• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of Micropores Drilling Force for Printed Circuit Board Micro-holes Based on Energy Method

    2023-10-29 11:41:42ZHENGXiaohu鄭小虎RUANHaoCHENHongbo陳宏博LIUXiaojia劉驍佳LIUZhenghao劉正好
    關(guān)鍵詞:宏博

    ZHENG Xiaohu(鄭小虎), RUAN Hao(阮 浩), CHEN Hongbo(陳宏博), LIU Xiaojia(劉驍佳), LIU Zhenghao(劉正好)

    1 Institute of Artificial Intelligence, Donghua University, Shanghai 201620, China 2 Shanghai Industrial Big Data and Intelligent Systems Engineering Technology Center, Shanghai 201620, China 3 College of Mechanical Engineering, Donghua University, Shanghai 201620, China 4 Shanghai Institute of Aerospace Precision Machinery, Shanghai 201600, China

    Abstract:The quality of printed circuit board (PCB) micro-hole processing directly determines the stability of the inner and outer circuit connections. Micro-hole drilling technology is a typical method for PCB micro-hole processing. The problem of optimal control of its drilling force is one of the main factors affecting the quality of micro-hole machining. To address this problem, the thrust forces and torques in PCB drilling were first modeled and analyzed, and the corresponding prediction models were established. The drilling force analysis was carried out through the micro-hole drilling experiment, the specific cutting energy under different feed rates was calculated, the influence of the size effect was clarified, and the accuracy of the prediction model was verified. The result shows that during the drilling of glass fiber cloth, changes in the material removal mechanism are induced as the feed per revolution is varied. When the feed per revolution is less than the tool edge radius, the glass fiber is not cut by the main cutting edge, but is crushed and broken. When the feed per revolution is greater than the radius of the tool edge, the glass fiber is cut by the main cutting edge. At the same time, the established analytical model can accurately reflect the influence of the size effect on the drilling torque in PCB micro-hole drilling, and the error is within 10%. This method has certain practical application value in controlling PCB micro hole processing quality.

    Key words:printed circuit board(PCB); micro-hole drilling; predictive model; size effect; multi-layer material

    0 Introduction

    With the increasing demand for data transmission in the information age, it has brought great challenges to the development of printed circuit board (PCB) technology that undertakes data transmission carriers. As an important micro-component for the connection and support of components in electronic products, it is widely used in micro-electromechanical systems (MEMS), electronics and biomedicine industries[1-3]. The micropores inside the PCB are the main form of information exchange between layers of the multi-layer PCB, so it is particularly important to ensure the micropores processing of composite materials represented by the glass fiber reinforced polymer (GFRP)[4-5]. Due to its high efficiency and high precision, micro-hole drilling technology is the main method for micro-diameter processing. As for the research on PCB drilling, domestic and foreign scholars usually focus on the optimization of the drilling path, the control of the drilling temperature, and the optimal design in the selection of drilling materials[6-9]. With the development trend of miniaturization, integration and precision of electronic products, the number of micropores, the diameter of micropores and the quality of the wall of the PCB have put forward new requirements[10]. Therefore, drilling force modeling is important for predicting the quality of PCB micro-hole machining and improving tool life.

    A lot of research has been done in China and abroad on the modeling of drilling forces for multi-layer composite materials. Diaz-Alvarezetal.[11]proposed a relevant model for the drilling of biocomposite materials, and analyzed the influence of different conditions on the drilling quality during drilling. Lietal.[12]developed a drilling force model based on oblique cutting theory, which could be used to predict the thrust force and torque of deep hole drilling with staggered teeth boring and trepanning association (BTA). Anandetal.[13]used the method of converting right-angle cutting into the oblique-angle cutting to predict the mechanical model of thrust force and torque of micro-drilling of carbon fiber reinforced plastic composite laminates. In order to control the layering and burr height of laminated materials, relevant scholars[14-15]have proposed different mechanism models to predict the drilling force and torque suffered by carbon fiber reinforced plastics (CFRP)/Ti machining. Gaikheetal.[16]predicted the thrust force and torque for drilling glass fiber reinforced plastic materials to investigate the effect of different combinations of cutting speed and feed rate on thrust force and torque. Many studies have shown that in the field of micro-hole drilling, research on drilling force and its characteristics is crucial for controlling the quality of micro-hole processing. However, the application of the drilling force model to PCB micro-drilling is seldom studied and needs to be further explored.

    For the modeling issue of PCB micro-hole drilling, this paper established an analytical model of PCB micro-hole drilling force based on a specific cutting energy formula, aiming to predict thrust force and torque. Then, micro-hole drilling experiments were conducted to analyze drilling force while clarifying the influence of size effects during the drilling process. Finally, the experimental data were used to verify the analytical model and provide guidance for quality control of micro-hole drilling.

    1 Establishment of PCB Micro-hole Drilling Force Model

    In this study, the analytical model method is used to model the thrust force and torque in PCB drilling, as shown in Eqs. (1) and (2). Shawetal.[17]established a drilling force prediction formula for metal processing, including the axial force and torque prediction formula. The specific form is as follows:

    (1)

    (2)

    whereFis the thrust force,Tis the torque,HBis the hardness of the workpiece,cis the chisel edge length,dis the diameter of a drill, andfis the feed rate. The other parameters,a,K′1,K′2,K′3,K′4andK′5, can be obtained by drilling experiments. In the above formula, in addition to the existence of 6 fixed constants, the ratioc/dof the chisel edge to the drill diameter is also a constant, so the above formula can be simplified as

    F=K1(fd)1-a+K2d2,

    (3)

    T=K3f1-ad2-a,

    (4)

    whereK1,K2andK3are new constants.

    Shawetal.[17]established another equation of calculating torque based on size effect theory, which was the relation between effective specific cutting energyuand (fd)-a, shown as

    (5)

    Dharan pointed out in his study[18]that since the above equations are discussed mainly for the work done by the tool, related to material properties and machining parameters, avoiding the issue of tool geometry. Therefore, Eqs. (1) and (2) with suitable values ofa,K′1,K′2andK′3can be used to predict the drilling force in composites as well, in addition to metal drilling.

    Since the prediction model can be determined after the values ofa,K1,K2andK3are obtained, the logarithm of both sides of Eq. (5) can be taken at the same time, as shown in Eq. (6), where the constantais still obtained through Eq. (5). The torqueTis measured experimentally.

    (6)

    When the specific cutting energyuis calculated, Eq. (6) can be regarded as a linear equation with lg (fd) as the independent variable. The regression equation of lguand lg (fd) can be obtained through experiments, and the coefficient of the regression equation is (-a), which is the slope of the straight line.

    After the indexais determined, then (fd)1-aandf1-ad2-ain Eq. (3) and Eq. (4) are taken as two variables, and the logarithms are taken for each of the two equations, and Eqs. (3) and (4) are converted into 2 linear equations with (fd)1-aandf1-ad2-aas independent variables respectively. In order to determine the value of the above constants, it is necessary to carry out micro-hole drilling experiments. The regression equations ofF,Tand (fd)1-a,f1-ad2-aobtained through the experiments are the equations ofFandT.

    2 PCB Micro-hole Drilling Experiment

    2.1 Experimental procedure

    Since the size effect in PCB micro-drilling process is mainly reflected in the change of drilling specific energy, which is mainly obtained by drilling torque calculation, this study adopts the experimental method of dynamometer torque measurement to analyze the size effect in PCB micro-hole drilling process and provides experimental data for drilling force model.

    In this study, the drilling force measurement experimental platform designed with reference to the relevant micromachining literature[19-20]is shown in Fig.1. In Fig.1,Xrepresents the left-right movement,Yrepresents the front-back movement, andZrepresents the up-down movement. The platform uses a Kistler9272 dynamometer (originally from Winterthur, Zurich state, Switzerland) to measure torque and conduct micro-hole drilling experiments with a diameter of 0.4 mm. The geometric parameters of the drill are shown in Table 1. And the processing material is FR-4 double-sided copper-clad PCB, and its performance parameters are shown in Table 2.

    Fig.1 Schematic of hardware system for force measurement

    Table 1 Characteristic parameters of FR-4 board

    Table 2 Geometric parameters of drill bit

    In this study, the single-factor experimental method is used to study the influence of the size effect during PCB drilling by analyzing the torque variation with different feed per revolution selected while the spindle speed is kept constant. The torque signals obtained are shown in Fig.2.

    Fig.2 The measured torque signals(feed=0.002 mm/r, speed=40 000 r/min)

    Some of the experimental parameters are shown in Table 3. The experiments are repeated three times for each group.

    Table 3 Experimental parameters

    2.2 Determination of model constants

    The drilling force model constant was determined by micro-hole drilling experiments, and the fitted curve between the specific cutting energy lguand lg(fd) is obtained after data analysis, as shown in Fig.3. The fitted equation is shown as

    lgu=2.065-0.418 9lg (fd).

    (7)

    The slope of Eq. (7) is the value of (-a), then we can getaas 0.418 9.

    Fig.3 lg u vs lg(fd) (d=0.4 mm)

    Therefore, after substituting the value of the constanta, the fitting curve between the thrust force and (fd)1-ais determined, as shown in Fig.4, and the determined fitting equation is the thrust force model shown as

    F=1.201+341.4(fd)0.5811.

    (8)

    Fig.4 Thrust force vs (fd)1-a (d=0.4 mm)

    Similarly, the fitting curve between the obtained torqueTandf1-ad2-ais shown in Fig.5, and the torque fitting equation is shown as

    T=-0.0089+14.79f1-ad2-a=
    -0.0089+14.79f0.5811d1.5811.

    (9)

    Fig.5 Torque vs f1-ad2-a (d=0.4 mm)

    3 Results and Discussion

    3.1 Analysis of experimental results

    After the above experiments, the variation curve of the relationship between torque and feed per revolution can be obtained, as shown in Fig.6. Figure 6 reflects that the relationship between drilling torque and feed per revolution is generally proportional. In particular, there is a small jump in drilling torque when the feed is 0.003 mm/r, but a significant drop in drilling torque when the feed is 0.004 mm/r, followed by a continuous positive increase, a phenomenon that occurs due to the effect of size effect in micro-fabrication.

    Fig.6 Feed per revolution vs torque (d=0.4 mm, speed=40 000 r/min)

    The relationship between specific cutting energy and feed per revolution is shown in Fig.7, where the value of specific cutting energy is derived from Eq.(5), which reflects the general trend of decreasing specific cutting energy as feed per revolution increases. Among them, the specific cutting energy can jump significantly when the feed is 0.003 mm/r, indicating that the material removal process is mainly based on extrusion at this stage. When the feed reaches 0.005 mm/r, the change of specific cutting energy tends to be stable, indicating that in the steady-state cutting stage, the fiber material mainly occurs shear fracture.

    Fig.7 Specific cutting energy vs feed (d=0.4 mm, speed=40 000 r/min)

    The structure of glass fiber cloth is shown in Fig.8. Glass fiber cloth is made of glass balls or glass blocks, which are melted, drawn and spun at high temperatures. Each bundle of the original filaments is composed of hundreds or even thousands of monofilaments. Due to the characteristics of high tensile strength and high brittleness of glass fiber, in the process of drilling glass fiber cloth, with the change of the feed per revolution, the material removal mechanism will change. The diameter of the glass fiber in the PCB board used in this study is 0.011 mm, which is exactly within the variation range of the tool edge radius.

    Fig.8 Picture of structure of glass fiber cloth

    The principle of the size effect of PCB micro-drilling is shown in Fig.9. When the feed per revolutionfrevis greater than the radius of the tool edger, the glass fiber is cut by the main cutting edge; whenfrevis less thanr, the glass fibers are crushed after being squeezed, and the above changes in the material removal mechanism are specifically reflected as changes in specific cutting energy.

    Fig.9 Size effect in micro-drilling of PCB

    3.2 Model verification

    After obtaining the fitting equations for the thrust force and the torque, those are Eqs. (8) and (9), experimental verification was conducted using drill bits with diameters of 0.6 mm and 1.0 mm, and the verification results are shown in Figs.10 and 11. The analysis shows that the predicted drilling force of 1.0 mm diameter drill bit is more accurate than that of 0.6 mm diameter, while the results obtained from the experiment and the theoretical calculation show the same variation trend with an error within 10%, so the analytical model is reasonably designed and the results are valid.

    Fig.10 A plot showing comparison of experimental values and estimated values of the thrust force (speed=40 000 r/min)

    Fig.11 A plot showing comparison of experimental values and estimated values of the torque (speed=40 000 r/min)

    4 Conclusions

    1) Based on Shaw and Oxford established cutting equation theory[17], the constantsa,K′1,K′2,K′3,K′4,K′5andc/dcombination formulas determined by experiments are simplified. After simplification,K1,K2andK3are obtained as new constants, and the drilling force model constants are determined through the drilling force measurement experimental platform, which provides experimental data for the specific cutting energy, thrust force and torque fitting curves.

    2) During the drilling of glass fiber cloth, changes in the material removal mechanism are induced as the feed per revolution is varied. When the feed per revolutionfrevis less than the tool edge radiusr, the glass fiber is not cut by the main cutting edge, but is crushed and broken. When the feed per revolutionfrevis greater than the radiusrof the tool edge, the glass fiber is cut by the main cutting edge.

    3) The fitted formulas for thrust force and torque are obtained experimentally and verified by data comparison. Experiments are conducted using drill bits with diameters of 1.0 mm and 0.6 mm, respectively, and the error rate of the prediction model is found to be within 10%, indicating that the method has some practical application.

    This study focuses on the optimization control of drilling force in PCB micro-hole machining, and establishes a prediction model for drilling force. At the same time, drilling force analysis and model validation are conducted through micro-hole drilling experiments. Through comparison of experimental data, it is found that the prediction error rate of the model is within 10%, indicating that the prediction method has certain practical application functions.

    In addition, for PCB board micro-hole drilling, the drilling quality can be further improved by the following ways. One is to optimize the tool structure and improve the working accuracy of the machining platform. The other is that we can continue to establish the formula for calculating the edge stress of micro milling cutter and establish the edge design method of micro milling cutter based on this to optimize the PCB micro hole drilling process. These will be the next major research directions.

    猜你喜歡
    宏博
    省了一味藥
    Influence of Ti3C2Tx (MXene) on the generation of dielectric barrier discharge in air
    Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis?
    省了一味藥
    上海故事(2021年1期)2021-03-18 12:38:56
    Simulation study on the influence of magnetic field in the near-anode region on anode power deposition of ATON-type Hall thruster
    安丘市宏博機(jī)械制造有限公司(原安丘市華
    ——機(jī)械廠)
    中國釀造(2019年9期)2019-10-08 05:44:04
    My English Learning
    頑固“臺獨(dú)”臺灣同胞告訴我們
    臺聲(2016年5期)2016-09-13 06:36:02
    取材宏博 立論中肯 成一家言——評《南北皮黃戲史述》
    黃腐酸與人血清白蛋白相互作用機(jī)制的光譜研究
    腐植酸(2015年6期)2015-04-17 00:21:21
    国产 精品1| 国产成人欧美在线观看 | 午夜影院在线不卡| 亚洲欧美一区二区三区国产| 免费久久久久久久精品成人欧美视频| 视频区图区小说| 老鸭窝网址在线观看| 黑丝袜美女国产一区| 久久97久久精品| 国产精品一区二区在线不卡| 亚洲婷婷狠狠爱综合网| av不卡在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 日韩制服骚丝袜av| 欧美日本中文国产一区发布| 精品一区二区三卡| 欧美日韩精品网址| 激情视频va一区二区三区| 亚洲一区中文字幕在线| 少妇的丰满在线观看| 日韩一卡2卡3卡4卡2021年| 最黄视频免费看| 女人精品久久久久毛片| 亚洲天堂av无毛| 大香蕉久久成人网| 别揉我奶头~嗯~啊~动态视频 | 妹子高潮喷水视频| 久久久久国产精品人妻一区二区| 久久久久久免费高清国产稀缺| 在线观看www视频免费| 亚洲欧美日韩另类电影网站| 啦啦啦啦在线视频资源| 久久人人爽人人片av| 亚洲精品成人av观看孕妇| 男人爽女人下面视频在线观看| 丝袜脚勾引网站| 久久韩国三级中文字幕| 最近中文字幕高清免费大全6| 观看美女的网站| 国产精品欧美亚洲77777| 久久久久久久精品精品| 综合色丁香网| 毛片一级片免费看久久久久| 日本欧美国产在线视频| 丝袜脚勾引网站| 悠悠久久av| 黄色视频在线播放观看不卡| 精品久久久精品久久久| 日日摸夜夜添夜夜爱| 久久97久久精品| 黄色毛片三级朝国网站| 午夜福利视频精品| 国产av国产精品国产| 热re99久久国产66热| 成人18禁高潮啪啪吃奶动态图| 国产片内射在线| 黑人欧美特级aaaaaa片| 制服人妻中文乱码| 又粗又硬又长又爽又黄的视频| 亚洲人成77777在线视频| 精品视频人人做人人爽| 亚洲国产毛片av蜜桃av| 日韩视频在线欧美| a级片在线免费高清观看视频| 高清视频免费观看一区二区| 欧美日本中文国产一区发布| 亚洲国产精品一区二区三区在线| 满18在线观看网站| 国产精品成人在线| 日韩精品有码人妻一区| 亚洲成国产人片在线观看| 18在线观看网站| 亚洲熟女精品中文字幕| 美女主播在线视频| 婷婷色综合大香蕉| 视频在线观看一区二区三区| 欧美xxⅹ黑人| 欧美在线一区亚洲| 亚洲国产精品一区二区三区在线| 欧美日韩一级在线毛片| 桃花免费在线播放| 国产精品一区二区在线不卡| 久久99热这里只频精品6学生| 我的亚洲天堂| 久久人人爽av亚洲精品天堂| 黄片播放在线免费| 亚洲欧美清纯卡通| 精品国产超薄肉色丝袜足j| 中文乱码字字幕精品一区二区三区| 亚洲国产欧美日韩在线播放| 精品亚洲成国产av| 欧美黄色片欧美黄色片| 狠狠婷婷综合久久久久久88av| 最近中文字幕2019免费版| 男女免费视频国产| 亚洲精品,欧美精品| 最新在线观看一区二区三区 | 成人亚洲欧美一区二区av| 在线看a的网站| 91国产中文字幕| 精品一区二区三区四区五区乱码 | 男女边摸边吃奶| 日本wwww免费看| 中国国产av一级| 精品少妇久久久久久888优播| 少妇 在线观看| 十八禁高潮呻吟视频| 久久av网站| 亚洲精品aⅴ在线观看| 亚洲美女视频黄频| 欧美日韩视频精品一区| 国产极品天堂在线| 99香蕉大伊视频| 熟女少妇亚洲综合色aaa.| av在线播放精品| www日本在线高清视频| 夜夜骑夜夜射夜夜干| 国产在视频线精品| 黄色视频在线播放观看不卡| 天天躁夜夜躁狠狠躁躁| 国产淫语在线视频| 九草在线视频观看| 亚洲精品视频女| 免费av中文字幕在线| 无限看片的www在线观看| 在线观看www视频免费| 一个人免费看片子| 亚洲,欧美精品.| 51午夜福利影视在线观看| av免费观看日本| 2018国产大陆天天弄谢| 夫妻午夜视频| 黄网站色视频无遮挡免费观看| 精品人妻熟女毛片av久久网站| 国产一区二区在线观看av| 久久精品亚洲熟妇少妇任你| 亚洲第一青青草原| 亚洲免费av在线视频| a级毛片黄视频| 国产又色又爽无遮挡免| 性少妇av在线| 国产亚洲av高清不卡| 成年人免费黄色播放视频| 精品一区二区免费观看| 精品少妇一区二区三区视频日本电影 | 久久久久人妻精品一区果冻| av在线app专区| 高清黄色对白视频在线免费看| 成人影院久久| 午夜福利视频在线观看免费| 欧美精品一区二区免费开放| 五月天丁香电影| 国产又色又爽无遮挡免| 亚洲免费av在线视频| 国产精品99久久99久久久不卡 | av国产久精品久网站免费入址| 欧美97在线视频| 青草久久国产| 日本欧美国产在线视频| 黄色一级大片看看| 男女边吃奶边做爰视频| 亚洲av在线观看美女高潮| 人成视频在线观看免费观看| 国产免费视频播放在线视频| 久热这里只有精品99| 如日韩欧美国产精品一区二区三区| 99久久综合免费| 美女午夜性视频免费| 国产极品天堂在线| 热99国产精品久久久久久7| 国产一卡二卡三卡精品 | 亚洲欧美激情在线| 肉色欧美久久久久久久蜜桃| 综合色丁香网| 丝袜喷水一区| 69精品国产乱码久久久| 老司机在亚洲福利影院| 午夜福利在线免费观看网站| 亚洲av电影在线观看一区二区三区| 丝瓜视频免费看黄片| 国产女主播在线喷水免费视频网站| 丰满迷人的少妇在线观看| 伊人久久国产一区二区| 91aial.com中文字幕在线观看| 精品久久久精品久久久| 国产一区二区三区综合在线观看| www.精华液| 飞空精品影院首页| 久久天躁狠狠躁夜夜2o2o | 免费黄网站久久成人精品| 精品免费久久久久久久清纯 | 老司机靠b影院| 久久人妻熟女aⅴ| 人人澡人人妻人| 精品人妻一区二区三区麻豆| 国产精品一国产av| 国产精品免费视频内射| 精品国产乱码久久久久久男人| 制服人妻中文乱码| 男女无遮挡免费网站观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品免费视频内射| 久久人妻熟女aⅴ| 黄色怎么调成土黄色| 日本欧美视频一区| 国产欧美日韩综合在线一区二区| 女性被躁到高潮视频| 亚洲男人天堂网一区| 女人精品久久久久毛片| 在线亚洲精品国产二区图片欧美| 国产极品天堂在线| av女优亚洲男人天堂| www.av在线官网国产| 中文精品一卡2卡3卡4更新| 亚洲精品国产区一区二| 午夜福利网站1000一区二区三区| 好男人视频免费观看在线| 国产精品久久久人人做人人爽| 国产麻豆69| 99热全是精品| 成人毛片60女人毛片免费| 亚洲精品av麻豆狂野| avwww免费| 婷婷色综合大香蕉| 黄网站色视频无遮挡免费观看| 国产熟女欧美一区二区| 一区二区三区四区激情视频| 国产不卡av网站在线观看| 日本wwww免费看| 一边摸一边做爽爽视频免费| 叶爱在线成人免费视频播放| 国精品久久久久久国模美| 免费少妇av软件| av福利片在线| 超碰97精品在线观看| 久久人妻熟女aⅴ| 最近中文字幕高清免费大全6| 日韩电影二区| 各种免费的搞黄视频| 青春草国产在线视频| 欧美日韩综合久久久久久| 两个人看的免费小视频| 午夜福利一区二区在线看| 国产成人免费观看mmmm| 欧美日韩亚洲高清精品| 自拍欧美九色日韩亚洲蝌蚪91| 日韩一区二区三区影片| 纵有疾风起免费观看全集完整版| 婷婷色综合www| 在线精品无人区一区二区三| 美女扒开内裤让男人捅视频| 日韩制服丝袜自拍偷拍| 日本色播在线视频| 韩国av在线不卡| 99精国产麻豆久久婷婷| 卡戴珊不雅视频在线播放| 日韩欧美一区视频在线观看| 精品久久蜜臀av无| 国产一级毛片在线| 欧美亚洲 丝袜 人妻 在线| 无限看片的www在线观看| 国产一区二区三区综合在线观看| 精品一区在线观看国产| 丁香六月天网| 久久这里只有精品19| 麻豆乱淫一区二区| 伊人亚洲综合成人网| 久久精品国产综合久久久| 午夜免费观看性视频| 国产精品秋霞免费鲁丝片| 麻豆精品久久久久久蜜桃| 精品免费久久久久久久清纯 | 亚洲精品国产区一区二| 婷婷色麻豆天堂久久| 久久热在线av| 一区福利在线观看| 亚洲av福利一区| 在线免费观看不下载黄p国产| 丝袜美腿诱惑在线| 丁香六月欧美| 欧美黄色片欧美黄色片| 夫妻午夜视频| 国产xxxxx性猛交| 国产精品秋霞免费鲁丝片| www日本在线高清视频| 色94色欧美一区二区| 青春草亚洲视频在线观看| 亚洲国产毛片av蜜桃av| 亚洲伊人久久精品综合| av线在线观看网站| 91aial.com中文字幕在线观看| 不卡av一区二区三区| 波野结衣二区三区在线| 啦啦啦在线免费观看视频4| 另类亚洲欧美激情| 国产亚洲午夜精品一区二区久久| 欧美精品高潮呻吟av久久| 精品国产乱码久久久久久小说| 丰满饥渴人妻一区二区三| 免费高清在线观看日韩| 午夜福利视频精品| 久久久久久久久久久免费av| av在线播放精品| kizo精华| 男女高潮啪啪啪动态图| 男女无遮挡免费网站观看| 日本vs欧美在线观看视频| 女的被弄到高潮叫床怎么办| 亚洲色图 男人天堂 中文字幕| 人妻人人澡人人爽人人| 国产有黄有色有爽视频| 丰满少妇做爰视频| 国产欧美亚洲国产| 国产成人免费无遮挡视频| 久久天堂一区二区三区四区| 成人三级做爰电影| 巨乳人妻的诱惑在线观看| 亚洲欧美成人综合另类久久久| 日韩 亚洲 欧美在线| 国产av码专区亚洲av| 丁香六月欧美| 久久久久久久久久久免费av| 天堂8中文在线网| 日韩 欧美 亚洲 中文字幕| 操美女的视频在线观看| 中文字幕亚洲精品专区| 哪个播放器可以免费观看大片| 亚洲一区中文字幕在线| av网站免费在线观看视频| 一本大道久久a久久精品| 亚洲成人国产一区在线观看 | 精品少妇一区二区三区视频日本电影 | 七月丁香在线播放| 男人舔女人的私密视频| 国产一区二区三区av在线| 国产日韩欧美视频二区| 成人亚洲欧美一区二区av| 啦啦啦中文免费视频观看日本| 欧美老熟妇乱子伦牲交| 成人漫画全彩无遮挡| 80岁老熟妇乱子伦牲交| 在线观看三级黄色| 亚洲精品久久成人aⅴ小说| av片东京热男人的天堂| 国产欧美日韩一区二区三区在线| 日韩精品有码人妻一区| 亚洲国产欧美日韩在线播放| 午夜av观看不卡| 天堂俺去俺来也www色官网| 免费女性裸体啪啪无遮挡网站| 色播在线永久视频| 伦理电影大哥的女人| 亚洲 欧美一区二区三区| 热99久久久久精品小说推荐| 久久久精品94久久精品| kizo精华| av天堂久久9| 午夜福利视频在线观看免费| 日韩精品有码人妻一区| 女人高潮潮喷娇喘18禁视频| 日韩制服骚丝袜av| 久久精品国产a三级三级三级| 亚洲熟女精品中文字幕| 亚洲专区中文字幕在线 | 少妇精品久久久久久久| 国产精品亚洲av一区麻豆 | 国产亚洲午夜精品一区二区久久| 日韩欧美一区视频在线观看| 国产精品三级大全| 久久精品aⅴ一区二区三区四区| 国产成人啪精品午夜网站| 亚洲少妇的诱惑av| 成人国产av品久久久| 成人手机av| 欧美日韩精品网址| av在线观看视频网站免费| 国产亚洲av高清不卡| 日韩av不卡免费在线播放| 久热爱精品视频在线9| a级毛片在线看网站| 亚洲欧美日韩另类电影网站| 大香蕉久久成人网| 18禁动态无遮挡网站| 制服诱惑二区| 狠狠精品人妻久久久久久综合| 99香蕉大伊视频| 中文字幕制服av| 亚洲美女视频黄频| 男女午夜视频在线观看| av网站在线播放免费| 日韩电影二区| 伦理电影免费视频| 国产探花极品一区二区| 青青草视频在线视频观看| 国产一区二区三区综合在线观看| 嫩草影院入口| 久久人妻熟女aⅴ| 中文乱码字字幕精品一区二区三区| 天天操日日干夜夜撸| 下体分泌物呈黄色| 又大又爽又粗| 久久久久久人人人人人| 日本wwww免费看| 精品亚洲成国产av| 又粗又硬又长又爽又黄的视频| 欧美97在线视频| 免费av中文字幕在线| 少妇被粗大的猛进出69影院| 伦理电影免费视频| 欧美日本中文国产一区发布| 精品少妇内射三级| 精品国产一区二区三区久久久樱花| 我要看黄色一级片免费的| 天堂中文最新版在线下载| 欧美国产精品va在线观看不卡| 满18在线观看网站| 免费黄色在线免费观看| 一区二区三区精品91| 丝袜在线中文字幕| 亚洲国产av新网站| 国产精品久久久av美女十八| 亚洲国产中文字幕在线视频| 亚洲精品av麻豆狂野| 国产免费现黄频在线看| 丰满少妇做爰视频| 亚洲av欧美aⅴ国产| 国产精品99久久99久久久不卡 | 纯流量卡能插随身wifi吗| 免费在线观看黄色视频的| 亚洲av成人不卡在线观看播放网 | 美女主播在线视频| 乱人伦中国视频| 狂野欧美激情性xxxx| 亚洲国产看品久久| 久久久久精品国产欧美久久久 | 欧美 日韩 精品 国产| 99热国产这里只有精品6| 精品人妻一区二区三区麻豆| 亚洲综合色网址| 国产av一区二区精品久久| 两个人看的免费小视频| 伦理电影大哥的女人| 欧美日韩国产mv在线观看视频| 肉色欧美久久久久久久蜜桃| 老司机在亚洲福利影院| 国产精品成人在线| 亚洲精品一区蜜桃| 色综合欧美亚洲国产小说| 亚洲视频免费观看视频| 午夜免费鲁丝| 精品少妇黑人巨大在线播放| 日韩欧美精品免费久久| 中文天堂在线官网| 精品国产超薄肉色丝袜足j| 视频区图区小说| 国产一区二区激情短视频 | 又粗又硬又长又爽又黄的视频| 久热这里只有精品99| 亚洲av电影在线观看一区二区三区| 成年人免费黄色播放视频| 大片免费播放器 马上看| 免费观看人在逋| 欧美日韩av久久| 超色免费av| 亚洲国产成人一精品久久久| 国产精品人妻久久久影院| 久久精品aⅴ一区二区三区四区| 亚洲av电影在线观看一区二区三区| 美女高潮到喷水免费观看| 人妻人人澡人人爽人人| 母亲3免费完整高清在线观看| 国产精品一二三区在线看| 最黄视频免费看| 亚洲少妇的诱惑av| av一本久久久久| 不卡视频在线观看欧美| 一区二区三区乱码不卡18| 天天躁夜夜躁狠狠久久av| 免费看av在线观看网站| 成人国产av品久久久| 少妇的丰满在线观看| 在线观看免费视频网站a站| 亚洲国产精品一区三区| 欧美最新免费一区二区三区| 欧美精品亚洲一区二区| 成人手机av| 丝瓜视频免费看黄片| 大片电影免费在线观看免费| 国产毛片在线视频| 美国免费a级毛片| 母亲3免费完整高清在线观看| 国产成人欧美| 七月丁香在线播放| a级片在线免费高清观看视频| av在线播放精品| 精品免费久久久久久久清纯 | 国产精品二区激情视频| 国产免费一区二区三区四区乱码| av网站免费在线观看视频| 国产无遮挡羞羞视频在线观看| 日本vs欧美在线观看视频| 国产av一区二区精品久久| 91老司机精品| 天堂中文最新版在线下载| 韩国高清视频一区二区三区| 国产一区二区在线观看av| 日韩欧美一区视频在线观看| 国产av国产精品国产| 亚洲七黄色美女视频| 另类精品久久| 中国三级夫妇交换| 深夜精品福利| 天天躁日日躁夜夜躁夜夜| 亚洲av国产av综合av卡| 韩国精品一区二区三区| 午夜久久久在线观看| 一本一本久久a久久精品综合妖精| 丰满少妇做爰视频| 亚洲国产精品一区二区三区在线| 9热在线视频观看99| 男女下面插进去视频免费观看| 国产一级毛片在线| 少妇的丰满在线观看| 亚洲国产毛片av蜜桃av| 美女扒开内裤让男人捅视频| 午夜福利,免费看| 亚洲精品国产av成人精品| 亚洲一区二区三区欧美精品| 99久久人妻综合| 国产97色在线日韩免费| 人妻一区二区av| 精品卡一卡二卡四卡免费| 母亲3免费完整高清在线观看| 悠悠久久av| 2018国产大陆天天弄谢| 亚洲国产日韩一区二区| 五月天丁香电影| 国产 一区精品| 国产免费又黄又爽又色| 日本av手机在线免费观看| 黄频高清免费视频| 亚洲三区欧美一区| 色吧在线观看| 久久av网站| 亚洲四区av| 免费人妻精品一区二区三区视频| 高清在线视频一区二区三区| 亚洲精品国产色婷婷电影| 色网站视频免费| 国语对白做爰xxxⅹ性视频网站| 国产精品偷伦视频观看了| 亚洲成人免费av在线播放| 国产日韩一区二区三区精品不卡| 免费女性裸体啪啪无遮挡网站| www日本在线高清视频| 少妇被粗大猛烈的视频| 女人被躁到高潮嗷嗷叫费观| 国产成人啪精品午夜网站| 美女高潮到喷水免费观看| 一二三四在线观看免费中文在| 国产成人91sexporn| 久久天堂一区二区三区四区| 夜夜骑夜夜射夜夜干| 国产精品无大码| 麻豆乱淫一区二区| 精品久久久久久电影网| 熟女av电影| 最近手机中文字幕大全| 成人黄色视频免费在线看| 欧美在线黄色| 日日摸夜夜添夜夜爱| 亚洲av欧美aⅴ国产| 久久人人97超碰香蕉20202| 久久ye,这里只有精品| 国产av精品麻豆| 妹子高潮喷水视频| 自拍欧美九色日韩亚洲蝌蚪91| 美女高潮到喷水免费观看| 国产精品一区二区精品视频观看| 亚洲国产av新网站| 久久久欧美国产精品| 又黄又粗又硬又大视频| 日韩av不卡免费在线播放| videos熟女内射| 午夜免费鲁丝| 日韩人妻精品一区2区三区| 亚洲av在线观看美女高潮| 国产精品女同一区二区软件| 欧美日韩亚洲综合一区二区三区_| 国产一级毛片在线| 一级毛片电影观看| 狠狠婷婷综合久久久久久88av| 欧美成人精品欧美一级黄| 美女扒开内裤让男人捅视频| 成人亚洲欧美一区二区av| 老汉色∧v一级毛片| 亚洲国产精品成人久久小说| tube8黄色片| 中文字幕av电影在线播放| 母亲3免费完整高清在线观看| av在线app专区| 国产精品女同一区二区软件| 交换朋友夫妻互换小说| 亚洲图色成人| 久久综合国产亚洲精品| 欧美精品人与动牲交sv欧美| 亚洲伊人色综图| 校园人妻丝袜中文字幕| 纵有疾风起免费观看全集完整版| 高清在线视频一区二区三区| 欧美日韩视频高清一区二区三区二| 成人毛片60女人毛片免费| 丝瓜视频免费看黄片| 日韩成人av中文字幕在线观看| 一级,二级,三级黄色视频|