• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed Nash equilibrium seeking with order-reduced dynamics based on consensus exact penalty

    2023-11-16 10:12:32ShuLiangShuyuLiuYiguangHongJieChen
    Control Theory and Technology 2023年3期

    Shu Liang·Shuyu Liu·Yiguang Hong·Jie Chen

    Abstract In this paper,we consider a networked game with coupled constraints and focus on variational Nash equilibrium seeking.For distributed algorithm design, we eliminate the coupled constraints by employing local Lagrangian functions and construct exact penalty terms to attain multipliers’optimal consensus,which yields a set of equilibrium conditions without any coupled constraint and consensus constraint.Moreover,these conditions are only based on strategy and multiplier variables,without auxiliary variables.Then,we present a distributed order-reduced dynamics that updates the strategy and multiplier variables with guaranteed convergence.Compared with many other distributed algorithms,our algorithm contains no auxiliary variable,and therefore,it can save computation and communication.

    Keywords Game theory·Nash equilibrium seeking·Distributed algorithm·Coupled constraints·Order-reduced dynamics

    1 Introduction

    Distributed Nash equilibrium seeking for multi-player noncooperative games has been widely considered in many fields, such as robot swarm control [1], automatic driving[2],and charging scheduling[3].It aims to obtain an equilibrium strategy profile through players’own computation and communication,where each player uses only local data and neighbors’information over a network.Particularly,it is of interest for networked games,where the strategic interaction among players is consistent with the network[4].

    Coupled constraints are widely considered in multi-agent systems,typically when the agents share limited resources.For example, [5] has considered coupled constraints in a distributed optimization problem and developed resource allocation algorithms.Moreover,players in a game can also have coupled constraints[6].It becomes a major problem to deal with coupled constraints in a distributed manner,since,for each agent or player, the others’ data and information associated with the coupled constraints are not fully available.

    Generalized Nash equilibria are suitable for games with coupled constraints[7].Moreover,the variational Nash equilibrium is widely adopted as a refinement of the generalized Nash equilibria with many good properties [8].Recently, a few works have considered distributed variational Nash equilibrium seeking.For example,[9]has designed a distributed gradient-based projected algorithm and[10]has introduced a forward–backward operator splitting method.Also,[11]has considered distributed seeking dynamics for multi-integrator agents.

    The game model with coupled constraints generalizes that of coupled constrained optimization,whereas some new difficulties occur.In the game model, multiple players are interacted and the corresponding equilibrium problem cannot be decomposed into independent optimization sub-problems.Consequently,some optimization theories and methods,such as the duality theory and penalty method, are not sufficient for games.In particular, it is well known that the Lagrangian function plays a key role for constrained optimization, which connects the primal and dual parts.In the game model, each player’s constrained optimization corresponds to a local Lagrangian function, whereas there is no commonLagrangianfunctionforallplayers.Hence,methods based on a single Lagrangian function,such as[12]for distributed coupled constrained optimization,cannot be directly used for the variational Nash equilibrium problem.

    It is also of importance to simplify local dynamics in a distributed algorithm,since they are coordinated together with the complexity proportional to the network size.However,for problems with coupled constraints,distributed algorithm designrequirestoextend(oraugment)theproblemwithadditional variables to separate those couplings.For example,in addition to the strategy and multiplier variables, [9–11]have employed auxiliary ones in their distributed algorithms.An idea for simplifying distributed dynamics is to remove some updating variables so that the order of the dynamics can be reduced.In view of this, penalty methods are useful to transform a constrained problem into an unconstrained one to reduce the number of variables.In fact,[12]and[13]have used exact penalty methods to achieve order-reduced dynamics for distributed optimization problems,and[14]has adopted an inexact penalty method for the equilibrium seeking.

    In this paper,we consider a networked game with coupled constraints and present a distributed variational Nash equilibrium seeking dynamics.Due to the coupled constraints,directly solving the variational Nash equilibrium requires global information.We mainly use two equivalent transformations to give equilibrium conditions that are suitable for distributed design and also achieve order reduction.Specifically,in the first transformation,we give a set of conditions in terms of local Lagrangian functions and eliminate the coupled constraints.In the second transformation,we construct exact penalty terms to render the optimal consensus of multipliers.In this way,we obtain equilibrium conditions without the coupled constraints and the consensus constraint.By simply using partial (sub)gradients, we construct a distributed dynamics to seek a solution to the transformed equilibrium problem, which contains the considered variational Nash equilibrium.Compared with existing works,a major feature of our method is that, instead of considering the first-order variational inequality problem that defines the variational Nash equilibrium, we focus on the zeroth-order objective functions of the multipliers,which makes it possible to use the exact penalty method to achieve order reduction.

    The main contributions of our work are listed as follows.

    1.Despite the absence of a common Lagrangian function for all players in the game,we obtain that the multipliers indeed correspond to a consensus optimization problem parameterized by the strategy variables.As a result,our method solves the variational Nash equilibrium seeking problem and extends the exact penalty-based method given in[12]for problems from coupled constrained optimization to coupled constrained game.

    2.The equivalently transformed conditions we derive for distributed design contain only strategy and multiplier variables, whereas those in [9–11] also contained auxiliary variables.Accordingly, our distributed seeking dynamics is of lower order than those in[9–11].It updates no auxiliary variable and reduces the costs of computation and communication.

    3.We construct exact penalty terms,which allow for constant and bounded penalty coefficients with guaranteed correctness.Accordingly, our seeking dynamics simply uses a constant coefficient.In comparison,the dynamics given in [14] based on an inexact penalty method must be equipped with time-varying and unbounded penalty coefficients.

    The paper is organized as follows.Preliminaries are given in Sect.2, while the problem formulation is presented in Sect.3.Then,the main results about distributed design and analysis are given in Sect.4.Numerical results are presented in Sect.5,and the conclusions are given in Sect.6.

    2 Preliminaries

    In this section,we introduce relevant preliminary knowledge about convex analysis, variational inequality, differential inclusion,and graph theory.

    2.1 Notations

    Denote by Rnthen-dimensional real vector space and bythe nonnegative orthant.Denote by 0n∈Rnthe vectors with all components being zeros.For a vectora∈Rn,a≤0 means that each component ofais less than or equal to zero.Denote by ‖·‖ and |·| the?2-norm and?1-norm for vectors,respectively.Denote by col(x1,...,xN)the column vector stacked with column vectorsx1,...,xN, i.e.,col(x1,...,xN) =()T.Denote by sign(·) the sign function and by Sign(·)the set-valued version,i.e.,

    2.2 Convex optimization and variational inequality

    A setΩ?Rnis convex ifλz1+(1-λ)z2∈Ωfor anyz1,z2∈Ωandλ∈[0, 1].Denote by rint(Ω) the relative interior ofΩ.Denote bydΩ(·)andPΩ(·)the distance function and the projection map with respect toΩ,respectively.That is,

    Denote byNΩ(x)the normal cone with respect toΩand a pointx∈Ω,i.e.,

    A functionf:Ω→R is said to be convex iff(λz1+(1-λ)z2)≤λ f(z1)+(1-λ)f(z2)for anyz1,z2∈Ω,z1/=z2andλ∈[0, 1].

    The following lemma presents a first-order optimal condition for constrained optimization,referring to[15,Theorem 8.15].

    Lemma 1Consider an optimization with a convex objective function f and a convex constraint set Ω,i.e.,

    Then,x∈Ω is an optimal solution if and only if

    where ?f is the subdifferential of f.

    Moreover, we need the following result about exact penalty,referring to[16,Proposition 6.3].

    Lemma 2Suppose that f has a Lipschitz constant κ0on an open set containing Ω.Then,the constrained optimizationminx∈Ω f(x)is equivalent to the unconstrainedminx f(x)+κdΩ(x)for any κ>κ0.Here,the equivalence means that they share the same optimal solution set.

    Given a subsetΩ?Rnand a mapF:Ω→Rn, the variational inequality problem, denoted by VI(Ω,F), is to find a vectorx∈Ωsuch that

    Its solution set is denoted by SOL(Ω,F).The mapFis said to be monotone overΩif

    Moreover, it is strictly monotone if the inequality holds strictly wheneverx/=y.

    The following lemma gives existence and uniqueness conditions for the solution to a variational inequality, referring to[17,Corollary 2.2.5 and Theorem 2.2.3].

    Lemma 3If Ω is compact,thenSOL(Ω,F)is nonempty and compact.Moreover,if F is strictly monotone,thenSOL(Ω,F)is a singleton.

    2.3 Graph theory

    Graph of a network is denoted byG=(V,E),whereV={1,...,N}is a set of nodes andE?V×Vis a set of edges.Nodejis said to be aneighborof nodeiif(i,j) ∈E.The set of all the neighbors of nodeiis denoted byNi.The graphGis said to beundirectedif(i,j) ∈E?(j,i) ∈E.A path ofGis a sequence of distinct nodes where any pair of consecutive nodes in the sequence has an edge ofG.Nodejis said to beconnectedto nodeiif there is a path fromjtoi.Moreover,Gis said to be connected if any two nodes are connected.The detailed knowledge about graph theory can be found in[18].

    3 Formulation

    Consider a non-cooperative game over a peer-to-peer network with a graphG=(V,E),whereV={1,...,N}.For eachi∈V,theith player has a strategy variablexibelonging to a strategy setΩi?Rni,whereni> 0 is an integer.Also,the cost function of theith player isJi(xi,x-i),wherex-i= col(x1,...,xi-1,xi+1,...,xN) is the collection of other players’ decision variables.Here, we consider anetworked game, whereJi(xi,·) only depends on neighbors’strategy variablesx j,j∈Ni.

    The strategy profilex= col(x1,...,xN) is within the direct product setΩ=Ω1×···×ΩN?Rn,wheren=n1+···+nN.Besides,there is a coupled constraint set

    wheregi:Rni→Rp,i=1,...,Nwith an integerp>0.Theith player aims to minimize its cost function subject to local and coupled constraints,which can be written as

    wheregi(xi,x-i)=g(x).

    The variational Nash equilibrium of the considered game,referring to [7], is a solution to the variational inequality

    VI(X,F),where

    It is an acceptable solution for a game with coupled constraints.The relationship among the well-known Nash equilibria,generalized Nash equilibria,and the variational one is briefly explained as follows:

    ? If there is no coupled constraint,one can adopt aNash equilibriumpointxNE,at which no player can further decrease its cost function by changing its decision variable unilaterally in the local feasible set.That is, for eachi∈V,

    ? In the presence of the coupled constraint setC,theith player’s strategy should be within the setCi(x-i) ={xi∈Rni|gi(xi,x-i) ≤0p} that depends onx-i.Then, ageneralized Nash equilibriumpointxGNEattains the coupled constrained optimality

    ? Furthermore,there may be multiple generalized Nash equilibria,and among them,the variational Nash equilibrium pointxVE∈SOL(X,F) is widely used as a refinement[8].One advantage of the variational Nash equilibrium compared with other generalized Nash equilibria is that small feasible perturbations(not necessarily unilateral perturbations) aroundxVEdo not decrease any one of the cost functions[7].

    Our goal is to compute a variational Nash equilibrium in a distributed manner.That is, for eachi∈V, theith agent updatesxiby using only local data and neighbors’information over the network.

    To guarantee the existence of a solution to VI(X,F)and the correctness of distributed algorithms,a few basic assumptions are adopted as follows;

    A1:Ωis compact and convex,gi,i=1,...,Nare convex and differentiable,andFis strictly monotone.

    A2: 0 ∈rint(Ω-C).

    A3: The network graphGis connected.

    Here,A1 guarantees the existence and uniqueness of the variational Nash equilibrium according to Lemma 3, and A2 resembles the Slater’s constraint qualification.Note that the monotonicity ofFimplies the convexity ofJi(·,x-i) for eachi∈V.In addition, A3 is widely used for distributed algorithms in the literature.

    Remark 1Regardingthecoupledconstraints,[9]and[10]has considered affine equality and inequality ones,respectively.Here,we consider nonlinear and inequality ones as same as thosein[11],whichistechnicallyharderthantheaffinecases.Also,regardingthemonotonicity,[9–11]haveadoptedstrong monotonicity, while we adopt a less restrictive assumption with only strict monotonicity.

    Remark 2The considered coupled constrained game is more general than coupled constrained optimization.In fact,whenJi(xi,x-i) =f(x) =f1(x1)+···+fN(xN), ?i∈V, it is not difficult to verify that the variational Nash equilibrium problem reduces to the optimization problem

    as considered in[5,12,19,20].

    4 Main results

    In this section,we present our distributed design and analyze the proposed algorithm.

    4.1 Algorithm design

    Our design is given in Algorithm 1.

    In Algorithm 1, theith player updates its variables by using local and neighbors’ information.Thus, it is a distributed algorithm.Our dynamics involves discontinuous right-hand side caused by a few sign functions,and its solution is understood in the sense of Filippov,referring to[21].To be specific, forλ= col(λ1,...,λN), the discontinuous map

    is regularized to a set-valued map

    whereμ(·)is the Lebesgue measure andB(λ,δ)is the ball centered atλwith radiusδ.We need explicitly characterizeF[γ], since it is utilized to analyze the trajectory solution.Note thatF[γ]is not equal to

    In fact,

    By the generalized gradient formula[16,Theorem 8.1],it is not difficult to obtain that

    where

    Therefore,the compact and regularized form of (4)is

    which will be used in our analysis.

    Remark 3Dynamics(3)and(4)are of orderniandp,which are associated with theith player’s strategy and multiplier.In comparisons,many other distributed algorithms,such as the continuous-time ones [1, 11, 22] and the discrete-time ones [10, 23], involve additional dynamics of orderpwith respect to auxiliary variables.For example,the discrete-time algorithm given in[10]is written as

    Also,the continuous-time algorithm given in[11]is written as

    Clearly, Algorithm 1 reduces the order of theith player’s dynamics fromni+2ptoni+p.

    Remark 4The distributed algorithm given in[14]is written as

    whereP(·)is an inexact penalty term to deal with inequality constraints, and?(t),δ(t),ε(t),γ(t) andw(t) are timevarying parameters of the form(1+t)a.These parameters are time-varying and unbounded.Also,the order of this dynamics isn1+···+nN,since it estimatesx-iusing variablesyi j,j∈V{i} to calculate the values of the coupled constraint functions.In comparison,our dynamics uses simply a constant parameterαand does not introduce additional variables to estimatex-ifor the coupled constraints.

    4.2 Equilibrium conditions

    Different from focusing on the variational inequality problem with (2), we alternatively characterize the variational Nash equilibrium using local Lagrangian functions associated with(1).These functions have also been discussed in[7].

    Lemma 4Under A1–A3,a point x∈Ω is the variational Nash equilibrium if and only if there exists a multiplier λ∈such that

    where

    ProofThe equivalence between VI(X,F)andL-based optimization characterizations follows from the fact that they share the same KKT conditions:

    This completes the proof.■

    Lemma 4 removes the coupled constraint setCby using a set of equilibrium conditions in terms ofLi,i=1,...,N+1.However,they cannot lead to distributed design,since they use the coupled constraint functionsg(x) and a common multiplierλ.Therefore, we use an exact penalty technique to modify these Lagrangian functions with local multipliers and decompose the constraint functions as follows.

    Theorem 1Under A1–A3,a point x∈Ω is the variationalNash equilibrium if and only if there exists λ∈such that

    where

    with φ(·)in(5)and α satisfying

    ProofBy Lemma 4,we need only to prove that(x,λ)satisfies(7)if and only if

    The“if”part can be easily verified,and we focus on the“only if”part.By(7),λsolves

    We claim that it shares the same optimal solutions with

    where

    Comparing(8)with(9),αφ(λ)acts as a penalty term associated with the constraint setΛ.Moreover,if this penalty is exact,then the equivalence between(8)and(9)holds.Since the objective function in (9) isκ0-Lipschitz continuous, it follows from Lemma 2 thatKdΛ(λ)is an exact penalty term for anyK>κ0.Thus,to verify thatαφ(λ)is also an exact penalty term,it suffices to prove

    By calculations,

    Since the graph is connected and undirected,there is a path connecting nodeskandlfor anyk,l∈V.As a result,

    Consequently,

    which implies

    This completes the proof.■

    Remark 5Theorem1indicatesthatthepenalty-basedmethod guarantees the consensus of multipliers.Removing this consensus constraint leads to a dimension-reduced problem,which establishes the foundation to design order-reduced seeking algorithms.Theorem 1 extends the penalty method associated with multipliers for distributed coupled constrained optimization given in [12].Here, we further deal with the game with coupled constraints and prove the equivalence between the two sets of equilibrium conditions(6)and(7),though no common Lagrangian function is available to establish a whole primal or dual optimization problem.

    while the overall multiplier uses the partial subgradient

    Here,the overall multiplier’s update requires no central node in the network.It is component-wisely updated by the associated players to make the algorithm distributed.

    4.3 Convergence analysis

    Algorithm 1 can be written in a compact form as

    whereθ=col(x,λ),θ=col(x,λ)and

    The correctness of its equilibria is presented as follows.

    Theorem 2Under A1–A3,if θ and θsatisfy

    then x is the variational Nash equilibrium.

    ProofSince

    there holds

    That is,

    and

    According to Lemma 1,these are first-order optimal conditions for the minimizations in (7),which indicates thatxis the variational Nash equilibrium.■

    With the correctness of the algorithm’s equilibria,we further verify the convergence of Algorithm 1.

    Theorem 3Under A1–A3,the trajectories xi(t),λi(t),xi(t),λi(t)of Algorithm 1 are bounded for each i∈V.Moreover,x(t)converges to the variational Nash equilibrium.

    ProofAn algorithm in the same form as(10)has been analyzed in our previous work[24](for another game problem),where the boundedness can be guaranteed if the mapΦis monotone.Moreover,the convergence can be guaranteed if the mapF(i.e.,partial gradients of players’cost functions)is strictly monotone.Thus,we need only to prove the monotonicity ofΦand omit repetition parts.

    The mapΦcan be decomposed as

    where

    Sinceφis convex, its subdifferential is monotone.Thus, it suffices to prove the monotonicity ofΦoverΘ.To this end,for anyθ,θ′∈Θ,we analyze

    where

    Rearranging the terms with respect toλiandλ′iyields

    By the monotonicity ofF,

    Also,by the convexity ofgiand the positiveness ofλi,λ′i,

    which impliesG(θ,θ′)≥0.Therefore,

    As a result, the overall mapΦis monotone overΘ.This completes the proof.■

    Remark 7Theorems 2 and 3 prove that Algorithm 1 solves the considered variational Nash equilibrium seeking problem.To be specific, Theorem 3 ensures that the trajectoryθ(t)of(10)converges to an equilibrium pointθ?=(x?,λ?),and Theorem 2 ensures the correctness of this point in thatx?is the variational Nash equilibrium.

    5 Numerical examples

    In this section, we give numerical examples for illustrating our obtained results.

    Example 1To show the effectiveness of our algorithm, we compare its performance with some others.Consider a non-cooperativenetworkedgamewith4playersandthecommunication graph is shown in Fig.1.The objective functions are

    Fig.1 The communication graph of four agents

    Fig.2 The comparison of relative errors

    To seek the variational Nash equilibrium of this game,our algorithm, the primal-dual gradient algorithm given in[11], and the operator splitting algorithm given in [10] are utilized(see also Remark 3 for the latter two algorithms).The trajectories of relative error are shown in Fig.2.The orders of these three algorithms are summarized in Table 1.Clearly,all these algorithms can solve the variational Nash equilibrium,and our algorithm has lower order than the others.

    Inaddition,wealsotrytomakecomparisonswiththealgorithm given in[14](see Remark 4).However,this algorithm uses time-varying penalty parameters in the form of(1+t)a,and the corresponding discrete-time approximation using the forward Euler difference method with the same stepsize as ours is divergent.Also,if the time-varying penalty parameters are replaced by bounded constants,our simulation shows that the obtained solution does not satisfy the constraints.

    Example 2Consider the power control problem of a multiuser cognitive radio system, referring to [25].A multi-usercognitive radio system consists ofNcognitive users who share licensed resource over frequency-selective channels withnsubcarriers.Theith user assigns powerx(?)ito the channel with subcarrier?to enable its communication in the presence of noise and interference from other users.The rate of theith user is

    Table 1 The comparison of the order of algorithms

    Fig.3 The communication graph of twelve agents

    The constantsare magnitudes of channel transfer functions, and the constantsare the powers of noises.Moreover,a prerequisite of the spectrum sharing is that the users can only introduce limited total interference to the system,which leads to the set of coupled constraints as

    ?N=12 andn=4.

    ?Ωi=[0,1]n, ?i∈V.

    ?Isum=0.25Nn,andIind(?)=0.5N,??=1,...,n.

    ? The network graph is shown in Fig.3.

    ? The datav(?)iare randomly generated from[0.5,1.5].

    The simulation results are shown in Figs.4–6.In particular,Fig.4 shows the convergence of the profilex(t)and Fig.5 shows the convergence and consensus ofλ(t).Also, Fig.6 shows thatg(x(t))becomes less or equal to the zero vector eventually,which renders the coupled constraintsg(x)≤0p.

    Fig.4 The trajectories of the profile x(t)

    Fig.5 The trajectories of the multiplier λ(t)

    Fig.6 Values of the constraint functions g(t)= g(x(t))

    6 Conclusions

    In this paper,a distributed variational Nash equilibrium seeking algorithm has been proposed for a networked game with coupled constraints.An order-reduced dynamics has been designed to update strategy and multiplier variables with guaranteed convergence.In comparison with some existing distributed ones, our algorithm has saved the computation and communication.This reduction has been achieved using an exact penalty method to guarantee the consensus of multipliers, even though no common Lagrangian function is available.Future works may include a further application of our developed technique to complicated distributed design.

    联通29元200g的流量卡| 久久久午夜欧美精品| 国产精品av视频在线免费观看| 精品久久久久久久久av| 春色校园在线视频观看| 免费黄频网站在线观看国产| 内射极品少妇av片p| av网站免费在线观看视频 | 观看美女的网站| 久久久久精品性色| 中文在线观看免费www的网站| 伦理电影大哥的女人| 亚洲欧美日韩无卡精品| 一级二级三级毛片免费看| 精品人妻熟女av久视频| 人人妻人人看人人澡| 亚洲精品aⅴ在线观看| 丰满人妻一区二区三区视频av| 日本爱情动作片www.在线观看| 少妇熟女欧美另类| 高清视频免费观看一区二区 | 亚洲一区高清亚洲精品| 亚洲国产精品国产精品| 日韩欧美国产在线观看| 精品人妻视频免费看| 99热网站在线观看| 乱人视频在线观看| 婷婷色综合www| 国产精品伦人一区二区| 国产免费又黄又爽又色| 18+在线观看网站| 免费看光身美女| 80岁老熟妇乱子伦牲交| 熟女电影av网| 亚洲美女视频黄频| 国国产精品蜜臀av免费| 免费观看无遮挡的男女| 建设人人有责人人尽责人人享有的 | 男插女下体视频免费在线播放| 最近手机中文字幕大全| 亚洲精品第二区| 亚洲成人一二三区av| 国产乱人偷精品视频| 成人综合一区亚洲| 一个人看视频在线观看www免费| www.av在线官网国产| 国产成人精品久久久久久| 男女下面进入的视频免费午夜| 国产欧美另类精品又又久久亚洲欧美| 综合色av麻豆| av国产久精品久网站免费入址| 精品一区二区三区视频在线| 久久精品夜色国产| 久久久久性生活片| 91狼人影院| 只有这里有精品99| 亚洲欧美日韩卡通动漫| 日韩欧美国产在线观看| 在线观看av片永久免费下载| 精品久久国产蜜桃| 国产中年淑女户外野战色| 国产激情偷乱视频一区二区| 国产黄频视频在线观看| 99久久精品热视频| 久久99精品国语久久久| 免费观看精品视频网站| 国产毛片a区久久久久| 国产精品一区二区在线观看99 | av国产免费在线观看| 床上黄色一级片| 少妇人妻一区二区三区视频| 黄片wwwwww| 日韩精品有码人妻一区| xxx大片免费视频| av在线天堂中文字幕| 午夜福利视频精品| 亚洲精品第二区| 国产久久久一区二区三区| av专区在线播放| 人人妻人人澡人人爽人人夜夜 | 亚洲av.av天堂| 18禁在线播放成人免费| 亚洲最大成人手机在线| 国产v大片淫在线免费观看| 成年av动漫网址| 国产一级毛片在线| 精品不卡国产一区二区三区| 777米奇影视久久| 日日干狠狠操夜夜爽| 亚洲欧美清纯卡通| 日韩电影二区| 99re6热这里在线精品视频| av在线观看视频网站免费| 超碰av人人做人人爽久久| 日本黄色片子视频| 少妇熟女aⅴ在线视频| 久久这里只有精品中国| 国内精品宾馆在线| 人妻一区二区av| 国产一区二区三区av在线| 18禁在线播放成人免费| 久久人人爽人人片av| 国产伦在线观看视频一区| 国产 一区精品| 国产av国产精品国产| 熟妇人妻不卡中文字幕| 肉色欧美久久久久久久蜜桃 | 精品欧美国产一区二区三| 一级爰片在线观看| 午夜福利在线在线| 色播亚洲综合网| 色尼玛亚洲综合影院| 大陆偷拍与自拍| 丰满人妻一区二区三区视频av| 在线 av 中文字幕| 91狼人影院| 国产不卡一卡二| 国模一区二区三区四区视频| 精品久久久噜噜| 国内少妇人妻偷人精品xxx网站| 成人特级av手机在线观看| 日本黄色片子视频| 欧美区成人在线视频| 亚洲18禁久久av| 国产精品一区www在线观看| 中文字幕av在线有码专区| 亚洲精品日韩在线中文字幕| 美女国产视频在线观看| 国产一区二区亚洲精品在线观看| 亚洲欧美精品专区久久| 精品99又大又爽又粗少妇毛片| 欧美人与善性xxx| 神马国产精品三级电影在线观看| 国产精品三级大全| 亚洲欧美清纯卡通| 观看免费一级毛片| 色网站视频免费| av免费观看日本| 久久综合国产亚洲精品| 午夜激情欧美在线| 在线观看人妻少妇| 欧美日韩一区二区视频在线观看视频在线 | 欧美极品一区二区三区四区| 联通29元200g的流量卡| 免费观看在线日韩| 亚洲av中文av极速乱| 少妇的逼好多水| 男女视频在线观看网站免费| 亚洲成人久久爱视频| 国产亚洲av片在线观看秒播厂 | 国产不卡一卡二| 欧美日韩视频高清一区二区三区二| 国产人妻一区二区三区在| 真实男女啪啪啪动态图| 网址你懂的国产日韩在线| 国产三级在线视频| 亚洲国产欧美人成| 99久国产av精品国产电影| 伊人久久国产一区二区| 内射极品少妇av片p| 婷婷色麻豆天堂久久| 亚洲内射少妇av| 国产老妇伦熟女老妇高清| 国产一区有黄有色的免费视频 | 波野结衣二区三区在线| 国产精品爽爽va在线观看网站| 中文字幕制服av| 精品熟女少妇av免费看| 久久99热这里只频精品6学生| 日韩欧美国产在线观看| 深夜a级毛片| 亚洲高清免费不卡视频| kizo精华| 自拍偷自拍亚洲精品老妇| 久久6这里有精品| 亚洲人成网站高清观看| 国产 一区精品| 午夜免费激情av| 久久久久久久久中文| 日韩中字成人| 久久精品夜色国产| 高清午夜精品一区二区三区| 激情 狠狠 欧美| 亚洲精品乱码久久久v下载方式| 两个人的视频大全免费| 午夜福利视频精品| 欧美日本视频| 国产精品一区二区三区四区久久| 亚洲av电影不卡..在线观看| 国产永久视频网站| 一区二区三区免费毛片| 伦精品一区二区三区| 亚洲av男天堂| 亚洲精品456在线播放app| 99视频精品全部免费 在线| 国国产精品蜜臀av免费| 国产综合懂色| 免费观看av网站的网址| 91aial.com中文字幕在线观看| 日韩欧美国产在线观看| 成人一区二区视频在线观看| 欧美日本视频| 全区人妻精品视频| 日本午夜av视频| 九色成人免费人妻av| 一区二区三区免费毛片| 亚洲不卡免费看| 白带黄色成豆腐渣| 日韩不卡一区二区三区视频在线| 久久精品久久精品一区二区三区| 成人二区视频| 伊人久久精品亚洲午夜| 亚洲成人中文字幕在线播放| 国产av国产精品国产| 欧美 日韩 精品 国产| 国产一区二区三区综合在线观看 | 一个人观看的视频www高清免费观看| 国产色婷婷99| 国产精品久久久久久精品电影| 午夜激情欧美在线| 国产精品一区二区在线观看99 | 天堂网av新在线| 中文欧美无线码| 亚洲精品国产av成人精品| 麻豆成人av视频| 爱豆传媒免费全集在线观看| 亚洲人成网站在线播| 中文天堂在线官网| 69av精品久久久久久| av专区在线播放| 日本wwww免费看| 欧美日韩在线观看h| 欧美xxxx黑人xx丫x性爽| 午夜免费男女啪啪视频观看| 亚洲av免费在线观看| 久久精品久久久久久久性| 日本-黄色视频高清免费观看| 观看美女的网站| 天堂网av新在线| 日本午夜av视频| 水蜜桃什么品种好| .国产精品久久| 乱人视频在线观看| 天堂网av新在线| 男人舔女人下体高潮全视频| 亚洲欧美一区二区三区国产| 国产av码专区亚洲av| 天美传媒精品一区二区| 日韩在线高清观看一区二区三区| 亚洲av福利一区| 91精品国产九色| 中文天堂在线官网| 亚洲av免费高清在线观看| 伦理电影大哥的女人| 国产精品爽爽va在线观看网站| 亚洲天堂国产精品一区在线| 男女下面进入的视频免费午夜| 大香蕉97超碰在线| 久久久精品免费免费高清| 亚洲成人精品中文字幕电影| 久久午夜福利片| av专区在线播放| 精品人妻视频免费看| 欧美xxxx黑人xx丫x性爽| 99热这里只有是精品50| 身体一侧抽搐| a级毛片免费高清观看在线播放| 超碰97精品在线观看| 国产精品.久久久| www.色视频.com| 91精品伊人久久大香线蕉| videos熟女内射| av网站免费在线观看视频 | 一级黄片播放器| 国产伦在线观看视频一区| 男人舔女人下体高潮全视频| 97热精品久久久久久| 99热这里只有是精品50| 久久精品人妻少妇| 91在线精品国自产拍蜜月| 欧美成人午夜免费资源| 国产高清不卡午夜福利| 国产黄频视频在线观看| 最近中文字幕高清免费大全6| 亚洲不卡免费看| 边亲边吃奶的免费视频| 噜噜噜噜噜久久久久久91| 熟妇人妻不卡中文字幕| 日韩伦理黄色片| 国产亚洲一区二区精品| 婷婷色麻豆天堂久久| 在线 av 中文字幕| 国产精品一区二区性色av| 男女视频在线观看网站免费| 白带黄色成豆腐渣| 国产免费视频播放在线视频 | 国产在视频线精品| 老司机影院毛片| 一区二区三区四区激情视频| 国产伦理片在线播放av一区| 久久久久久久午夜电影| 国产激情偷乱视频一区二区| 夫妻午夜视频| 秋霞伦理黄片| 日本猛色少妇xxxxx猛交久久| 久久久a久久爽久久v久久| 国产一区二区在线观看日韩| 久久久久久久大尺度免费视频| 日本午夜av视频| 99热全是精品| 国产亚洲5aaaaa淫片| 日本一二三区视频观看| 成年女人看的毛片在线观看| 亚洲欧美清纯卡通| 亚洲国产高清在线一区二区三| 日韩av在线大香蕉| 看十八女毛片水多多多| 国产成人a∨麻豆精品| 十八禁网站网址无遮挡 | 一个人看视频在线观看www免费| 综合色av麻豆| 欧美日本视频| 深爱激情五月婷婷| 在线播放无遮挡| 一边亲一边摸免费视频| 日韩一区二区视频免费看| 亚洲熟妇中文字幕五十中出| 啦啦啦韩国在线观看视频| 美女黄网站色视频| 日本一本二区三区精品| 亚洲国产欧美在线一区| 国产精品麻豆人妻色哟哟久久 | 亚洲丝袜综合中文字幕| 色哟哟·www| 国产高清三级在线| 26uuu在线亚洲综合色| 免费在线观看成人毛片| 日日啪夜夜撸| 51国产日韩欧美| 国产一级毛片七仙女欲春2| 一级毛片我不卡| 国产男女超爽视频在线观看| 午夜老司机福利剧场| h日本视频在线播放| 一夜夜www| 国产精品99久久久久久久久| 久久精品久久精品一区二区三区| 欧美不卡视频在线免费观看| 男女视频在线观看网站免费| 色网站视频免费| 一区二区三区免费毛片| 日本免费在线观看一区| 国产老妇伦熟女老妇高清| 亚洲欧美一区二区三区黑人 | 在线天堂最新版资源| 97热精品久久久久久| 网址你懂的国产日韩在线| 搡老乐熟女国产| 成人综合一区亚洲| 婷婷六月久久综合丁香| 婷婷色av中文字幕| 亚洲精品视频女| 美女cb高潮喷水在线观看| 国产精品一区二区三区四区免费观看| 亚洲av国产av综合av卡| 亚洲欧美日韩无卡精品| 日产精品乱码卡一卡2卡三| 一级毛片我不卡| 国产午夜精品论理片| 国产 一区精品| 简卡轻食公司| av.在线天堂| 国产av国产精品国产| 久久这里有精品视频免费| 爱豆传媒免费全集在线观看| 成人鲁丝片一二三区免费| 成人亚洲欧美一区二区av| 亚洲国产欧美人成| 久久午夜福利片| 午夜免费观看性视频| 哪个播放器可以免费观看大片| 好男人在线观看高清免费视频| 看免费成人av毛片| 97在线视频观看| av线在线观看网站| 免费看a级黄色片| 毛片女人毛片| 人妻制服诱惑在线中文字幕| 日韩强制内射视频| 亚洲在线自拍视频| 亚洲成人中文字幕在线播放| 国产成人aa在线观看| 熟女电影av网| 少妇猛男粗大的猛烈进出视频 | 亚洲av不卡在线观看| 午夜福利在线观看免费完整高清在| 久久6这里有精品| 免费看不卡的av| 美女黄网站色视频| 午夜福利成人在线免费观看| 国产黄色免费在线视频| 亚洲最大成人手机在线| 少妇熟女aⅴ在线视频| 丰满乱子伦码专区| 丝袜喷水一区| 久久这里只有精品中国| 干丝袜人妻中文字幕| 午夜福利高清视频| 最近手机中文字幕大全| 网址你懂的国产日韩在线| 国产综合精华液| 天堂影院成人在线观看| 亚洲精品日韩av片在线观看| 男插女下体视频免费在线播放| 国产黄色视频一区二区在线观看| 简卡轻食公司| 午夜福利网站1000一区二区三区| 男人和女人高潮做爰伦理| 色网站视频免费| 六月丁香七月| 国产伦一二天堂av在线观看| 乱人视频在线观看| 秋霞伦理黄片| 精品午夜福利在线看| 亚洲图色成人| 国产精品无大码| 久久久久性生活片| 成人毛片a级毛片在线播放| 日韩亚洲欧美综合| 精品熟女少妇av免费看| 午夜免费激情av| 精品国产露脸久久av麻豆 | 久久精品夜色国产| 亚洲精品日韩在线中文字幕| 最近2019中文字幕mv第一页| 午夜福利高清视频| 亚洲va在线va天堂va国产| 精品酒店卫生间| 中国国产av一级| 男女那种视频在线观看| 日本wwww免费看| 亚洲av不卡在线观看| 久久99蜜桃精品久久| 久99久视频精品免费| 国产有黄有色有爽视频| 国产免费视频播放在线视频 | 91在线精品国自产拍蜜月| 在线播放无遮挡| 久久精品综合一区二区三区| 成人综合一区亚洲| 亚洲一级一片aⅴ在线观看| 国产久久久一区二区三区| 日本色播在线视频| 美女高潮的动态| 2022亚洲国产成人精品| 久久久久精品性色| 午夜福利在线观看免费完整高清在| videossex国产| 亚洲色图av天堂| 偷拍熟女少妇极品色| 看黄色毛片网站| 精品久久国产蜜桃| 一级毛片aaaaaa免费看小| av免费在线看不卡| 欧美成人午夜免费资源| 久久精品国产自在天天线| 国产一级毛片在线| 久久国产乱子免费精品| 女人被狂操c到高潮| 亚洲乱码一区二区免费版| 亚洲人与动物交配视频| 亚洲激情五月婷婷啪啪| 午夜激情欧美在线| 亚洲av中文av极速乱| 三级毛片av免费| 国产伦理片在线播放av一区| 亚洲综合色惰| 精品99又大又爽又粗少妇毛片| 免费观看a级毛片全部| a级毛色黄片| 91久久精品电影网| 最近手机中文字幕大全| 国产探花极品一区二区| 97在线视频观看| 国产免费又黄又爽又色| 国产成年人精品一区二区| 亚洲av在线观看美女高潮| 人人妻人人澡欧美一区二区| 久久久久性生活片| 亚洲精品视频女| 免费黄色在线免费观看| 边亲边吃奶的免费视频| 天堂俺去俺来也www色官网 | 国产伦精品一区二区三区视频9| 极品教师在线视频| 五月伊人婷婷丁香| 中文字幕制服av| 亚洲av成人精品一二三区| av线在线观看网站| 日韩制服骚丝袜av| 日日啪夜夜爽| 亚洲怡红院男人天堂| 欧美高清性xxxxhd video| 亚洲美女视频黄频| av线在线观看网站| 色吧在线观看| 丝袜喷水一区| 中文精品一卡2卡3卡4更新| 亚洲av成人精品一区久久| 亚洲av福利一区| 亚洲人成网站在线观看播放| 99九九线精品视频在线观看视频| 国产成人freesex在线| 六月丁香七月| 亚洲欧美一区二区三区黑人 | 日韩成人伦理影院| 一级毛片我不卡| 国产精品国产三级专区第一集| 内地一区二区视频在线| 日本猛色少妇xxxxx猛交久久| 免费大片黄手机在线观看| 亚洲精品日本国产第一区| 街头女战士在线观看网站| 国产 一区 欧美 日韩| 国产视频首页在线观看| 老司机影院毛片| 99热6这里只有精品| 国内揄拍国产精品人妻在线| 亚洲av中文字字幕乱码综合| 大片免费播放器 马上看| 国产精品综合久久久久久久免费| 精品99又大又爽又粗少妇毛片| 日韩av免费高清视频| 黄色一级大片看看| 熟女人妻精品中文字幕| 亚洲欧洲国产日韩| 赤兔流量卡办理| 午夜福利视频精品| 日韩av在线免费看完整版不卡| 国产久久久一区二区三区| 成人特级av手机在线观看| 国产精品1区2区在线观看.| 亚洲精品第二区| 国产成人91sexporn| 亚洲欧美成人精品一区二区| 最近手机中文字幕大全| 亚洲熟女精品中文字幕| 联通29元200g的流量卡| 在线观看免费高清a一片| 男女啪啪激烈高潮av片| 伊人久久国产一区二区| 欧美性感艳星| 天堂中文最新版在线下载 | 亚洲av成人精品一区久久| 校园人妻丝袜中文字幕| 日韩欧美 国产精品| 内地一区二区视频在线| 国产精品爽爽va在线观看网站| 欧美区成人在线视频| 麻豆av噜噜一区二区三区| 亚洲自偷自拍三级| www.av在线官网国产| 国产黄色视频一区二区在线观看| 精品久久久久久电影网| 亚洲无线观看免费| 2021少妇久久久久久久久久久| av国产免费在线观看| 久久这里有精品视频免费| 亚洲高清免费不卡视频| 2021天堂中文幕一二区在线观| 99热这里只有是精品50| 女人十人毛片免费观看3o分钟| 国产永久视频网站| 又爽又黄a免费视频| 欧美日韩视频高清一区二区三区二| 精品一区二区三区人妻视频| 亚洲av不卡在线观看| a级毛片免费高清观看在线播放| 99视频精品全部免费 在线| 免费看av在线观看网站| 日韩av免费高清视频| 免费av不卡在线播放| 久久精品久久久久久久性| 一级片'在线观看视频| 成人亚洲精品一区在线观看 | 久久综合国产亚洲精品| 成人毛片60女人毛片免费| 亚洲图色成人| 超碰av人人做人人爽久久| 午夜福利网站1000一区二区三区| 别揉我奶头 嗯啊视频| 国产精品女同一区二区软件| 午夜福利网站1000一区二区三区| 丝瓜视频免费看黄片| 欧美一区二区亚洲| 永久免费av网站大全| 亚洲精品一区蜜桃| 日本免费a在线| av网站免费在线观看视频 | 26uuu在线亚洲综合色| 免费av观看视频| 亚洲最大成人手机在线| 成人国产麻豆网| av在线亚洲专区| 久久久久网色| 亚洲综合色惰| 人妻制服诱惑在线中文字幕| 一级黄片播放器| 亚洲av福利一区| 夫妻性生交免费视频一级片| 成人鲁丝片一二三区免费| 麻豆国产97在线/欧美| 国产有黄有色有爽视频| 欧美极品一区二区三区四区| 最近视频中文字幕2019在线8|