈V, denote the set of itsneighboursbyNi= {j:(i,j) ∈E} and its cardinality by |Ni|.Apath p= {i1,i2,...,ir} is a connected sequence of nodes inG, i.e.(i j,i j+1) ∈Efor everyj= 1,2,...,r- 1.Thepath lengthofpabove isr-1.Thedistancebetween two connected nodes is the shortest path length between the two nodes.Thediameterof the graph is the maximum distance between any two connected nodes.Acycle(orloop)is a path withi1=ir.Asimple cycleis a cycle where all the nodes are distinct except for the starting and terminating node.

    The following powerful result,called thecyclic small gain theorem,is cited from[8].

    Lemma 2Suppose the networked system(9)is such that each i-th subsystem admits a continuously differentiable ISSLyapunov function Vi: Rni→R+satisfying C1 and C2′:There exist γi j∈K for every j∈Ni and γui∈K and a continuous,positive definite αi∈K∞such that

    Then,the interconnected system is ISS if the following cyclic small gain condition is satisfied:The loop gain for every simple cycle l=(i0,i1,...,ir,i0),as defined by

    is contractive,i.e.γl

    The motivation for this work stems from the fact that the cyclic small gain theorem above is suitable only for the special form of Lyapunov function bound in (10), i.e.maxj∈Ni γi j(Vj) is used to boundVi.This means that thei-th subsystem is influenced only by the neighbouring subsystemj∈Niwith the largestVj,not by all the neighbours.This implies that,if there are multiple loops start and return to nodei,the“compound”loop gain is dominated by the only loop with the largest loop gain.This observation leads to the interesting cyclic small gain condition above.However,for most linear and nonlinear systems,each subsystem is influenced by all the neighbouring nodes, not just one of them.Our interest in this work is to study this more general scenario.As we will see,stability for such networked systems becomes far more complex.

    More precisely,we consider the networked system(9)satisfying C1 and C2′′: For everyi-th subsystem, there exists functionγi:,which is continuous and non-decreasing in every variable,γi(0)=0,andαias in C2′such that

    The network gain problem we aim to solve consists of determining whether the networked system(9)is ISS or not(thenetwork stability problem)and computing a bound forV(x)for the givenu(thenetwork gain computation problem).

    4 Network gain theorem for ISS

    In this section,we provide our first main result which characterises the conditions for network stability.

    4.1 Network gain theorem

    For anyμ∈Rn+,define thestate bounding set

    z= col{z1,z2,...,zn} andF= col{F1,F2,...,Fn} (the dependance onμsuppressed for convenience).Then,define

    Note in particular thatZμis non-empty because 0 ∈Zμ.

    The next result is a generalisation of the small gain theorem, which we will callnetwork gain theorem; see more details in[11].

    Theorem 1Under C1 and C2′′,the networked system(9)is ISS stable if Zμ in(14)is bounded for every μ≥0.In this case,the network state(in the steady state)is bounded with F(V(x)) ≤0.Conversely,if Zμ is not bounded for some μ≥0,then there exists some networked system of the form(9)that satisfies C1 and C2′′but is not ISS.

    A rigorous proof can be found in [11].In the following,we provide a proof sketch which conveys the key ideas.

    ProofThe first part follows from standard stability analysis of nonlinear systems [4].More precisely, C2′′implies that ifVi(xi) ≥γi(Vj(x j) :j∈Ni,‖ui‖), then dVi(xi)/dt≤-αi(Vi(xi)).This in turn implies that the steady statexmust be such that

    Hence, the steady stateV(x) = col{Vi(xi)} must be inside the setZμwithμ=col{‖ui‖},i.e.F(V(x))≤0.SinceZμis bounded for any bounded ‖u‖, the networked system is ISS.

    Conversely,supposeZμis not bounded for someμ≥0.Weshowbelowthat thereexists amodifiednetworkedsystem of the form of (9) that satisfy C1 and C2′′such that each subsystem remains ISS after modification,but the modified networked system is not ISS.Indeed,the modification of(9)is done by taking

    We first claim that every modified subsystemiabove remains ISS.Indeed, letx j= 0 for allj∈Ni.IfVi(xi)>γi(0,‖ui‖), then ?fi(xi,ui) =fi(xi,ui), resulting in dVi(xi)/dt≤-αi(Vi(xi))by C2′′.This implies that the steady statexiis bounded byVi(xi) ≤γi(0,‖ui‖), so the modified subsystemiremains ISS.

    Now,for the modified networked system above,we takex(0)and a constantusuch that‖ui‖=μiandVi(xi(0))=zifor alli,wherez∈Zμis chosen such that|z|∞≥ηfor any given constantη>0.This implies that

    which in turn means that ?fi(x,ui) = 0 att= 0, resulting inxi(t) =xi(0) andVi(xi(t)) =zifor allt≥0.Since|z|∞=ηandηis arbitrarily large,the above analysis implies that the modified networked system does not have a bounded steady state even when the inputuis bounded.Hence, the modified networked system is not ISS.■

    4.2 Special cases

    ResultsforsomespecialcasesfollowfromTheorem1.Corollary 1 is essentially the small gain theorem (Lemma 1);Corollary 2 is an extension of Corollary 2.Corollary 3 is the cyclic small gain theorem(Lemma 2).

    Corollary 1Suppose Conditions C1 and C2′′hold.Then,for a single-loop system(9)with n= 2,the closed-loop system is ISS stable if the set{s: 0 ≤s≤γ12(γ21(s,μ2),μ1)}is bounded for all μ1,μ2≥0.In particular,this holds if γi are taken as in C2 and the small gain condition(8)holds.

    ProofUsing Theorem 1,it suffices to show that(8)implies the boundedness ofZμ= {z:z> 0,z1≤γ12(z2)),z2≤γ21(z1)}.Indeed, for anyz∈Zμ,z1≤γ12(z2) ≤γ12(γ21(z1)).Therefore,z1must be bounded.Hence,z2≤γ21(z1)is bounded too.The implication for the case, whenγitake the form as in C2,is obvious.■

    Corollary 2Suppose Conditions C1 and C2′′hold.If the induced graph of the networked system(9)is such that all the cycles are non-touching(i.e.no two cycles share a common node),then the networked system is ISS stable if for any μ∈Rn+,every such cycle l=(i0,i1,...,ir,i0)(which must be a simple cycle),the set{s:0 ≤s≤γi0i1?...?γiri0(s)}is bounded for every μ∈Rn+(The dependance on μ is suppressed in the set).

    ProofThis is a simple extension of Corollary 1.We first lump all the nodes in a non-touching cycle as a“super node"to result in a graph without cycles.It is obvious that this graph is ISS stable if individual node(or super node)is ISS stable.Then, for each super node (i.e.non-touching cyclel=(i0,i1,...,ir,i0)), we can group nodesi1,...,i0as a super node that the gain for this super node isγi1i2?...?γirr0.Then,applying Corollary 1 yields that the non-touching cycle is ISS stable when the loop gain(2)is contractive.■

    Corollary 3Suppose Conditions C1 and C2′hold and γi takes the form of(10).Then,the networked system is ISS stable if the cyclic small gain condition in Lemma 2 holds.

    ProofBy Theorem 1, it suffices to show that the cyclic small gain condition implies the boundedness ofZμ.To see this, take anyz∈Zμand any nodei0∈V.We havezi0≤γi0i1(zi1), wherei1= arg maxj γi0j(z j).Constructi2,i3,...,in+1in a similar way,we have

    The sequence{i0,i1,...,in+1}must include cycles because there are onlynnodes inV.Let{ik,...,ir,ir+1}withir+1=ikbe the first encountered simple cyclel.Then,

    Sinceglis contractive,zikmust be bounded.Denoting this bound byηl,we havezik≤ηl.Since there are only a finite number of simple loops,ηmax=maxl ηlis bounded.Denote

    It follows that

    Since there are a finite number of such sequencess,the maximum above is bounded.Becausei0is any node inV, we conclude that allziare bounded,henceZμis bounded.■

    5 Network gain computation:linear gains

    In this section,we provide complete solutions to the network gain computation problem for the case,whereFis linear.

    5.1 Boundedness condition

    For eachi∈V,letγibe such that

    wherebi=μiwith> 0,andγi j> 0 for allj∈Ni,or 0 otherwise.Then,F(z)=0 becomes

    where the matrixG=I-Γ,Γ= {γi j}with allγii= 0.The following result gives the exact characterisation of the boundedness ofZμ.

    Theorem 2For the linear gain case(15)–(16),the state bounding set Zμ is bounded for any μ≥0if and only if ρ(Γ)<1.In this case,the maximal solution z?=G-1b.

    ProofWhenρ(Γ)< 1,Gis invertible andG-1is nonnegative becauseΓis non-negative and

    Next, we show that the boundedness condition in Theorem 2 cannot be simplified to a cyclic small gain condition.

    Example 1For the network in Fig.2b,suppose everyγi j=0.9 so that the corresponding gain matrix is given by

    There are two simple loopsl1=2 →1 →2 andl2=2 →3 →2, each with loop gain of 0.92= 0.81.However, the spectral radius ofΓis,so the networked system is not stable.The reason is that the two loops are additive for node 2,resulting in a compound loop gain of 0.92×2.

    5.2 Jacobi iterations

    Now, we consider the network gain computation problem under the assumption ofρ(Γ)< 1 and a given boundedu.For a small network,it is easy to computez?=G-1b.Here,we consider a large network and study distributed algorithms for computingz?.

    Thedistributedcomputationproblemisformallydescribed as follows:Devise a distributed algorithm which runs iteratively on every nodei∈Vto compute an estimatezi(k)in iterationk= 0,1,2,...such thatzi(k) →ziask→∞.The computation ofzi(k) uses data available in nodeiand those exchanged from the neighbouring nodesj∈Ni.

    Certainconstraintsneed to be imposed on the algorithm’s complexities of communication,computation and storage to call itdistributed.In this paper,these include:

    (i) Local information exchange:Each nodeican exchange information with eachj∈Nionly once per iteration.

    (ii) Local computation: Each nodei’s computational load(measured in terms of the numbers of multiplications and additions)should be at mostO(|Ni|)per iteration.

    (iii) Local storage: Each nodei’s storage size should be at mostO(|Ni|)over all iterations.

    The well-known Jacobi iterations serve as a simple and effective distributed algorithm[12]:

    with any initialz(0) ≥0 (e.g.z(0) = 0), which can be implemented as,for each nodei,

    It is easy to verify that the constraints i)–iii)are satisfied.

    It is well known thatzi(k) →ask→∞for alliand allbif and only ifρ(R)< 1[12].This means that we can execute the Jacobi iterations without knowinga prioriwhetherρ(Γ)< 1.In practice,ifz(k)become sufficiently large,the iterations can be terminated.

    5.3 Message-passing algorithm

    A faster distributed algorithm has been proposed in[13]for iterative solutions of linear systems of the formAx=bwith invertible matrixA.This algorithm belongs to the class ofmessage-passing algorithms,and is known to produce an estimatex(k)in iterationkwith the asymptotic convergence property ofx(k) →∞ask→∞whenAis generalised diagonally dominant.The convergence rate of the algorithm above has also been studied in detail in [14].In particular,the algorithm converges faster than the Jacobi iterations.

    Definition 1 A matrixA= {ai j} ∈Rn×nisgeneralised diagonally dominantif there is a positived∈Rnsuch that

    andAisdiagonally dominantif(21)holds fordi=1,?i.

    Returning to our problem ofGz=b.It is well known that [12],forG=I-Γwithγii= 0 andγi j≥0 for alliandj/=i,Gis generalised diagonally dominant if and only ifρ(Γ)<1.Hence,the message-passing algorithm in[13]is readily applicable to solvingGz=b.The algorithm is detailed below.In each iterationkof the algorithm,each nodeicomputes variablesgi→j(k)andbi→j(k)for each of its neighbouring nodej∈Niand transmit them to nodej.All the nodes execute the same algorithm concurrently.

    We have the following result shows the advantages of the message-passing sequence {?z(k)} over the Jacobi sequence{z(k)}.

    Theorem 3Suppose ρ(Γ)<1.Then,

    ProofThe proof heavily depends on the work in[13]where the message-passing algorithm is introduced.The property(i)comes directly from[13].For(ii),a graph without simple loops with length longer than 2 is effectively an acyclic graph if we join the edges(i,j)and(j,i)together as a single edge.For such acyclic graphs, the finite convergence property in(ii)is established also in[13].To see(iii),we note from(17)thatz?=

    l≥0Γlb.This means

    That is,it includes all the paths(of any length)starting from nodei.From(20),we get

    where the maximum is taken over all the paths fromitoj(/=i)without cycles.It is clear thatψmaxis finite.Note that every path fromitojcan be rewritten as a concatenation of a(repeated)cycleitoiand a path fromitojwithout cycles.Using this and the fact thatα<1,we obtain from(28)that

    Hence,Ψαis bounded.However, this contradicts the fact that,asα→1/ρ(Γ),Gαbecomes singular andΨαbecomes unbounded.This contradiction means that,asα→1/ρ(Γ),→0 ask→∞.

    Therefore, ifρ(Γ) ≥1, then either ?gi(k) ≤0 for somei,kor limk→∞?gi(k)=0 for somei.■

    Remark 1Theorem 3 also shows that the message-passing algorithm can be used as a distributed algorithm to test forρ(Γ)< 1.More specifically, one can set a (very small)thresholdε>0 and if ?gi(k)<εis detected at someiandk,ρ(Γ)can be regarded to be sufficiently close to 1.The associated network gain will be either too large or unbounded.In contrast, Jacobi iterations may fail to detectρ(Γ) ≥1.Indeed,(19)can be rewritten as

    soz(k)can remain bounded even whenρ(Γ)≥1 ifz(0)andbhappen to be eigenvectors for eigenvalues ofΓless than 1.

    5.4 Comparison of algorithms

    Example 2To illustrate the Jacobi iterations and messagepassing algorithm, we consider a linear networked system depicted in Fig.3,modified from[13].This is an example of loopy graphs with 13 nodes.The non-zeroγi jis randomly chosen from(0.85, 1) andbi=i.The simulated result

    Fig.3 A networked system with 13 nodes

    Fig.4 Convergence of the message-passing algorithm

    Fig.5 Convergence of the Jacobi iterations

    for Algorithm 1 is shown in Fig.4.For 100 iterations, the error is converged down to approximately 0.8×10-4.Figure 5 shows the simulated result for the Jacobi iterations.As we see that the Jacobi iterations converge considerably more slowly,with an error of approximately 0.02 after 100 iterations.From this example,we see that both algorithms work fine,with the tradeoff that Jacobi iterations enjoy simplicity,whereas the message-passing algorithm is more computationally efficient.

    6 Network gain computation:nonlinear gains

    In this section,we study the network gain computation problem for the case whereFis nonlinear.

    6.1 M-functions

    The crucial technical issue is how to extend the generalised diagonal dominance condition for the matrixG(or equivalently,ρ(Γ)< 1) to the nonlinear case.Fortunately, a generalised diagonally dominant matrixGwithgii>0 andgi j≤0 is also known as aM-matrix which has a nice nonlinear counterpart calledM-function[15].

    Definition 2 A mappingF: D ?Rn→Rnisisotone1Isotone functions are also known as monotone functions.(resp.antitone) (on D) ifx≤yfor anyx,y∈D implies thatF(x) ≤F(y) (resp.F(x) ≥F(y)).The mappingFisinverse isotone(on D)ifF(x) ≤F(y)for anyx,y∈D impliesx≤y.Fisoff-diagonally antitoneif for anyx∈Rnthe functions

    are antitone.In the above,eiis thei-th unit vector of Rn.

    Definition 3 A mappingF: D ?Rn→Rnis anMfunctionifFis inverse isotone and off-diagonally antitone.

    It is straightforward to verify thatγas in C2′′is isotone andFas in(13)is off-diagonally antitone for anyμ≥0.

    6.2 Jacobi iterations

    SupposeF: Rn+→Rnas defined in(13)is anM-function for anyμ.Then,for any givenμ,the solutionz?ofF(z) =0 can be solved iteratively using the following (nonlinear)Jacobi iterations:

    for anyz(0) ≥0.It is well known that limk→∞z(k)→z?[15].The distributed implementation is given by

    Remark 2In the general case whereFis not necessarily anM-function,computing the network gain can be much more involved.In particular,F(z) = 0 may not exhibit a unique fixedpoint,andtheJacobiiterations(31)mayleadtodifferent fixed points, depending on the initialz(0).To get around this difficulty,we note that the stability analysis is to assess whether the Jacobi iterations(31)are bounded for any initialz(0),rather than to compute the fixed points.This motivates modified iterative algorithms which seek for an upper bound of the asymptoticz(k)only.Such an algorithm is provided in[11].Several simulation examples are also provided in[11].Due to space limit,we do not study this type of algorithms in this paper.

    7 Conclusions

    A number of results have been presented for determining the input-to-state stability of a networked control system and for computing the input-to-state gains.The network gain theorem (Theorem 1) gives a general characterisation for the network gains (γi) that guarantee the ISS of the networked system.This characterisation is done using the state bounding setZμ.

    For the case the network gains are linear,Theorem 2 shows that ISS of the networked system is equivalent to the stability of gain matrix,i.e.ρ(Γ)<1.The classical Jacobi iterations andthemessage-passingalgorithm(Algorithm1)canbeused to compute the input-to-state gains in a distributed way.The message-passing algorithm appears to be a little more complex,but it offers several advantages(Theorem 3),including faster convergence than the Jacobi iterations.

    For the case of nonlinear gains,characterisation of the ISS condition can be done usingM-functions,and Jacobi iterations can still be used as a distributed algorithm to compute the input-to-state gains.

    Funding This work was supported in part by the National Natural Science Foundation of China(Nos.U21A20476,U1911401,U22A20221,62273100,62073090).

    大话2 男鬼变身卡| 纯流量卡能插随身wifi吗| 欧美在线黄色| 两个人免费观看高清视频| 亚洲av男天堂| 久久精品亚洲av国产电影网| 电影成人av| 日韩av不卡免费在线播放| 男女边摸边吃奶| 最新的欧美精品一区二区| 丝袜人妻中文字幕| 观看av在线不卡| 黄色片一级片一级黄色片| 国产成人免费观看mmmm| 各种免费的搞黄视频| 免费av中文字幕在线| 成人影院久久| 亚洲精品av麻豆狂野| 亚洲自偷自拍图片 自拍| av线在线观看网站| 丝袜美腿诱惑在线| 精品欧美一区二区三区在线| 日本欧美国产在线视频| 亚洲精品久久成人aⅴ小说| 久久人妻福利社区极品人妻图片 | 老司机深夜福利视频在线观看 | 美女高潮到喷水免费观看| 一区二区三区精品91| 国产片内射在线| 精品福利观看| kizo精华| 久久99精品国语久久久| 久久青草综合色| 国产日韩欧美视频二区| 99re6热这里在线精品视频| 这个男人来自地球电影免费观看| 久久热在线av| 国产一级毛片在线| 成人亚洲精品一区在线观看| 国产精品秋霞免费鲁丝片| 啦啦啦视频在线资源免费观看| 黄色 视频免费看| 十八禁网站网址无遮挡| 国产欧美日韩综合在线一区二区| 国产成人a∨麻豆精品| 欧美 日韩 精品 国产| 亚洲,欧美精品.| 国产黄色免费在线视频| 我的亚洲天堂| 亚洲av成人不卡在线观看播放网 | 国产成人av教育| 午夜福利视频精品| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人精品久久二区二区91| 一本色道久久久久久精品综合| 91九色精品人成在线观看| 亚洲av在线观看美女高潮| 亚洲国产日韩一区二区| 免费在线观看黄色视频的| 亚洲,一卡二卡三卡| 国产高清视频在线播放一区 | 操出白浆在线播放| 午夜91福利影院| 新久久久久国产一级毛片| 99国产综合亚洲精品| 一级毛片 在线播放| netflix在线观看网站| 国产欧美日韩一区二区三区在线| 精品久久久久久久毛片微露脸 | 日本猛色少妇xxxxx猛交久久| 老司机影院成人| 青春草视频在线免费观看| 亚洲av欧美aⅴ国产| 国产亚洲午夜精品一区二区久久| 超碰97精品在线观看| 人妻一区二区av| 成人手机av| 人人妻人人添人人爽欧美一区卜| 自线自在国产av| 色网站视频免费| e午夜精品久久久久久久| 国产在视频线精品| 搡老岳熟女国产| 高清黄色对白视频在线免费看| 又粗又硬又长又爽又黄的视频| 一边摸一边抽搐一进一出视频| 国产精品香港三级国产av潘金莲 | 狠狠精品人妻久久久久久综合| 国产亚洲欧美在线一区二区| 久久久久视频综合| 国产日韩欧美视频二区| 国产精品九九99| 一区二区av电影网| 成年人午夜在线观看视频| 午夜福利乱码中文字幕| 91国产中文字幕| 校园人妻丝袜中文字幕| 亚洲国产精品国产精品| 大型av网站在线播放| 国产成人啪精品午夜网站| 国产精品99久久99久久久不卡| 欧美黑人精品巨大| 日本av免费视频播放| 国产av国产精品国产| 成人国产一区最新在线观看 | 九色亚洲精品在线播放| 99re6热这里在线精品视频| 69精品国产乱码久久久| 亚洲欧美一区二区三区久久| 男人添女人高潮全过程视频| 99国产精品免费福利视频| www日本在线高清视频| 日本wwww免费看| 欧美大码av| 最近手机中文字幕大全| 性色av一级| 婷婷色av中文字幕| 亚洲精品国产区一区二| 久久久国产欧美日韩av| 在线天堂中文资源库| 欧美亚洲 丝袜 人妻 在线| 性少妇av在线| 男女高潮啪啪啪动态图| 国产片内射在线| 国产熟女欧美一区二区| 亚洲一区二区三区欧美精品| 欧美日韩福利视频一区二区| 2018国产大陆天天弄谢| 99国产精品99久久久久| 一边摸一边做爽爽视频免费| 国产在线一区二区三区精| 尾随美女入室| 亚洲国产精品一区二区三区在线| 免费在线观看黄色视频的| svipshipincom国产片| 国产成人精品久久二区二区免费| 精品久久久精品久久久| 欧美乱码精品一区二区三区| 黄网站色视频无遮挡免费观看| 免费少妇av软件| 国产熟女欧美一区二区| 操出白浆在线播放| 成人18禁高潮啪啪吃奶动态图| 国产免费视频播放在线视频| 亚洲精品日本国产第一区| 亚洲中文字幕日韩| 久久久久国产精品人妻一区二区| 欧美精品亚洲一区二区| 国产欧美日韩一区二区三区在线| 国产日韩欧美在线精品| 成年人免费黄色播放视频| 久久免费观看电影| 一本色道久久久久久精品综合| 熟女少妇亚洲综合色aaa.| 免费在线观看日本一区| 亚洲精品日本国产第一区| 伊人久久大香线蕉亚洲五| 视频在线观看一区二区三区| 一本色道久久久久久精品综合| 免费在线观看完整版高清| 国产精品麻豆人妻色哟哟久久| 飞空精品影院首页| 日韩中文字幕欧美一区二区 | 一级毛片 在线播放| 最黄视频免费看| 日韩av在线免费看完整版不卡| 国产精品国产三级专区第一集| 51午夜福利影视在线观看| 丝袜美腿诱惑在线| 人体艺术视频欧美日本| 岛国毛片在线播放| 51午夜福利影视在线观看| 男女之事视频高清在线观看 | 麻豆国产av国片精品| 亚洲精品乱久久久久久| 精品一区在线观看国产| 免费一级毛片在线播放高清视频 | 国产在线观看jvid| 欧美变态另类bdsm刘玥| 国产欧美亚洲国产| 国产亚洲精品久久久久5区| 青草久久国产| 十八禁人妻一区二区| 亚洲色图 男人天堂 中文字幕| 超色免费av| 大香蕉久久成人网| 在线观看免费日韩欧美大片| 美女大奶头黄色视频| 亚洲一区二区三区欧美精品| 一区二区三区精品91| 青草久久国产| 可以免费在线观看a视频的电影网站| 久久午夜综合久久蜜桃| 国产视频首页在线观看| 久久久国产一区二区| 丰满人妻熟妇乱又伦精品不卡| 国产片内射在线| 50天的宝宝边吃奶边哭怎么回事| 老司机在亚洲福利影院| 亚洲欧美一区二区三区国产| 国产精品国产三级国产专区5o| 欧美日韩精品网址| 99热全是精品| 国产精品国产三级国产专区5o| 少妇粗大呻吟视频| www.自偷自拍.com| 欧美97在线视频| 美女脱内裤让男人舔精品视频| 人妻人人澡人人爽人人| 99国产精品99久久久久| 久久精品亚洲熟妇少妇任你| 久久国产精品影院| 亚洲精品在线美女| 99久久人妻综合| 美女中出高潮动态图| 亚洲视频免费观看视频| 国产亚洲欧美在线一区二区| 香蕉丝袜av| 日韩中文字幕视频在线看片| 王馨瑶露胸无遮挡在线观看| 亚洲欧美激情在线| 建设人人有责人人尽责人人享有的| 精品国产超薄肉色丝袜足j| 性色av一级| 黑人巨大精品欧美一区二区蜜桃| 国产xxxxx性猛交| 高清视频免费观看一区二区| 亚洲av电影在线进入| cao死你这个sao货| 欧美日韩视频精品一区| 免费不卡黄色视频| 777米奇影视久久| 欧美久久黑人一区二区| 精品少妇内射三级| a级毛片黄视频| 国产精品久久久久久精品古装| 精品人妻1区二区| 国产在线免费精品| 中文字幕人妻熟女乱码| av片东京热男人的天堂| 久久久国产一区二区| 亚洲 欧美一区二区三区| 日本欧美国产在线视频| 亚洲av综合色区一区| 精品人妻一区二区三区麻豆| 少妇被粗大的猛进出69影院| 黄色视频不卡| 永久免费av网站大全| 午夜av观看不卡| 十分钟在线观看高清视频www| 亚洲精品国产色婷婷电影| 国精品久久久久久国模美| 欧美乱码精品一区二区三区| 亚洲精品成人av观看孕妇| 成人午夜精彩视频在线观看| 日本a在线网址| 国产精品人妻久久久影院| 91九色精品人成在线观看| 亚洲专区中文字幕在线| 熟女av电影| 亚洲七黄色美女视频| 99热国产这里只有精品6| 国产男女内射视频| netflix在线观看网站| 日韩一区二区三区影片| 波多野结衣av一区二区av| 91麻豆精品激情在线观看国产 | 久久ye,这里只有精品| 美国免费a级毛片| 午夜精品国产一区二区电影| 欧美人与善性xxx| 男女免费视频国产| 嫁个100分男人电影在线观看 | 涩涩av久久男人的天堂| 久久精品人人爽人人爽视色| 在线观看免费日韩欧美大片| 午夜激情久久久久久久| 日韩 亚洲 欧美在线| 亚洲专区中文字幕在线| 国产伦理片在线播放av一区| 男女边摸边吃奶| 久久久精品94久久精品| 亚洲午夜精品一区,二区,三区| 国产在线一区二区三区精| 深夜精品福利| 日韩一本色道免费dvd| 国产成人免费观看mmmm| 久久精品久久精品一区二区三区| a 毛片基地| 国产免费又黄又爽又色| 欧美激情极品国产一区二区三区| 美女大奶头黄色视频| 欧美另类一区| 啦啦啦啦在线视频资源| 精品国产一区二区三区四区第35| 精品久久久久久久毛片微露脸 | 日本黄色日本黄色录像| 欧美人与性动交α欧美精品济南到| 黑人欧美特级aaaaaa片| 国产黄色视频一区二区在线观看| 精品一品国产午夜福利视频| 久久精品国产亚洲av高清一级| av又黄又爽大尺度在线免费看| 亚洲欧美清纯卡通| 91成人精品电影| av视频免费观看在线观看| 欧美日韩综合久久久久久| 大香蕉久久成人网| 两个人看的免费小视频| 亚洲欧美日韩另类电影网站| 青春草视频在线免费观看| 99精国产麻豆久久婷婷| 中文字幕人妻熟女乱码| 成人影院久久| 一边摸一边抽搐一进一出视频| 丝袜在线中文字幕| 天天影视国产精品| 亚洲男人天堂网一区| 一本一本久久a久久精品综合妖精| 黄频高清免费视频| 少妇人妻久久综合中文| 9色porny在线观看| 国产黄色视频一区二区在线观看| 久久久国产欧美日韩av| 国产精品av久久久久免费| 99热网站在线观看| av国产精品久久久久影院| 丰满饥渴人妻一区二区三| 精品国产一区二区三区四区第35| 精品国产一区二区三区久久久樱花| 国产亚洲欧美精品永久| 国产老妇伦熟女老妇高清| 亚洲成人免费av在线播放| 在线精品无人区一区二区三| 久久久亚洲精品成人影院| 亚洲国产中文字幕在线视频| 水蜜桃什么品种好| 国产av一区二区精品久久| 18在线观看网站| 久久午夜综合久久蜜桃| 999精品在线视频| 视频区欧美日本亚洲| 中文字幕色久视频| 99热全是精品| 成年人免费黄色播放视频| 国产福利在线免费观看视频| 日韩一卡2卡3卡4卡2021年| 国精品久久久久久国模美| 在线观看免费高清a一片| 亚洲av综合色区一区| 欧美黄色片欧美黄色片| 人成视频在线观看免费观看| 欧美国产精品一级二级三级| 欧美亚洲日本最大视频资源| 午夜福利在线免费观看网站| xxx大片免费视频| 亚洲欧美激情在线| 99国产精品免费福利视频| 永久免费av网站大全| 成人国语在线视频| 日韩免费高清中文字幕av| 天天躁狠狠躁夜夜躁狠狠躁| 久久人妻福利社区极品人妻图片 | 亚洲 欧美一区二区三区| 99热全是精品| 两个人免费观看高清视频| 国产女主播在线喷水免费视频网站| 亚洲免费av在线视频| www日本在线高清视频| 在线观看免费视频网站a站| 久久天躁狠狠躁夜夜2o2o | 一个人免费看片子| 免费观看人在逋| 大码成人一级视频| 热99国产精品久久久久久7| 午夜影院在线不卡| 大型av网站在线播放| 2018国产大陆天天弄谢| 少妇 在线观看| 欧美变态另类bdsm刘玥| 精品福利永久在线观看| 一本—道久久a久久精品蜜桃钙片| 人妻人人澡人人爽人人| 无遮挡黄片免费观看| 国产伦人伦偷精品视频| 美女扒开内裤让男人捅视频| 国产精品99久久99久久久不卡| 91麻豆精品激情在线观看国产 | 国产亚洲一区二区精品| 午夜福利免费观看在线| 两人在一起打扑克的视频| 免费在线观看视频国产中文字幕亚洲 | 大香蕉久久网| 日本vs欧美在线观看视频| a级毛片黄视频| a级片在线免费高清观看视频| 国产成人av教育| 亚洲午夜精品一区,二区,三区| 一本一本久久a久久精品综合妖精| 亚洲天堂av无毛| 夜夜骑夜夜射夜夜干| 午夜免费男女啪啪视频观看| 99热国产这里只有精品6| 免费日韩欧美在线观看| 亚洲人成网站在线观看播放| 亚洲美女黄色视频免费看| 国产99久久九九免费精品| 国产精品麻豆人妻色哟哟久久| 亚洲五月婷婷丁香| 91精品伊人久久大香线蕉| 亚洲伊人色综图| 久久99一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 又紧又爽又黄一区二区| 国产在线视频一区二区| 99久久精品国产亚洲精品| 无限看片的www在线观看| 久久久精品免费免费高清| 99精品久久久久人妻精品| 免费在线观看视频国产中文字幕亚洲 | 亚洲欧美一区二区三区久久| 国产日韩欧美在线精品| 亚洲精品自拍成人| 丁香六月欧美| 久久国产精品男人的天堂亚洲| 波多野结衣一区麻豆| 啦啦啦视频在线资源免费观看| 国产精品麻豆人妻色哟哟久久| 成人手机av| 欧美性长视频在线观看| 亚洲第一青青草原| 最新在线观看一区二区三区 | 国产不卡av网站在线观看| 亚洲av男天堂| 国产无遮挡羞羞视频在线观看| 欧美xxⅹ黑人| 亚洲精品久久午夜乱码| 亚洲精品一区蜜桃| 日韩av在线免费看完整版不卡| 午夜免费鲁丝| 极品少妇高潮喷水抽搐| 电影成人av| 青青草视频在线视频观看| www.自偷自拍.com| 欧美中文综合在线视频| 中文乱码字字幕精品一区二区三区| 女警被强在线播放| 又大又爽又粗| 欧美乱码精品一区二区三区| 日本欧美视频一区| 狠狠婷婷综合久久久久久88av| www.熟女人妻精品国产| 中文字幕亚洲精品专区| 国产福利在线免费观看视频| 黄色怎么调成土黄色| 少妇精品久久久久久久| 中文欧美无线码| 久久精品国产综合久久久| 久久久精品免费免费高清| 18禁黄网站禁片午夜丰满| 亚洲欧美精品综合一区二区三区| 九草在线视频观看| 国产成人啪精品午夜网站| 久久人人97超碰香蕉20202| 日韩av在线免费看完整版不卡| 精品卡一卡二卡四卡免费| av有码第一页| 99国产精品99久久久久| 久久久久精品人妻al黑| 亚洲成国产人片在线观看| 一区二区三区激情视频| 国产有黄有色有爽视频| 久久综合国产亚洲精品| av天堂在线播放| 亚洲精品久久久久久婷婷小说| 免费在线观看视频国产中文字幕亚洲 | 国产av国产精品国产| 国产欧美日韩一区二区三 | 国产欧美亚洲国产| 欧美中文综合在线视频| 亚洲图色成人| 免费人妻精品一区二区三区视频| 又黄又粗又硬又大视频| 一二三四社区在线视频社区8| 亚洲国产中文字幕在线视频| 纯流量卡能插随身wifi吗| 欧美精品人与动牲交sv欧美| 99国产精品99久久久久| 免费看不卡的av| 久久久久久亚洲精品国产蜜桃av| 久久久久久免费高清国产稀缺| 性色av乱码一区二区三区2| 一级毛片女人18水好多 | 久久精品久久久久久噜噜老黄| 久热爱精品视频在线9| 国产欧美亚洲国产| 亚洲免费av在线视频| 在线观看www视频免费| 亚洲七黄色美女视频| 国产成人精品久久二区二区免费| 欧美黄色片欧美黄色片| xxx大片免费视频| 伊人久久大香线蕉亚洲五| 日本av免费视频播放| 亚洲国产精品成人久久小说| 90打野战视频偷拍视频| 久久久久久久久免费视频了| 精品一区二区三卡| 99热国产这里只有精品6| 国产日韩欧美视频二区| 久久久久久久久久久久大奶| av国产久精品久网站免费入址| 亚洲成av片中文字幕在线观看| 丰满人妻熟妇乱又伦精品不卡| 一个人免费看片子| 日本一区二区免费在线视频| 亚洲精品国产区一区二| 色精品久久人妻99蜜桃| 我要看黄色一级片免费的| 国产一区二区三区综合在线观看| 国产高清videossex| 国产免费又黄又爽又色| 极品人妻少妇av视频| 成年av动漫网址| 18在线观看网站| 一边摸一边抽搐一进一出视频| 国产高清不卡午夜福利| 亚洲欧美日韩高清在线视频 | 99国产精品一区二区蜜桃av | 99热网站在线观看| 狠狠精品人妻久久久久久综合| 波多野结衣一区麻豆| 亚洲欧美日韩另类电影网站| 母亲3免费完整高清在线观看| 欧美日韩精品网址| 日韩人妻精品一区2区三区| av不卡在线播放| 精品国产乱码久久久久久男人| 黄色毛片三级朝国网站| 国产精品二区激情视频| 黑人猛操日本美女一级片| 少妇被粗大的猛进出69影院| 国产亚洲午夜精品一区二区久久| 免费黄频网站在线观看国产| 国产国语露脸激情在线看| 免费看av在线观看网站| 国产精品国产三级专区第一集| 一边摸一边做爽爽视频免费| 亚洲一区二区三区欧美精品| 亚洲国产精品成人久久小说| 满18在线观看网站| 不卡av一区二区三区| 亚洲九九香蕉| 亚洲中文日韩欧美视频| 人人妻人人澡人人爽人人夜夜| 日日夜夜操网爽| 国产一区二区激情短视频 | 亚洲av电影在线观看一区二区三区| 久久精品aⅴ一区二区三区四区| 爱豆传媒免费全集在线观看| 国产亚洲精品第一综合不卡| 操美女的视频在线观看| 亚洲av成人不卡在线观看播放网 | 成年人黄色毛片网站| 欧美av亚洲av综合av国产av| 成年女人毛片免费观看观看9 | 亚洲欧美中文字幕日韩二区| 欧美精品人与动牲交sv欧美| 久久久久国产精品人妻一区二区| 国产色视频综合| 飞空精品影院首页| 亚洲熟女精品中文字幕| 免费在线观看影片大全网站 | 国产精品一区二区在线不卡| 午夜福利乱码中文字幕| 亚洲国产中文字幕在线视频| 国产av一区二区精品久久| 91老司机精品| 国产精品九九99| 久久国产亚洲av麻豆专区| 成在线人永久免费视频| 无限看片的www在线观看| 国产精品av久久久久免费| 一边摸一边抽搐一进一出视频| 亚洲av国产av综合av卡| 97人妻天天添夜夜摸| 一级片免费观看大全| 国产视频一区二区在线看| 免费人妻精品一区二区三区视频| 国产精品久久久久久精品古装| 一区在线观看完整版| 亚洲国产欧美日韩在线播放| 精品熟女少妇八av免费久了| 久久人人97超碰香蕉20202| 十分钟在线观看高清视频www| 美女午夜性视频免费| 成人影院久久| 国产欧美日韩精品亚洲av| 久久久久久久精品精品| 亚洲中文av在线| 真人做人爱边吃奶动态| 免费观看人在逋| 精品久久久精品久久久| 久久中文字幕一级| 国产黄色视频一区二区在线观看| 日本av免费视频播放| 精品人妻1区二区| svipshipincom国产片| 亚洲国产精品999| 黄色a级毛片大全视频| 黄色视频不卡| netflix在线观看网站| 男的添女的下面高潮视频| 亚洲av综合色区一区| 亚洲av男天堂|