• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed Nash equilibrium seeking with order-reduced dynamics based on consensus exact penalty

    2023-11-16 10:12:32ShuLiangShuyuLiuYiguangHongJieChen
    Control Theory and Technology 2023年3期

    Shu Liang·Shuyu Liu·Yiguang Hong·Jie Chen

    Abstract In this paper,we consider a networked game with coupled constraints and focus on variational Nash equilibrium seeking.For distributed algorithm design, we eliminate the coupled constraints by employing local Lagrangian functions and construct exact penalty terms to attain multipliers’optimal consensus,which yields a set of equilibrium conditions without any coupled constraint and consensus constraint.Moreover,these conditions are only based on strategy and multiplier variables,without auxiliary variables.Then,we present a distributed order-reduced dynamics that updates the strategy and multiplier variables with guaranteed convergence.Compared with many other distributed algorithms,our algorithm contains no auxiliary variable,and therefore,it can save computation and communication.

    Keywords Game theory·Nash equilibrium seeking·Distributed algorithm·Coupled constraints·Order-reduced dynamics

    1 Introduction

    Distributed Nash equilibrium seeking for multi-player noncooperative games has been widely considered in many fields, such as robot swarm control [1], automatic driving[2],and charging scheduling[3].It aims to obtain an equilibrium strategy profile through players’own computation and communication,where each player uses only local data and neighbors’information over a network.Particularly,it is of interest for networked games,where the strategic interaction among players is consistent with the network[4].

    Coupled constraints are widely considered in multi-agent systems,typically when the agents share limited resources.For example, [5] has considered coupled constraints in a distributed optimization problem and developed resource allocation algorithms.Moreover,players in a game can also have coupled constraints[6].It becomes a major problem to deal with coupled constraints in a distributed manner,since,for each agent or player, the others’ data and information associated with the coupled constraints are not fully available.

    Generalized Nash equilibria are suitable for games with coupled constraints[7].Moreover,the variational Nash equilibrium is widely adopted as a refinement of the generalized Nash equilibria with many good properties [8].Recently, a few works have considered distributed variational Nash equilibrium seeking.For example,[9]has designed a distributed gradient-based projected algorithm and[10]has introduced a forward–backward operator splitting method.Also,[11]has considered distributed seeking dynamics for multi-integrator agents.

    The game model with coupled constraints generalizes that of coupled constrained optimization,whereas some new difficulties occur.In the game model, multiple players are interacted and the corresponding equilibrium problem cannot be decomposed into independent optimization sub-problems.Consequently,some optimization theories and methods,such as the duality theory and penalty method, are not sufficient for games.In particular, it is well known that the Lagrangian function plays a key role for constrained optimization, which connects the primal and dual parts.In the game model, each player’s constrained optimization corresponds to a local Lagrangian function, whereas there is no commonLagrangianfunctionforallplayers.Hence,methods based on a single Lagrangian function,such as[12]for distributed coupled constrained optimization,cannot be directly used for the variational Nash equilibrium problem.

    It is also of importance to simplify local dynamics in a distributed algorithm,since they are coordinated together with the complexity proportional to the network size.However,for problems with coupled constraints,distributed algorithm designrequirestoextend(oraugment)theproblemwithadditional variables to separate those couplings.For example,in addition to the strategy and multiplier variables, [9–11]have employed auxiliary ones in their distributed algorithms.An idea for simplifying distributed dynamics is to remove some updating variables so that the order of the dynamics can be reduced.In view of this, penalty methods are useful to transform a constrained problem into an unconstrained one to reduce the number of variables.In fact,[12]and[13]have used exact penalty methods to achieve order-reduced dynamics for distributed optimization problems,and[14]has adopted an inexact penalty method for the equilibrium seeking.

    In this paper,we consider a networked game with coupled constraints and present a distributed variational Nash equilibrium seeking dynamics.Due to the coupled constraints,directly solving the variational Nash equilibrium requires global information.We mainly use two equivalent transformations to give equilibrium conditions that are suitable for distributed design and also achieve order reduction.Specifically,in the first transformation,we give a set of conditions in terms of local Lagrangian functions and eliminate the coupled constraints.In the second transformation,we construct exact penalty terms to render the optimal consensus of multipliers.In this way,we obtain equilibrium conditions without the coupled constraints and the consensus constraint.By simply using partial (sub)gradients, we construct a distributed dynamics to seek a solution to the transformed equilibrium problem, which contains the considered variational Nash equilibrium.Compared with existing works,a major feature of our method is that, instead of considering the first-order variational inequality problem that defines the variational Nash equilibrium, we focus on the zeroth-order objective functions of the multipliers,which makes it possible to use the exact penalty method to achieve order reduction.

    The main contributions of our work are listed as follows.

    1.Despite the absence of a common Lagrangian function for all players in the game,we obtain that the multipliers indeed correspond to a consensus optimization problem parameterized by the strategy variables.As a result,our method solves the variational Nash equilibrium seeking problem and extends the exact penalty-based method given in[12]for problems from coupled constrained optimization to coupled constrained game.

    2.The equivalently transformed conditions we derive for distributed design contain only strategy and multiplier variables, whereas those in [9–11] also contained auxiliary variables.Accordingly, our distributed seeking dynamics is of lower order than those in[9–11].It updates no auxiliary variable and reduces the costs of computation and communication.

    3.We construct exact penalty terms,which allow for constant and bounded penalty coefficients with guaranteed correctness.Accordingly, our seeking dynamics simply uses a constant coefficient.In comparison,the dynamics given in [14] based on an inexact penalty method must be equipped with time-varying and unbounded penalty coefficients.

    The paper is organized as follows.Preliminaries are given in Sect.2, while the problem formulation is presented in Sect.3.Then,the main results about distributed design and analysis are given in Sect.4.Numerical results are presented in Sect.5,and the conclusions are given in Sect.6.

    2 Preliminaries

    In this section,we introduce relevant preliminary knowledge about convex analysis, variational inequality, differential inclusion,and graph theory.

    2.1 Notations

    Denote by Rnthen-dimensional real vector space and bythe nonnegative orthant.Denote by 0n∈Rnthe vectors with all components being zeros.For a vectora∈Rn,a≤0 means that each component ofais less than or equal to zero.Denote by ‖·‖ and |·| the?2-norm and?1-norm for vectors,respectively.Denote by col(x1,...,xN)the column vector stacked with column vectorsx1,...,xN, i.e.,col(x1,...,xN) =()T.Denote by sign(·) the sign function and by Sign(·)the set-valued version,i.e.,

    2.2 Convex optimization and variational inequality

    A setΩ?Rnis convex ifλz1+(1-λ)z2∈Ωfor anyz1,z2∈Ωandλ∈[0, 1].Denote by rint(Ω) the relative interior ofΩ.Denote bydΩ(·)andPΩ(·)the distance function and the projection map with respect toΩ,respectively.That is,

    Denote byNΩ(x)the normal cone with respect toΩand a pointx∈Ω,i.e.,

    A functionf:Ω→R is said to be convex iff(λz1+(1-λ)z2)≤λ f(z1)+(1-λ)f(z2)for anyz1,z2∈Ω,z1/=z2andλ∈[0, 1].

    The following lemma presents a first-order optimal condition for constrained optimization,referring to[15,Theorem 8.15].

    Lemma 1Consider an optimization with a convex objective function f and a convex constraint set Ω,i.e.,

    Then,x∈Ω is an optimal solution if and only if

    where ?f is the subdifferential of f.

    Moreover, we need the following result about exact penalty,referring to[16,Proposition 6.3].

    Lemma 2Suppose that f has a Lipschitz constant κ0on an open set containing Ω.Then,the constrained optimizationminx∈Ω f(x)is equivalent to the unconstrainedminx f(x)+κdΩ(x)for any κ>κ0.Here,the equivalence means that they share the same optimal solution set.

    Given a subsetΩ?Rnand a mapF:Ω→Rn, the variational inequality problem, denoted by VI(Ω,F), is to find a vectorx∈Ωsuch that

    Its solution set is denoted by SOL(Ω,F).The mapFis said to be monotone overΩif

    Moreover, it is strictly monotone if the inequality holds strictly wheneverx/=y.

    The following lemma gives existence and uniqueness conditions for the solution to a variational inequality, referring to[17,Corollary 2.2.5 and Theorem 2.2.3].

    Lemma 3If Ω is compact,thenSOL(Ω,F)is nonempty and compact.Moreover,if F is strictly monotone,thenSOL(Ω,F)is a singleton.

    2.3 Graph theory

    Graph of a network is denoted byG=(V,E),whereV={1,...,N}is a set of nodes andE?V×Vis a set of edges.Nodejis said to be aneighborof nodeiif(i,j) ∈E.The set of all the neighbors of nodeiis denoted byNi.The graphGis said to beundirectedif(i,j) ∈E?(j,i) ∈E.A path ofGis a sequence of distinct nodes where any pair of consecutive nodes in the sequence has an edge ofG.Nodejis said to beconnectedto nodeiif there is a path fromjtoi.Moreover,Gis said to be connected if any two nodes are connected.The detailed knowledge about graph theory can be found in[18].

    3 Formulation

    Consider a non-cooperative game over a peer-to-peer network with a graphG=(V,E),whereV={1,...,N}.For eachi∈V,theith player has a strategy variablexibelonging to a strategy setΩi?Rni,whereni> 0 is an integer.Also,the cost function of theith player isJi(xi,x-i),wherex-i= col(x1,...,xi-1,xi+1,...,xN) is the collection of other players’ decision variables.Here, we consider anetworked game, whereJi(xi,·) only depends on neighbors’strategy variablesx j,j∈Ni.

    The strategy profilex= col(x1,...,xN) is within the direct product setΩ=Ω1×···×ΩN?Rn,wheren=n1+···+nN.Besides,there is a coupled constraint set

    wheregi:Rni→Rp,i=1,...,Nwith an integerp>0.Theith player aims to minimize its cost function subject to local and coupled constraints,which can be written as

    wheregi(xi,x-i)=g(x).

    The variational Nash equilibrium of the considered game,referring to [7], is a solution to the variational inequality

    VI(X,F),where

    It is an acceptable solution for a game with coupled constraints.The relationship among the well-known Nash equilibria,generalized Nash equilibria,and the variational one is briefly explained as follows:

    ? If there is no coupled constraint,one can adopt aNash equilibriumpointxNE,at which no player can further decrease its cost function by changing its decision variable unilaterally in the local feasible set.That is, for eachi∈V,

    ? In the presence of the coupled constraint setC,theith player’s strategy should be within the setCi(x-i) ={xi∈Rni|gi(xi,x-i) ≤0p} that depends onx-i.Then, ageneralized Nash equilibriumpointxGNEattains the coupled constrained optimality

    ? Furthermore,there may be multiple generalized Nash equilibria,and among them,the variational Nash equilibrium pointxVE∈SOL(X,F) is widely used as a refinement[8].One advantage of the variational Nash equilibrium compared with other generalized Nash equilibria is that small feasible perturbations(not necessarily unilateral perturbations) aroundxVEdo not decrease any one of the cost functions[7].

    Our goal is to compute a variational Nash equilibrium in a distributed manner.That is, for eachi∈V, theith agent updatesxiby using only local data and neighbors’information over the network.

    To guarantee the existence of a solution to VI(X,F)and the correctness of distributed algorithms,a few basic assumptions are adopted as follows;

    A1:Ωis compact and convex,gi,i=1,...,Nare convex and differentiable,andFis strictly monotone.

    A2: 0 ∈rint(Ω-C).

    A3: The network graphGis connected.

    Here,A1 guarantees the existence and uniqueness of the variational Nash equilibrium according to Lemma 3, and A2 resembles the Slater’s constraint qualification.Note that the monotonicity ofFimplies the convexity ofJi(·,x-i) for eachi∈V.In addition, A3 is widely used for distributed algorithms in the literature.

    Remark 1Regardingthecoupledconstraints,[9]and[10]has considered affine equality and inequality ones,respectively.Here,we consider nonlinear and inequality ones as same as thosein[11],whichistechnicallyharderthantheaffinecases.Also,regardingthemonotonicity,[9–11]haveadoptedstrong monotonicity, while we adopt a less restrictive assumption with only strict monotonicity.

    Remark 2The considered coupled constrained game is more general than coupled constrained optimization.In fact,whenJi(xi,x-i) =f(x) =f1(x1)+···+fN(xN), ?i∈V, it is not difficult to verify that the variational Nash equilibrium problem reduces to the optimization problem

    as considered in[5,12,19,20].

    4 Main results

    In this section,we present our distributed design and analyze the proposed algorithm.

    4.1 Algorithm design

    Our design is given in Algorithm 1.

    In Algorithm 1, theith player updates its variables by using local and neighbors’ information.Thus, it is a distributed algorithm.Our dynamics involves discontinuous right-hand side caused by a few sign functions,and its solution is understood in the sense of Filippov,referring to[21].To be specific, forλ= col(λ1,...,λN), the discontinuous map

    is regularized to a set-valued map

    whereμ(·)is the Lebesgue measure andB(λ,δ)is the ball centered atλwith radiusδ.We need explicitly characterizeF[γ], since it is utilized to analyze the trajectory solution.Note thatF[γ]is not equal to

    In fact,

    By the generalized gradient formula[16,Theorem 8.1],it is not difficult to obtain that

    where

    Therefore,the compact and regularized form of (4)is

    which will be used in our analysis.

    Remark 3Dynamics(3)and(4)are of orderniandp,which are associated with theith player’s strategy and multiplier.In comparisons,many other distributed algorithms,such as the continuous-time ones [1, 11, 22] and the discrete-time ones [10, 23], involve additional dynamics of orderpwith respect to auxiliary variables.For example,the discrete-time algorithm given in[10]is written as

    Also,the continuous-time algorithm given in[11]is written as

    Clearly, Algorithm 1 reduces the order of theith player’s dynamics fromni+2ptoni+p.

    Remark 4The distributed algorithm given in[14]is written as

    whereP(·)is an inexact penalty term to deal with inequality constraints, and?(t),δ(t),ε(t),γ(t) andw(t) are timevarying parameters of the form(1+t)a.These parameters are time-varying and unbounded.Also,the order of this dynamics isn1+···+nN,since it estimatesx-iusing variablesyi j,j∈V{i} to calculate the values of the coupled constraint functions.In comparison,our dynamics uses simply a constant parameterαand does not introduce additional variables to estimatex-ifor the coupled constraints.

    4.2 Equilibrium conditions

    Different from focusing on the variational inequality problem with (2), we alternatively characterize the variational Nash equilibrium using local Lagrangian functions associated with(1).These functions have also been discussed in[7].

    Lemma 4Under A1–A3,a point x∈Ω is the variational Nash equilibrium if and only if there exists a multiplier λ∈such that

    where

    ProofThe equivalence between VI(X,F)andL-based optimization characterizations follows from the fact that they share the same KKT conditions:

    This completes the proof.■

    Lemma 4 removes the coupled constraint setCby using a set of equilibrium conditions in terms ofLi,i=1,...,N+1.However,they cannot lead to distributed design,since they use the coupled constraint functionsg(x) and a common multiplierλ.Therefore, we use an exact penalty technique to modify these Lagrangian functions with local multipliers and decompose the constraint functions as follows.

    Theorem 1Under A1–A3,a point x∈Ω is the variationalNash equilibrium if and only if there exists λ∈such that

    where

    with φ(·)in(5)and α satisfying

    ProofBy Lemma 4,we need only to prove that(x,λ)satisfies(7)if and only if

    The“if”part can be easily verified,and we focus on the“only if”part.By(7),λsolves

    We claim that it shares the same optimal solutions with

    where

    Comparing(8)with(9),αφ(λ)acts as a penalty term associated with the constraint setΛ.Moreover,if this penalty is exact,then the equivalence between(8)and(9)holds.Since the objective function in (9) isκ0-Lipschitz continuous, it follows from Lemma 2 thatKdΛ(λ)is an exact penalty term for anyK>κ0.Thus,to verify thatαφ(λ)is also an exact penalty term,it suffices to prove

    By calculations,

    Since the graph is connected and undirected,there is a path connecting nodeskandlfor anyk,l∈V.As a result,

    Consequently,

    which implies

    This completes the proof.■

    Remark 5Theorem1indicatesthatthepenalty-basedmethod guarantees the consensus of multipliers.Removing this consensus constraint leads to a dimension-reduced problem,which establishes the foundation to design order-reduced seeking algorithms.Theorem 1 extends the penalty method associated with multipliers for distributed coupled constrained optimization given in [12].Here, we further deal with the game with coupled constraints and prove the equivalence between the two sets of equilibrium conditions(6)and(7),though no common Lagrangian function is available to establish a whole primal or dual optimization problem.

    while the overall multiplier uses the partial subgradient

    Here,the overall multiplier’s update requires no central node in the network.It is component-wisely updated by the associated players to make the algorithm distributed.

    4.3 Convergence analysis

    Algorithm 1 can be written in a compact form as

    whereθ=col(x,λ),θ=col(x,λ)and

    The correctness of its equilibria is presented as follows.

    Theorem 2Under A1–A3,if θ and θsatisfy

    then x is the variational Nash equilibrium.

    ProofSince

    there holds

    That is,

    and

    According to Lemma 1,these are first-order optimal conditions for the minimizations in (7),which indicates thatxis the variational Nash equilibrium.■

    With the correctness of the algorithm’s equilibria,we further verify the convergence of Algorithm 1.

    Theorem 3Under A1–A3,the trajectories xi(t),λi(t),xi(t),λi(t)of Algorithm 1 are bounded for each i∈V.Moreover,x(t)converges to the variational Nash equilibrium.

    ProofAn algorithm in the same form as(10)has been analyzed in our previous work[24](for another game problem),where the boundedness can be guaranteed if the mapΦis monotone.Moreover,the convergence can be guaranteed if the mapF(i.e.,partial gradients of players’cost functions)is strictly monotone.Thus,we need only to prove the monotonicity ofΦand omit repetition parts.

    The mapΦcan be decomposed as

    where

    Sinceφis convex, its subdifferential is monotone.Thus, it suffices to prove the monotonicity ofΦoverΘ.To this end,for anyθ,θ′∈Θ,we analyze

    where

    Rearranging the terms with respect toλiandλ′iyields

    By the monotonicity ofF,

    Also,by the convexity ofgiand the positiveness ofλi,λ′i,

    which impliesG(θ,θ′)≥0.Therefore,

    As a result, the overall mapΦis monotone overΘ.This completes the proof.■

    Remark 7Theorems 2 and 3 prove that Algorithm 1 solves the considered variational Nash equilibrium seeking problem.To be specific, Theorem 3 ensures that the trajectoryθ(t)of(10)converges to an equilibrium pointθ?=(x?,λ?),and Theorem 2 ensures the correctness of this point in thatx?is the variational Nash equilibrium.

    5 Numerical examples

    In this section, we give numerical examples for illustrating our obtained results.

    Example 1To show the effectiveness of our algorithm, we compare its performance with some others.Consider a non-cooperativenetworkedgamewith4playersandthecommunication graph is shown in Fig.1.The objective functions are

    Fig.1 The communication graph of four agents

    Fig.2 The comparison of relative errors

    To seek the variational Nash equilibrium of this game,our algorithm, the primal-dual gradient algorithm given in[11], and the operator splitting algorithm given in [10] are utilized(see also Remark 3 for the latter two algorithms).The trajectories of relative error are shown in Fig.2.The orders of these three algorithms are summarized in Table 1.Clearly,all these algorithms can solve the variational Nash equilibrium,and our algorithm has lower order than the others.

    Inaddition,wealsotrytomakecomparisonswiththealgorithm given in[14](see Remark 4).However,this algorithm uses time-varying penalty parameters in the form of(1+t)a,and the corresponding discrete-time approximation using the forward Euler difference method with the same stepsize as ours is divergent.Also,if the time-varying penalty parameters are replaced by bounded constants,our simulation shows that the obtained solution does not satisfy the constraints.

    Example 2Consider the power control problem of a multiuser cognitive radio system, referring to [25].A multi-usercognitive radio system consists ofNcognitive users who share licensed resource over frequency-selective channels withnsubcarriers.Theith user assigns powerx(?)ito the channel with subcarrier?to enable its communication in the presence of noise and interference from other users.The rate of theith user is

    Table 1 The comparison of the order of algorithms

    Fig.3 The communication graph of twelve agents

    The constantsare magnitudes of channel transfer functions, and the constantsare the powers of noises.Moreover,a prerequisite of the spectrum sharing is that the users can only introduce limited total interference to the system,which leads to the set of coupled constraints as

    ?N=12 andn=4.

    ?Ωi=[0,1]n, ?i∈V.

    ?Isum=0.25Nn,andIind(?)=0.5N,??=1,...,n.

    ? The network graph is shown in Fig.3.

    ? The datav(?)iare randomly generated from[0.5,1.5].

    The simulation results are shown in Figs.4–6.In particular,Fig.4 shows the convergence of the profilex(t)and Fig.5 shows the convergence and consensus ofλ(t).Also, Fig.6 shows thatg(x(t))becomes less or equal to the zero vector eventually,which renders the coupled constraintsg(x)≤0p.

    Fig.4 The trajectories of the profile x(t)

    Fig.5 The trajectories of the multiplier λ(t)

    Fig.6 Values of the constraint functions g(t)= g(x(t))

    6 Conclusions

    In this paper,a distributed variational Nash equilibrium seeking algorithm has been proposed for a networked game with coupled constraints.An order-reduced dynamics has been designed to update strategy and multiplier variables with guaranteed convergence.In comparison with some existing distributed ones, our algorithm has saved the computation and communication.This reduction has been achieved using an exact penalty method to guarantee the consensus of multipliers, even though no common Lagrangian function is available.Future works may include a further application of our developed technique to complicated distributed design.

    午夜老司机福利剧场| 亚洲精品aⅴ在线观看| 国产美女午夜福利| 美女xxoo啪啪120秒动态图| 日本wwww免费看| 日本-黄色视频高清免费观看| 亚洲国产精品国产精品| 亚洲aⅴ乱码一区二区在线播放| 免费av毛片视频| 搞女人的毛片| 亚洲av在线观看美女高潮| 在线 av 中文字幕| 国产精品日韩av在线免费观看| 黄片wwwwww| 色网站视频免费| 亚洲人成网站高清观看| 亚洲欧美一区二区三区国产| 搡老妇女老女人老熟妇| 日韩大片免费观看网站| 成人毛片60女人毛片免费| 成人午夜精彩视频在线观看| 亚洲一区高清亚洲精品| 欧美zozozo另类| 欧美另类一区| 国产午夜精品久久久久久一区二区三区| 亚洲在久久综合| 亚洲天堂国产精品一区在线| 国内精品宾馆在线| 一级a做视频免费观看| 国产亚洲5aaaaa淫片| 欧美人与善性xxx| 又爽又黄a免费视频| 国产成人aa在线观看| 免费观看无遮挡的男女| 一级毛片 在线播放| 精品一区二区三区人妻视频| 久久精品熟女亚洲av麻豆精品 | av女优亚洲男人天堂| 欧美性感艳星| 久久久久久久久大av| 精品国产一区二区三区久久久樱花 | 国产一区二区亚洲精品在线观看| 亚洲美女视频黄频| 中文天堂在线官网| 色网站视频免费| 欧美日本视频| 欧美一级a爱片免费观看看| 成人鲁丝片一二三区免费| 精品欧美国产一区二区三| 搡老妇女老女人老熟妇| 麻豆国产97在线/欧美| 日韩制服骚丝袜av| 国产三级在线视频| 全区人妻精品视频| 亚洲在久久综合| 熟妇人妻久久中文字幕3abv| 精品久久久噜噜| 亚洲人成网站在线播| 日本一本二区三区精品| 国产伦一二天堂av在线观看| 精品酒店卫生间| av专区在线播放| 又黄又爽又刺激的免费视频.| 高清欧美精品videossex| 国产视频首页在线观看| 日韩av免费高清视频| 婷婷六月久久综合丁香| 只有这里有精品99| 精品一区二区三区人妻视频| 国产精品一区二区三区四区免费观看| 成人一区二区视频在线观看| 国产高清三级在线| 精品99又大又爽又粗少妇毛片| 国产片特级美女逼逼视频| 18禁裸乳无遮挡免费网站照片| 国产精品精品国产色婷婷| 亚洲精品乱久久久久久| av国产免费在线观看| 人妻夜夜爽99麻豆av| 亚洲av日韩在线播放| 少妇高潮的动态图| 一级毛片aaaaaa免费看小| 亚洲美女搞黄在线观看| 国产成人aa在线观看| 国产亚洲精品久久久com| 国产免费视频播放在线视频 | 99久久人妻综合| 欧美丝袜亚洲另类| 大片免费播放器 马上看| 免费大片18禁| 色综合站精品国产| 亚洲一级一片aⅴ在线观看| 男女边摸边吃奶| 我的老师免费观看完整版| 日韩,欧美,国产一区二区三区| 国产精品99久久久久久久久| 亚洲av中文字字幕乱码综合| 久久精品国产鲁丝片午夜精品| 精品久久久久久成人av| 国产精品一区www在线观看| 精品久久久久久久末码| 午夜福利视频精品| 亚洲va在线va天堂va国产| 精品国内亚洲2022精品成人| 99热这里只有精品一区| 久久草成人影院| 非洲黑人性xxxx精品又粗又长| 99久久精品国产国产毛片| 久久97久久精品| 深爱激情五月婷婷| 淫秽高清视频在线观看| 欧美另类一区| 91久久精品国产一区二区三区| 亚洲熟妇中文字幕五十中出| 亚洲欧美成人综合另类久久久| 欧美日韩在线观看h| 22中文网久久字幕| 国产精品综合久久久久久久免费| 看免费成人av毛片| 日本熟妇午夜| 午夜福利在线在线| 亚洲欧洲国产日韩| 亚洲av成人av| 我的女老师完整版在线观看| 国产精品av视频在线免费观看| 91精品伊人久久大香线蕉| 男女边吃奶边做爰视频| 国产精品一及| 日韩制服骚丝袜av| 久久久成人免费电影| 亚洲精品成人久久久久久| 国产亚洲91精品色在线| 欧美bdsm另类| 国产精品无大码| 免费高清在线观看视频在线观看| 久久久久久九九精品二区国产| 久久精品久久久久久噜噜老黄| 国产一区二区三区av在线| 汤姆久久久久久久影院中文字幕 | 纵有疾风起免费观看全集完整版 | 丰满人妻一区二区三区视频av| 亚洲怡红院男人天堂| 菩萨蛮人人尽说江南好唐韦庄| 在线观看一区二区三区| 久久久成人免费电影| 国产精品一及| 久久久精品94久久精品| 舔av片在线| 日韩成人av中文字幕在线观看| 国产精品女同一区二区软件| 国产精品爽爽va在线观看网站| 国产精品一区二区三区四区久久| 国产精品爽爽va在线观看网站| 精品久久久久久久久av| 亚洲熟妇中文字幕五十中出| 亚洲综合色惰| 国产伦精品一区二区三区视频9| 亚洲18禁久久av| 亚洲精品色激情综合| 日日撸夜夜添| 国产伦精品一区二区三区视频9| 亚洲美女视频黄频| 久久久国产一区二区| 少妇的逼好多水| 国产亚洲午夜精品一区二区久久 | av免费在线看不卡| 亚洲成人中文字幕在线播放| 日本午夜av视频| 男女下面进入的视频免费午夜| 日韩中字成人| 七月丁香在线播放| 精品久久久久久久久av| 成人特级av手机在线观看| 国产一区二区亚洲精品在线观看| 高清av免费在线| 亚洲精品国产成人久久av| 2018国产大陆天天弄谢| 亚洲av免费在线观看| 日韩av免费高清视频| 国产精品爽爽va在线观看网站| 免费观看无遮挡的男女| 欧美一区二区亚洲| 69人妻影院| 精品久久久久久久末码| 性色avwww在线观看| 色视频www国产| 午夜爱爱视频在线播放| 国内精品宾馆在线| 非洲黑人性xxxx精品又粗又长| 国产精品一二三区在线看| 久久久a久久爽久久v久久| 一级毛片aaaaaa免费看小| 十八禁网站网址无遮挡 | h日本视频在线播放| .国产精品久久| 国产成人精品福利久久| 波野结衣二区三区在线| 日本黄大片高清| 亚洲精品日韩av片在线观看| 欧美日韩精品成人综合77777| 亚洲欧美成人综合另类久久久| av免费在线看不卡| 亚洲av成人av| 卡戴珊不雅视频在线播放| 国产精品熟女久久久久浪| 精品人妻熟女av久视频| 久久精品夜色国产| 91精品国产九色| 乱码一卡2卡4卡精品| 精品久久久噜噜| 人人妻人人看人人澡| 日韩在线高清观看一区二区三区| 欧美人与善性xxx| 欧美区成人在线视频| 边亲边吃奶的免费视频| 午夜日本视频在线| 日韩欧美三级三区| 欧美xxxx黑人xx丫x性爽| 极品教师在线视频| 中文字幕亚洲精品专区| 色尼玛亚洲综合影院| 永久网站在线| 大陆偷拍与自拍| 天天躁夜夜躁狠狠久久av| 1000部很黄的大片| 91aial.com中文字幕在线观看| 男人舔女人下体高潮全视频| 2018国产大陆天天弄谢| 超碰av人人做人人爽久久| 性色avwww在线观看| 在线免费观看不下载黄p国产| 美女高潮的动态| 中文字幕人妻熟人妻熟丝袜美| av在线亚洲专区| 亚洲成人av在线免费| 欧美精品一区二区大全| 亚洲精品日韩av片在线观看| 在线免费观看的www视频| 91久久精品国产一区二区成人| 美女cb高潮喷水在线观看| 午夜激情福利司机影院| 欧美高清性xxxxhd video| 日韩视频在线欧美| 色综合色国产| 夫妻性生交免费视频一级片| 免费看a级黄色片| 久久99热这里只有精品18| 亚洲内射少妇av| 欧美激情在线99| 午夜福利在线观看吧| 水蜜桃什么品种好| 精品99又大又爽又粗少妇毛片| 午夜免费观看性视频| 日本熟妇午夜| 国产永久视频网站| 黄片wwwwww| 一级毛片电影观看| 久久韩国三级中文字幕| 简卡轻食公司| 亚洲人成网站在线播| 亚洲欧美成人精品一区二区| 99视频精品全部免费 在线| 久久热精品热| 黄片wwwwww| 午夜激情久久久久久久| 国产成人a∨麻豆精品| 97精品久久久久久久久久精品| 亚洲精品一区蜜桃| 国产又色又爽无遮挡免| 欧美最新免费一区二区三区| 亚洲精品乱码久久久久久按摩| 亚洲国产av新网站| 精品一区在线观看国产| 最后的刺客免费高清国语| 国产91av在线免费观看| 秋霞伦理黄片| av天堂中文字幕网| 国产爱豆传媒在线观看| 亚州av有码| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美一区二区三区国产| 男女那种视频在线观看| 少妇熟女aⅴ在线视频| 深夜a级毛片| 精品久久久久久久久av| 能在线免费看毛片的网站| 国产黄色视频一区二区在线观看| 日本三级黄在线观看| 欧美激情国产日韩精品一区| 亚洲欧美精品专区久久| 精品一区二区免费观看| 午夜亚洲福利在线播放| 亚洲精品日本国产第一区| 欧美成人午夜免费资源| 国产亚洲精品av在线| 国产亚洲5aaaaa淫片| 一区二区三区乱码不卡18| 看黄色毛片网站| 国产精品无大码| 成人漫画全彩无遮挡| 精品欧美国产一区二区三| av在线老鸭窝| 久久久久久久久久人人人人人人| 欧美bdsm另类| 免费看美女性在线毛片视频| 国产精品国产三级国产专区5o| 久久久久久久久中文| 日韩av在线免费看完整版不卡| 国产男人的电影天堂91| 国产精品人妻久久久久久| 亚洲av国产av综合av卡| 777米奇影视久久| 在线 av 中文字幕| 精品亚洲乱码少妇综合久久| 国产精品99久久久久久久久| 亚洲精品自拍成人| 色哟哟·www| 亚洲综合精品二区| av线在线观看网站| 人体艺术视频欧美日本| 午夜福利高清视频| 国产国拍精品亚洲av在线观看| 简卡轻食公司| 可以在线观看毛片的网站| 午夜福利在线观看免费完整高清在| 最近最新中文字幕免费大全7| 欧美xxxx黑人xx丫x性爽| 亚洲精品乱码久久久v下载方式| 欧美激情久久久久久爽电影| 欧美日韩精品成人综合77777| 综合色丁香网| 日韩一区二区三区影片| kizo精华| 亚洲国产高清在线一区二区三| 丰满乱子伦码专区| 啦啦啦啦在线视频资源| 伦理电影大哥的女人| 久久久久精品久久久久真实原创| 一夜夜www| 亚洲精品国产av蜜桃| h日本视频在线播放| 国产精品精品国产色婷婷| 国产v大片淫在线免费观看| 一个人看视频在线观看www免费| 亚洲美女视频黄频| 毛片女人毛片| 国产淫语在线视频| 2022亚洲国产成人精品| 91精品伊人久久大香线蕉| 欧美一级a爱片免费观看看| 永久免费av网站大全| 一夜夜www| 国产成人精品一,二区| 汤姆久久久久久久影院中文字幕 | 一级av片app| 国产av码专区亚洲av| 国产精品爽爽va在线观看网站| 国产v大片淫在线免费观看| 插逼视频在线观看| 校园人妻丝袜中文字幕| 亚洲久久久久久中文字幕| 麻豆成人av视频| 免费看美女性在线毛片视频| 久久久久国产网址| 色播亚洲综合网| 网址你懂的国产日韩在线| 午夜福利视频精品| 插逼视频在线观看| 成年人午夜在线观看视频 | 亚洲精品影视一区二区三区av| 欧美激情久久久久久爽电影| 国产精品久久久久久av不卡| 国产av码专区亚洲av| 亚洲精品国产av成人精品| 欧美日韩综合久久久久久| 亚洲va在线va天堂va国产| 日本免费在线观看一区| 午夜精品在线福利| 男女边摸边吃奶| 亚洲精品成人av观看孕妇| 国产91av在线免费观看| 天堂影院成人在线观看| 亚洲国产色片| 男插女下体视频免费在线播放| 韩国高清视频一区二区三区| 亚洲精品乱码久久久v下载方式| 成人欧美大片| 亚洲成色77777| 亚洲精品日韩av片在线观看| 五月玫瑰六月丁香| 啦啦啦中文免费视频观看日本| 日韩亚洲欧美综合| 日本三级黄在线观看| 天天一区二区日本电影三级| 久久久午夜欧美精品| 少妇的逼好多水| 色视频www国产| 国产精品一区二区三区四区免费观看| 欧美日韩在线观看h| 嫩草影院精品99| 男人爽女人下面视频在线观看| 成人综合一区亚洲| 黄色配什么色好看| 少妇人妻一区二区三区视频| 一个人免费在线观看电影| 狂野欧美白嫩少妇大欣赏| 国产伦一二天堂av在线观看| 欧美日韩在线观看h| 在现免费观看毛片| 国产成人午夜福利电影在线观看| 欧美日韩精品成人综合77777| 在现免费观看毛片| 日韩av在线免费看完整版不卡| 最近的中文字幕免费完整| 亚洲精品亚洲一区二区| 超碰97精品在线观看| 国产三级在线视频| 欧美成人精品欧美一级黄| 亚洲欧美成人综合另类久久久| 九九爱精品视频在线观看| 美女国产视频在线观看| 亚洲在线观看片| 天堂√8在线中文| 亚洲丝袜综合中文字幕| 国国产精品蜜臀av免费| 亚洲,欧美,日韩| 国产黄片视频在线免费观看| 波野结衣二区三区在线| 久久国内精品自在自线图片| 久久久亚洲精品成人影院| 日本黄色片子视频| 日韩精品有码人妻一区| 国产大屁股一区二区在线视频| 美女国产视频在线观看| 精品久久久噜噜| 国产亚洲午夜精品一区二区久久 | 亚洲成人av在线免费| 国产三级在线视频| 我的女老师完整版在线观看| 日韩亚洲欧美综合| 伊人久久精品亚洲午夜| 久久久成人免费电影| 久久人人爽人人片av| 波野结衣二区三区在线| 搡老乐熟女国产| 99久国产av精品国产电影| 一本一本综合久久| 日韩欧美国产在线观看| 大话2 男鬼变身卡| 青青草视频在线视频观看| 国产亚洲一区二区精品| 国产成人一区二区在线| 国产欧美另类精品又又久久亚洲欧美| 水蜜桃什么品种好| a级一级毛片免费在线观看| 九九久久精品国产亚洲av麻豆| 久久精品夜色国产| 少妇高潮的动态图| 国产精品三级大全| 蜜桃久久精品国产亚洲av| 国产精品一区二区性色av| 国产黄色小视频在线观看| 一级爰片在线观看| 精品一区二区免费观看| 最近手机中文字幕大全| 日本免费在线观看一区| 三级毛片av免费| 亚洲国产精品sss在线观看| 欧美成人午夜免费资源| 午夜激情久久久久久久| 日韩成人伦理影院| 一个人观看的视频www高清免费观看| 欧美日韩综合久久久久久| 国产精品嫩草影院av在线观看| 亚洲精品亚洲一区二区| 成年av动漫网址| xxx大片免费视频| 国产午夜精品一二区理论片| 欧美激情在线99| 精品不卡国产一区二区三区| 欧美xxxx性猛交bbbb| 日韩欧美精品v在线| 日本三级黄在线观看| 久久久国产一区二区| 高清视频免费观看一区二区 | 欧美+日韩+精品| 久久韩国三级中文字幕| 亚洲欧美精品自产自拍| 五月天丁香电影| 国产高清不卡午夜福利| av在线播放精品| 亚洲精品一二三| 国产成人免费观看mmmm| 免费看av在线观看网站| 亚洲精品视频女| 在线 av 中文字幕| 最近中文字幕2019免费版| 最近中文字幕高清免费大全6| 黄色欧美视频在线观看| 日日撸夜夜添| 九九爱精品视频在线观看| 欧美日韩在线观看h| 免费黄色在线免费观看| 1000部很黄的大片| 男人和女人高潮做爰伦理| 国产黄片美女视频| 观看美女的网站| 亚洲人成网站在线观看播放| av又黄又爽大尺度在线免费看| 日日啪夜夜爽| 日韩不卡一区二区三区视频在线| 国产单亲对白刺激| 蜜臀久久99精品久久宅男| 亚洲欧美中文字幕日韩二区| 人体艺术视频欧美日本| 欧美激情在线99| 伊人久久精品亚洲午夜| 一级二级三级毛片免费看| 赤兔流量卡办理| 国产男人的电影天堂91| 高清在线视频一区二区三区| 3wmmmm亚洲av在线观看| 亚洲精品中文字幕在线视频 | 国内精品美女久久久久久| 美女内射精品一级片tv| 不卡视频在线观看欧美| 偷拍熟女少妇极品色| 亚洲精品一二三| 91久久精品国产一区二区三区| 国产色婷婷99| 日韩欧美三级三区| 精品亚洲乱码少妇综合久久| 26uuu在线亚洲综合色| 婷婷色av中文字幕| 亚洲乱码一区二区免费版| 免费在线观看成人毛片| 午夜日本视频在线| 国产麻豆成人av免费视频| 人妻夜夜爽99麻豆av| 春色校园在线视频观看| 在线天堂最新版资源| 久久午夜福利片| 少妇高潮的动态图| 免费观看无遮挡的男女| 欧美激情国产日韩精品一区| 舔av片在线| kizo精华| 舔av片在线| 尾随美女入室| 欧美性猛交╳xxx乱大交人| 久久亚洲国产成人精品v| av在线天堂中文字幕| 97超碰精品成人国产| 色综合站精品国产| 国产欧美日韩精品一区二区| 少妇的逼好多水| 国产激情偷乱视频一区二区| 九色成人免费人妻av| 一级毛片aaaaaa免费看小| 午夜激情久久久久久久| 成年女人在线观看亚洲视频 | 激情 狠狠 欧美| 少妇的逼水好多| 淫秽高清视频在线观看| 国产又色又爽无遮挡免| 麻豆国产97在线/欧美| 国产免费又黄又爽又色| 亚洲国产欧美在线一区| 夜夜爽夜夜爽视频| 又粗又硬又长又爽又黄的视频| 国产探花在线观看一区二区| 欧美精品国产亚洲| 可以在线观看毛片的网站| 2018国产大陆天天弄谢| 国产淫语在线视频| 久久久久久久午夜电影| 精品久久久久久久人妻蜜臀av| 成人特级av手机在线观看| 人人妻人人看人人澡| 精品一区在线观看国产| 欧美高清成人免费视频www| 中国国产av一级| 国产伦理片在线播放av一区| 在线观看美女被高潮喷水网站| 国产成人一区二区在线| 啦啦啦中文免费视频观看日本| 大香蕉久久网| 美女内射精品一级片tv| 黄色日韩在线| 亚洲婷婷狠狠爱综合网| 伦理电影大哥的女人| 在线观看免费高清a一片| 九九在线视频观看精品| 春色校园在线视频观看| 永久免费av网站大全| 亚洲欧美一区二区三区国产| 国产亚洲5aaaaa淫片| 亚洲精品456在线播放app| 国内揄拍国产精品人妻在线| 日韩欧美国产在线观看| 欧美精品国产亚洲| 亚洲人成网站在线观看播放| 偷拍熟女少妇极品色| 大香蕉久久网| 最近手机中文字幕大全| 亚洲精品一区蜜桃| 美女主播在线视频| 国产在线一区二区三区精| 亚洲综合色惰| 国产成人a区在线观看| 久久久成人免费电影| 男女那种视频在线观看| 久久99热这里只有精品18| videos熟女内射| 久久久久久久久久黄片|