• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of Micropores Drilling Force for Printed Circuit Board Micro-holes Based on Energy Method

    2023-10-29 11:41:42ZHENGXiaohu鄭小虎RUANHaoCHENHongbo陳宏博LIUXiaojia劉驍佳LIUZhenghao劉正好
    關(guān)鍵詞:宏博

    ZHENG Xiaohu(鄭小虎), RUAN Hao(阮 浩), CHEN Hongbo(陳宏博), LIU Xiaojia(劉驍佳), LIU Zhenghao(劉正好)

    1 Institute of Artificial Intelligence, Donghua University, Shanghai 201620, China 2 Shanghai Industrial Big Data and Intelligent Systems Engineering Technology Center, Shanghai 201620, China 3 College of Mechanical Engineering, Donghua University, Shanghai 201620, China 4 Shanghai Institute of Aerospace Precision Machinery, Shanghai 201600, China

    Abstract:The quality of printed circuit board (PCB) micro-hole processing directly determines the stability of the inner and outer circuit connections. Micro-hole drilling technology is a typical method for PCB micro-hole processing. The problem of optimal control of its drilling force is one of the main factors affecting the quality of micro-hole machining. To address this problem, the thrust forces and torques in PCB drilling were first modeled and analyzed, and the corresponding prediction models were established. The drilling force analysis was carried out through the micro-hole drilling experiment, the specific cutting energy under different feed rates was calculated, the influence of the size effect was clarified, and the accuracy of the prediction model was verified. The result shows that during the drilling of glass fiber cloth, changes in the material removal mechanism are induced as the feed per revolution is varied. When the feed per revolution is less than the tool edge radius, the glass fiber is not cut by the main cutting edge, but is crushed and broken. When the feed per revolution is greater than the radius of the tool edge, the glass fiber is cut by the main cutting edge. At the same time, the established analytical model can accurately reflect the influence of the size effect on the drilling torque in PCB micro-hole drilling, and the error is within 10%. This method has certain practical application value in controlling PCB micro hole processing quality.

    Key words:printed circuit board(PCB); micro-hole drilling; predictive model; size effect; multi-layer material

    0 Introduction

    With the increasing demand for data transmission in the information age, it has brought great challenges to the development of printed circuit board (PCB) technology that undertakes data transmission carriers. As an important micro-component for the connection and support of components in electronic products, it is widely used in micro-electromechanical systems (MEMS), electronics and biomedicine industries[1-3]. The micropores inside the PCB are the main form of information exchange between layers of the multi-layer PCB, so it is particularly important to ensure the micropores processing of composite materials represented by the glass fiber reinforced polymer (GFRP)[4-5]. Due to its high efficiency and high precision, micro-hole drilling technology is the main method for micro-diameter processing. As for the research on PCB drilling, domestic and foreign scholars usually focus on the optimization of the drilling path, the control of the drilling temperature, and the optimal design in the selection of drilling materials[6-9]. With the development trend of miniaturization, integration and precision of electronic products, the number of micropores, the diameter of micropores and the quality of the wall of the PCB have put forward new requirements[10]. Therefore, drilling force modeling is important for predicting the quality of PCB micro-hole machining and improving tool life.

    A lot of research has been done in China and abroad on the modeling of drilling forces for multi-layer composite materials. Diaz-Alvarezetal.[11]proposed a relevant model for the drilling of biocomposite materials, and analyzed the influence of different conditions on the drilling quality during drilling. Lietal.[12]developed a drilling force model based on oblique cutting theory, which could be used to predict the thrust force and torque of deep hole drilling with staggered teeth boring and trepanning association (BTA). Anandetal.[13]used the method of converting right-angle cutting into the oblique-angle cutting to predict the mechanical model of thrust force and torque of micro-drilling of carbon fiber reinforced plastic composite laminates. In order to control the layering and burr height of laminated materials, relevant scholars[14-15]have proposed different mechanism models to predict the drilling force and torque suffered by carbon fiber reinforced plastics (CFRP)/Ti machining. Gaikheetal.[16]predicted the thrust force and torque for drilling glass fiber reinforced plastic materials to investigate the effect of different combinations of cutting speed and feed rate on thrust force and torque. Many studies have shown that in the field of micro-hole drilling, research on drilling force and its characteristics is crucial for controlling the quality of micro-hole processing. However, the application of the drilling force model to PCB micro-drilling is seldom studied and needs to be further explored.

    For the modeling issue of PCB micro-hole drilling, this paper established an analytical model of PCB micro-hole drilling force based on a specific cutting energy formula, aiming to predict thrust force and torque. Then, micro-hole drilling experiments were conducted to analyze drilling force while clarifying the influence of size effects during the drilling process. Finally, the experimental data were used to verify the analytical model and provide guidance for quality control of micro-hole drilling.

    1 Establishment of PCB Micro-hole Drilling Force Model

    In this study, the analytical model method is used to model the thrust force and torque in PCB drilling, as shown in Eqs. (1) and (2). Shawetal.[17]established a drilling force prediction formula for metal processing, including the axial force and torque prediction formula. The specific form is as follows:

    (1)

    (2)

    whereFis the thrust force,Tis the torque,HBis the hardness of the workpiece,cis the chisel edge length,dis the diameter of a drill, andfis the feed rate. The other parameters,a,K′1,K′2,K′3,K′4andK′5, can be obtained by drilling experiments. In the above formula, in addition to the existence of 6 fixed constants, the ratioc/dof the chisel edge to the drill diameter is also a constant, so the above formula can be simplified as

    F=K1(fd)1-a+K2d2,

    (3)

    T=K3f1-ad2-a,

    (4)

    whereK1,K2andK3are new constants.

    Shawetal.[17]established another equation of calculating torque based on size effect theory, which was the relation between effective specific cutting energyuand (fd)-a, shown as

    (5)

    Dharan pointed out in his study[18]that since the above equations are discussed mainly for the work done by the tool, related to material properties and machining parameters, avoiding the issue of tool geometry. Therefore, Eqs. (1) and (2) with suitable values ofa,K′1,K′2andK′3can be used to predict the drilling force in composites as well, in addition to metal drilling.

    Since the prediction model can be determined after the values ofa,K1,K2andK3are obtained, the logarithm of both sides of Eq. (5) can be taken at the same time, as shown in Eq. (6), where the constantais still obtained through Eq. (5). The torqueTis measured experimentally.

    (6)

    When the specific cutting energyuis calculated, Eq. (6) can be regarded as a linear equation with lg (fd) as the independent variable. The regression equation of lguand lg (fd) can be obtained through experiments, and the coefficient of the regression equation is (-a), which is the slope of the straight line.

    After the indexais determined, then (fd)1-aandf1-ad2-ain Eq. (3) and Eq. (4) are taken as two variables, and the logarithms are taken for each of the two equations, and Eqs. (3) and (4) are converted into 2 linear equations with (fd)1-aandf1-ad2-aas independent variables respectively. In order to determine the value of the above constants, it is necessary to carry out micro-hole drilling experiments. The regression equations ofF,Tand (fd)1-a,f1-ad2-aobtained through the experiments are the equations ofFandT.

    2 PCB Micro-hole Drilling Experiment

    2.1 Experimental procedure

    Since the size effect in PCB micro-drilling process is mainly reflected in the change of drilling specific energy, which is mainly obtained by drilling torque calculation, this study adopts the experimental method of dynamometer torque measurement to analyze the size effect in PCB micro-hole drilling process and provides experimental data for drilling force model.

    In this study, the drilling force measurement experimental platform designed with reference to the relevant micromachining literature[19-20]is shown in Fig.1. In Fig.1,Xrepresents the left-right movement,Yrepresents the front-back movement, andZrepresents the up-down movement. The platform uses a Kistler9272 dynamometer (originally from Winterthur, Zurich state, Switzerland) to measure torque and conduct micro-hole drilling experiments with a diameter of 0.4 mm. The geometric parameters of the drill are shown in Table 1. And the processing material is FR-4 double-sided copper-clad PCB, and its performance parameters are shown in Table 2.

    Fig.1 Schematic of hardware system for force measurement

    Table 1 Characteristic parameters of FR-4 board

    Table 2 Geometric parameters of drill bit

    In this study, the single-factor experimental method is used to study the influence of the size effect during PCB drilling by analyzing the torque variation with different feed per revolution selected while the spindle speed is kept constant. The torque signals obtained are shown in Fig.2.

    Fig.2 The measured torque signals(feed=0.002 mm/r, speed=40 000 r/min)

    Some of the experimental parameters are shown in Table 3. The experiments are repeated three times for each group.

    Table 3 Experimental parameters

    2.2 Determination of model constants

    The drilling force model constant was determined by micro-hole drilling experiments, and the fitted curve between the specific cutting energy lguand lg(fd) is obtained after data analysis, as shown in Fig.3. The fitted equation is shown as

    lgu=2.065-0.418 9lg (fd).

    (7)

    The slope of Eq. (7) is the value of (-a), then we can getaas 0.418 9.

    Fig.3 lg u vs lg(fd) (d=0.4 mm)

    Therefore, after substituting the value of the constanta, the fitting curve between the thrust force and (fd)1-ais determined, as shown in Fig.4, and the determined fitting equation is the thrust force model shown as

    F=1.201+341.4(fd)0.5811.

    (8)

    Fig.4 Thrust force vs (fd)1-a (d=0.4 mm)

    Similarly, the fitting curve between the obtained torqueTandf1-ad2-ais shown in Fig.5, and the torque fitting equation is shown as

    T=-0.0089+14.79f1-ad2-a=
    -0.0089+14.79f0.5811d1.5811.

    (9)

    Fig.5 Torque vs f1-ad2-a (d=0.4 mm)

    3 Results and Discussion

    3.1 Analysis of experimental results

    After the above experiments, the variation curve of the relationship between torque and feed per revolution can be obtained, as shown in Fig.6. Figure 6 reflects that the relationship between drilling torque and feed per revolution is generally proportional. In particular, there is a small jump in drilling torque when the feed is 0.003 mm/r, but a significant drop in drilling torque when the feed is 0.004 mm/r, followed by a continuous positive increase, a phenomenon that occurs due to the effect of size effect in micro-fabrication.

    Fig.6 Feed per revolution vs torque (d=0.4 mm, speed=40 000 r/min)

    The relationship between specific cutting energy and feed per revolution is shown in Fig.7, where the value of specific cutting energy is derived from Eq.(5), which reflects the general trend of decreasing specific cutting energy as feed per revolution increases. Among them, the specific cutting energy can jump significantly when the feed is 0.003 mm/r, indicating that the material removal process is mainly based on extrusion at this stage. When the feed reaches 0.005 mm/r, the change of specific cutting energy tends to be stable, indicating that in the steady-state cutting stage, the fiber material mainly occurs shear fracture.

    Fig.7 Specific cutting energy vs feed (d=0.4 mm, speed=40 000 r/min)

    The structure of glass fiber cloth is shown in Fig.8. Glass fiber cloth is made of glass balls or glass blocks, which are melted, drawn and spun at high temperatures. Each bundle of the original filaments is composed of hundreds or even thousands of monofilaments. Due to the characteristics of high tensile strength and high brittleness of glass fiber, in the process of drilling glass fiber cloth, with the change of the feed per revolution, the material removal mechanism will change. The diameter of the glass fiber in the PCB board used in this study is 0.011 mm, which is exactly within the variation range of the tool edge radius.

    Fig.8 Picture of structure of glass fiber cloth

    The principle of the size effect of PCB micro-drilling is shown in Fig.9. When the feed per revolutionfrevis greater than the radius of the tool edger, the glass fiber is cut by the main cutting edge; whenfrevis less thanr, the glass fibers are crushed after being squeezed, and the above changes in the material removal mechanism are specifically reflected as changes in specific cutting energy.

    Fig.9 Size effect in micro-drilling of PCB

    3.2 Model verification

    After obtaining the fitting equations for the thrust force and the torque, those are Eqs. (8) and (9), experimental verification was conducted using drill bits with diameters of 0.6 mm and 1.0 mm, and the verification results are shown in Figs.10 and 11. The analysis shows that the predicted drilling force of 1.0 mm diameter drill bit is more accurate than that of 0.6 mm diameter, while the results obtained from the experiment and the theoretical calculation show the same variation trend with an error within 10%, so the analytical model is reasonably designed and the results are valid.

    Fig.10 A plot showing comparison of experimental values and estimated values of the thrust force (speed=40 000 r/min)

    Fig.11 A plot showing comparison of experimental values and estimated values of the torque (speed=40 000 r/min)

    4 Conclusions

    1) Based on Shaw and Oxford established cutting equation theory[17], the constantsa,K′1,K′2,K′3,K′4,K′5andc/dcombination formulas determined by experiments are simplified. After simplification,K1,K2andK3are obtained as new constants, and the drilling force model constants are determined through the drilling force measurement experimental platform, which provides experimental data for the specific cutting energy, thrust force and torque fitting curves.

    2) During the drilling of glass fiber cloth, changes in the material removal mechanism are induced as the feed per revolution is varied. When the feed per revolutionfrevis less than the tool edge radiusr, the glass fiber is not cut by the main cutting edge, but is crushed and broken. When the feed per revolutionfrevis greater than the radiusrof the tool edge, the glass fiber is cut by the main cutting edge.

    3) The fitted formulas for thrust force and torque are obtained experimentally and verified by data comparison. Experiments are conducted using drill bits with diameters of 1.0 mm and 0.6 mm, respectively, and the error rate of the prediction model is found to be within 10%, indicating that the method has some practical application.

    This study focuses on the optimization control of drilling force in PCB micro-hole machining, and establishes a prediction model for drilling force. At the same time, drilling force analysis and model validation are conducted through micro-hole drilling experiments. Through comparison of experimental data, it is found that the prediction error rate of the model is within 10%, indicating that the prediction method has certain practical application functions.

    In addition, for PCB board micro-hole drilling, the drilling quality can be further improved by the following ways. One is to optimize the tool structure and improve the working accuracy of the machining platform. The other is that we can continue to establish the formula for calculating the edge stress of micro milling cutter and establish the edge design method of micro milling cutter based on this to optimize the PCB micro hole drilling process. These will be the next major research directions.

    猜你喜歡
    宏博
    省了一味藥
    Influence of Ti3C2Tx (MXene) on the generation of dielectric barrier discharge in air
    Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis?
    省了一味藥
    上海故事(2021年1期)2021-03-18 12:38:56
    Simulation study on the influence of magnetic field in the near-anode region on anode power deposition of ATON-type Hall thruster
    安丘市宏博機(jī)械制造有限公司(原安丘市華
    ——機(jī)械廠)
    中國釀造(2019年9期)2019-10-08 05:44:04
    My English Learning
    頑固“臺獨(dú)”臺灣同胞告訴我們
    臺聲(2016年5期)2016-09-13 06:36:02
    取材宏博 立論中肯 成一家言——評《南北皮黃戲史述》
    黃腐酸與人血清白蛋白相互作用機(jī)制的光譜研究
    腐植酸(2015年6期)2015-04-17 00:21:21
    国产亚洲av嫩草精品影院| 一卡2卡三卡四卡精品乱码亚洲| 嫩草影院入口| a级毛片a级免费在线| 搡老岳熟女国产| 国产老妇女一区| 日日摸夜夜添夜夜添av毛片| 青春草视频在线免费观看| 欧美另类亚洲清纯唯美| aaaaa片日本免费| 欧美色视频一区免费| 午夜福利视频1000在线观看| 久久久久久久午夜电影| 变态另类丝袜制服| 一级a爱片免费观看的视频| 国产三级中文精品| 插逼视频在线观看| 网址你懂的国产日韩在线| 欧美人与善性xxx| 久久久久久久久中文| 成人欧美大片| av黄色大香蕉| 女的被弄到高潮叫床怎么办| 啦啦啦啦在线视频资源| 可以在线观看的亚洲视频| 亚洲婷婷狠狠爱综合网| 丝袜美腿在线中文| 99久国产av精品国产电影| 日日撸夜夜添| 国产精品无大码| 全区人妻精品视频| 熟女电影av网| 精品少妇黑人巨大在线播放 | 亚洲色图av天堂| 欧美+日韩+精品| 搡老熟女国产l中国老女人| 国产精品永久免费网站| 成人亚洲精品av一区二区| 在线免费观看不下载黄p国产| 亚洲欧美清纯卡通| 91久久精品国产一区二区成人| 超碰av人人做人人爽久久| 精品久久久久久久久av| 在线免费观看的www视频| 国产私拍福利视频在线观看| 在线观看一区二区三区| 日本与韩国留学比较| 亚洲精品亚洲一区二区| 欧美不卡视频在线免费观看| 久久6这里有精品| 狠狠狠狠99中文字幕| 亚洲精品久久国产高清桃花| 色在线成人网| 直男gayav资源| 亚洲人与动物交配视频| 俺也久久电影网| 免费人成视频x8x8入口观看| 免费观看人在逋| 欧美性感艳星| 噜噜噜噜噜久久久久久91| 九色成人免费人妻av| 免费高清视频大片| 国产精品一区二区三区四区久久| 美女黄网站色视频| 久久久成人免费电影| 精品国产三级普通话版| 久久久久久久久大av| 蜜臀久久99精品久久宅男| 悠悠久久av| 亚洲中文字幕日韩| 国产亚洲精品久久久久久毛片| 国产高清不卡午夜福利| 欧美日韩综合久久久久久| 三级国产精品欧美在线观看| 色哟哟哟哟哟哟| 国产免费一级a男人的天堂| 亚洲精品一卡2卡三卡4卡5卡| 亚洲经典国产精华液单| 国产69精品久久久久777片| 淫秽高清视频在线观看| 国产精品日韩av在线免费观看| 亚州av有码| 丰满人妻一区二区三区视频av| 亚洲av免费在线观看| 色吧在线观看| 亚洲av免费在线观看| 亚洲熟妇中文字幕五十中出| 九色成人免费人妻av| 一级毛片电影观看 | 国产精品久久久久久av不卡| 69av精品久久久久久| 搡老妇女老女人老熟妇| 我要看日韩黄色一级片| 18禁在线播放成人免费| 久久久精品欧美日韩精品| 欧美性猛交黑人性爽| 乱人视频在线观看| 中文字幕熟女人妻在线| 女生性感内裤真人,穿戴方法视频| 天堂√8在线中文| 亚洲精品国产成人久久av| 激情 狠狠 欧美| 国产男人的电影天堂91| 99久久中文字幕三级久久日本| 91av网一区二区| 午夜影院日韩av| 国产真实乱freesex| 亚洲aⅴ乱码一区二区在线播放| 亚洲七黄色美女视频| 两个人视频免费观看高清| 一夜夜www| 亚洲七黄色美女视频| 欧美一区二区亚洲| 久久久精品欧美日韩精品| 亚洲精品国产成人久久av| 深爱激情五月婷婷| 乱人视频在线观看| 成人特级av手机在线观看| 九色成人免费人妻av| 97在线视频观看| 俄罗斯特黄特色一大片| 国产黄色小视频在线观看| 久久韩国三级中文字幕| 一个人观看的视频www高清免费观看| 男女视频在线观看网站免费| 免费观看的影片在线观看| 在线免费十八禁| 免费在线观看成人毛片| 国产精品一二三区在线看| 亚洲av电影不卡..在线观看| 日韩欧美国产在线观看| 国产乱人偷精品视频| 国产aⅴ精品一区二区三区波| 成人二区视频| 一进一出好大好爽视频| 亚洲精品亚洲一区二区| 久久精品人妻少妇| 97碰自拍视频| 黄片wwwwww| 深夜a级毛片| 97碰自拍视频| 免费在线观看影片大全网站| 国产免费一级a男人的天堂| 在线观看66精品国产| 一个人看的www免费观看视频| 久久久久免费精品人妻一区二区| 欧美高清成人免费视频www| 免费一级毛片在线播放高清视频| 晚上一个人看的免费电影| 国产久久久一区二区三区| 亚洲精品456在线播放app| 日本黄色片子视频| 91精品国产九色| 人妻丰满熟妇av一区二区三区| 干丝袜人妻中文字幕| 好男人在线观看高清免费视频| 亚洲精品国产av成人精品 | 国内久久婷婷六月综合欲色啪| 日本黄色片子视频| 日韩 亚洲 欧美在线| 国产欧美日韩一区二区精品| 天天躁日日操中文字幕| 深爱激情五月婷婷| 午夜福利在线观看吧| 岛国在线免费视频观看| 一级毛片久久久久久久久女| 日韩三级伦理在线观看| 国产伦精品一区二区三区视频9| 亚洲欧美成人精品一区二区| 国产 一区 欧美 日韩| 乱码一卡2卡4卡精品| 校园春色视频在线观看| 久久人人爽人人片av| 久久九九热精品免费| 欧美xxxx黑人xx丫x性爽| 18禁在线无遮挡免费观看视频 | 91精品国产九色| 亚洲av中文字字幕乱码综合| 99久久成人亚洲精品观看| 男人狂女人下面高潮的视频| aaaaa片日本免费| 秋霞在线观看毛片| 亚洲欧美清纯卡通| 黄色视频,在线免费观看| 天堂动漫精品| a级毛片a级免费在线| 97在线视频观看| 丰满乱子伦码专区| 成人午夜高清在线视频| 色综合站精品国产| 在线观看美女被高潮喷水网站| 性插视频无遮挡在线免费观看| 女人十人毛片免费观看3o分钟| 久久天躁狠狠躁夜夜2o2o| 精品免费久久久久久久清纯| 亚洲va在线va天堂va国产| 男插女下体视频免费在线播放| 好男人在线观看高清免费视频| 成人av在线播放网站| 99在线视频只有这里精品首页| 18禁裸乳无遮挡免费网站照片| 哪里可以看免费的av片| 美女黄网站色视频| 哪里可以看免费的av片| 久久久精品欧美日韩精品| 欧美性猛交黑人性爽| 淫秽高清视频在线观看| 国产一区二区亚洲精品在线观看| 少妇丰满av| 日韩一本色道免费dvd| 12—13女人毛片做爰片一| 精品不卡国产一区二区三区| 国产精品不卡视频一区二区| 久久久久久久久久成人| 白带黄色成豆腐渣| 日韩精品中文字幕看吧| 看免费成人av毛片| 中文资源天堂在线| 99久久成人亚洲精品观看| 久久久a久久爽久久v久久| 日本三级黄在线观看| 成人亚洲精品av一区二区| 成年女人毛片免费观看观看9| 桃色一区二区三区在线观看| 99热全是精品| 真实男女啪啪啪动态图| 中文字幕久久专区| 久久久久久久亚洲中文字幕| 国产大屁股一区二区在线视频| 精品久久久久久久久久免费视频| 国产av麻豆久久久久久久| 国产在线男女| 尾随美女入室| 久久亚洲国产成人精品v| 亚洲中文字幕日韩| 亚洲成人久久性| 最好的美女福利视频网| av在线观看视频网站免费| 草草在线视频免费看| 美女黄网站色视频| 黄色视频,在线免费观看| 国产精品日韩av在线免费观看| 99久久无色码亚洲精品果冻| 97热精品久久久久久| 最近手机中文字幕大全| 国产精品久久视频播放| 露出奶头的视频| 十八禁网站免费在线| 婷婷六月久久综合丁香| 亚洲精品在线观看二区| 久久人人精品亚洲av| 婷婷精品国产亚洲av在线| 国内少妇人妻偷人精品xxx网站| 一进一出抽搐gif免费好疼| 中文字幕av成人在线电影| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久亚洲av鲁大| 国产一区二区三区av在线 | 不卡视频在线观看欧美| 国产伦在线观看视频一区| 女同久久另类99精品国产91| 国产高清视频在线播放一区| 波多野结衣高清无吗| 国产精品av视频在线免费观看| 亚洲熟妇中文字幕五十中出| 亚洲五月天丁香| 99久国产av精品| 99热精品在线国产| 看片在线看免费视频| 黄色配什么色好看| 亚洲欧美日韩东京热| 网址你懂的国产日韩在线| 久久精品91蜜桃| av天堂在线播放| 精品人妻视频免费看| 亚洲av美国av| 欧美一区二区亚洲| 俄罗斯特黄特色一大片| 嫩草影院新地址| 午夜激情福利司机影院| 午夜福利成人在线免费观看| 欧美成人免费av一区二区三区| 国产精品人妻久久久久久| 少妇高潮的动态图| 欧美区成人在线视频| 亚洲自拍偷在线| 俄罗斯特黄特色一大片| 高清毛片免费观看视频网站| 老司机影院成人| 中文字幕免费在线视频6| 中文字幕久久专区| 婷婷亚洲欧美| 日韩欧美 国产精品| 黄片wwwwww| 国产高清视频在线观看网站| 国产精华一区二区三区| 成年女人毛片免费观看观看9| 国产伦精品一区二区三区四那| .国产精品久久| 一级a爱片免费观看的视频| 国产精品久久久久久精品电影| 超碰av人人做人人爽久久| 俺也久久电影网| 国产精品美女特级片免费视频播放器| 色av中文字幕| 国产午夜福利久久久久久| 国产真实伦视频高清在线观看| 国国产精品蜜臀av免费| 99久久无色码亚洲精品果冻| 亚洲av不卡在线观看| 午夜免费男女啪啪视频观看 | 久久久久精品国产欧美久久久| 午夜日韩欧美国产| 男人舔奶头视频| 国产一区二区三区在线臀色熟女| 性插视频无遮挡在线免费观看| 亚洲一区高清亚洲精品| 亚洲欧美日韩东京热| 日本黄色视频三级网站网址| 国产爱豆传媒在线观看| 日产精品乱码卡一卡2卡三| 久久久久久久久久黄片| 在线免费十八禁| 人妻久久中文字幕网| 亚洲国产精品国产精品| 小蜜桃在线观看免费完整版高清| 免费观看在线日韩| 日本与韩国留学比较| 99久久中文字幕三级久久日本| 99九九线精品视频在线观看视频| 国产亚洲av嫩草精品影院| 精品久久久久久久久久久久久| 亚洲精华国产精华液的使用体验 | 一级毛片久久久久久久久女| 春色校园在线视频观看| 亚洲第一电影网av| 国产黄片美女视频| 国产亚洲精品久久久久久毛片| 久久久久久伊人网av| 亚洲国产精品成人综合色| 久久久久性生活片| 亚洲三级黄色毛片| 老熟妇乱子伦视频在线观看| 久久精品久久久久久噜噜老黄 | 国产麻豆成人av免费视频| 欧美中文日本在线观看视频| 国产精品人妻久久久久久| 看免费成人av毛片| av天堂在线播放| 欧美一区二区国产精品久久精品| 久久久久国内视频| 欧美高清性xxxxhd video| 91在线观看av| 美女大奶头视频| 欧美性猛交╳xxx乱大交人| 久久九九热精品免费| 久久久a久久爽久久v久久| 少妇熟女aⅴ在线视频| 日本免费一区二区三区高清不卡| 日韩欧美三级三区| 亚洲国产精品成人综合色| 中出人妻视频一区二区| 看片在线看免费视频| 天天躁夜夜躁狠狠久久av| 精品午夜福利在线看| 搡老妇女老女人老熟妇| 男人狂女人下面高潮的视频| 国产精品野战在线观看| 色综合色国产| 国产三级中文精品| 深爱激情五月婷婷| 一级黄片播放器| 国产高清三级在线| 国产精品久久久久久久电影| 欧美日韩精品成人综合77777| 久久6这里有精品| 麻豆国产av国片精品| 欧美成人免费av一区二区三区| 成人综合一区亚洲| 特级一级黄色大片| 国产精品综合久久久久久久免费| 国产一区二区在线观看日韩| 成年女人永久免费观看视频| 午夜老司机福利剧场| 成人美女网站在线观看视频| 日韩精品中文字幕看吧| 神马国产精品三级电影在线观看| 成年女人永久免费观看视频| 俺也久久电影网| 国产69精品久久久久777片| 欧美最黄视频在线播放免费| 亚洲成人久久性| 久久亚洲精品不卡| 日韩av在线大香蕉| 国产69精品久久久久777片| 黄色欧美视频在线观看| 成年女人看的毛片在线观看| 美女免费视频网站| 国产成人影院久久av| 国产视频内射| 天堂网av新在线| 国产精品1区2区在线观看.| 久久久久久久久大av| 听说在线观看完整版免费高清| 国内精品宾馆在线| 国产精品电影一区二区三区| 老熟妇乱子伦视频在线观看| 欧美日韩精品成人综合77777| 国产一区二区三区在线臀色熟女| 亚洲成人久久爱视频| 一个人看视频在线观看www免费| 国产 一区精品| 一级毛片久久久久久久久女| 久久精品夜色国产| 可以在线观看毛片的网站| 欧美最新免费一区二区三区| 99热只有精品国产| 亚洲av熟女| 蜜桃亚洲精品一区二区三区| 91狼人影院| 真人做人爱边吃奶动态| 亚洲内射少妇av| 日韩一区二区视频免费看| 亚洲国产欧美人成| 又黄又爽又刺激的免费视频.| 亚洲图色成人| 欧美最黄视频在线播放免费| 两个人的视频大全免费| 黑人高潮一二区| 国产美女午夜福利| 日本一本二区三区精品| 亚洲精品一区av在线观看| 97在线视频观看| 少妇人妻精品综合一区二区 | 色哟哟哟哟哟哟| 最新中文字幕久久久久| 我要搜黄色片| 久久久久久久久久久丰满| 国产精品一区二区三区四区免费观看 | 女人十人毛片免费观看3o分钟| 观看美女的网站| 精品午夜福利视频在线观看一区| 你懂的网址亚洲精品在线观看 | 国产精品嫩草影院av在线观看| 国产色爽女视频免费观看| 欧美+亚洲+日韩+国产| 99久久无色码亚洲精品果冻| 国产色爽女视频免费观看| 欧美不卡视频在线免费观看| 午夜视频国产福利| 日韩av不卡免费在线播放| 日本免费a在线| 老师上课跳d突然被开到最大视频| 寂寞人妻少妇视频99o| or卡值多少钱| 精品午夜福利视频在线观看一区| 欧美日本视频| 一进一出好大好爽视频| 麻豆国产av国片精品| 看黄色毛片网站| 成人三级黄色视频| 欧美在线一区亚洲| 观看免费一级毛片| 中文字幕av成人在线电影| 久久综合国产亚洲精品| 国产精品一二三区在线看| 久久久久久久久久成人| 美女免费视频网站| 日韩亚洲欧美综合| 国产探花在线观看一区二区| 国产三级中文精品| 最近手机中文字幕大全| 欧美一级a爱片免费观看看| 日本免费一区二区三区高清不卡| 99九九线精品视频在线观看视频| 精品久久久噜噜| 色在线成人网| 久久韩国三级中文字幕| 日本在线视频免费播放| 两个人的视频大全免费| 日韩强制内射视频| 极品教师在线视频| 女同久久另类99精品国产91| 欧美精品国产亚洲| 成人亚洲精品av一区二区| 在线天堂最新版资源| 国产黄a三级三级三级人| 成熟少妇高潮喷水视频| 免费看a级黄色片| 18禁裸乳无遮挡免费网站照片| 免费一级毛片在线播放高清视频| 日韩人妻高清精品专区| 少妇裸体淫交视频免费看高清| 国产精品久久电影中文字幕| 熟女电影av网| 日本 av在线| 最近的中文字幕免费完整| 伦精品一区二区三区| 久久精品国产自在天天线| 最近手机中文字幕大全| 午夜免费男女啪啪视频观看 | 日韩高清综合在线| 小蜜桃在线观看免费完整版高清| 色噜噜av男人的天堂激情| 美女cb高潮喷水在线观看| 欧美激情久久久久久爽电影| 十八禁网站免费在线| 欧美极品一区二区三区四区| 国产真实伦视频高清在线观看| 欧美xxxx黑人xx丫x性爽| 久久久欧美国产精品| 丰满的人妻完整版| 午夜爱爱视频在线播放| 熟女电影av网| 精品久久国产蜜桃| 亚洲美女搞黄在线观看 | 欧美xxxx黑人xx丫x性爽| 国产白丝娇喘喷水9色精品| 亚洲一级一片aⅴ在线观看| 欧美色欧美亚洲另类二区| 熟女电影av网| 成人午夜高清在线视频| 国产色婷婷99| 色噜噜av男人的天堂激情| 日韩 亚洲 欧美在线| 国产高潮美女av| 亚洲婷婷狠狠爱综合网| 久久久久免费精品人妻一区二区| 国产精品av视频在线免费观看| 免费在线观看成人毛片| 精品一区二区三区人妻视频| 久久午夜福利片| 亚洲最大成人中文| 少妇的逼好多水| 精品人妻一区二区三区麻豆 | 日产精品乱码卡一卡2卡三| 国产成人aa在线观看| 欧美激情久久久久久爽电影| 国产精品爽爽va在线观看网站| 国产单亲对白刺激| 亚洲美女黄片视频| 99在线视频只有这里精品首页| 一个人看视频在线观看www免费| 日韩制服骚丝袜av| 蜜桃久久精品国产亚洲av| 中文字幕av成人在线电影| 一边摸一边抽搐一进一小说| 国产精品野战在线观看| 我的女老师完整版在线观看| 韩国av在线不卡| 在线观看免费视频日本深夜| 五月玫瑰六月丁香| 老女人水多毛片| 国产三级中文精品| 秋霞在线观看毛片| 一个人看的www免费观看视频| 亚洲熟妇中文字幕五十中出| 啦啦啦观看免费观看视频高清| 十八禁网站免费在线| 精品99又大又爽又粗少妇毛片| 色噜噜av男人的天堂激情| 免费观看的影片在线观看| 国产激情偷乱视频一区二区| 亚洲一级一片aⅴ在线观看| 极品教师在线视频| 国产高清激情床上av| 精品人妻一区二区三区麻豆 | 免费看美女性在线毛片视频| 国内精品久久久久精免费| 亚洲国产欧洲综合997久久,| 亚洲av不卡在线观看| 亚洲一区二区三区色噜噜| or卡值多少钱| 免费av观看视频| 久久亚洲精品不卡| 干丝袜人妻中文字幕| 午夜福利高清视频| 俺也久久电影网| 成人高潮视频无遮挡免费网站| 日本a在线网址| 成人综合一区亚洲| 精品人妻视频免费看| 国内精品宾馆在线| 免费在线观看影片大全网站| 久久6这里有精品| 国产亚洲精品av在线| 久久99热这里只有精品18| 国产乱人偷精品视频| 自拍偷自拍亚洲精品老妇| 18禁裸乳无遮挡免费网站照片| 国产伦一二天堂av在线观看| 欧美性猛交╳xxx乱大交人| 国产av一区在线观看免费| av天堂在线播放| 性欧美人与动物交配| 久久久午夜欧美精品| 最新在线观看一区二区三区| 亚洲中文字幕日韩| 男女之事视频高清在线观看| 不卡视频在线观看欧美| 久久人人爽人人爽人人片va| 亚洲第一电影网av| 亚洲乱码一区二区免费版| 午夜精品在线福利| 亚洲av二区三区四区| 欧美日韩乱码在线| 精品少妇黑人巨大在线播放 | 日本欧美国产在线视频| 国产免费男女视频| 精品午夜福利在线看| 亚洲图色成人| 国产蜜桃级精品一区二区三区| 女的被弄到高潮叫床怎么办| 亚洲美女视频黄频| 可以在线观看的亚洲视频|