• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heterogeneous multi-player imitation learning

    2023-11-16 10:12:52BosenLianWenqianXueFrankLewis
    Control Theory and Technology 2023年3期

    Bosen Lian·Wenqian Xue·Frank L.Lewis

    Abstract This paper studies imitation learning in nonlinear multi-player game systems with heterogeneous control input dynamics.We propose a model-free data-driven inverse reinforcement learning(RL)algorithm for a leaner to find the cost functions of a N-player Nash expert system given the expert’s states and control inputs.This allows us to address the imitation learning problem without prior knowledge of the expert’s system dynamics.To achieve this,we provide a basic model-based algorithm that is built upon RL and inverse optimal control.This serves as the foundation for our final model-free inverse RL algorithm which is implemented via neural network-based value function approximators.Theoretical analysis and simulation examples verify the methods.

    Keywords Imitation learning·Inverse reinforcement learning·Heterogeneous multi-player games·Data-driven model-free control

    1 Introduction

    Imitation learning is a popular approach where a learner mimics the demonstrated behaviors of an expert, based on limited samples of the expert’s demonstrations.It is commonly addressed through two main approaches: behavioral cloning[1,2]and inverse reinforcement learning(RL)[3,4].The former tackles the problem by learning a policy directly from expert demonstrations,treating it as a supervised learning task.In contrast, inverse RL focuses on reconstructing the underlying objective function, such as cost or reward functions,that best explain the expert’s demonstrations.The objective function serves as a higher-level index,providing transferability and robustness in control problems.Notably,inverse RL requires significantly fewer data[5]compared to behavioral cloning[6],making it more efficient in terms of sample utilization.The success of inverse RL is shown in a wide range of applications such as autonomous driving [7,8],anomaly detection[9,10],and energy management[11].

    Inverse RL and inverse optimal control(IOC)share fundamental principles and are often considered as closely related concepts.The conventional IOC methods in control systems [12] typically rely on system dynamics to solve the objective function.In contrast, inverse RL techniques in the machine learning field can construct objective functions using only demonstrated expert trajectories,without explicitly requiring system dynamics.Notably,model-free inverse RL algorithms have been developed for single-player and multi-player Markov decision processes[13–16].Inspired by the success of inverse RL and IOC, researchers have combined these approaches to develop model-free data-driven inverse RL methods for control systems with single-player input[17,18]and two-player games[19–22].

    Control problems involving multiple inputs and players are prevalent in practical applications.Multi-player games[23]provide a framework for modeling the decision-making process of multiple players who interact with each other.In these games, each player, corresponding to the control input, seeks to find a Nash equilibrium solution in non-zero-sum games.To compute such a solution for each player, two primary online computational approaches have emerged:model-free off-policy RL[24–27]and online datadriven actor-critic methods [28–30].Building upon these developments, data-driven inverse RL has been studied for multi-player games[31,32].

    This paper studies the learner-expert imitation learning problem in the context of nonlinear heterogeneous multiplayer game systems.Specifically,we consider the scenario of non-zero-sum games and propose a data-driven inverse RL approach for the learner to find the cost functions of all players given expert demonstrations without knowing system dynamics.The contributions of this paper are twofold.First,we propose a data-driven model-free inverse RL algorithm without knowing any system dynamics.This is in contrast to previous work [31] that requires knowledge of the input dynamics of all heterogeneous players.Second,we address a practical limitation present in previous approaches[31,32],which required the learner and expert to have the same initial states in the learning process.Whereas,this paper removes this requirement.

    2 Notations and preliminaries

    2.1 Notations

    R, Rn, and Rn×mdenote the set of all real numbers,n-column vectors, andn×mmatrices, respectively.‖·‖defines the 2-norm.Forx∈ Rnandy∈ Rm,x?y? [x1y1,...,x1ym,x2y1,...,x2ym,...,xn ym]T.ForA=(ai j) ∈Rn×m, vec(A) ?[a11,...,a1m,a21,...,a2m,...,anm]T.For a symmetric matrixA=(ai j)∈Rn×n,vem(A)?[a11,a12,...,a1n,a22,...,an-1,n,ann]T.λmindenotes the minimum eigenvalue.Indenotes the identity matrix of sizen.

    2.2 Expert system

    Consider theN-player expert system as

    wherexe(t)∈Rnis the expert state,u je(t)∈Rm jis the optimal control input of expert playerj,j∈N?{1,2,...,N}associated with some underlying cost function.f(xe) andg j(xe)denote expert’s system dynamics.

    Assumption 2 Assumegi/=g jfori/=jin (1), wherei,j∈N.

    Assumption 2 defines the multi-player game systems with heterogeneous control inputs.

    Assume the underlying cost function that each expert playerjminimizes is

    According to optimal control theory[33],the optimal control inputsu jeof the expert system(1)that minimize the cost functions(2)are

    where ?Vje(xe(t)) satisfy the coupled Hamilton–Jacobi equations

    2.3 Learner system and imitation learning problem

    Consider aN-player learner system

    wherex∈Rnandu j∈Rm jare the learner state and control input of playerj∈N, respectively.The dynamics of the learner are the same as the expert’s.Let us set the cost function for playerjas

    Similar to the optimal control process in (1)–(4), the learner’s optimal control inputs that minimize(6)are

    where ?Vj(x) satisfy the coupled Hamilton-Jacobi equations

    If each learner player imitates each learner player’s behavior, then both systems will have the same trajectories.To achieve this goal,we propose the following assumptions and the imitation learning problem.

    Assumption 3 The learner knowsq(·) and its own weight coefficientsQ jandR ji,i,j∈Nin(6),but does not know the expert’s weight coefficientsQ jeandR(ji)e,i,j∈Nin(2).

    Assumption 4 The learner has access to the measurement data of the expert’s state and inputs,i.e.,(xe,u je),j∈N.

    It is known that different weight coefficient pairs can yield thesameoptimalcontrolsinIOCproblems[34,35].We,thus,give the following equivalent weight definition from[31].

    Definition 2 AnyQ j> 0 ∈Rn×nandR ji> 0 ∈Rmi×mi,i,j∈Nin (8) that make (7) yieldu?j=u jeandx=xewhereu jeis defined in(3)are called equivalent weights toR(i j)eandQ je.

    To guarantee the existence of the above equivalent weight givenf, heterogeneousg j,j∈N, andq, we make the following assumption.

    Assumption 5 For the system with dynamicsq(·),f(·)andg j(·),there exists at least one equivalent weight toQ je≥0 with the selectedR ji>0,i,j∈N.

    Heterogeneous multi-player imitation learning problem Under Assumptions 1–5,given anyR ji>0,the learner aims to infer an equivalent weight toQ jefor (6) for each playerj∈Nwithout knowing system dynamics,such that it mimics the expert’s demonstrations,i.e.,

    3Model-based inverse RL for heterogeneous multi-player games

    To solve the imitation learning problem of heterogeneous multi-player game systems, this section presents a modelbased inverse RL algorithm to find an equivalent weight ˉQ jgivenR ji>0usingexpertdemonstrations(xe,u1e,...,uNe).The algorithm has a two-loop iteration structure,where the inner loop is the RL process to learn optimal control and the outer loop is the IOC process to update weight coefficients.

    3.1 Algorithm design

    We first design a model-based inverse RL Algorithm 1 presented as follows.It has two iteration loops.We selectR ji> 0 and keep them fixed.The inner iteration loop, (9)and(10),is RL process to update the value function and control input for each playerjthat are optimally associated with the current weight coefficientsQsjandR ji> 0.The converged solutionsusjare the optimal solutions to (7)–(8) for each outer-loop iterations.Then, the outer loop iteration,i.e., (11) based on IOC, is to updateQsjtoward the equivalent weight ˉQ jusing the demonstrated expert trajectories data(xe,u je).Note thatρ j∈(0,1]is the tuning parameter that can adjust the update speed.

    3.2 Convergence and stability

    Theorem 1Algorithm1solves the imitation learning problem of heterogeneous multi-player systems by learning uniformly approximate solutions of the equivalent weightˉQ j,j∈N at limited iteration steps.

    ProofThe inner loops are the standard RL policy iterations.The convergence of it at any inner iteration loops can be referred to [36].The policy iteration is proved to be quasi-Newton’s method in a Banach space[37–39]that yields the converged(usj,Vsj),whereVsjis the optimal value andusjis the optimal control input at outersloop.

    We now prove the convergence of outer loops.(11)implies that

    Algorithm 1 Model-based inverse RL for heterogeneous multi-player games 1: Initialization:Select R ji >0,initial Q0j >0,stabilizing u00j ,small thresholds e j and ε j for all j ∈N,and ρ j ∈(0,1].Set s =0.2: Outer s-th iteration 3: Inner k-th iteration:Set k =0.4: Solve value functions by 0=qT(x)Qsjq(x)+Nimages/BZ_23_579_506_616_541.png(usk images/BZ_23_853_493_873_529.pngimages/BZ_23_1001_493_1021_529.pngTimages/BZ_23_1037_502_1045_537.pngimages/BZ_23_1045_493_1065_529.pngimages/BZ_23_1352_493_1372_529.pngi )TR jiuski +?Vsk j (x)f(x)+Nimages/BZ_23_1183_506_1219_541.pnggi(x)usk.i=1 i=1 i (9)5: Update control inputs by us(k+1)j (x)=-1 2 R-1 j j gTj(x)?Vskj (x).(10)6: Stop if‖Vsk j -Vs(k-1)j ‖≤ei,then set usj =uskj ,otherwise set k ←k+1 and go to step 4.7: Outer s-th iteration:Update Qs+1 j using(xe,u1e,...,uNe)by qT(xe)Qs+1 j q(xe)=ρ jimages/BZ_23_613_948_632_984.pngu je(xe)-usj(xe)images/BZ_23_877_948_896_984.pngTR j jimages/BZ_23_980_948_999_984.pngu je(xe)-usj(xe)images/BZ_23_1244_948_1263_984.png+qT(xe)Qsjq(xe).(11)8: Stop if‖usj -u je‖≤ε j,otherwise set u(s+1)0 j =usj,s ←s+1,and go to step 3.

    It shares similar principles of sequential iteration in, for example,numerical algorithms[40].Given initial> 0,(12)implies

    and

    which implies

    4 Model-free inverse RL for heterogeneous multi-player games

    The inverse RL Algorithm 1 needs to know heterogeneous multi-player system dynamicsf,g1,...,gN, which may not be fully known in reality.To address this, we develop a completely model-free data-driven inverse RL algorithm in this section.The algorithm leverages the off-policy RL technique and neural networks.It uses only measurement data of(xe,u1e,...,uNe)to find a ˉQ jthat optimally yieldsuje(3)for the imitation learning problem.

    4.1 Off-policy inverse RL design

    Based on Algorithm 1, we present two steps to design the model-free data-driven inverse RL algorithm.

    Step 1:Find a model-free equation that replaces(9)and(10).Off-policy integral RL[41,42]is used in Algorithm 1’s inner loops.Towards this end,we rewrite(8)as

    whereare the updating control inputs.

    In addition,we have

    Putting(19)into(20)and then considering(9),we have

    Based on[25],we define the following control inputs for the purpose of model-free off-policy heterogeneous multiplayer RL

    Remark 1A simple understanding of theu jiin (22) withj/=iis that they are auxiliary variables to solveu jiin(22)withj=i.Note thatR ji∈Rmi×mi.

    The model-free inverse RL algorithm for imitation learning in heterogeneous multi-player games is shown below.

    Theorem 2Algorithm2has the same solutions as Algorithm1.

    ProofTaking the limit to(24)of the time intervalδtyields

    One has

    Algorithm 2 Model-free inverse RL for imitation learning in heterogeneous multi-player games 1: Initialization:Select R ji >0,initial Q0j >0,stabilizing u00j ,small thresholds e j and ε j,and ρ j ∈(0,1]for all j ∈N.Set s =0.2: Outer s-th iteration 3: Inner k-th iteration:Set k =0.4: Solve value functions and control inputs for each player j by Vsk j (x(t +δt))-Vskj (x(t))-images/BZ_25_711_484_729_520.png t+δt Nimages/BZ_25_810_506_847_541.png(us(k+1)ji )TR ji(ui -uski )dτ (24)images/BZ_25_378_594_396_629.png t+δt t i=1images/BZ_25_474_603_493_639.pngimages/BZ_25_969_603_988_639.png=-Nimages/BZ_25_737_616_774_651.png(usk dτ.t qT(x)Qsjq(x)+i=1 i )TR jiuski j -Vs(k-1)j ‖≤e j,then set usj =us(k+1)j ,otherwise set k ←k+1 and go to step 4.6: Outer s-th iteration:Update Qs+1 j using measurement data of(xe,u je)by(11).7: Stop if‖usj -u je‖≤ε j,otherwise set u(s+1)0 j =usj,s ←s+1,and go to step 3.5: Stop if‖Vsk

    which implies that(24)is equivalent to(9).In addition,the outer loop formulation is the same.This shows that Algorithms 2 and 1 have the same solutions.■

    4.2 Neural network-based implementations

    Solving directly Algorithm 2 is difficult.Therefore, we implement it via neural networks(NNs).We design two NNbased approximators forin (24) andin (22).According to[43,44],the two approximators are defined as

    With approximators (27) and (28), we rewrite (24) with residual errorsas

    With Kronecker product,(29)is rewritten as

    where

    Based on(30),(31),(29)can be solved using batch least squares as

    which can be rewritten as

    where

    To use batch least squares method to solve, we define

    Similarly,we sampleω≥n(n+1)/2 data tuples in(35),such that rank(XTe Xe) =n(n+ 1)/2.We, thus, uniquely solve forby

    5 Simulations

    This section verifies the model-free inverse RL Algorithm 2 with both linear and nonlinear multi-player Nash game systems.

    5.1 Linear systems

    Consider the expert as a 3-player Nash game system with dynamics matrices

    The learner has identical dynamics.

    We assume the cost function weights of the expert are

    Fig.1 a Convergence of control input NN weights to K je.b Convergence of control input NN weights,where i /= j and i, j ∈{1,2,3}

    which yield the optimal control feedback gains(in terms ofu je=-K jexe)

    5.2 Nonlinear systems

    Consider the expert as a 3-player Nash game system with dynamics matrices

    Fig.2 a Convergence of cont function weight .b Trajectories of the expert and the learner using the converged control policies

    Fig.3 a Convergence of control input NN weights .b Convergence of cost function weights ,where j ∈{1,2,3}.c Trajectories of the expert and the learner using the converged control policies

    6 Conclusions

    This paper studies inverse RL algorithms for imitation learning of multi-player game systems where different control input dynamics are different.We propose a model-free data-driven algorithm to reconstruct the cost functions of a demonstrated multi-player system and yield the same expert’s trajectories.The algorithm is implemented via value function approximators.Simulation examples verify the effectiveness of the proposed methods.In the future,we consider to extend the work to inverse RL for multiagent systems with multiple control players.

    欧美乱码精品一区二区三区| 岛国毛片在线播放| 天堂8中文在线网| 在线天堂最新版资源| 国产精品麻豆人妻色哟哟久久| 色播在线永久视频| 精品一区二区三卡| 精品午夜福利在线看| 午夜福利在线免费观看网站| 美女视频免费永久观看网站| 国产精品一区二区在线不卡| 亚洲人成77777在线视频| 欧美成人午夜精品| 性少妇av在线| 不卡视频在线观看欧美| 免费av中文字幕在线| 亚洲久久久国产精品| 久久精品国产综合久久久| 你懂的网址亚洲精品在线观看| 国产精品一区二区精品视频观看| 免费观看a级毛片全部| 成年人午夜在线观看视频| 国产亚洲欧美精品永久| 亚洲精品视频女| 国产欧美亚洲国产| 亚洲国产精品国产精品| 毛片一级片免费看久久久久| 国产精品亚洲av一区麻豆 | 好男人视频免费观看在线| 久久这里只有精品19| 成人毛片60女人毛片免费| 伊人久久国产一区二区| 激情视频va一区二区三区| 咕卡用的链子| 2018国产大陆天天弄谢| 国产熟女午夜一区二区三区| 男女之事视频高清在线观看 | 你懂的网址亚洲精品在线观看| 赤兔流量卡办理| 精品亚洲成a人片在线观看| 亚洲三区欧美一区| 国产黄色视频一区二区在线观看| 色播在线永久视频| 欧美国产精品va在线观看不卡| 熟女少妇亚洲综合色aaa.| 久久天躁狠狠躁夜夜2o2o | 精品少妇内射三级| 日韩不卡一区二区三区视频在线| 亚洲人成电影观看| 日韩av在线免费看完整版不卡| 天天影视国产精品| 久久久久久久国产电影| 在线观看www视频免费| 亚洲专区中文字幕在线 | 蜜桃国产av成人99| 亚洲欧美一区二区三区久久| 哪个播放器可以免费观看大片| 大话2 男鬼变身卡| 亚洲国产精品999| 人妻 亚洲 视频| 一二三四在线观看免费中文在| 国产男女内射视频| 少妇人妻久久综合中文| 欧美精品人与动牲交sv欧美| 日韩熟女老妇一区二区性免费视频| 男女无遮挡免费网站观看| 国产乱人偷精品视频| 女的被弄到高潮叫床怎么办| 高清欧美精品videossex| 王馨瑶露胸无遮挡在线观看| 丰满乱子伦码专区| 人人妻人人澡人人看| 伊人亚洲综合成人网| 人体艺术视频欧美日本| 国产伦理片在线播放av一区| 丝袜喷水一区| 免费黄网站久久成人精品| 亚洲欧美一区二区三区国产| netflix在线观看网站| 天堂8中文在线网| 国产亚洲最大av| 国产精品亚洲av一区麻豆 | av一本久久久久| av福利片在线| 国产极品天堂在线| 国产精品久久久久久人妻精品电影 | kizo精华| 日本91视频免费播放| 中文字幕亚洲精品专区| 9191精品国产免费久久| 亚洲综合色网址| 久久久久久久久久久久大奶| 丝袜在线中文字幕| 国产老妇伦熟女老妇高清| 亚洲婷婷狠狠爱综合网| 人人妻人人添人人爽欧美一区卜| 免费在线观看黄色视频的| 亚洲av国产av综合av卡| 老司机影院毛片| 波野结衣二区三区在线| 波多野结衣av一区二区av| 亚洲五月色婷婷综合| 久久精品亚洲熟妇少妇任你| 一区二区三区四区激情视频| √禁漫天堂资源中文www| 日本wwww免费看| 国产熟女欧美一区二区| 一本一本久久a久久精品综合妖精| 日韩 亚洲 欧美在线| 咕卡用的链子| 男男h啪啪无遮挡| 少妇人妻 视频| 午夜av观看不卡| 欧美黑人欧美精品刺激| 国产野战对白在线观看| 黑人巨大精品欧美一区二区蜜桃| 丝袜喷水一区| 熟妇人妻不卡中文字幕| 国产精品久久久久久久久免| 丁香六月欧美| 久久久久久久精品精品| 人人澡人人妻人| 午夜久久久在线观看| 精品久久蜜臀av无| 日韩精品有码人妻一区| 色婷婷久久久亚洲欧美| 日日爽夜夜爽网站| 大片免费播放器 马上看| 在线观看国产h片| 国产一区亚洲一区在线观看| 视频区图区小说| 国产黄频视频在线观看| 母亲3免费完整高清在线观看| 黄片无遮挡物在线观看| 欧美亚洲 丝袜 人妻 在线| 男女边摸边吃奶| 肉色欧美久久久久久久蜜桃| 91精品三级在线观看| 精品一品国产午夜福利视频| 日本91视频免费播放| 久久韩国三级中文字幕| 精品一区二区三区av网在线观看 | 女的被弄到高潮叫床怎么办| 国产日韩欧美视频二区| 九色亚洲精品在线播放| 久久久久精品性色| 国产一区二区 视频在线| 成人18禁高潮啪啪吃奶动态图| 国产精品欧美亚洲77777| 亚洲美女视频黄频| av免费观看日本| 国产精品无大码| 国产成人精品福利久久| 亚洲精品美女久久久久99蜜臀 | 99国产精品免费福利视频| 男人添女人高潮全过程视频| 国产一级毛片在线| 亚洲精品第二区| 一边摸一边做爽爽视频免费| 少妇 在线观看| 亚洲欧美中文字幕日韩二区| 午夜日韩欧美国产| 日韩伦理黄色片| 亚洲av欧美aⅴ国产| 亚洲成色77777| 精品免费久久久久久久清纯 | 国产精品久久久久成人av| 久久97久久精品| 久久精品久久精品一区二区三区| 久久久久人妻精品一区果冻| 日韩av免费高清视频| 可以免费在线观看a视频的电影网站 | 免费黄网站久久成人精品| 国产乱来视频区| 最近2019中文字幕mv第一页| 亚洲欧美一区二区三区久久| 日韩免费高清中文字幕av| 午夜日韩欧美国产| 欧美乱码精品一区二区三区| 久久97久久精品| 91老司机精品| 国产激情久久老熟女| 视频区图区小说| 精品国产一区二区久久| 一区在线观看完整版| 久久精品亚洲av国产电影网| 国产黄频视频在线观看| 91aial.com中文字幕在线观看| 亚洲国产欧美一区二区综合| 大话2 男鬼变身卡| 中文天堂在线官网| 国产精品国产三级专区第一集| 最黄视频免费看| 中文精品一卡2卡3卡4更新| 色综合欧美亚洲国产小说| 一级片免费观看大全| 国产欧美亚洲国产| 日韩熟女老妇一区二区性免费视频| 波野结衣二区三区在线| 久久精品人人爽人人爽视色| 性高湖久久久久久久久免费观看| 亚洲av电影在线进入| 免费高清在线观看日韩| 欧美日韩综合久久久久久| 国产av码专区亚洲av| 欧美xxⅹ黑人| 老鸭窝网址在线观看| a级毛片在线看网站| 伊人亚洲综合成人网| 1024视频免费在线观看| 最近最新中文字幕大全免费视频 | 日韩大片免费观看网站| 欧美日韩成人在线一区二区| 日韩伦理黄色片| 99热国产这里只有精品6| 菩萨蛮人人尽说江南好唐韦庄| 99热网站在线观看| 欧美精品av麻豆av| 观看美女的网站| 一二三四在线观看免费中文在| 国产乱人偷精品视频| 免费在线观看完整版高清| 天天躁夜夜躁狠狠久久av| 桃花免费在线播放| 亚洲精品av麻豆狂野| 日韩中文字幕欧美一区二区 | 亚洲欧美一区二区三区久久| 国产黄色视频一区二区在线观看| 一级黄片播放器| 亚洲精品中文字幕在线视频| 欧美成人精品欧美一级黄| 精品亚洲乱码少妇综合久久| 天天影视国产精品| avwww免费| 精品人妻熟女毛片av久久网站| 国产免费现黄频在线看| 男女免费视频国产| 汤姆久久久久久久影院中文字幕| 香蕉国产在线看| 久久免费观看电影| 亚洲美女黄色视频免费看| 精品一区二区免费观看| 久久久久视频综合| 国产精品三级大全| 日本爱情动作片www.在线观看| 99九九在线精品视频| 久久人人爽av亚洲精品天堂| 久久人妻熟女aⅴ| 亚洲国产精品一区二区三区在线| 精品酒店卫生间| 国产成人午夜福利电影在线观看| a级片在线免费高清观看视频| 欧美人与善性xxx| 看免费成人av毛片| 亚洲成色77777| a级毛片在线看网站| 如日韩欧美国产精品一区二区三区| 亚洲欧洲国产日韩| 各种免费的搞黄视频| 欧美中文综合在线视频| 亚洲色图综合在线观看| 欧美日韩国产mv在线观看视频| 国产在视频线精品| 最近2019中文字幕mv第一页| 婷婷成人精品国产| 国产野战对白在线观看| h视频一区二区三区| 免费看不卡的av| 五月开心婷婷网| 黑丝袜美女国产一区| 你懂的网址亚洲精品在线观看| 交换朋友夫妻互换小说| 视频在线观看一区二区三区| 午夜av观看不卡| 日韩精品有码人妻一区| 一级毛片 在线播放| 激情五月婷婷亚洲| 久久99热这里只频精品6学生| 99九九在线精品视频| 又黄又粗又硬又大视频| 国产黄色视频一区二区在线观看| 亚洲国产成人一精品久久久| 亚洲人成网站在线观看播放| 老司机影院毛片| av网站免费在线观看视频| 女性生殖器流出的白浆| 欧美亚洲 丝袜 人妻 在线| 日本一区二区免费在线视频| 国产视频首页在线观看| 精品卡一卡二卡四卡免费| av女优亚洲男人天堂| 国产欧美日韩一区二区三区在线| 免费黄网站久久成人精品| 久久久精品免费免费高清| av有码第一页| 亚洲精品aⅴ在线观看| 又大又爽又粗| 成年女人毛片免费观看观看9 | 久久午夜综合久久蜜桃| 国产精品99久久99久久久不卡 | 国产精品免费大片| 成人漫画全彩无遮挡| www.熟女人妻精品国产| 精品少妇内射三级| 18禁动态无遮挡网站| 秋霞伦理黄片| 19禁男女啪啪无遮挡网站| 你懂的网址亚洲精品在线观看| 久久精品久久精品一区二区三区| 天堂8中文在线网| 日日撸夜夜添| 搡老乐熟女国产| 夜夜骑夜夜射夜夜干| 三上悠亚av全集在线观看| 超碰97精品在线观看| 亚洲精品久久成人aⅴ小说| 国产av码专区亚洲av| 日韩伦理黄色片| 我的亚洲天堂| 亚洲色图综合在线观看| 免费黄色在线免费观看| 纯流量卡能插随身wifi吗| 亚洲专区中文字幕在线 | 久久精品aⅴ一区二区三区四区| 国产免费现黄频在线看| 欧美日韩视频精品一区| av又黄又爽大尺度在线免费看| 无限看片的www在线观看| 黑人巨大精品欧美一区二区蜜桃| 一本一本久久a久久精品综合妖精| 夫妻性生交免费视频一级片| 国产精品成人在线| 熟女少妇亚洲综合色aaa.| 麻豆乱淫一区二区| 一级a爱视频在线免费观看| 女人高潮潮喷娇喘18禁视频| 色网站视频免费| 精品午夜福利在线看| 一级a爱视频在线免费观看| 久久久久精品人妻al黑| e午夜精品久久久久久久| 中文乱码字字幕精品一区二区三区| 80岁老熟妇乱子伦牲交| 国产黄频视频在线观看| 亚洲成人手机| 日本91视频免费播放| a级毛片在线看网站| 国产一区二区 视频在线| 午夜精品国产一区二区电影| 肉色欧美久久久久久久蜜桃| 亚洲免费av在线视频| 国产亚洲最大av| 国产精品国产三级国产专区5o| 亚洲国产日韩一区二区| 各种免费的搞黄视频| 97精品久久久久久久久久精品| 亚洲精品美女久久av网站| 久久久久国产一级毛片高清牌| 如何舔出高潮| 欧美日韩综合久久久久久| 欧美中文综合在线视频| 国产成人欧美| 欧美日韩亚洲综合一区二区三区_| 亚洲欧洲日产国产| 黄网站色视频无遮挡免费观看| 90打野战视频偷拍视频| 亚洲国产欧美在线一区| 精品国产超薄肉色丝袜足j| 欧美日本中文国产一区发布| 最新在线观看一区二区三区 | 中文欧美无线码| 久久久久精品国产欧美久久久 | 久久久久久久久久久久大奶| 黄色怎么调成土黄色| 97在线人人人人妻| 麻豆av在线久日| 中文字幕av电影在线播放| 亚洲欧美色中文字幕在线| 亚洲人成电影观看| 色播在线永久视频| 亚洲精品一二三| 成年女人毛片免费观看观看9 | 免费女性裸体啪啪无遮挡网站| 久久ye,这里只有精品| 晚上一个人看的免费电影| 一级毛片黄色毛片免费观看视频| 在线观看国产h片| 嫩草影视91久久| 亚洲激情五月婷婷啪啪| 男男h啪啪无遮挡| 另类亚洲欧美激情| 久久久久精品久久久久真实原创| 午夜福利视频精品| 一区二区日韩欧美中文字幕| av免费观看日本| 午夜福利影视在线免费观看| 久久天堂一区二区三区四区| 丝袜人妻中文字幕| 毛片一级片免费看久久久久| av视频免费观看在线观看| 日本wwww免费看| 亚洲五月色婷婷综合| 亚洲国产日韩一区二区| 亚洲国产av影院在线观看| 欧美成人午夜精品| 国产一区二区激情短视频 | 国产免费又黄又爽又色| 久久精品亚洲av国产电影网| 午夜福利影视在线免费观看| 欧美黑人欧美精品刺激| 一级毛片 在线播放| 欧美精品亚洲一区二区| 亚洲av日韩精品久久久久久密 | 午夜日本视频在线| 9191精品国产免费久久| 日韩欧美一区视频在线观看| 99香蕉大伊视频| 最近的中文字幕免费完整| 成人亚洲欧美一区二区av| 国产精品一区二区在线不卡| 日韩制服丝袜自拍偷拍| 十八禁人妻一区二区| 人妻人人澡人人爽人人| 精品少妇黑人巨大在线播放| 国产麻豆69| 性色av一级| 一级片免费观看大全| 美国免费a级毛片| 人妻一区二区av| 国产亚洲午夜精品一区二区久久| 国产日韩欧美亚洲二区| 日韩av不卡免费在线播放| 丰满少妇做爰视频| 亚洲,欧美,日韩| 桃花免费在线播放| 亚洲av综合色区一区| 九草在线视频观看| av网站在线播放免费| 九九爱精品视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 啦啦啦视频在线资源免费观看| 熟女av电影| 欧美另类一区| 日韩精品免费视频一区二区三区| 成人国产av品久久久| 老司机深夜福利视频在线观看 | 亚洲国产精品成人久久小说| 最近2019中文字幕mv第一页| 不卡视频在线观看欧美| 一本—道久久a久久精品蜜桃钙片| 亚洲av综合色区一区| 亚洲精品aⅴ在线观看| 亚洲综合精品二区| 看免费成人av毛片| 搡老乐熟女国产| 丝袜喷水一区| 制服诱惑二区| 国产黄色视频一区二区在线观看| 狠狠婷婷综合久久久久久88av| 天美传媒精品一区二区| 一区二区日韩欧美中文字幕| 女人精品久久久久毛片| 中文字幕制服av| 亚洲色图 男人天堂 中文字幕| 国产 精品1| 国产成人精品久久二区二区91 | videos熟女内射| 男女下面插进去视频免费观看| 国产1区2区3区精品| 亚洲人成网站在线观看播放| 中文字幕色久视频| 男人舔女人的私密视频| 久久精品国产a三级三级三级| 亚洲一区二区三区欧美精品| 免费日韩欧美在线观看| 亚洲av电影在线进入| 日本爱情动作片www.在线观看| 亚洲人成网站在线观看播放| 在线观看三级黄色| 国产日韩欧美亚洲二区| 中文字幕人妻熟女乱码| 亚洲三区欧美一区| 日韩一本色道免费dvd| 曰老女人黄片| 男女下面插进去视频免费观看| 亚洲欧美一区二区三区久久| 伦理电影大哥的女人| 国产视频首页在线观看| 在线观看免费视频网站a站| 国产精品人妻久久久影院| 丝瓜视频免费看黄片| 一区在线观看完整版| av女优亚洲男人天堂| 亚洲第一区二区三区不卡| 亚洲国产最新在线播放| 看十八女毛片水多多多| 一区二区三区四区激情视频| 日本黄色日本黄色录像| 久久久久久久精品精品| 午夜福利,免费看| 国产一区二区 视频在线| 蜜桃在线观看..| 一级毛片电影观看| 在线观看免费视频网站a站| 大码成人一级视频| 亚洲第一av免费看| 日本vs欧美在线观看视频| 久久久久久人人人人人| 国产 一区精品| 亚洲av综合色区一区| 街头女战士在线观看网站| 久久人人爽人人片av| 国产成人精品无人区| av不卡在线播放| 国产免费福利视频在线观看| 婷婷色综合www| 国产av精品麻豆| 99久久综合免费| 中文字幕人妻丝袜一区二区 | 国产色婷婷99| 国产精品亚洲av一区麻豆 | 桃花免费在线播放| 涩涩av久久男人的天堂| 亚洲国产av影院在线观看| 在线亚洲精品国产二区图片欧美| 如日韩欧美国产精品一区二区三区| 国产精品一区二区精品视频观看| 亚洲av日韩在线播放| 成年人午夜在线观看视频| 欧美日韩亚洲综合一区二区三区_| 国产在视频线精品| 久久99一区二区三区| 伊人亚洲综合成人网| 亚洲自偷自拍图片 自拍| 亚洲av日韩在线播放| 最近的中文字幕免费完整| 大香蕉久久成人网| 欧美日韩亚洲高清精品| 别揉我奶头~嗯~啊~动态视频 | 亚洲美女黄色视频免费看| 黄色 视频免费看| 中文字幕人妻熟女乱码| 亚洲图色成人| 久久精品久久久久久噜噜老黄| 999久久久国产精品视频| 国产精品人妻久久久影院| 国产午夜精品一二区理论片| 我的亚洲天堂| 成人亚洲精品一区在线观看| av国产久精品久网站免费入址| 天天操日日干夜夜撸| 国产精品国产三级国产专区5o| 少妇被粗大猛烈的视频| 涩涩av久久男人的天堂| 熟女少妇亚洲综合色aaa.| 日本欧美视频一区| 日韩av免费高清视频| 精品人妻在线不人妻| 国产成人啪精品午夜网站| 免费看不卡的av| 日本av手机在线免费观看| 亚洲国产日韩一区二区| 亚洲婷婷狠狠爱综合网| 一级毛片黄色毛片免费观看视频| 亚洲一级一片aⅴ在线观看| 亚洲精品av麻豆狂野| 亚洲男人天堂网一区| 欧美中文综合在线视频| 亚洲欧美成人精品一区二区| 黑人欧美特级aaaaaa片| 欧美激情 高清一区二区三区| 久久精品久久精品一区二区三区| 成人亚洲精品一区在线观看| 无限看片的www在线观看| 国产有黄有色有爽视频| 日韩免费高清中文字幕av| 90打野战视频偷拍视频| 最近手机中文字幕大全| 亚洲欧美精品自产自拍| 一级a爱视频在线免费观看| 两性夫妻黄色片| 精品亚洲乱码少妇综合久久| 成年女人毛片免费观看观看9 | 日本av免费视频播放| 一级黄片播放器| av福利片在线| 高清在线视频一区二区三区| 亚洲av福利一区| a级片在线免费高清观看视频| 国产成人a∨麻豆精品| 黄色一级大片看看| 一级毛片我不卡| 国产福利在线免费观看视频| av女优亚洲男人天堂| 久久99精品国语久久久| 国产爽快片一区二区三区| av片东京热男人的天堂| 国产免费又黄又爽又色| 亚洲欧洲精品一区二区精品久久久 | 黑人巨大精品欧美一区二区蜜桃| e午夜精品久久久久久久| 男女无遮挡免费网站观看| 精品第一国产精品| 五月开心婷婷网| 亚洲欧美清纯卡通| 国产成人精品久久二区二区91 | 亚洲精品一二三| 国精品久久久久久国模美| 叶爱在线成人免费视频播放| 午夜激情av网站| 99香蕉大伊视频| 免费黄频网站在线观看国产| 欧美少妇被猛烈插入视频| 成年人免费黄色播放视频| 人妻人人澡人人爽人人|