• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum Dynamics Calculations on Isotope Effects of Hydrogen Transfer Isomerization in Formic Acid Dimer

    2023-11-08 08:44:58FengyiLiXioxiLiuXingyuYngJinweiCoWenshengBin
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2023年5期

    Fengyi Li,Xioxi Liu,Xingyu Yng,Jinwei Co,Wensheng Bin

    a.Beijing National Laboratory for Molecular Sciences,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    b.University of Chinese Academy of Sciences,Beijing 100049,China

    We present a quantum dynamics study on the isotope effects of hydrogen transfer isomerization in the formic acid dimer,and this is achieved by multidimensional dynamics calculations with an efficient quantum mechanical theoretical scheme developed by our group,on a full-dimensional neural network ab initio potential energy surface.The ground-state and fundamental tunneling splittings for four deuterium isotopologues of formic acid dimer are considered,and the calculated results are in very good general agreement with the available experimental measurements.Strong isotope effects are revealed,the mode-specific fundamental excitation effects on the tunneling rate are evidently influenced by the deuterium substitution of H atom with the substitution on the OH bond being more effective than on the CH bond.Our studies are helpful for acquiring a better understanding of isotope effects in the double-hydrogen transfer processes.

    Key words: Quantum dynamics,Isomerization,Isotope effect,Tunneling splitting,Double hydrogen transfer

    I.INTRODUCTION

    Hydrogen (H) transfer plays important roles in many fields [1-6],such as hydrocarbon combustions [1],transition metal-catalysts [2],and biological enzyme catalysts [3].As a result,the dynamics of H transfer has received considerable experimental and theoretical interests.In the past three decades,the single H transfer reactions and mechanisms have been well understood,and the significant contribution of the tunneling effect to the reaction kinetics and dynamics has been underscored.However,the studies of multiple H transfer process remain a great challenge for both experimentalists and theoreticians,due to the complexity in multiple H transfer [7,8].The dynamical behaviors (especial the contributions of quantum effects) in multiple H transfer processes are still elusive.

    The isotope effect is usually defined as the changes in the kinetic or dynamical quantities when atoms in a molecular reactive system are substituted by their isotopes,which is greatly influenced by quantum mechanical effects such as tunneling,zero-point energy (ZPE),etc.The isotope effect [8-11] is very important in gaining a detailed understanding of the reaction dynamics and mechanisms.For example,the isotope effect can be used to determine whether the multiple H transfer occurs via a concerted mechanism or a stepwise mechanism in a series of processes,such as an enzymatic reaction [9] and the chirality switching in water tetramers on NaCl(001) [8].In a recent case,a strong quantumstate dependent isotope effect associated with the VUV photodissociation of CO was revealed experimentally,implying that such effect must be considered in the photochemical models for the understanding of the solar system and molecular clouds [10].In theoretical studies,the isotope effect is a very sensitive probe of the topographical features of the potential energy surface (PES)[12-14],and thus could be used to evaluate the accuracy or the quality of a given PES.One of the famous examples is that,in the Cl+HD reaction,exact quantum mechanical calculations on the BW2 PES [15] with van der Waals forces predict large DCl/HCl isotope effect correctly and are in excellent agreement with crossed molecular beam experiments [11],in contrast to the results using a previous PES without van der Waals forces.Besides,when the used PES is reliable,the isotope effect could also be used to test the theoretical approach if some approximations are utilized [16].

    The carboxylic acid dimers have long served as the prototypes of multiple H transfer [6,17-19],among which the formic acid dimer (FAD) has been considered as the simplest benchmark system for studies of the concerted double H transfer.In FAD,the potential for the double H transfer exhibits a symmetric doublewell and a single barrier pattern along the reaction coordinate,and H transfer can occur via tunneling,leading to vibrational energy level splittings.Such splittings can be measured by the spectroscopic experiments [20,21] and calculated using various theoretical methods[22,23],and provide valuable information about the dynamics of H transfer.There have been some experimental studies on tunneling splittings of deuterated FAD.The tunneling splitting of DCOOH-HOOCD was reported in 2002 by Havenith group [24] with high-resolution infrared spectroscopic technique.In 2017,Duan group [25] measured the rotationally resolved infrared spectra of HCOOD-DOOCH,with the ground-state tunneling splitting reported as 0.00113 cm-1;they also measured the high-resolution spectra of HCOODDOOCH,and an upper limit of 0.00067 cm-1was estimated from the average linewidth for the ground-state tunneling splitting.In 2019,Liet al.[26] investigated the rotational spectra of HCOOH-HOOCD by using Fourier transform microwave spectroscopy,and obtained a precise tunneling splitting value of 331.2 MHz(0.01106 cm-1).On the other hand,the available theoretical studies on isotope effects in FAD are still limited.An accurate study on the isotope effects based upon fundamental tunneling splittings is still lacking.As for the ground-state tunneling splittings involving deuterated FAD,some quantum calculations [27-29] using the ring-polymer instanton or reduced-dimensionality approach were performed on a previous full-dimensionalab initioPES (referred to as QB) [28].However,recent calculations indicate that an improvement of the QB PES is necessary due to some deficiencies [30].

    In this work,we perform multidimensional quantum dynamics (QD) calculations with an efficient QD scheme developed by us on a full-dimensional neural network (NN)ab initioPES and study the isotope effects of H transfer isomerization in FAD.

    II.QUANTUM DYNAMICS METHODS

    A.Process-oriented basis function customization method

    The present quantum dynamics calculations are carried out using an efficient theoretical scheme deveploped by our group,which is a combination of the process-oriented basis function customization (PBFC)strategy [4,7] with several methods.The PBFC method[7,31,32] is proposed by Bian recently,and the main idea of PBFC is to customize basis functions for specific physical/chemical process,which is usually achieved by optimizing and adjusting then-dimensional (nD) effective Hamiltonian and the coordinate ranges.In the present calculations,the information about double H transfer isomerization is included into the basis function,and thenD effective potential (EP) part of the effective Hamiltonian is optimized and adjusted for the double H transfer process attracting our interest.

    B.Coordinate representation and solution of matrix equation

    In the present calculations,the normal coordinate representation is used,and the saddle point is chosen as the reference point of normal coordinates for the Hamiltonian.The FAD normal coordinates as well as the corresponding normal frequencies are presented in Table I.For a nonlinear system,the expression of theM-mode effective normal Hamiltonian for zero total angular momentum is [29,33]

    HereQkiisanormalcoordinate,andinthe present calculations thecoordinates thatarecrucialto the process of double H transfer are taken into account;Vis theMD EP,which is obtained in accordance with the spirit of the PBFC method by minimizing the potential with all the remaining coordinates in the present calculations.Considering that the process of double H transfer mainly occurs in the plane,much larger optimized ranges are used for the coordinates of in-plane vibrational modes than those of out-of-plane modes.

    The total wave function can be expanded as

    whereπikj(Qkj) is the 1D discrete variable representation (DVR) basis function andNkjis the basis size.Here the 1D DVR basis function is obtained from a designed 1D effective Hamiltonian,the 1D EP part of which is customized for the process of double H transfer by using the PBFC method [29,34].

    For the solution of the Hamiltonian matrix equation,the preconditioned inexact spectral transform (PIST)method [35-38] is used,in which the matrix(H-EI)-1instead of the original matrix H is employed in the Lanczos algorithm,where the shiftEis set as the energy of fundamental excitation of target mode.The PIST method can greatly reduce the needed number in Lanczos iterations,and has been extended to the polyatomic systems by our group.In addition,for better efficiency,an optimal separable basis plus Wyatt (OSBW) preconditioner [37,39-41] is combined with the PIST method,and message passing interface (MPI) is utilized to parallelize the time-consuming parts of our scheme.

    III.POTENTIAL ENERGY SURFACE

    Using the theoretical scheme described above,we perform multidimensional quantum dynamics calculations on a NN PES constructed by our group.The PES is constructed using a general NN fitting procedure[42-44] combined with the fundamental invariant (FI)method [45,46].The feedforward NN with two hidden layers is used,with the number of neurons in hidden layers chosen as 5 and 18,respectively.The input layer contains 1546 FIs.The “early stopping” method is used to avoid over-fitting,and the final PES is generated by averaging over six best fittings.Theab initiocalculations are performed at over 13000 symmetry-unique geometries covering various PES regions,and an accurate fit to the obtained energy points is achieved.The configurations are chosen from a previous geometry set [28]and our quasi-classical trajectory calculations.The energy calculations are carried out using the domainbased coupled cluster theory DLPNO-CCSD(T) [47,48]with the augmented correlation-consistent basis set augcc-pVnZ [49,50] (n=T).

    TABLE I Formic acid dimer (FAD) normal coordinates,as well as the normal frequencies (in cm-1) on the present surface.

    The quality of the fitted NN PES is measured by root mean square error (RMSE).The RMSEs for energy points below 50 and 100 kcal/mol (the energy of the lowest point inab initiocalculations is taken to be zero),are 0.061 and 0.099 kcal/mol,respectively,while the corresponding maximum errors are 1.02 and 2.10 kcal/mol,respectively.The present NN PES reaches a higher accuracy in fitting than the previous QB PES.For example,the energy-weighted RMSE(wRMSE) [28] of the QB PES,in which a weight of 0.004[(0.02+U)(0.2+U)]-1(Uis the energy of that point in Hartree) is assigned to each point of the data set,is 11 cm-1,whereas the corresponding value of the present PES is around 7.6 cm-1,or 0.0217 kcal/mol.In addition,the barrier height on the present PES is 2861 cm-1,which agrees well with ourab initioresult,and is considered to be somewhat better than the value of 2848 cm-1from the QB PES.

    IV.RESULTS AND DISCUSSION

    Various multidimensional QD calculations are performed with the above scheme on the full-dimensional NNab initioPES constructed by our group.The vibrational modes that are strongly coupled to the H transfer should be included,and the coupling patterns of various modes can be recognized from contour plots made using the FAD normal coordinates at the saddle point.Here,various cuts into the full-dimensional PES are obtained by plotting against specific normal coordinates with other coordinates fixed,and typical contour plots are shown inFIG.1to demonstrate the coupling patterns.In particular,we see that theQ6mode is strongly c oupled to theQ1mode,whereas the couplings betweenQ4andQ1are negligible.In addition,the couplings betweenQ17andQ1are also small,and thus the excitation ofQ17may suppress the tunneling.

    FIG.1 Selected contour plots of the surface cuts along the relevant saddle-point normal coordinates (Qi),with the other normal coordinates fixed at zero (Qi in a.u.and energies in kcal/mol).

    Our analysis indicates that theQ6,Q3,Q8modes are strongly coupled to theQ1mode,and actually,a previous work [28] also shows that,theQ1,Q6,Q3,Q8modes are important in the process of H transfer.Illustrations of these normal modes are provided inFIG.2,in whichQ3denotes the intermolecular bending mode andQ8denotes the OCO bending mode.So theQ1,Q6,Q3,Q8modes need to be included in the multidimensional scheme,and our test calculations indicate that,to ob-tain converged energy levels,the basis size(NQ1=32,NQ6=13,NQ3=13,NQ8=11),denoted as (32,13,13,11) for simplicity,is necessary.The ground-state tunneling splitting for (HCOOH)2calculated with the 4D model is 0.0122 cm-1,and Table II shows that,the splitting value is lowered after deuterium substitution for H,displaying a dropping trend from DCOOH-HOOCH to HCOOD-DOOCH,which indicates strong isotope effects.

    FIG.2 The typical vibrational modes of the formic acid dimer.

    TABLE II Ground-state tunneling splitting for the deuterium isotopologues calculated with different models,energies in cm-1.Calculations are performed with the 1D (Q1),2D (Q1,Q6),2D (Q1,Q3),3D (Q1,Q6,Q3),and 4D(Q1,Q6,Q3,Q8)models,respectively.

    We calculate the ground state tunneling splitting(?0) for the four deuterium isotopologues (i.e.,DCOOH-HOOCH,DCOOH-HOOCD,HCOODHOOCH and HCOOD-DOOCH),and the results with different multidimensional models are presented in Table II.As can be seen,the ground-state tunneling splitting of all the four isotopologues is smaller than that of the HCOOH-HOOCH with the 4D model,which indicates that the substitution of deuterium atom for H atom will suppress the tunneling splitting.Furthermore,the ?0 value of DCOOH-HOOCH,which is close to that of DCOOH-HOOCD,is only a little smaller than that of HCOOH-HOOCH;while the ?0 value of HCOOD-HOOCH is about one-tenth of that of HCOOH-HOOCH and the ?0 value of HCOODDOOCH is nearly two orders of magnitude smaller than that of HCOOH-HOOCH.

    In addition,according tok=2c? (cis the speed of light in a vacuum),the tunneling rate (k) for H-transfer isomerization can be deduced from the tunneling splitting (?).FIG.3shows the ratios of tunneling rates for H-transfer isomerization between the four deuterium isotopologues and FAD calculated by the present 4D scheme,from which we can see that thekD/kHratio decreases in the order of DCOOH-HOOCH>DCOOHHOOCD>HCOOD-HOOCH>HCOOD-DOOCH.On account of this,we can find that the deuterium substitution of H atom on the OH bond has a stronger suppression effect on tunneling splitting than the deuterium substitution of H atom on the CH bond.This is reasonable,since the H atom on the OH bond participates in the isomerization process with a bond making or breaking,whereas the H atom on the CH bond acts more or less like a spectator in the isomerization process.Nevertheless,in the latter case,the deuterium substitution of H atom on the CH bond will influence the whole vibrational motions of FAD in an indirect way(the reduced mass and ZPE would change),leading tokD/kHratios being slightly less than 1.

    FIG.3 Ratio of tunneling rates for H-transfer isomerization between four deuterium isotopologues and the formic acid dimer calculated by the present quantum dynamics scheme with 4D model.

    TABLE III Fundamental tunneling splittings for the deuterium isotopologues calculated with the 4D model.

    We also find that,for all the four deuterium isotopologues,there is a trend that the isotope effect is more remarkable when more modes are included.For instance,the ratio of ?0(DCOOH-HOOCH) and ?0(HCOOHHOOCH) is 0.97 with the 1D model,whereas the corresponding value with the 4D model is 0.91;the ratio of?0 (HCOOD-HOOCH) and ?0(HCOOH-HOOCH) is 0.21 with the 1D model,whereas the corresponding value with the 4D model is 0.12,implying that the tunneling in the polyatomic molecular systems such as FAD is multidimensional and could not be described adequately by the methods based on the 1D effective potential energy.

    Table II also lists the available experimental values for comparison.As shown,the calculated results are in very good general agreement with the experimental measurements.In particular,the calculated ?0 value for DCOOH-HOOCH with 4D model is 0.01110 cm-1,which is in excellent agreement with the experimental values [26] of 0.01106 cm-1.The obtained ?0 value of 0.00143 cm-1for HCOOD-HOOCH is also in very good agreement with the experimental value (0.00113 cm-1)of Duan group [25].In addition,the experiments by Duan group reported an upper limit (0.00067 cm-1) for the?0value of HCOOD-DOOCH,and our value of 0.000289 cm-1is in good consistence with this limit.As for the DCOOH-HOOCD,the present result of 0.01105 cm-1is in very good agreement with an early experimental value of 0.0123 cm-1by Havenith group[24].However,considering that the reported ?0value(0.01584 cm-1) for HCOOH-HOOCH by the same group is much larger than the most recent value of 0.01117 cm-1reported by higher resolution microwave spectroscopic experiments [26],it is more sensible to compare the ratio of ?0(DCOOH-HOOCD) and?0(HCOOH-HOOCH) rather than ?0(DCOOHHOOCD) itself.The present calculations yield a value of 0.91 for this ratio,which agrees well with the value of 0.78 deduced from the experiments by Havenith group.

    We also investigate the isotope effects in the tunneling splittings of vibrational excited states in deuterated FAD,and the fundamental tunneling splittings (?i,i=3,6,8) for the four isotopologues calculated with the 4D model are summarized in Table III.As can be seen,for all the isotopologues,the obtained ?3 values are significantly larger than the corresponding ?0 values,indicating a remarkable mode-specific promotion effect.In particular,theQ3modes of HCOOD-DOOCH and HCOOD-HOOCH exhibit more remarkable mode-specific promotion effects than those of DCOOH-HOOCH and DCOOH-HOOCD,whereas theQ6modes of HCOOD-DOOCH and HCOOD-HOOCH lead to more evident mode-specific suppression effects than those of the other isotopologues,which implies that the modespecific suppression/promotion effects on the tunneling rate is evidently influenced by the deuterium substitution of H atom,with the substitution on the OH bond being more effective.We can also see from Table III that,for theQ3andQ8modes,the value of ?idisplays a similar dropping trend from top to bottom,while for theQ6mode there is a different behavior.As can be seen in Table III,the ?6 value for DCOOH-HOOCH is smaller than that for DCOOH-HOOCD,and ?6for HCOOD-HOOCH is rather small and on the same or-der of magnitude as that for HCOOD-DOOCH.One of the possible explanations is that,the symmetry of theQ6vibrational motions (seeFIG.2) is broken in DCOOH-HOOCH and HCOOD-HOOCH,which hinders the concerted double-H transfer process and leads to remarkable suppression effects on the tunneling rate.

    TABLE IV The frequencies (ω in cm-1) and fundamental tunneling splittings for the formic acid dimer calculated with the 4D model.

    Furthermore,we calculate the frequencies and fundamental tunneling splittings for several modes of FAD with the 4D model,which is listed in Table IV.As seen,the obtained frequencies listed are in very good agreement with available experimental values,and the discrepancies between theory and experiment are<14 cm-1,which justifies the scheme used in the present calculations.We can also see from Table IV that,the effect of theQ3vibrational excitation on tunneling is significantly larger than that of the vibrational excitation of theQ6,Q8andQ17modes,which may be due to that the atom displacement of theQ3mode has effective component along the double H-transfer direction whereas the component of the atom displacement of the other three modes (Q6,Q8andQ17) are not effective (seeFIG.2).It should be mentioned that,the number of vibrational modes has been assigned according to the incensement of energy levels calculated on our surface,and the presentQ17mode (HC/OH bending) corresponds to the previousQ14mode calculated on the QB PES.The obtained fundamental tunneling splitting forQ17is 0.0072 cm-1,in reasonable agreement with the experimental value [25] by Duan group.

    V.CONCLUSION

    In this work,efficient multidimensional QD calculations are performed on an accurate full-dimensional NNab initioPES constructed by our group,with the PBFCPIST scheme.The ground-state and fundamental excitation tunneling splittings for four deuterium isotopologues of FAD are investigated.The obtained results are in very good general agreement with the available experimental values,with strong isotope effects being unraveled.In particular,the vibrational excitations of different modes exhibit interesting mode-specific suppression/promotion effects on the tunneling rate,and such effects are evidently influenced by the deuterium substitution of H atom,with the substitution on the OH bond being more effective.The present work also demonstrates the efficiency of our PBFC-PIST scheme.We hope that the present work will stimulate further experimental interests in isotope effects on double-H transfer.

    VI.ACKNOWLEDGMENTS

    This work is supported by the National Natural Science Foundation of China (No.21973098 and No.22133003),and the Beijing National Laboratory for Molecular Sciences.Jianwei Cao acknowledges the Youth Innovation Promotion Association CAS(No.2018045).

    亚洲欧美成人精品一区二区| 欧美乱码精品一区二区三区| 美女主播在线视频| 成年动漫av网址| 1024香蕉在线观看| 久久免费观看电影| 十八禁人妻一区二区| 色婷婷av一区二区三区视频| 在线观看免费高清a一片| 韩国av在线不卡| 欧美黑人精品巨大| 黄频高清免费视频| 中文精品一卡2卡3卡4更新| 校园人妻丝袜中文字幕| 嫩草影视91久久| www.av在线官网国产| 国产熟女午夜一区二区三区| xxxhd国产人妻xxx| 人人澡人人妻人| 十八禁高潮呻吟视频| 一级片免费观看大全| 国产日韩一区二区三区精品不卡| 亚洲国产欧美日韩在线播放| 亚洲伊人色综图| 看免费av毛片| av国产精品久久久久影院| 欧美日韩亚洲国产一区二区在线观看 | 午夜日韩欧美国产| 欧美日韩视频高清一区二区三区二| 久久综合国产亚洲精品| 国产视频首页在线观看| 精品一区二区三区av网在线观看 | 操出白浆在线播放| 国产精品无大码| 国产欧美日韩综合在线一区二区| 国产精品无大码| 最新的欧美精品一区二区| 男女边摸边吃奶| 最新的欧美精品一区二区| 日本av免费视频播放| 亚洲av中文av极速乱| 中文字幕人妻丝袜制服| 免费观看av网站的网址| 男的添女的下面高潮视频| 欧美日韩一区二区视频在线观看视频在线| 国产高清不卡午夜福利| av有码第一页| 赤兔流量卡办理| 日韩一区二区视频免费看| videos熟女内射| 黑人巨大精品欧美一区二区蜜桃| 色播在线永久视频| 91精品伊人久久大香线蕉| 日本爱情动作片www.在线观看| 亚洲,一卡二卡三卡| √禁漫天堂资源中文www| √禁漫天堂资源中文www| 久久影院123| 桃花免费在线播放| 麻豆av在线久日| 成年美女黄网站色视频大全免费| 国产成人一区二区在线| 精品视频人人做人人爽| 亚洲欧美成人精品一区二区| 人体艺术视频欧美日本| 色94色欧美一区二区| 国产一区二区激情短视频 | 各种免费的搞黄视频| 日韩av在线免费看完整版不卡| 亚洲av电影在线进入| 国产精品.久久久| 亚洲精华国产精华液的使用体验| 99久久人妻综合| 女人高潮潮喷娇喘18禁视频| 午夜影院在线不卡| avwww免费| 国产乱人偷精品视频| a 毛片基地| 国产成人a∨麻豆精品| 多毛熟女@视频| 日本vs欧美在线观看视频| 高清黄色对白视频在线免费看| 欧美激情极品国产一区二区三区| 亚洲图色成人| 另类精品久久| 国产精品免费视频内射| 一二三四中文在线观看免费高清| 久久人人爽av亚洲精品天堂| 精品一区在线观看国产| 亚洲av男天堂| 亚洲熟女精品中文字幕| 亚洲第一区二区三区不卡| 叶爱在线成人免费视频播放| 日本黄色日本黄色录像| 国产色婷婷99| 国产在线一区二区三区精| www日本在线高清视频| 欧美乱码精品一区二区三区| 国语对白做爰xxxⅹ性视频网站| av网站在线播放免费| 大片电影免费在线观看免费| 成人国产av品久久久| 亚洲精品久久成人aⅴ小说| 国产乱人偷精品视频| 狠狠精品人妻久久久久久综合| 中文乱码字字幕精品一区二区三区| 亚洲精品av麻豆狂野| 久久精品久久精品一区二区三区| 一本—道久久a久久精品蜜桃钙片| 国产国语露脸激情在线看| 日韩人妻精品一区2区三区| 麻豆av在线久日| 国产成人精品无人区| 精品酒店卫生间| 99久久人妻综合| 狂野欧美激情性bbbbbb| 精品一区二区三区av网在线观看 | 中文字幕最新亚洲高清| 免费久久久久久久精品成人欧美视频| 日本猛色少妇xxxxx猛交久久| 91国产中文字幕| 午夜福利网站1000一区二区三区| 在线天堂中文资源库| 亚洲成av片中文字幕在线观看| 国产成人一区二区在线| 亚洲精品美女久久久久99蜜臀 | 女人高潮潮喷娇喘18禁视频| 亚洲av成人不卡在线观看播放网 | 精品国产乱码久久久久久男人| 色94色欧美一区二区| 成年人免费黄色播放视频| 在线天堂中文资源库| 日本黄色日本黄色录像| 国产欧美亚洲国产| 国产精品.久久久| 99精国产麻豆久久婷婷| 久久精品国产综合久久久| 一本—道久久a久久精品蜜桃钙片| 国产成人欧美在线观看 | 久久人人97超碰香蕉20202| 成年av动漫网址| 亚洲伊人色综图| 免费少妇av软件| h视频一区二区三区| 老汉色av国产亚洲站长工具| 色网站视频免费| 免费观看人在逋| 男女免费视频国产| 亚洲七黄色美女视频| 亚洲第一区二区三区不卡| 成人毛片60女人毛片免费| 久久久久久久久久久久大奶| 亚洲激情五月婷婷啪啪| 两性夫妻黄色片| 成人手机av| 国产精品一国产av| 少妇被粗大猛烈的视频| 人人妻人人澡人人看| 最近最新中文字幕免费大全7| 中文精品一卡2卡3卡4更新| xxx大片免费视频| av网站在线播放免费| 久久久久精品国产欧美久久久 | 日韩一区二区三区影片| 国产精品国产三级国产专区5o| 另类精品久久| 久久人人97超碰香蕉20202| 搡老岳熟女国产| 欧美激情 高清一区二区三区| 国产成人精品福利久久| 亚洲精品美女久久久久99蜜臀 | 精品视频人人做人人爽| 一区福利在线观看| 亚洲精华国产精华液的使用体验| 黄片小视频在线播放| 亚洲人成77777在线视频| 男女边摸边吃奶| 99精品久久久久人妻精品| 精品久久久久久电影网| 欧美精品av麻豆av| 国产免费视频播放在线视频| 国产免费一区二区三区四区乱码| 国产精品嫩草影院av在线观看| 韩国高清视频一区二区三区| 亚洲av在线观看美女高潮| 久久精品aⅴ一区二区三区四区| 国产精品国产av在线观看| 国产一区二区激情短视频 | 一区二区三区四区激情视频| 久久久久精品性色| 丰满饥渴人妻一区二区三| 亚洲美女搞黄在线观看| 欧美黑人精品巨大| 久久久欧美国产精品| 亚洲精品美女久久久久99蜜臀 | 欧美最新免费一区二区三区| 国产成人精品无人区| 久久精品亚洲av国产电影网| 日本wwww免费看| 日韩av免费高清视频| 精品少妇久久久久久888优播| av国产久精品久网站免费入址| 亚洲精品在线美女| 极品少妇高潮喷水抽搐| 少妇被粗大的猛进出69影院| 在线精品无人区一区二区三| 免费观看人在逋| 视频在线观看一区二区三区| av免费观看日本| 亚洲精品乱久久久久久| 欧美久久黑人一区二区| 日韩欧美精品免费久久| 一级黄片播放器| 在线观看一区二区三区激情| 99国产精品免费福利视频| 人成视频在线观看免费观看| 日本一区二区免费在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 日本av手机在线免费观看| 一本大道久久a久久精品| 久久久精品区二区三区| 亚洲av成人不卡在线观看播放网 | 国产精品女同一区二区软件| 丝袜美足系列| 韩国高清视频一区二区三区| 老熟女久久久| h视频一区二区三区| 久久久国产精品麻豆| 亚洲欧美精品自产自拍| 亚洲天堂av无毛| 色综合欧美亚洲国产小说| 一二三四中文在线观看免费高清| 麻豆乱淫一区二区| 欧美av亚洲av综合av国产av | 制服丝袜香蕉在线| 日韩人妻精品一区2区三区| 日韩精品有码人妻一区| 久久影院123| 秋霞在线观看毛片| 欧美av亚洲av综合av国产av | 少妇被粗大猛烈的视频| 亚洲精品国产一区二区精华液| 欧美乱码精品一区二区三区| 麻豆精品久久久久久蜜桃| 丝袜喷水一区| 女性生殖器流出的白浆| 亚洲一区二区三区欧美精品| 精品一区二区免费观看| 综合色丁香网| 老司机影院成人| 国产精品久久久久久久久免| 国产午夜精品一二区理论片| 免费女性裸体啪啪无遮挡网站| 99精品久久久久人妻精品| 久久久精品94久久精品| 天天躁日日躁夜夜躁夜夜| 久久久久久人妻| 亚洲成人国产一区在线观看 | 日本黄色日本黄色录像| 欧美在线一区亚洲| 国产一区二区在线观看av| 欧美日韩视频高清一区二区三区二| 热99国产精品久久久久久7| 精品亚洲乱码少妇综合久久| 久久精品国产亚洲av涩爱| 午夜日本视频在线| 国产精品 欧美亚洲| 精品卡一卡二卡四卡免费| 久久久久久免费高清国产稀缺| 无遮挡黄片免费观看| 不卡视频在线观看欧美| 亚洲av中文av极速乱| 国产极品天堂在线| 亚洲国产av新网站| 欧美久久黑人一区二区| 老司机深夜福利视频在线观看 | 亚洲精品久久久久久婷婷小说| 少妇人妻久久综合中文| 青春草亚洲视频在线观看| 精品卡一卡二卡四卡免费| 精品国产超薄肉色丝袜足j| 精品亚洲成a人片在线观看| 亚洲,欧美精品.| 欧美在线一区亚洲| 操美女的视频在线观看| 黑人欧美特级aaaaaa片| 亚洲一区中文字幕在线| 亚洲av在线观看美女高潮| 亚洲精品美女久久av网站| 只有这里有精品99| 久久久久精品国产欧美久久久 | 中文天堂在线官网| 在线观看国产h片| 亚洲图色成人| 久久国产精品大桥未久av| 日本猛色少妇xxxxx猛交久久| 欧美 日韩 精品 国产| 亚洲成色77777| 狂野欧美激情性xxxx| 国语对白做爰xxxⅹ性视频网站| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久久久久人妻精品电影 | 少妇精品久久久久久久| 性高湖久久久久久久久免费观看| 亚洲av国产av综合av卡| 午夜久久久在线观看| 午夜激情av网站| 免费少妇av软件| 制服丝袜香蕉在线| 色综合欧美亚洲国产小说| 韩国高清视频一区二区三区| 美女高潮到喷水免费观看| 桃花免费在线播放| 一边摸一边做爽爽视频免费| 天天躁夜夜躁狠狠躁躁| 最近中文字幕2019免费版| 久久久精品94久久精品| 婷婷色av中文字幕| 人体艺术视频欧美日本| 中文字幕色久视频| 高清欧美精品videossex| 一级黄片播放器| 欧美日韩亚洲高清精品| 丁香六月天网| 免费看不卡的av| 国产熟女欧美一区二区| 一区在线观看完整版| 99久久精品国产亚洲精品| 多毛熟女@视频| 中文字幕高清在线视频| 欧美成人午夜精品| 丝瓜视频免费看黄片| 日本欧美视频一区| 国产av一区二区精品久久| 亚洲av电影在线进入| av网站免费在线观看视频| 成人黄色视频免费在线看| 午夜老司机福利片| 在线观看国产h片| 99久久99久久久精品蜜桃| 在线免费观看不下载黄p国产| 女性被躁到高潮视频| 亚洲精品国产区一区二| 一边摸一边做爽爽视频免费| 久久久久久久国产电影| 在线亚洲精品国产二区图片欧美| 一本一本久久a久久精品综合妖精| 狠狠精品人妻久久久久久综合| 国产又色又爽无遮挡免| 日韩人妻精品一区2区三区| 精品午夜福利在线看| 色婷婷久久久亚洲欧美| 久久精品aⅴ一区二区三区四区| 成人亚洲精品一区在线观看| 一级,二级,三级黄色视频| 十分钟在线观看高清视频www| 成人18禁高潮啪啪吃奶动态图| 国产免费视频播放在线视频| 久久 成人 亚洲| 女性被躁到高潮视频| 国产精品国产三级国产专区5o| 亚洲国产毛片av蜜桃av| 成年人免费黄色播放视频| 一区二区三区精品91| 一级片'在线观看视频| 中文字幕精品免费在线观看视频| 欧美 日韩 精品 国产| 国产伦理片在线播放av一区| 久久国产精品大桥未久av| 18在线观看网站| 亚洲成国产人片在线观看| 啦啦啦视频在线资源免费观看| 天堂俺去俺来也www色官网| 十八禁高潮呻吟视频| 亚洲精品美女久久久久99蜜臀 | 午夜影院在线不卡| 国产精品av久久久久免费| 日韩伦理黄色片| 精品第一国产精品| 国产精品一区二区精品视频观看| 男女午夜视频在线观看| 捣出白浆h1v1| 免费在线观看黄色视频的| 天堂8中文在线网| 激情视频va一区二区三区| 深夜精品福利| 久久精品人人爽人人爽视色| 香蕉国产在线看| 十分钟在线观看高清视频www| 高清欧美精品videossex| 免费黄频网站在线观看国产| 老鸭窝网址在线观看| 欧美精品av麻豆av| 嫩草影视91久久| 国产成人精品无人区| 国产精品人妻久久久影院| 韩国高清视频一区二区三区| 色网站视频免费| 色视频在线一区二区三区| 国产亚洲av片在线观看秒播厂| 欧美精品一区二区免费开放| 最近手机中文字幕大全| 亚洲,欧美精品.| 国产欧美日韩综合在线一区二区| 高清欧美精品videossex| 久久鲁丝午夜福利片| 各种免费的搞黄视频| 免费在线观看视频国产中文字幕亚洲 | 国产深夜福利视频在线观看| 九草在线视频观看| 亚洲伊人久久精品综合| 最近手机中文字幕大全| 成年动漫av网址| 午夜日本视频在线| 国产免费视频播放在线视频| 无遮挡黄片免费观看| 亚洲七黄色美女视频| 两个人看的免费小视频| 悠悠久久av| 亚洲精品美女久久久久99蜜臀 | 黄色视频不卡| 亚洲av中文av极速乱| 国产精品女同一区二区软件| 一级黄片播放器| 熟女av电影| 精品国产乱码久久久久久小说| 亚洲,一卡二卡三卡| 飞空精品影院首页| 99国产精品免费福利视频| 免费在线观看黄色视频的| 亚洲精品久久午夜乱码| 亚洲精品自拍成人| 久久久久人妻精品一区果冻| 亚洲av综合色区一区| 亚洲成色77777| 国产精品免费大片| 久久人人爽人人片av| 午夜福利在线免费观看网站| 亚洲欧洲国产日韩| 不卡av一区二区三区| 日韩 欧美 亚洲 中文字幕| 视频在线观看一区二区三区| 久久午夜综合久久蜜桃| 丝瓜视频免费看黄片| 亚洲av中文av极速乱| 日日爽夜夜爽网站| 在线观看一区二区三区激情| 亚洲国产欧美一区二区综合| 欧美日韩视频高清一区二区三区二| 高清在线视频一区二区三区| 欧美精品一区二区大全| 中国国产av一级| 纯流量卡能插随身wifi吗| 波野结衣二区三区在线| 精品午夜福利在线看| 最近的中文字幕免费完整| 日韩,欧美,国产一区二区三区| av网站在线播放免费| 亚洲精品中文字幕在线视频| 人体艺术视频欧美日本| 夫妻午夜视频| 伊人久久国产一区二区| kizo精华| 国产精品秋霞免费鲁丝片| 久久久久国产精品人妻一区二区| 亚洲成av片中文字幕在线观看| 免费在线观看黄色视频的| 韩国av在线不卡| 欧美激情高清一区二区三区 | 亚洲欧美中文字幕日韩二区| 亚洲视频免费观看视频| 在线观看免费日韩欧美大片| 黄色毛片三级朝国网站| 丝袜喷水一区| 这个男人来自地球电影免费观看 | 80岁老熟妇乱子伦牲交| 99香蕉大伊视频| 免费日韩欧美在线观看| 国产在线免费精品| 精品午夜福利在线看| 国产成人欧美| 久久99一区二区三区| 综合色丁香网| 日本欧美视频一区| 成人手机av| 亚洲综合精品二区| 亚洲第一青青草原| 国产精品秋霞免费鲁丝片| 亚洲欧美精品综合一区二区三区| 欧美人与善性xxx| 日韩精品有码人妻一区| 又黄又粗又硬又大视频| 人妻 亚洲 视频| 国产一区二区三区av在线| 欧美乱码精品一区二区三区| 国产一卡二卡三卡精品 | 一本色道久久久久久精品综合| 九色亚洲精品在线播放| av有码第一页| svipshipincom国产片| 亚洲国产精品国产精品| 亚洲欧美精品自产自拍| 欧美久久黑人一区二区| 无遮挡黄片免费观看| 亚洲色图 男人天堂 中文字幕| 日本欧美国产在线视频| 国产精品二区激情视频| 啦啦啦在线观看免费高清www| 性色av一级| 免费观看人在逋| 亚洲 欧美一区二区三区| 中文字幕亚洲精品专区| 久久久久久久久久久免费av| 爱豆传媒免费全集在线观看| 飞空精品影院首页| 你懂的网址亚洲精品在线观看| 777米奇影视久久| 在线亚洲精品国产二区图片欧美| 永久免费av网站大全| 看免费av毛片| 国产午夜精品一二区理论片| 亚洲国产av新网站| 麻豆乱淫一区二区| 大话2 男鬼变身卡| 国产1区2区3区精品| 久久久欧美国产精品| 一级毛片 在线播放| 天堂俺去俺来也www色官网| 男女之事视频高清在线观看 | 亚洲国产日韩一区二区| 午夜久久久在线观看| 美女中出高潮动态图| 人人妻人人澡人人看| 麻豆精品久久久久久蜜桃| 你懂的网址亚洲精品在线观看| 久久精品久久精品一区二区三区| 欧美变态另类bdsm刘玥| 大码成人一级视频| 老熟女久久久| 日本午夜av视频| 欧美亚洲日本最大视频资源| 欧美亚洲 丝袜 人妻 在线| 男人爽女人下面视频在线观看| 国产av精品麻豆| 少妇猛男粗大的猛烈进出视频| 精品少妇黑人巨大在线播放| 男女高潮啪啪啪动态图| av在线app专区| 男人操女人黄网站| 九色亚洲精品在线播放| 国产av精品麻豆| 精品少妇久久久久久888优播| 一区福利在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产成人欧美| 午夜日本视频在线| 日本欧美国产在线视频| 99re6热这里在线精品视频| 欧美国产精品一级二级三级| 在线观看人妻少妇| 久久久精品国产亚洲av高清涩受| 久久久久久久大尺度免费视频| 最新的欧美精品一区二区| 欧美日韩精品网址| 国产免费福利视频在线观看| 亚洲自偷自拍图片 自拍| 亚洲成人av在线免费| 国产成人a∨麻豆精品| 欧美激情极品国产一区二区三区| 成人影院久久| 午夜免费观看性视频| 亚洲一级一片aⅴ在线观看| 久久人人97超碰香蕉20202| 91国产中文字幕| 麻豆乱淫一区二区| 国产精品国产三级专区第一集| 一级a爱视频在线免费观看| 国产成人精品久久久久久| 日韩欧美精品免费久久| 国产一区二区激情短视频 | 97人妻天天添夜夜摸| 在线天堂最新版资源| 丁香六月欧美| 成人午夜精彩视频在线观看| 亚洲一级一片aⅴ在线观看| 熟妇人妻不卡中文字幕| 国产精品无大码| 日韩 亚洲 欧美在线| 欧美最新免费一区二区三区| 亚洲精品久久午夜乱码| 熟女av电影| 久久综合国产亚洲精品| a级片在线免费高清观看视频| 一级毛片电影观看| 久热这里只有精品99| 国产精品三级大全| 国产精品久久久人人做人人爽| √禁漫天堂资源中文www| 亚洲国产看品久久| 日韩大片免费观看网站| 国产野战对白在线观看| 丝袜人妻中文字幕| 国语对白做爰xxxⅹ性视频网站| 香蕉丝袜av| 欧美日韩国产mv在线观看视频| 天天添夜夜摸| 超碰成人久久| 国产欧美亚洲国产| 中文精品一卡2卡3卡4更新| 国产在线一区二区三区精| 亚洲色图 男人天堂 中文字幕| 2021少妇久久久久久久久久久| 国产在线免费精品| 啦啦啦在线免费观看视频4| 大香蕉久久网|