• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Input-to-state stability and gain computation for networked control systems

    2023-11-16 10:12:56QianqianCaiMinyueFu
    Control Theory and Technology 2023年3期

    Qianqian Cai·Minyue Fu

    Abstract This paper studies the stability problem for networked control systems.A general result, called network gain theorem, is introduced to determine the input-to-state stability (ISS) for interconnected nonlinear systems.We show how this result generalises the previously known small gain theorem and cyclic small gain theorem for ISS.For the case of linear networked systems, a complete characterisation of the stability condition is provided, together with two distributed algorithms for computing the network gain: the classical Jacobi iterations and a message-passing algorithm.For the case of nonlinear networked systems,characterisation of the ISS condition can be done using M-functions,and Jacobi iterations can be used to compute the network gain.

    Keywords Small gain theorem·Networked systems·Input-to-state stability·Robust stability·Distributed algorithm

    1 Introduction

    The celebrated gain theorem is a pivotal tool in stability analysis and control design for nonlinear systems.This tool was initially introduced by Zames for linear feedback gains[1],but then widely extended to various types of nonlinear and uncertain systems[2–4].Many versions of the small gain theorem are available for input–output stability, input-to-state stability[5],nonlinear feedback design[6,7],just to name a few.A good review of the small gain theorem can be found in[8].

    This paper is interested in generalising the small gain theorem to networked control systems.Our work is inspired by thecyclic small gain theoremin[9]which provides a simple stability test for networked systems with a max-type gains for all the simple loops in the network.The aim of this paper is to study stability conditions for more general gain functions and study computational algorithms for testing network stability.Our work is also closely related to (1)thematrix small gain theoremof [10] where the network stability is assessed using a matrix of local gain functions,and(2)our recent work[11]where a unified framework is provided for network stability analysis under three notions of stability,namely global uniform boundedness,global asymptotic stability and input-to-state stability.In particular, [11] checks the network stability in terms of a scalar called the network gain.The result,callednetwork gain theorem,generalises the previously known matrix small gain theorem and cyclic small gain theorem for input-to-state stability (ISS).To make the computation of the network gain feasible,[11]also provides a characterisation of the network gain in terms of a discretetime system, which then allows the numerical computation of the network gain.

    The motivation of this paper stems from the fact that the results in[11]are for general networked systems;hence,their theoretical development and test algorithms are highly technically involved.In particular,the proof of the network gain theorem in[11]employs the tool of vector-valued Lyapunov functions.Moreover, a lot of the technical development in[11] is devoted to study the families of nonlinear networks rather than a single nonlinear network, so that the network stability conditions become necessary and sufficient.

    In this paper,we first restate the network gain theorem in[11]and gives an very intuitive proof sketch to reveal the key ideas in the proof.This will help to understand the network gain theorem much better.We then give a new and intuitive proof for the cyclic small gain theorem.The highlight of the paper will be on the computation of the network gain.For a linear network,we first give a necessary and sufficient boundedness condition for the network gain and show that this condition cannot be reduced to a cyclic small gain condition.This will be followed by two distributed computation algorithms, one based on Jacobi iterations and one using a message-passing algorithm.Distributed computation allows the stability to be assessed for a large networked system without central computation facilities or centralised knowledge of the whole network.Finally,we consider the nonlinear network case and suggest the use of Jacobi to test the network gain.

    The rest of the paper is organised as follows.This section will end with some notations and definitions.Section 2 reviews the well-known single-loop small gain theorem in the ISS setting.Section 3 formulates the network stability problem.Section 4 revisits the network gain theorem in[11]and studies some special cases, including the cyclic small gain theorem.Section 5 devotes to the network gain computation for linear networks,whereas Sect.6 comments on the nonlinear network case.Conclusions are reached in Sect.7.

    Notations and definitions R is the real field and R+is the non-negative part of R.col{x1,x2,...,xn}denotes a column vector ofxi.ρ(A) stands for the spectral radius of matrixA.|·|stands for the Euclidean norm and|·|∞stands for the maximum norm.Id denotes the identity function.For any measurable functionu: R+→Rm, ‖u‖ denotes ess.sup.{|u(t)|,t≥0}and,for any 0 ≤t1 0 for allx/= 0, and isproper(orradially unbounded)ifV(x)→∞as|x|→∞.A functionγ: R+→R+is said to be of classKif it is continuous and increasing withγ(0)=0.Suchγis of classK∞if it is also proper.A functionβ: R+×R+→R+is said to be of classKLif,for each fixedt∈R+,the functionβ(·,t) of classKand, for each fixeds∈R+, the functionβ(s,·)is non-increasing withβ(s,t) →0 ast→∞.Note that for any functionγof classK∞,its inverse functionγ-1is well defined and is also of classK∞.

    Consider the following system:

    withx∈Rnis the state,u∈Rmis the input,y∈Rpis the output,andfandhare smooth functions.The system is said to beinput-to-output stable(IOS) if there exists a functionβof classKLand a functionγof classKsuch that, for eachx(0),each measurable essentially boundeduand eachtin the right-maximally defined interval of the solution of(1)–(2),it holds

    In this case,γis said to be theinput-to-output gain(or simplygain).Ifyabove becomesx,the system is said to beinputto-state stable(ISS)andγis theinput-to-state gain.

    2 Single-loop small gain theorem

    The well-celebratedsmall gain theoremhas many forms.Here,we review one of the general forms developed in[5],expressed using Lyapunov functions.Consider the following interconnected system:

    where,fori,j=1,2,j/=i,xi∈Rniis the state,ui∈Rmiis the input,yi∈Rpiis the output, andfi,hiare locally Lipschitz functions satisfyingfi(0,0,0)=0 andhi(0)=0.A special output is the state,i.e.yi=xi.The system block diagram is depicted in Fig.1a, whereG1andG2represent the two subsystems,and the ⊕symbol can be interpreted as theaugmentation operator,i.e.u1⊕y2=(u1,y2).

    Suppose thei-th subsystem of (4)–(5)admits a continuously differentiable ISS-Lyapunov functionVi:Rni→R+satisfying the following conditions:

    C1:There existsαi,αˉi∈K∞such that

    C2:There exist,γi j∈Kforj/=iand a continuous,positive definiteαi∈K∞such that

    Lemma 1Suppose the interconnected system(4)–(5)is such that each i-th subsystem admits an ISS-Lyapunov function Vi satisfying(6)–(7).Then,the interconnected system is ISS if the following small gain condition holds:

    i.e.γ12(γ21(s))0.

    Fig.1 Small gain theorem:a Block diagram;b Graph Representation

    Fig.2 Examples of networked systems

    We use the graph representation in Fig.1b to represent the interconnected system(4)–(5).For notational simplicity,variablesui,yi,xiand functionsfi,hi,are suppressed.If necessary,the gainsγi jcan also be suppressed.

    3 Problem formulation

    We now generalise the single-loop system in Fig.1 to a networked system consisting ofnsubsystems:

    wherexi∈Rniis the state,ui∈Rmiis the control,x=col{xi}∈RNwith,andfi:RN+mi→Rniis locally Lipschitz function satisfyingf(0,0)=0.

    Denote byG={V,E}theinduced graphof the networked system as depicted in Fig.2,whereV={1,...,N}andEis a directed edge set with(i,j)∈Eindicating thatfidepends onxi.For eachi∈V, denote the set of itsneighboursbyNi= {j:(i,j) ∈E} and its cardinality by |Ni|.Apath p= {i1,i2,...,ir} is a connected sequence of nodes inG, i.e.(i j,i j+1) ∈Efor everyj= 1,2,...,r- 1.Thepath lengthofpabove isr-1.Thedistancebetween two connected nodes is the shortest path length between the two nodes.Thediameterof the graph is the maximum distance between any two connected nodes.Acycle(orloop)is a path withi1=ir.Asimple cycleis a cycle where all the nodes are distinct except for the starting and terminating node.

    The following powerful result,called thecyclic small gain theorem,is cited from[8].

    Lemma 2Suppose the networked system(9)is such that each i-th subsystem admits a continuously differentiable ISSLyapunov function Vi: Rni→R+satisfying C1 and C2′:There exist γi j∈K for every j∈Ni and γui∈K and a continuous,positive definite αi∈K∞such that

    Then,the interconnected system is ISS if the following cyclic small gain condition is satisfied:The loop gain for every simple cycle l=(i0,i1,...,ir,i0),as defined by

    is contractive,i.e.γl

    The motivation for this work stems from the fact that the cyclic small gain theorem above is suitable only for the special form of Lyapunov function bound in (10), i.e.maxj∈Ni γi j(Vj) is used to boundVi.This means that thei-th subsystem is influenced only by the neighbouring subsystemj∈Niwith the largestVj,not by all the neighbours.This implies that,if there are multiple loops start and return to nodei,the“compound”loop gain is dominated by the only loop with the largest loop gain.This observation leads to the interesting cyclic small gain condition above.However,for most linear and nonlinear systems,each subsystem is influenced by all the neighbouring nodes, not just one of them.Our interest in this work is to study this more general scenario.As we will see,stability for such networked systems becomes far more complex.

    More precisely,we consider the networked system(9)satisfying C1 and C2′′: For everyi-th subsystem, there exists functionγi:,which is continuous and non-decreasing in every variable,γi(0)=0,andαias in C2′such that

    The network gain problem we aim to solve consists of determining whether the networked system(9)is ISS or not(thenetwork stability problem)and computing a bound forV(x)for the givenu(thenetwork gain computation problem).

    4 Network gain theorem for ISS

    In this section,we provide our first main result which characterises the conditions for network stability.

    4.1 Network gain theorem

    For anyμ∈Rn+,define thestate bounding set

    z= col{z1,z2,...,zn} andF= col{F1,F2,...,Fn} (the dependance onμsuppressed for convenience).Then,define

    Note in particular thatZμis non-empty because 0 ∈Zμ.

    The next result is a generalisation of the small gain theorem, which we will callnetwork gain theorem; see more details in[11].

    Theorem 1Under C1 and C2′′,the networked system(9)is ISS stable if Zμ in(14)is bounded for every μ≥0.In this case,the network state(in the steady state)is bounded with F(V(x)) ≤0.Conversely,if Zμ is not bounded for some μ≥0,then there exists some networked system of the form(9)that satisfies C1 and C2′′but is not ISS.

    A rigorous proof can be found in [11].In the following,we provide a proof sketch which conveys the key ideas.

    ProofThe first part follows from standard stability analysis of nonlinear systems [4].More precisely, C2′′implies that ifVi(xi) ≥γi(Vj(x j) :j∈Ni,‖ui‖), then dVi(xi)/dt≤-αi(Vi(xi)).This in turn implies that the steady statexmust be such that

    Hence, the steady stateV(x) = col{Vi(xi)} must be inside the setZμwithμ=col{‖ui‖},i.e.F(V(x))≤0.SinceZμis bounded for any bounded ‖u‖, the networked system is ISS.

    Conversely,supposeZμis not bounded for someμ≥0.Weshowbelowthat thereexists amodifiednetworkedsystem of the form of (9) that satisfy C1 and C2′′such that each subsystem remains ISS after modification,but the modified networked system is not ISS.Indeed,the modification of(9)is done by taking

    We first claim that every modified subsystemiabove remains ISS.Indeed, letx j= 0 for allj∈Ni.IfVi(xi)>γi(0,‖ui‖), then ?fi(xi,ui) =fi(xi,ui), resulting in dVi(xi)/dt≤-αi(Vi(xi))by C2′′.This implies that the steady statexiis bounded byVi(xi) ≤γi(0,‖ui‖), so the modified subsystemiremains ISS.

    Now,for the modified networked system above,we takex(0)and a constantusuch that‖ui‖=μiandVi(xi(0))=zifor alli,wherez∈Zμis chosen such that|z|∞≥ηfor any given constantη>0.This implies that

    which in turn means that ?fi(x,ui) = 0 att= 0, resulting inxi(t) =xi(0) andVi(xi(t)) =zifor allt≥0.Since|z|∞=ηandηis arbitrarily large,the above analysis implies that the modified networked system does not have a bounded steady state even when the inputuis bounded.Hence, the modified networked system is not ISS.■

    4.2 Special cases

    ResultsforsomespecialcasesfollowfromTheorem1.Corollary 1 is essentially the small gain theorem (Lemma 1);Corollary 2 is an extension of Corollary 2.Corollary 3 is the cyclic small gain theorem(Lemma 2).

    Corollary 1Suppose Conditions C1 and C2′′hold.Then,for a single-loop system(9)with n= 2,the closed-loop system is ISS stable if the set{s: 0 ≤s≤γ12(γ21(s,μ2),μ1)}is bounded for all μ1,μ2≥0.In particular,this holds if γi are taken as in C2 and the small gain condition(8)holds.

    ProofUsing Theorem 1,it suffices to show that(8)implies the boundedness ofZμ= {z:z> 0,z1≤γ12(z2)),z2≤γ21(z1)}.Indeed, for anyz∈Zμ,z1≤γ12(z2) ≤γ12(γ21(z1)).Therefore,z1must be bounded.Hence,z2≤γ21(z1)is bounded too.The implication for the case, whenγitake the form as in C2,is obvious.■

    Corollary 2Suppose Conditions C1 and C2′′hold.If the induced graph of the networked system(9)is such that all the cycles are non-touching(i.e.no two cycles share a common node),then the networked system is ISS stable if for any μ∈Rn+,every such cycle l=(i0,i1,...,ir,i0)(which must be a simple cycle),the set{s:0 ≤s≤γi0i1?...?γiri0(s)}is bounded for every μ∈Rn+(The dependance on μ is suppressed in the set).

    ProofThis is a simple extension of Corollary 1.We first lump all the nodes in a non-touching cycle as a“super node"to result in a graph without cycles.It is obvious that this graph is ISS stable if individual node(or super node)is ISS stable.Then, for each super node (i.e.non-touching cyclel=(i0,i1,...,ir,i0)), we can group nodesi1,...,i0as a super node that the gain for this super node isγi1i2?...?γirr0.Then,applying Corollary 1 yields that the non-touching cycle is ISS stable when the loop gain(2)is contractive.■

    Corollary 3Suppose Conditions C1 and C2′hold and γi takes the form of(10).Then,the networked system is ISS stable if the cyclic small gain condition in Lemma 2 holds.

    ProofBy Theorem 1, it suffices to show that the cyclic small gain condition implies the boundedness ofZμ.To see this, take anyz∈Zμand any nodei0∈V.We havezi0≤γi0i1(zi1), wherei1= arg maxj γi0j(z j).Constructi2,i3,...,in+1in a similar way,we have

    The sequence{i0,i1,...,in+1}must include cycles because there are onlynnodes inV.Let{ik,...,ir,ir+1}withir+1=ikbe the first encountered simple cyclel.Then,

    Sinceglis contractive,zikmust be bounded.Denoting this bound byηl,we havezik≤ηl.Since there are only a finite number of simple loops,ηmax=maxl ηlis bounded.Denote

    It follows that

    Since there are a finite number of such sequencess,the maximum above is bounded.Becausei0is any node inV, we conclude that allziare bounded,henceZμis bounded.■

    5 Network gain computation:linear gains

    In this section,we provide complete solutions to the network gain computation problem for the case,whereFis linear.

    5.1 Boundedness condition

    For eachi∈V,letγibe such that

    wherebi=μiwith> 0,andγi j> 0 for allj∈Ni,or 0 otherwise.Then,F(z)=0 becomes

    where the matrixG=I-Γ,Γ= {γi j}with allγii= 0.The following result gives the exact characterisation of the boundedness ofZμ.

    Theorem 2For the linear gain case(15)–(16),the state bounding set Zμ is bounded for any μ≥0if and only if ρ(Γ)<1.In this case,the maximal solution z?=G-1b.

    ProofWhenρ(Γ)< 1,Gis invertible andG-1is nonnegative becauseΓis non-negative and

    Next, we show that the boundedness condition in Theorem 2 cannot be simplified to a cyclic small gain condition.

    Example 1For the network in Fig.2b,suppose everyγi j=0.9 so that the corresponding gain matrix is given by

    There are two simple loopsl1=2 →1 →2 andl2=2 →3 →2, each with loop gain of 0.92= 0.81.However, the spectral radius ofΓis,so the networked system is not stable.The reason is that the two loops are additive for node 2,resulting in a compound loop gain of 0.92×2.

    5.2 Jacobi iterations

    Now, we consider the network gain computation problem under the assumption ofρ(Γ)< 1 and a given boundedu.For a small network,it is easy to computez?=G-1b.Here,we consider a large network and study distributed algorithms for computingz?.

    Thedistributedcomputationproblemisformallydescribed as follows:Devise a distributed algorithm which runs iteratively on every nodei∈Vto compute an estimatezi(k)in iterationk= 0,1,2,...such thatzi(k) →ziask→∞.The computation ofzi(k) uses data available in nodeiand those exchanged from the neighbouring nodesj∈Ni.

    Certainconstraintsneed to be imposed on the algorithm’s complexities of communication,computation and storage to call itdistributed.In this paper,these include:

    (i) Local information exchange:Each nodeican exchange information with eachj∈Nionly once per iteration.

    (ii) Local computation: Each nodei’s computational load(measured in terms of the numbers of multiplications and additions)should be at mostO(|Ni|)per iteration.

    (iii) Local storage: Each nodei’s storage size should be at mostO(|Ni|)over all iterations.

    The well-known Jacobi iterations serve as a simple and effective distributed algorithm[12]:

    with any initialz(0) ≥0 (e.g.z(0) = 0), which can be implemented as,for each nodei,

    It is easy to verify that the constraints i)–iii)are satisfied.

    It is well known thatzi(k) →ask→∞for alliand allbif and only ifρ(R)< 1[12].This means that we can execute the Jacobi iterations without knowinga prioriwhetherρ(Γ)< 1.In practice,ifz(k)become sufficiently large,the iterations can be terminated.

    5.3 Message-passing algorithm

    A faster distributed algorithm has been proposed in[13]for iterative solutions of linear systems of the formAx=bwith invertible matrixA.This algorithm belongs to the class ofmessage-passing algorithms,and is known to produce an estimatex(k)in iterationkwith the asymptotic convergence property ofx(k) →∞ask→∞whenAis generalised diagonally dominant.The convergence rate of the algorithm above has also been studied in detail in [14].In particular,the algorithm converges faster than the Jacobi iterations.

    Definition 1 A matrixA= {ai j} ∈Rn×nisgeneralised diagonally dominantif there is a positived∈Rnsuch that

    andAisdiagonally dominantif(21)holds fordi=1,?i.

    Returning to our problem ofGz=b.It is well known that [12],forG=I-Γwithγii= 0 andγi j≥0 for alliandj/=i,Gis generalised diagonally dominant if and only ifρ(Γ)<1.Hence,the message-passing algorithm in[13]is readily applicable to solvingGz=b.The algorithm is detailed below.In each iterationkof the algorithm,each nodeicomputes variablesgi→j(k)andbi→j(k)for each of its neighbouring nodej∈Niand transmit them to nodej.All the nodes execute the same algorithm concurrently.

    We have the following result shows the advantages of the message-passing sequence {?z(k)} over the Jacobi sequence{z(k)}.

    Theorem 3Suppose ρ(Γ)<1.Then,

    ProofThe proof heavily depends on the work in[13]where the message-passing algorithm is introduced.The property(i)comes directly from[13].For(ii),a graph without simple loops with length longer than 2 is effectively an acyclic graph if we join the edges(i,j)and(j,i)together as a single edge.For such acyclic graphs, the finite convergence property in(ii)is established also in[13].To see(iii),we note from(17)thatz?=

    l≥0Γlb.This means

    That is,it includes all the paths(of any length)starting from nodei.From(20),we get

    where the maximum is taken over all the paths fromitoj(/=i)without cycles.It is clear thatψmaxis finite.Note that every path fromitojcan be rewritten as a concatenation of a(repeated)cycleitoiand a path fromitojwithout cycles.Using this and the fact thatα<1,we obtain from(28)that

    Hence,Ψαis bounded.However, this contradicts the fact that,asα→1/ρ(Γ),Gαbecomes singular andΨαbecomes unbounded.This contradiction means that,asα→1/ρ(Γ),→0 ask→∞.

    Therefore, ifρ(Γ) ≥1, then either ?gi(k) ≤0 for somei,kor limk→∞?gi(k)=0 for somei.■

    Remark 1Theorem 3 also shows that the message-passing algorithm can be used as a distributed algorithm to test forρ(Γ)< 1.More specifically, one can set a (very small)thresholdε>0 and if ?gi(k)<εis detected at someiandk,ρ(Γ)can be regarded to be sufficiently close to 1.The associated network gain will be either too large or unbounded.In contrast, Jacobi iterations may fail to detectρ(Γ) ≥1.Indeed,(19)can be rewritten as

    soz(k)can remain bounded even whenρ(Γ)≥1 ifz(0)andbhappen to be eigenvectors for eigenvalues ofΓless than 1.

    5.4 Comparison of algorithms

    Example 2To illustrate the Jacobi iterations and messagepassing algorithm, we consider a linear networked system depicted in Fig.3,modified from[13].This is an example of loopy graphs with 13 nodes.The non-zeroγi jis randomly chosen from(0.85, 1) andbi=i.The simulated result

    Fig.3 A networked system with 13 nodes

    Fig.4 Convergence of the message-passing algorithm

    Fig.5 Convergence of the Jacobi iterations

    for Algorithm 1 is shown in Fig.4.For 100 iterations, the error is converged down to approximately 0.8×10-4.Figure 5 shows the simulated result for the Jacobi iterations.As we see that the Jacobi iterations converge considerably more slowly,with an error of approximately 0.02 after 100 iterations.From this example,we see that both algorithms work fine,with the tradeoff that Jacobi iterations enjoy simplicity,whereas the message-passing algorithm is more computationally efficient.

    6 Network gain computation:nonlinear gains

    In this section,we study the network gain computation problem for the case whereFis nonlinear.

    6.1 M-functions

    The crucial technical issue is how to extend the generalised diagonal dominance condition for the matrixG(or equivalently,ρ(Γ)< 1) to the nonlinear case.Fortunately, a generalised diagonally dominant matrixGwithgii>0 andgi j≤0 is also known as aM-matrix which has a nice nonlinear counterpart calledM-function[15].

    Definition 2 A mappingF: D ?Rn→Rnisisotone1Isotone functions are also known as monotone functions.(resp.antitone) (on D) ifx≤yfor anyx,y∈D implies thatF(x) ≤F(y) (resp.F(x) ≥F(y)).The mappingFisinverse isotone(on D)ifF(x) ≤F(y)for anyx,y∈D impliesx≤y.Fisoff-diagonally antitoneif for anyx∈Rnthe functions

    are antitone.In the above,eiis thei-th unit vector of Rn.

    Definition 3 A mappingF: D ?Rn→Rnis anMfunctionifFis inverse isotone and off-diagonally antitone.

    It is straightforward to verify thatγas in C2′′is isotone andFas in(13)is off-diagonally antitone for anyμ≥0.

    6.2 Jacobi iterations

    SupposeF: Rn+→Rnas defined in(13)is anM-function for anyμ.Then,for any givenμ,the solutionz?ofF(z) =0 can be solved iteratively using the following (nonlinear)Jacobi iterations:

    for anyz(0) ≥0.It is well known that limk→∞z(k)→z?[15].The distributed implementation is given by

    Remark 2In the general case whereFis not necessarily anM-function,computing the network gain can be much more involved.In particular,F(z) = 0 may not exhibit a unique fixedpoint,andtheJacobiiterations(31)mayleadtodifferent fixed points, depending on the initialz(0).To get around this difficulty,we note that the stability analysis is to assess whether the Jacobi iterations(31)are bounded for any initialz(0),rather than to compute the fixed points.This motivates modified iterative algorithms which seek for an upper bound of the asymptoticz(k)only.Such an algorithm is provided in[11].Several simulation examples are also provided in[11].Due to space limit,we do not study this type of algorithms in this paper.

    7 Conclusions

    A number of results have been presented for determining the input-to-state stability of a networked control system and for computing the input-to-state gains.The network gain theorem (Theorem 1) gives a general characterisation for the network gains (γi) that guarantee the ISS of the networked system.This characterisation is done using the state bounding setZμ.

    For the case the network gains are linear,Theorem 2 shows that ISS of the networked system is equivalent to the stability of gain matrix,i.e.ρ(Γ)<1.The classical Jacobi iterations andthemessage-passingalgorithm(Algorithm1)canbeused to compute the input-to-state gains in a distributed way.The message-passing algorithm appears to be a little more complex,but it offers several advantages(Theorem 3),including faster convergence than the Jacobi iterations.

    For the case of nonlinear gains,characterisation of the ISS condition can be done usingM-functions,and Jacobi iterations can still be used as a distributed algorithm to compute the input-to-state gains.

    Funding This work was supported in part by the National Natural Science Foundation of China(Nos.U21A20476,U1911401,U22A20221,62273100,62073090).

    精品人妻1区二区| 久久久久久久午夜电影 | 脱女人内裤的视频| 欧美成人午夜精品| 精品一品国产午夜福利视频| 精品国产乱码久久久久久男人| 如日韩欧美国产精品一区二区三区| 国产av一区在线观看免费| 无限看片的www在线观看| 丝袜在线中文字幕| 国产成年人精品一区二区 | 99久久久亚洲精品蜜臀av| 日韩精品免费视频一区二区三区| 大型av网站在线播放| 最新在线观看一区二区三区| 久久国产亚洲av麻豆专区| 在线观看免费视频日本深夜| 80岁老熟妇乱子伦牲交| 麻豆av在线久日| 亚洲一区高清亚洲精品| 黑人操中国人逼视频| 国产欧美日韩一区二区三区在线| 十八禁网站免费在线| 午夜免费激情av| 日韩欧美在线二视频| 欧美 亚洲 国产 日韩一| 免费看a级黄色片| 亚洲久久久国产精品| 一边摸一边抽搐一进一小说| 中文字幕最新亚洲高清| 欧美av亚洲av综合av国产av| 香蕉丝袜av| 日本vs欧美在线观看视频| 99国产精品99久久久久| 老汉色∧v一级毛片| 在线免费观看的www视频| 久久精品91无色码中文字幕| 成人影院久久| 又紧又爽又黄一区二区| 日本精品一区二区三区蜜桃| 一区在线观看完整版| 两个人看的免费小视频| 黄色 视频免费看| 美女高潮喷水抽搐中文字幕| 十八禁人妻一区二区| 国产av一区在线观看免费| 亚洲欧美精品综合一区二区三区| 一进一出好大好爽视频| 国产色视频综合| 亚洲在线自拍视频| 91字幕亚洲| av有码第一页| 亚洲欧美激情综合另类| 国产成+人综合+亚洲专区| av天堂在线播放| 淫秽高清视频在线观看| 成人国语在线视频| 亚洲国产精品合色在线| 丰满的人妻完整版| 欧美乱妇无乱码| 国产在线精品亚洲第一网站| 亚洲 国产 在线| 欧美激情极品国产一区二区三区| 国产成人一区二区三区免费视频网站| 91在线观看av| 黑人巨大精品欧美一区二区蜜桃| 叶爱在线成人免费视频播放| 亚洲精品国产一区二区精华液| 美女国产高潮福利片在线看| 丰满的人妻完整版| 国产av又大| 人妻丰满熟妇av一区二区三区| 色哟哟哟哟哟哟| 欧美日本中文国产一区发布| 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区免费欧美| 亚洲自偷自拍图片 自拍| 欧美精品亚洲一区二区| 成人三级黄色视频| 国产有黄有色有爽视频| 免费在线观看黄色视频的| 国内久久婷婷六月综合欲色啪| 国内久久婷婷六月综合欲色啪| 欧美日韩国产mv在线观看视频| 最好的美女福利视频网| 国产成人精品久久二区二区91| 成年女人毛片免费观看观看9| 久久精品国产综合久久久| 村上凉子中文字幕在线| 中亚洲国语对白在线视频| 国产aⅴ精品一区二区三区波| 日本黄色视频三级网站网址| 欧美日韩中文字幕国产精品一区二区三区 | 日韩欧美一区视频在线观看| 国产精品 国内视频| 黄色丝袜av网址大全| 成人特级黄色片久久久久久久| 日韩欧美三级三区| 欧美日韩一级在线毛片| 国产精品久久久久成人av| 欧美在线黄色| 久久性视频一级片| 久久精品国产综合久久久| 波多野结衣av一区二区av| 亚洲av第一区精品v没综合| 人妻久久中文字幕网| 欧美日韩av久久| 欧美日韩亚洲高清精品| 一进一出好大好爽视频| 久久香蕉激情| 亚洲av片天天在线观看| 亚洲精品久久成人aⅴ小说| 色精品久久人妻99蜜桃| 看免费av毛片| 99国产极品粉嫩在线观看| 叶爱在线成人免费视频播放| www.精华液| 亚洲欧美精品综合一区二区三区| 午夜免费观看网址| 国产欧美日韩一区二区精品| 日韩免费高清中文字幕av| 一a级毛片在线观看| 久久精品91无色码中文字幕| 一级毛片女人18水好多| 久久婷婷成人综合色麻豆| 亚洲av成人av| 成在线人永久免费视频| aaaaa片日本免费| 亚洲欧美日韩高清在线视频| 精品福利观看| 国产精品免费一区二区三区在线| 久久香蕉激情| 国产免费男女视频| 亚洲视频免费观看视频| 美女 人体艺术 gogo| 欧美乱色亚洲激情| 国产av一区二区精品久久| 久久性视频一级片| 精品久久久精品久久久| a级片在线免费高清观看视频| 成人手机av| 美女福利国产在线| 一区福利在线观看| 黄色片一级片一级黄色片| 女人爽到高潮嗷嗷叫在线视频| 一级a爱片免费观看的视频| 母亲3免费完整高清在线观看| 最近最新中文字幕大全电影3 | 人人妻人人澡人人看| 国产激情欧美一区二区| 999久久久精品免费观看国产| 精品人妻在线不人妻| 午夜免费激情av| 真人做人爱边吃奶动态| 亚洲国产看品久久| 午夜精品久久久久久毛片777| 高清在线国产一区| 老熟妇乱子伦视频在线观看| 国产一区二区三区综合在线观看| 大码成人一级视频| 国产视频一区二区在线看| 亚洲熟妇熟女久久| 欧美日韩亚洲国产一区二区在线观看| 久久婷婷成人综合色麻豆| 成人亚洲精品一区在线观看| 国产成人啪精品午夜网站| 久久精品91蜜桃| 国产一区二区三区综合在线观看| 大码成人一级视频| 999久久久国产精品视频| 一夜夜www| 国产高清videossex| 国产精品综合久久久久久久免费 | 免费看十八禁软件| 国产精品 欧美亚洲| 国产精品免费视频内射| 黑人巨大精品欧美一区二区蜜桃| 色综合站精品国产| 欧美日韩一级在线毛片| 人人妻人人添人人爽欧美一区卜| 一区二区三区激情视频| 国产一卡二卡三卡精品| 最近最新免费中文字幕在线| 校园春色视频在线观看| 欧美亚洲日本最大视频资源| 免费观看人在逋| 亚洲精品国产色婷婷电影| 男人舔女人的私密视频| 精品福利永久在线观看| 中文字幕av电影在线播放| 波多野结衣av一区二区av| 午夜免费激情av| 午夜日韩欧美国产| 丰满的人妻完整版| 女人被狂操c到高潮| 亚洲精品一卡2卡三卡4卡5卡| 国产精品一区二区三区四区久久 | 国产午夜精品久久久久久| 精品久久蜜臀av无| 身体一侧抽搐| 一夜夜www| 亚洲情色 制服丝袜| 神马国产精品三级电影在线观看 | 少妇粗大呻吟视频| 夜夜爽天天搞| 成人精品一区二区免费| 亚洲第一青青草原| 精品午夜福利视频在线观看一区| 老汉色∧v一级毛片| 午夜亚洲福利在线播放| 日日夜夜操网爽| 亚洲自拍偷在线| 麻豆av在线久日| 亚洲av成人一区二区三| 人人妻人人爽人人添夜夜欢视频| 亚洲国产中文字幕在线视频| 精品电影一区二区在线| 午夜免费激情av| 女人爽到高潮嗷嗷叫在线视频| 午夜免费观看网址| 精品午夜福利视频在线观看一区| 日韩精品青青久久久久久| 久久天躁狠狠躁夜夜2o2o| 男男h啪啪无遮挡| av视频免费观看在线观看| 日本一区二区免费在线视频| 亚洲中文字幕日韩| 亚洲aⅴ乱码一区二区在线播放 | 夜夜爽天天搞| 亚洲av成人一区二区三| 欧美老熟妇乱子伦牲交| 在线av久久热| 老汉色∧v一级毛片| 亚洲国产精品一区二区三区在线| 久久精品国产综合久久久| 18禁国产床啪视频网站| 欧美成人免费av一区二区三区| 亚洲成人久久性| 狠狠狠狠99中文字幕| 日日夜夜操网爽| 午夜a级毛片| 热99re8久久精品国产| 一二三四在线观看免费中文在| 精品久久久久久久毛片微露脸| 搡老乐熟女国产| 亚洲专区中文字幕在线| 嫁个100分男人电影在线观看| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美三级三区| 在线播放国产精品三级| 国产又爽黄色视频| 操美女的视频在线观看| 老熟妇仑乱视频hdxx| 夜夜爽天天搞| 亚洲va日本ⅴa欧美va伊人久久| 免费高清视频大片| 成人影院久久| 日韩欧美一区视频在线观看| 精品欧美一区二区三区在线| 纯流量卡能插随身wifi吗| 色精品久久人妻99蜜桃| 可以在线观看毛片的网站| 99久久人妻综合| 91av网站免费观看| 精品久久久久久成人av| 又紧又爽又黄一区二区| 在线看a的网站| 看片在线看免费视频| 少妇被粗大的猛进出69影院| 成人亚洲精品av一区二区 | 成熟少妇高潮喷水视频| 无遮挡黄片免费观看| 后天国语完整版免费观看| 国产精品一区二区精品视频观看| 免费高清在线观看日韩| 一级毛片精品| 亚洲成av片中文字幕在线观看| 亚洲avbb在线观看| 天天影视国产精品| x7x7x7水蜜桃| 纯流量卡能插随身wifi吗| 免费看十八禁软件| 久热爱精品视频在线9| 少妇裸体淫交视频免费看高清 | 国产av一区二区精品久久| 97超级碰碰碰精品色视频在线观看| 妹子高潮喷水视频| 久久久久九九精品影院| 一级黄色大片毛片| 久久精品91无色码中文字幕| 亚洲av五月六月丁香网| 国产亚洲精品久久久久5区| 国产激情欧美一区二区| 久久精品影院6| 黑人猛操日本美女一级片| 午夜影院日韩av| 在线观看日韩欧美| 999久久久精品免费观看国产| 亚洲五月天丁香| 一本大道久久a久久精品| 免费高清视频大片| 亚洲在线自拍视频| 国产成年人精品一区二区 | 美女高潮到喷水免费观看| 高清在线国产一区| 另类亚洲欧美激情| www.精华液| 无遮挡黄片免费观看| 国产极品粉嫩免费观看在线| 99久久久亚洲精品蜜臀av| 亚洲五月婷婷丁香| 777久久人妻少妇嫩草av网站| 午夜亚洲福利在线播放| 女人爽到高潮嗷嗷叫在线视频| 欧美激情极品国产一区二区三区| 看免费av毛片| 亚洲精品美女久久av网站| 黄色丝袜av网址大全| 欧美日韩亚洲综合一区二区三区_| 免费在线观看日本一区| 日本精品一区二区三区蜜桃| 淫妇啪啪啪对白视频| 国产免费av片在线观看野外av| 日本wwww免费看| 老汉色∧v一级毛片| 18禁裸乳无遮挡免费网站照片 | 久久久国产一区二区| 欧美日本亚洲视频在线播放| x7x7x7水蜜桃| 日本免费一区二区三区高清不卡 | 免费一级毛片在线播放高清视频 | 国产熟女午夜一区二区三区| 久久精品91蜜桃| 亚洲五月天丁香| 女性被躁到高潮视频| 亚洲九九香蕉| 中文字幕精品免费在线观看视频| 性色av乱码一区二区三区2| 男男h啪啪无遮挡| 国产精品免费一区二区三区在线| 久久国产精品人妻蜜桃| 久久天堂一区二区三区四区| 国产高清国产精品国产三级| 在线永久观看黄色视频| 国产精品一区二区在线不卡| 亚洲激情在线av| 美女扒开内裤让男人捅视频| av在线播放免费不卡| 99久久综合精品五月天人人| 巨乳人妻的诱惑在线观看| 亚洲免费av在线视频| 男人舔女人的私密视频| x7x7x7水蜜桃| 久久人人精品亚洲av| 日本vs欧美在线观看视频| 伊人久久大香线蕉亚洲五| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩亚洲高清精品| 美女 人体艺术 gogo| 欧美+亚洲+日韩+国产| 男人操女人黄网站| 亚洲成人久久性| 真人一进一出gif抽搐免费| 热re99久久精品国产66热6| 久久久久九九精品影院| 精品一区二区三区视频在线观看免费 | 成年女人毛片免费观看观看9| 亚洲全国av大片| 午夜精品久久久久久毛片777| 超碰97精品在线观看| 一边摸一边抽搐一进一小说| 久久国产精品影院| 久久精品成人免费网站| 亚洲三区欧美一区| 男人操女人黄网站| 日本免费一区二区三区高清不卡 | 国产99久久九九免费精品| 亚洲激情在线av| 欧美大码av| 另类亚洲欧美激情| 久久热在线av| 免费在线观看完整版高清| 国产av一区在线观看免费| 国产欧美日韩一区二区三| 级片在线观看| 亚洲精品久久午夜乱码| 精品一区二区三卡| 日韩欧美在线二视频| 日韩欧美一区二区三区在线观看| 久久久久精品国产欧美久久久| 亚洲国产精品sss在线观看 | 成人国产一区最新在线观看| 老司机午夜十八禁免费视频| 亚洲少妇的诱惑av| 精品欧美一区二区三区在线| 久久精品aⅴ一区二区三区四区| 丰满人妻熟妇乱又伦精品不卡| 国产主播在线观看一区二区| 国产高清videossex| 宅男免费午夜| 日日夜夜操网爽| 成人免费观看视频高清| av电影中文网址| 中文字幕人妻丝袜制服| 国产伦一二天堂av在线观看| 满18在线观看网站| 女同久久另类99精品国产91| 欧美日韩视频精品一区| 成人国产一区最新在线观看| 午夜精品在线福利| 一级a爱视频在线免费观看| 麻豆av在线久日| 日韩中文字幕欧美一区二区| 精品熟女少妇八av免费久了| 亚洲伊人色综图| 国产极品粉嫩免费观看在线| 免费看a级黄色片| 女人精品久久久久毛片| 国产又色又爽无遮挡免费看| 久久影院123| 精品乱码久久久久久99久播| 一级毛片精品| av有码第一页| 美国免费a级毛片| 男女之事视频高清在线观看| 国产精品免费视频内射| 一区在线观看完整版| 国产亚洲精品久久久久久毛片| 香蕉国产在线看| 亚洲中文字幕日韩| 免费在线观看黄色视频的| 乱人伦中国视频| 久久久精品国产亚洲av高清涩受| 国产精品久久久av美女十八| svipshipincom国产片| 国产欧美日韩一区二区三| 高潮久久久久久久久久久不卡| 国产精品二区激情视频| 人妻丰满熟妇av一区二区三区| 国产一区二区在线av高清观看| 窝窝影院91人妻| 黄片小视频在线播放| 9色porny在线观看| 91成年电影在线观看| 国产亚洲精品一区二区www| 天堂动漫精品| 精品一区二区三区av网在线观看| 欧美激情极品国产一区二区三区| 日韩免费高清中文字幕av| 久久人妻熟女aⅴ| 一边摸一边抽搐一进一出视频| a级毛片在线看网站| 国产亚洲精品久久久久久毛片| 久久久国产成人免费| 嫩草影视91久久| 少妇的丰满在线观看| 一区二区日韩欧美中文字幕| 高潮久久久久久久久久久不卡| 午夜福利免费观看在线| 久久精品亚洲熟妇少妇任你| 黄色视频,在线免费观看| 级片在线观看| 国产精品香港三级国产av潘金莲| 久久精品亚洲av国产电影网| 亚洲av五月六月丁香网| 色精品久久人妻99蜜桃| 一进一出抽搐gif免费好疼 | 美女午夜性视频免费| 午夜久久久在线观看| a级片在线免费高清观看视频| 日日夜夜操网爽| 成在线人永久免费视频| 亚洲精品一卡2卡三卡4卡5卡| 制服诱惑二区| 91成人精品电影| 亚洲国产中文字幕在线视频| 中文字幕人妻丝袜一区二区| 欧美日韩国产mv在线观看视频| av网站免费在线观看视频| 国产亚洲av高清不卡| tocl精华| 亚洲自拍偷在线| www.熟女人妻精品国产| 十八禁网站免费在线| 91九色精品人成在线观看| 老鸭窝网址在线观看| 激情视频va一区二区三区| 日本一区二区免费在线视频| 啦啦啦免费观看视频1| 欧美久久黑人一区二区| 嫩草影院精品99| 手机成人av网站| 中文欧美无线码| 韩国精品一区二区三区| 精品久久久久久成人av| 日本黄色日本黄色录像| 一本综合久久免费| 中文字幕另类日韩欧美亚洲嫩草| a级毛片黄视频| 久久性视频一级片| 欧美日本亚洲视频在线播放| 丰满人妻熟妇乱又伦精品不卡| 国产一区二区在线av高清观看| 久久精品亚洲精品国产色婷小说| 免费看十八禁软件| 国产深夜福利视频在线观看| 日本三级黄在线观看| 99在线人妻在线中文字幕| 一本大道久久a久久精品| 亚洲人成电影观看| 99久久人妻综合| 法律面前人人平等表现在哪些方面| 亚洲精品美女久久av网站| 午夜福利影视在线免费观看| 亚洲一区二区三区欧美精品| 波多野结衣高清无吗| 亚洲男人的天堂狠狠| 亚洲av成人av| 高清欧美精品videossex| 国产精品久久视频播放| 欧美一区二区精品小视频在线| 精品午夜福利视频在线观看一区| 日韩欧美三级三区| 韩国av一区二区三区四区| 交换朋友夫妻互换小说| 亚洲专区中文字幕在线| www国产在线视频色| 欧美黑人欧美精品刺激| 国产伦一二天堂av在线观看| 国产精品久久视频播放| 国产精品影院久久| 欧美日韩亚洲国产一区二区在线观看| 婷婷六月久久综合丁香| 窝窝影院91人妻| 国产成人精品久久二区二区91| 999久久久精品免费观看国产| 十分钟在线观看高清视频www| 欧美老熟妇乱子伦牲交| 韩国av一区二区三区四区| 在线观看午夜福利视频| 涩涩av久久男人的天堂| 久久伊人香网站| 琪琪午夜伦伦电影理论片6080| 午夜激情av网站| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲精品第一综合不卡| 9色porny在线观看| 丝袜美腿诱惑在线| 精品国产超薄肉色丝袜足j| 亚洲成a人片在线一区二区| 亚洲激情在线av| 咕卡用的链子| 桃红色精品国产亚洲av| 亚洲少妇的诱惑av| 人人澡人人妻人| 精品免费久久久久久久清纯| 12—13女人毛片做爰片一| 可以免费在线观看a视频的电影网站| av欧美777| 日日爽夜夜爽网站| 人成视频在线观看免费观看| 大型黄色视频在线免费观看| svipshipincom国产片| 露出奶头的视频| 又紧又爽又黄一区二区| 精品久久久久久电影网| 男女做爰动态图高潮gif福利片 | 手机成人av网站| 中文字幕人妻熟女乱码| 久热这里只有精品99| 色播在线永久视频| 嫁个100分男人电影在线观看| 波多野结衣av一区二区av| 国产高清videossex| 久久中文字幕一级| 999精品在线视频| 美女扒开内裤让男人捅视频| videosex国产| 亚洲精品一卡2卡三卡4卡5卡| 色婷婷av一区二区三区视频| 黄片小视频在线播放| 国产成+人综合+亚洲专区| 欧美成狂野欧美在线观看| 99re在线观看精品视频| 热re99久久国产66热| 黄片大片在线免费观看| 欧美av亚洲av综合av国产av| 亚洲 欧美一区二区三区| 母亲3免费完整高清在线观看| 乱人伦中国视频| 91老司机精品| 黄频高清免费视频| 大型黄色视频在线免费观看| 亚洲欧洲精品一区二区精品久久久| 欧美日韩亚洲综合一区二区三区_| 老汉色∧v一级毛片| svipshipincom国产片| 国产一区二区三区在线臀色熟女 | aaaaa片日本免费| 深夜精品福利| 亚洲色图av天堂| e午夜精品久久久久久久| 免费高清视频大片| 一二三四在线观看免费中文在| av片东京热男人的天堂| 天堂√8在线中文| 一级黄色大片毛片| 成人国语在线视频| 亚洲精品粉嫩美女一区| 亚洲人成网站在线播放欧美日韩| 中文字幕色久视频| 国产免费现黄频在线看| 国产99白浆流出| 国产激情久久老熟女| 国产av精品麻豆|