• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Minimum-Modified Debye-Hückel Theory for Size-Asymmetric Electrolyte Solutions with Moderate Concentrations

    2023-11-08 08:45:20TiejunXiaoYunZhou
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2023年5期

    Tiejun Xiao,Yun Zhou

    Guizhou Provincial Key Laboratory of Computational Nano-Material Science,Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology,Guizhou Education University,Guiyang 550018,China

    A minimum-modified Debye-Hückel (DH) theory for electrolytes with size asymmetry is developed.Compared with the conventional DH theory,the minimummodified DH theory only introduces an extra surface charge density to capture the electrostatic effect of the size asymmetry of the electrolytes and hence facilitates a boundary element method for electrostatic potential calculation.This theory can distinguish the electrostatic energies and excess chemical potentials of ions with the same sizes but opposite charges,and is applied to a binary primitive electrolyte solution with moderate electrostatic coupling.Compared with the hyper-netted chain theory,the validity of this modified DH theory demonstrates significant improvement over the conventional DH theory.

    Key words: Electrolyte solution,Size-asymmetry,Debye-Hückel theory,Electrostatic energy,Chemical potential

    I.INTRODUCTION

    The mean field theories of electrolyte solutions provide valuable insight into how the free ions response to external electric fields,and find applications in protein crystallization processes [1-3],surface tension predictions [4,5],electron transfer processes [6,7],and Coulomb criticality [8,9].

    A lot of mean field theories have been developed for the restricted primitive model (RPM) electrolyte solutions,where the cations and anions have the same size and opposite charge numbers.As a hallmark of the mean field theory,the Debye-Hückel (DH) theory treats an electrolyte solution as a dielectric continuum with inverse Debye lengthkD,so that the electric potential Φ(r)of an ion in the solution satisfies a linearized Poisson-Boltzmann equation?2Φ(r)=kD2Φ(r).The DH theory supports a boundary element method which reduces the calculation of three-dimensional electrostatic potential to the calculation of a two-dimensional problem on the molecular surface.Such a property makes the DH theory very useful in predicting the electrostatic solvation energy of biomolecules with general geometries [10,11].However,the DH theory neglects the ionic correlations and is applicable only to dilute electrolyte solutions [12].There are two ways to extend the DH theory to concentrated solutions.One way is to simply replacekDby an effective parameterκdetermined by certain physical constraints [13-15].The other way is to introduce multiple DH-like response modes rather than a single DH response mode,such as the linear modified Poisson-Boltzmann (PB) theory [16-18],the dressed ion theory [19-21],and the molecular Debye-Hückel theory [22-25].

    The purpose of this study is to build an extended DH theory of size-asymmetric electrolyte solutions which is simple enough to support a boundary element method for the electrostatic potential calculations.The sizeasymmetry has significant impact on the thermodynamics and the dynamics of the electrolyte solutions[26-30].The mean field theories of size-asymmetric electrolyte solutions use either a single DH response mode[31] or a multi-DH response function [32-35].All these theories are too complicated to support the boundary element method and hence are not very efficient for the solvation of biomolecules in electrolyte solutions.

    In this work,a minimum-modified DH (MMDH) theory is developed for the size-asymmetric electrolyte solutions.It is known that the size-asymmetry leads to a border zone around a solute where the charge density is nonzero even for a neutral solute [31].Such an observation implies that one should take care of the charge density induced in the border zone.In the high temperature limit,the charge density around a neutral solute reduces to a universal charge density

    This paper is organized as the following: in Section II we introduce the MMDH theory for size-asymmetric electrolyte solutions,where the excess thermodynamic properties for the electrolyte solutions are also discussed;in Section III the MMDH theory is applied to electrolyte solutions with moderate electrostatic couplings;finally a brief summary is given in Section IV.

    II.A MINIMUM-MODIFIED DEBYE-HüCKEL (MMDH)THEORY FOR SIZE-ASYMMETRIC ELECTROLYTE SOLUTIONS

    A.Model description of size-asymmetric electrolyte solutions

    We use the binary size-asymmetric primitive model of electrolyte solutions as an illustrative model to build the MMDH theory.An ion is modeled as a charged hard sphere immersed in a dielectric background with dielectric constant?s.A tagged ion ‘‘i’’ is characterized by a hard sphere diameterσiand a point chargeqi.Denote the elemental charge ase0,the solute charge number iszi=qi/e0.The diameters of ions are additive so that the radius of contact between an ion ‘‘i” and an ion ‘‘j”isσij=(σi+σj)/2.The total particle number density isns,the reduced inverse temperature isβ=1/(kBT)withkB being the Boltzmann constant andTbeing the temperature.The solvent ions are denoted as species 1 and 2.As we focus on the size asymmetry,we assume species 1 and 2 have the same absolute chargeq1=-q2≡qs.The particle number density of speciesiisn1=n2=ns/2.Furthermore,we assumeσ1>σ2without loss of generality.

    B.A minimum-modified Debye-Hückel theory

    In order to build the MMDH theory,we consider the electric potential Φ(r) of a solute which is tagged by‘‘o’’.The solute charge and diameter are denoted asQandσo.The electric potential Φ(r) satisfies the Poisson equation [36]

    It is easy to check that the charge density(r)≡q2n2in the border zone resulting from the size-asymmetry and leads to a cumulate charge

    then we have the following MMDH theory

    Compared to the DH theory,the MMDH theory introduces an extra surface charge densityσeon the spherical molecular surfacer=b.A schematic plot of the MMDH model is shown inFIG.1.Eq.(2) is the main working equation for the MMDH theory.It is also noted that the MMDH theory coincides with a limit case of the molecular DH theory by Song and Xiao [35],i.e.,when only a single DH-like response mode is used in the molecular DH theory and the electrolyte concentration is low,the response equations (5) and (6) in Ref.[35] reduce to Eq.(2) in this work.

    FIG.1 A schematic plot for the MMDH model of a spherical ion with point charge Q and radius b,where σe is a surface charge density due to size asymmetry of the electrolyte solution,kD is the inverse Debye length,Φ (r) is the electric potential.The response equation for Φ(r) is valid in the region r>b.

    According to Eq.(2),the mean electric potentialΦ(r)reads

    whereQc=4πσeb2is the cumulate charge caused by the asymmetric hard sphere interaction and the induced electric potentialψis defined as

    As long as the mean electric potential Φ(r) is determined,one can calculate the electrostatic contribution to its excess thermodynamic properties.With the induced electric potentialψat the center of the ionogiven by,the excess internal energyuefor the solute ‘‘o’’ is evaluated as [22]

    Denoteμeas the electrostatic contribution to the excess chemical potential andψ(λQ) as the induced electric potential of a solute with chargeλQ.μecan be evaluated from the Kirkwood charging process that reads

    The total excess chemical potentialμexreads

    where the cavity formation energyμcavcan be evaluated from the scaled particle theory [37] or the morphologic thermodynamic theory [38,39].Now it is easy to see thatueorμexare different for ions with the same diameter but opposite charge numbers,so the MMDH theory can distinguish the electrostatic energies of cations and anions.Whenσeis neglected,the MMDH theory reduces to the DH theory,such that

    The induced charge densityρind(r) can also be evaluated analytically as long as the electric potential is determined.Forr≥b,

    Using the analytical form of the induced charge density,one can evaluate the dielectric response functionχ(k)≡1-?s/?l(k),where?l(k) is the longitudinal dielectric function of the electrolyte solution.It is known that,withSzz(k) being the static charge structure factor [40],

    andhij(k) is the Fourier transform of the total correlation functionhij(r)≡gij(r)-1.There are other physical constraints on the induced charge density,such as the Stilinger-Lovett(SL) second moment condition which equals toχ(k=0)=1 [41].It is known that the SL second moment condition is violated by the DH theory of RPM electrolyte solutions [13,14].After some calculations,it is found that MMDH theory leads to

    so the SL second moment condition is also violated by the MMDH theory.In order to keep the SL second moment condition in size-asymmetric electrolyte solutions,one may replacekDin the MMDH theory by a tunable parameterκfollowing Attard’s treatment for RPM electrolyte solutions [13,14].However,such a modification is out of the scope of this study and will not be discussed herein.As one can see from the next section,the MMDH theory leads to satisfactory thermodynamic properties of the solution even though the SL condition is violated.This observation implies that the thermodynamic properties are integrated quantities which are not very sensitive to the detailed structures.

    Here are some notes about the MMDH theory.(i)The main difference between the MMDH and the DH theory is the presence of the surface charge densityσe.Note thatσeis independent of the ion radius.One can easily apply this surface charge density to complex molecules.In the case of vanishing size differenceσ1=σ2,one find thatσe=0 and the MMDH theory reduces to the DH theory.(ii) The MMDH theory has the same functional form as the conventional DH theory and the charge densityσe resides only on the molecular surface,so the boundary element methods [42] can also be applied to the electrostatic problem defined by the MMDH theory.It is easy to extend the MMDH theory to solutes beyond spherical geometry by replacing the spherical surface in Eq.(2) with a specific molecular surface.To this end,the MMDH theory leads to a procedure that is easily applied to the solvation of biomolecules in size-asymmetric electrolyte solutions.

    III.APPLICATIONS TO ELECTROLYTE SOLUTIONS

    To validate the MMDH theory,we apply the MMDH theory to electrolytes with moderate electrostatic couplings.We compare our theory against the hyper-netted chain (HNC) approximation of electrolyte solutions,for which the excess internal energyβue and the excess chemical potentialβμex are known.We will show that the MMDH theory are capable of predicting the main features of the ionic thermodynamic properties.

    The HNC theory is known to yield very accurate thermodynamic properties of primitive electrolytes in both the solution region and the molten salt region,where the electrostatic energy difference between the HNC theory and Monte Carlo simulation is typically 1%-2% [43-45].In our method the excess internal energyand the excess chemical potentialare evaluated according to Eq.(5) and Eq.(7),the cavity formation energyβμcavis calculated from the scaled particle theory [37].For the binary primitive electrolyte solution,all parameters used are in the dimensionless form.The parameters used for the binary electrolyte solvent areqs=1,?s=1,β=1,σ1=1.Note that the Debye parameteris a simple function of the total particle number densityns,we take the Debye parameterkDas a control parameter.The diameterσ2of the smaller ion is used as another control parameter.

    For test case I,we fixσ2=0.7 and takekDas a tunable parameter.The excess properties in the range of 0.112

    FIG.2 (a)Reduced electrostatic energy βue,(b) reduced excesschemical potential βμex for ions with size σ2=0.7 and tunable kD,from the HNC theory(filled squareandcircle),the MMDH theory(hollowstar and diamond) and the DH theory (hollow triangle).The lines are guides to the eye.

    For test case II,we fixσ2=0.5 and takekDas a tunable parameter.The excess properties in the range of 0.112

    FIG.3 (a) Reduced electrostatic energy βue,(b) reduced excess chemical potential βμex for ions with size σ2=0.5 and tunable kD,from the HNC theory (filled square and circle),the MMDH theory (hollow star and diamond)and the DH theory (hollow triangle).The lines are guides to the eye.

    For test case III,we fixσ2=0.25 and takekDas a tunable parameter.The excess properties in the range of 0.112

    FIG.4 (a) Reduced electrostatic energy βue,(b) reduced excess chemical potential βμex for ions with size σ2=0.25 and tunable kD,from the HNC theory (filled square and circle),the MMDH theory (hollow star and diamond) and the DH theory (hollow triangle).The lines are guides to the eye.

    For test case IV,we fixσ2=0.15 and takekDas a tunable parameter.The excess properties in the range of 0.112

    FIG.5 (a) Reduced electrostatic energy βue,(b) reduced excess chemical potential βμex for ions with size σ2=0.15 and tunable kD,from the HNC theory (filled square and circle),the MMDH theory (hollow star and diamond) and the DH theory (hollow triangle).The lines are guides to the eye.

    For the parameters considered,the MMDH theory is in reasonable good agreements with the HNC theory,where the energy differences are less than 11% for larger ions and less than 6% for smaller ions.The DH theory is less satisfactory,where the energy differences are as large as 29% for larger ions and 21% for smaller ions in certain conditions.In these cases,the HNC theory and MMDH theory lead to,while DH theory always leads to,so the trend for DH theory is incorrect.When the Debye parameterkDincreases,both the MMDH theory and DH theory become less accurate as expected.

    We have also tested the MMDH theory for binary electrolytes with different parameters,but the results are not shown for length reasons.As long as the reduced temperatureβis not large,the concentration is not high and size ratioσ2/σ1is not too small,the MMDH theory gives satisfactory results compared to the HNC theory.

    As the parameters in the primitive electrolyte models are dimensionless,it would be useful to relate these parameters to specific systems.Consider a 1:1 aqueous electrolyte solution with concentrationc=1.50 mol/L at temperatureT=300 K.Taking the relative dielectric constant?r≈78.0 and a typical mean ion diameterd ≈4.00 ?,the reduced Debye length readskDd ≈1.61.So the above results imply that the MMDH theory is applicable to 1:1 electrolyte solution with concentration up to roughly 1.5 mol/L.Note that the derivation of the MMDH theory relies on the assumption of weak electrostatic coupling,one may wonder why the MMDH theory works reasonably well even for solutions with moderate concentration.This may be partly due to error cancellations,as several approximations are combined to build the MMDH theory.

    Note that the MMDH theory is developed for the primitive electrolytes for which ions are treated as charged hard spheres,one may wonder how to generate the MMDH theory for non-primitive electrolytes which consist of charge soft spheres.One possible hint is to use the perturbation theory to determine the effective hard sphere diameter of a soft sphere [22,25],so that charged soft spheres are mapped to charged hard spheres and the MMDH theory can be applied to non-primitive electrolytes in a straightforward way.The extension of the MMDH theory in non-primitive electrolyte solutions is underway.

    IV.CONCLUSION

    A minimum-modified Debye-Hückel theory for electrolyte solutions with size asymmetry is developed.Note that the size asymmetry of solvent electrolytes leads to a charge imbalanced border zone around a solute,a solute ‘‘o’’ is characterized by two types of charge sources,i.e.,a bare solute chargeQand a hard sphere contribution to the induced charge density(k)which is further approximated by a surface charge densityσe.These two kinds of charge sources are screened by the free ions in the same way,from which the electric potential as well as the electrostatic contributions to thermodynamic properties is obtained.So the MMDH theory treats an electrolyte solution as a dielectric continuum with inverse Debye lengthkDand the effect of size-asymmetry is characterized by an effective surface charge densityσe.Our model can distinguish the electrostatic energies and excess chemical potentials of solutes with positive or negative charges,and is successfully applied to electrolyte solutions with moderate concentrations.

    Supplementary materials:Four more figures about the excess properties of the electrolyte solution studied in the Sec.III are shown as FIG.S1(a,b) and FIG.S2(a,b),where the diameter parameter of the smaller ion is taken as σ2=0.35 or σ2=0.2.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China (No.21863001) and a startup package from Guizhou Education University(to Tiejun Xiao);the Natural Science Foundation of department of education of Guizhou province(No.QJKY[2015]483) and a startup package from Guizhou Education University (to Yun Zhou).

    久久久色成人| 天天躁日日操中文字幕| 97在线视频观看| 久久精品综合一区二区三区| 免费大片18禁| 免费人成视频x8x8入口观看| 男人的好看免费观看在线视频| 美女 人体艺术 gogo| 国产人妻一区二区三区在| 日本a在线网址| 综合色丁香网| 色综合站精品国产| 日日干狠狠操夜夜爽| 国产精品女同一区二区软件| 黄色视频,在线免费观看| 一级毛片电影观看 | 美女xxoo啪啪120秒动态图| 波多野结衣高清作品| 五月玫瑰六月丁香| 九九久久精品国产亚洲av麻豆| 免费不卡的大黄色大毛片视频在线观看 | 1000部很黄的大片| 久久热精品热| 18禁黄网站禁片免费观看直播| av天堂中文字幕网| 欧美+日韩+精品| 国产极品精品免费视频能看的| 成人av一区二区三区在线看| 高清午夜精品一区二区三区 | 国产视频一区二区在线看| 91久久精品电影网| 老熟妇仑乱视频hdxx| 91av网一区二区| 成人三级黄色视频| 搡女人真爽免费视频火全软件 | 男女之事视频高清在线观看| 美女xxoo啪啪120秒动态图| 日日干狠狠操夜夜爽| 最后的刺客免费高清国语| 国产淫片久久久久久久久| 99热这里只有是精品在线观看| 男人狂女人下面高潮的视频| 国产av一区在线观看免费| 18+在线观看网站| 久久久久国产精品人妻aⅴ院| 91狼人影院| 亚洲中文字幕日韩| 午夜影院日韩av| 亚洲自拍偷在线| 亚洲av免费在线观看| 国产一区二区在线av高清观看| 舔av片在线| 在现免费观看毛片| 最近在线观看免费完整版| 男人和女人高潮做爰伦理| 久久久久性生活片| 国产黄色视频一区二区在线观看 | 日本与韩国留学比较| 99热只有精品国产| 露出奶头的视频| 在线观看午夜福利视频| 久久久色成人| 麻豆乱淫一区二区| 国产aⅴ精品一区二区三区波| 亚洲国产日韩欧美精品在线观看| 日日摸夜夜添夜夜添小说| 日韩成人伦理影院| 搞女人的毛片| 小说图片视频综合网站| 亚洲精品一卡2卡三卡4卡5卡| 一级黄色大片毛片| 国产三级中文精品| 日韩制服骚丝袜av| 色哟哟·www| 97超视频在线观看视频| 哪里可以看免费的av片| 午夜老司机福利剧场| 国产人妻一区二区三区在| 欧洲精品卡2卡3卡4卡5卡区| 老女人水多毛片| 观看免费一级毛片| 国产色婷婷99| 在线播放无遮挡| 国产黄片美女视频| 欧美三级亚洲精品| 日日撸夜夜添| 一级毛片我不卡| 亚洲第一电影网av| 老熟妇乱子伦视频在线观看| 一a级毛片在线观看| 国产精品免费一区二区三区在线| av免费在线看不卡| 精品久久国产蜜桃| 最后的刺客免费高清国语| 亚洲成人久久爱视频| 99热6这里只有精品| 精品99又大又爽又粗少妇毛片| 天堂网av新在线| 亚洲,欧美,日韩| 三级经典国产精品| 亚洲一区二区三区色噜噜| 亚洲美女黄片视频| 色噜噜av男人的天堂激情| 菩萨蛮人人尽说江南好唐韦庄 | 成年av动漫网址| 欧美国产日韩亚洲一区| 国产成人a区在线观看| 精品少妇黑人巨大在线播放 | 最后的刺客免费高清国语| 亚洲一区高清亚洲精品| 国产 一区 欧美 日韩| 天天一区二区日本电影三级| 小说图片视频综合网站| 一区二区三区高清视频在线| 美女黄网站色视频| 国内精品宾馆在线| 精品一区二区三区av网在线观看| 亚洲第一区二区三区不卡| 国产高清视频在线观看网站| 综合色丁香网| 毛片一级片免费看久久久久| 日韩亚洲欧美综合| 99热这里只有精品一区| 国产色爽女视频免费观看| 国产伦在线观看视频一区| 日本黄大片高清| 午夜影院日韩av| 国产黄a三级三级三级人| 亚洲最大成人av| 亚洲欧美清纯卡通| 久久99热6这里只有精品| 亚洲图色成人| 三级经典国产精品| 美女大奶头视频| 国产一区二区激情短视频| 亚洲七黄色美女视频| 少妇人妻精品综合一区二区 | 可以在线观看的亚洲视频| 午夜精品国产一区二区电影 | 男女边吃奶边做爰视频| 午夜免费激情av| 国产人妻一区二区三区在| 久久草成人影院| 日韩欧美国产在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 成人毛片a级毛片在线播放| av国产免费在线观看| 综合色丁香网| 在线免费十八禁| 精品午夜福利视频在线观看一区| 成人永久免费在线观看视频| 亚洲欧美日韩无卡精品| 国产精品日韩av在线免费观看| 男女视频在线观看网站免费| 夜夜夜夜夜久久久久| 99久久精品一区二区三区| 亚洲国产高清在线一区二区三| 一a级毛片在线观看| 成人特级av手机在线观看| 51国产日韩欧美| 日日摸夜夜添夜夜添小说| 欧美不卡视频在线免费观看| 男女下面进入的视频免费午夜| 超碰av人人做人人爽久久| 亚洲国产色片| 国产乱人偷精品视频| 成人高潮视频无遮挡免费网站| 老熟妇乱子伦视频在线观看| 深夜a级毛片| 国产高清有码在线观看视频| 夜夜夜夜夜久久久久| 成人综合一区亚洲| 亚洲中文字幕一区二区三区有码在线看| 人人妻人人澡欧美一区二区| 国产精品三级大全| 欧美色视频一区免费| 国产精品一二三区在线看| 人人妻人人看人人澡| 国产午夜精品久久久久久一区二区三区 | 熟女电影av网| 色噜噜av男人的天堂激情| 男女边吃奶边做爰视频| 亚洲欧美日韩高清专用| 午夜福利成人在线免费观看| 日韩欧美在线乱码| 麻豆久久精品国产亚洲av| 亚洲精品色激情综合| 成人无遮挡网站| 一级av片app| 赤兔流量卡办理| 夜夜看夜夜爽夜夜摸| 日韩精品有码人妻一区| 日韩av在线大香蕉| 成人二区视频| 在线播放无遮挡| 成人av一区二区三区在线看| 亚洲国产欧美人成| 亚洲最大成人手机在线| 成年女人毛片免费观看观看9| 国产欧美日韩精品一区二区| 一区福利在线观看| 久久久久性生活片| 全区人妻精品视频| 亚洲欧美日韩卡通动漫| 在线播放无遮挡| 一进一出好大好爽视频| 男人狂女人下面高潮的视频| 日韩一本色道免费dvd| 亚洲七黄色美女视频| 成人美女网站在线观看视频| 亚洲欧美成人综合另类久久久 | 亚洲国产精品成人综合色| 成人综合一区亚洲| 免费av毛片视频| 韩国av在线不卡| 在线观看免费视频日本深夜| а√天堂www在线а√下载| 亚洲人成网站高清观看| 婷婷六月久久综合丁香| 一进一出抽搐动态| 中文亚洲av片在线观看爽| 成人漫画全彩无遮挡| 午夜久久久久精精品| 日本五十路高清| 97热精品久久久久久| 亚洲精华国产精华液的使用体验 | 性色avwww在线观看| 中国美白少妇内射xxxbb| 婷婷六月久久综合丁香| 免费看日本二区| 亚洲电影在线观看av| 我要搜黄色片| 人人妻人人看人人澡| 亚洲av.av天堂| 少妇熟女欧美另类| 亚洲电影在线观看av| 精品免费久久久久久久清纯| 欧美潮喷喷水| 丰满人妻一区二区三区视频av| 少妇熟女欧美另类| ponron亚洲| 亚洲五月天丁香| 联通29元200g的流量卡| 国产精品免费一区二区三区在线| 亚洲久久久久久中文字幕| 嫩草影视91久久| 久久久久国内视频| 伦理电影大哥的女人| 久久久精品94久久精品| 国产色婷婷99| 久久婷婷人人爽人人干人人爱| 麻豆乱淫一区二区| 午夜福利在线观看免费完整高清在 | 亚洲五月天丁香| 欧美日本视频| 成年女人永久免费观看视频| 国产aⅴ精品一区二区三区波| 自拍偷自拍亚洲精品老妇| 国产亚洲av嫩草精品影院| 久久精品国产亚洲av涩爱 | 国产精品美女特级片免费视频播放器| 国产午夜福利久久久久久| 99国产精品一区二区蜜桃av| 欧美人与善性xxx| 亚州av有码| 91精品国产九色| 国产一级毛片七仙女欲春2| 欧美zozozo另类| 久久久欧美国产精品| 美女黄网站色视频| 久久久久精品国产欧美久久久| 日本与韩国留学比较| 国产欧美日韩一区二区精品| 日本-黄色视频高清免费观看| 日本爱情动作片www.在线观看 | 日韩成人av中文字幕在线观看 | 最近中文字幕高清免费大全6| 天堂av国产一区二区熟女人妻| 久久中文看片网| 成熟少妇高潮喷水视频| av天堂在线播放| 亚洲四区av| 亚洲av二区三区四区| 国产精品精品国产色婷婷| 成人一区二区视频在线观看| 天堂动漫精品| 丝袜喷水一区| av免费在线看不卡| 国产乱人偷精品视频| 97人妻精品一区二区三区麻豆| 亚洲成人久久爱视频| 免费观看在线日韩| 亚洲精品国产av成人精品 | 亚洲欧美日韩高清专用| 国产午夜福利久久久久久| av卡一久久| 色5月婷婷丁香| 亚洲国产欧美人成| 日日摸夜夜添夜夜添小说| 精品乱码久久久久久99久播| 中文在线观看免费www的网站| 欧美日韩精品成人综合77777| 97超级碰碰碰精品色视频在线观看| 两个人的视频大全免费| 好男人在线观看高清免费视频| 小说图片视频综合网站| 一区二区三区免费毛片| 亚洲av二区三区四区| 精品免费久久久久久久清纯| 两性午夜刺激爽爽歪歪视频在线观看| 综合色丁香网| 搞女人的毛片| 嫩草影院新地址| 欧美日本视频| 深爱激情五月婷婷| 伦精品一区二区三区| 欧美一区二区国产精品久久精品| 国产探花在线观看一区二区| 国产成年人精品一区二区| 国产乱人偷精品视频| 久久精品国产自在天天线| 成人鲁丝片一二三区免费| 人人妻,人人澡人人爽秒播| 1024手机看黄色片| 人妻夜夜爽99麻豆av| 男人的好看免费观看在线视频| 人人妻人人澡人人爽人人夜夜 | 欧美高清成人免费视频www| 亚洲熟妇熟女久久| 成人综合一区亚洲| 床上黄色一级片| 99热这里只有是精品50| 亚洲国产欧洲综合997久久,| 青春草视频在线免费观看| 高清日韩中文字幕在线| 真实男女啪啪啪动态图| 日韩制服骚丝袜av| 亚洲久久久久久中文字幕| 少妇被粗大猛烈的视频| 欧美3d第一页| 美女免费视频网站| 欧美成人免费av一区二区三区| 亚洲美女黄片视频| 成年女人毛片免费观看观看9| 午夜影院日韩av| 欧美色欧美亚洲另类二区| 此物有八面人人有两片| 国产视频内射| 成人三级黄色视频| 老司机福利观看| 亚洲成人中文字幕在线播放| 成人亚洲精品av一区二区| 人人妻人人澡欧美一区二区| 欧美中文日本在线观看视频| 五月伊人婷婷丁香| 中文字幕免费在线视频6| 91av网一区二区| 成人二区视频| 一a级毛片在线观看| 欧美成人精品欧美一级黄| 日韩欧美精品v在线| 啦啦啦啦在线视频资源| 五月伊人婷婷丁香| 高清毛片免费看| 国产高清激情床上av| 精品99又大又爽又粗少妇毛片| eeuss影院久久| 午夜福利成人在线免费观看| 国产伦精品一区二区三区视频9| 色av中文字幕| 亚洲美女视频黄频| 中文在线观看免费www的网站| 国产精品久久久久久精品电影| 欧美高清性xxxxhd video| 国内揄拍国产精品人妻在线| 又爽又黄a免费视频| 99热网站在线观看| 国产在线精品亚洲第一网站| 哪里可以看免费的av片| 午夜免费男女啪啪视频观看 | 一个人看的www免费观看视频| 岛国在线免费视频观看| 成年版毛片免费区| 一级毛片我不卡| 99视频精品全部免费 在线| 18禁裸乳无遮挡免费网站照片| 熟女电影av网| 久久久国产成人免费| 国产精品综合久久久久久久免费| 精品无人区乱码1区二区| 国产av在哪里看| 麻豆av噜噜一区二区三区| 日本与韩国留学比较| 一级av片app| 日韩中字成人| 尤物成人国产欧美一区二区三区| 亚州av有码| 啦啦啦观看免费观看视频高清| 国产av不卡久久| 国产精品野战在线观看| 99九九线精品视频在线观看视频| 久久久久国产精品人妻aⅴ院| 久久韩国三级中文字幕| 亚洲人成网站在线播放欧美日韩| 麻豆国产av国片精品| ponron亚洲| 美女 人体艺术 gogo| 最好的美女福利视频网| 亚洲欧美精品综合久久99| 少妇丰满av| 国产精品久久电影中文字幕| 国产精品免费一区二区三区在线| 99精品在免费线老司机午夜| 乱人视频在线观看| 免费看光身美女| 亚洲国产精品成人综合色| 变态另类成人亚洲欧美熟女| 国内精品宾馆在线| 国产三级中文精品| 国产v大片淫在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 国产乱人偷精品视频| 精品乱码久久久久久99久播| 99久久精品一区二区三区| or卡值多少钱| 国内精品一区二区在线观看| 国产成人影院久久av| av在线蜜桃| 午夜激情福利司机影院| 国产精品无大码| 午夜精品国产一区二区电影 | 成年女人永久免费观看视频| 国产伦在线观看视频一区| 两个人视频免费观看高清| 黄色日韩在线| 国产欧美日韩一区二区精品| 亚洲精品一区av在线观看| 特大巨黑吊av在线直播| 免费av毛片视频| 国内精品久久久久精免费| 欧美一区二区国产精品久久精品| 欧美绝顶高潮抽搐喷水| 亚洲精品久久国产高清桃花| 国内少妇人妻偷人精品xxx网站| 女人被狂操c到高潮| 亚洲成人中文字幕在线播放| 亚洲天堂国产精品一区在线| 国产黄a三级三级三级人| 中文资源天堂在线| 天天躁日日操中文字幕| 久久精品国产鲁丝片午夜精品| 99久久中文字幕三级久久日本| 国内精品久久久久精免费| 欧美性猛交黑人性爽| 搞女人的毛片| 18禁裸乳无遮挡免费网站照片| 国产免费一级a男人的天堂| 美女 人体艺术 gogo| 日本色播在线视频| 国产大屁股一区二区在线视频| 波多野结衣高清作品| 日韩在线高清观看一区二区三区| 日韩av在线大香蕉| 日本黄大片高清| 精品无人区乱码1区二区| 18禁黄网站禁片免费观看直播| 国产乱人偷精品视频| АⅤ资源中文在线天堂| 欧美人与善性xxx| 亚洲五月天丁香| 精品一区二区三区人妻视频| 麻豆av噜噜一区二区三区| 亚洲欧美成人综合另类久久久 | 久久精品国产亚洲av天美| 日韩三级伦理在线观看| 中文字幕av在线有码专区| 国产黄色小视频在线观看| 日本成人三级电影网站| 国产麻豆成人av免费视频| 日本色播在线视频| 十八禁国产超污无遮挡网站| 我要看日韩黄色一级片| 亚洲精品一卡2卡三卡4卡5卡| 欧美色视频一区免费| 自拍偷自拍亚洲精品老妇| 日本三级黄在线观看| 亚洲av成人av| 精品少妇黑人巨大在线播放 | 最近中文字幕高清免费大全6| 99视频精品全部免费 在线| 国产成人aa在线观看| 亚洲精品成人久久久久久| 中文在线观看免费www的网站| 久久精品综合一区二区三区| 色综合色国产| 最近在线观看免费完整版| 亚洲美女黄片视频| 国产综合懂色| 91久久精品国产一区二区三区| 国产毛片a区久久久久| 99久国产av精品国产电影| 国产av在哪里看| 日本三级黄在线观看| 变态另类丝袜制服| 看免费成人av毛片| 久久久色成人| 成人三级黄色视频| 亚洲在线自拍视频| 观看美女的网站| 欧美日韩一区二区视频在线观看视频在线 | 午夜福利在线观看吧| 国产精品综合久久久久久久免费| 女的被弄到高潮叫床怎么办| 免费不卡的大黄色大毛片视频在线观看 | 一进一出好大好爽视频| 看黄色毛片网站| 69av精品久久久久久| 悠悠久久av| 亚洲欧美精品综合久久99| 五月玫瑰六月丁香| 两性午夜刺激爽爽歪歪视频在线观看| 国内精品宾馆在线| 久久国产乱子免费精品| 午夜精品一区二区三区免费看| 免费看美女性在线毛片视频| 国产精品久久久久久久电影| 欧美丝袜亚洲另类| 香蕉av资源在线| 午夜日韩欧美国产| 久久午夜福利片| 国产三级中文精品| 尤物成人国产欧美一区二区三区| 露出奶头的视频| 国产高清不卡午夜福利| 久久久久性生活片| 高清日韩中文字幕在线| av在线亚洲专区| 春色校园在线视频观看| 国产精品福利在线免费观看| 国产又黄又爽又无遮挡在线| 亚洲性夜色夜夜综合| 国产亚洲精品久久久久久毛片| 久久精品夜色国产| 一进一出好大好爽视频| 亚洲无线观看免费| 亚洲最大成人手机在线| 亚洲成人中文字幕在线播放| 99热精品在线国产| 丝袜美腿在线中文| 日韩av不卡免费在线播放| 久久精品国产亚洲av天美| 露出奶头的视频| 欧美区成人在线视频| 精华霜和精华液先用哪个| 久久人妻av系列| 欧美一区二区亚洲| 国产高清不卡午夜福利| 桃色一区二区三区在线观看| 免费不卡的大黄色大毛片视频在线观看 | 丰满人妻一区二区三区视频av| 久久久久免费精品人妻一区二区| 18禁裸乳无遮挡免费网站照片| 午夜影院日韩av| 久久人妻av系列| 一个人免费在线观看电影| 国产精品一区二区性色av| 一卡2卡三卡四卡精品乱码亚洲| 男女边吃奶边做爰视频| 三级男女做爰猛烈吃奶摸视频| av免费在线看不卡| 成人精品一区二区免费| 一区二区三区免费毛片| 亚洲乱码一区二区免费版| 午夜精品一区二区三区免费看| 亚洲欧美日韩卡通动漫| 亚洲激情五月婷婷啪啪| 中文在线观看免费www的网站| 少妇裸体淫交视频免费看高清| 麻豆久久精品国产亚洲av| 免费黄网站久久成人精品| 九九热线精品视视频播放| 一级黄色大片毛片| 性欧美人与动物交配| АⅤ资源中文在线天堂| 人人妻人人澡人人爽人人夜夜 | 国产极品精品免费视频能看的| 特大巨黑吊av在线直播| 国产精品三级大全| 欧美区成人在线视频| 亚洲精品456在线播放app| 亚洲精品粉嫩美女一区| 一级黄色大片毛片| 国产单亲对白刺激| 免费电影在线观看免费观看| 不卡视频在线观看欧美| 最近2019中文字幕mv第一页| 色吧在线观看| 国产成人freesex在线 | avwww免费| 亚洲成av人片在线播放无| 18禁在线无遮挡免费观看视频 | 又爽又黄a免费视频| 观看美女的网站| 天天躁夜夜躁狠狠久久av| 老师上课跳d突然被开到最大视频| 亚洲av第一区精品v没综合| 日韩一本色道免费dvd| av在线老鸭窝| 99国产精品一区二区蜜桃av| 午夜福利在线在线| 黄色欧美视频在线观看| 免费搜索国产男女视频| 欧美日本亚洲视频在线播放| 一级毛片aaaaaa免费看小| 99riav亚洲国产免费|