• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis?

    2021-10-28 07:01:38BoSun孫博DongHe賀棟HongboWang王宏博JiangchaoLiu劉江超ZunjianKe柯尊健LiCheng程莉andXianghengXiao肖湘衡
    Chinese Physics B 2021年10期
    關(guān)鍵詞:宏博

    Bo Sun(孫博), Dong He(賀棟), Hongbo Wang(王宏博), Jiangchao Liu(劉江超),Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡)

    Department of Physics,Hubei Nuclear Solid Physics Key Laboratory,Wuhan University,Wuhan 430072,China

    Keywords: ion implantation,oxygen vacancy,oxygen evolution reaction,heteroatom doping

    1. Introduction

    In the face of the rapid growth of energy demand and the consumption of traditional fossil fuels,it is urgent need to develop sustainable energy sources.[1,2]As is well known, hydrogen has long been considered as an ideal energy carrier to replace traditional fossil fuels because of its high energy density and carbon neutral.[3,4]As one of the most promising methods for hydrogen production,electrochemical watersplitting mainly includes hydrogen evolution reaction (HER)and oxygen evolution reaction(OER).However,as a sluggish kinetics process, OER involves a four-electron and four protons transfer process, which impedes the energy conversion efficiency of hydrogen production by water electrolysis.[1,5–8]Currently,the commercial catalysts for water splitting are noble metals and their compounds such as ruthenium dioxide(RuO2)/iridium dioxide (IrO2) for OER in practical application, but their high price and instability limit the large-scale commercial application of those electrocatalysts.[9–11]Thus,it is urgent to develop earth-abundant and high-efficient catalysts to replace noble metal-based catalysts for OER catalysis.

    Recently, transition metal oxides (TMO) such as Ni/Co/Fe-based oxides have been widely concerned by researchers, considered to be the promising OER catalysts. Among TMO materials, Co3O4, B-doped Co3O4,CoO/Co3O4, CoFe2O4,etc., as potential non-precious metal OER electrocatalysts have been intensively investigated.[12–15]Specifically, Co3O4have been widely regarded as the wellstudied OER catalysts due to low cost, multivalence oxidation states, and high stabilities.[16,17]However, the relatively poor conductivity and unfavorable absorption ability to oxygen-containing reaction intermediates of Co-based TMOs impede their practical application.[18]Therefore, improving the conductivity and properly adjust the absorption behavior of Co3O4during the OER process is expected for a long time.[19,20]Recently,defects and oxygen vacancies(Ov)have been intensively explored as effective method to coordinate the electronic structure of Co3O4toward improving catalytic activity.[18,21]Creating oxygen vacancies are effective strategy to enhances the adsorption of intermediates and promote the electronic conductivity of Co3O4, and oxygen vacancies filled with OH? first could facilitate the pre-oxidation has been confirmed by operando spectroscopy and electrochemical measurement for Co3O4with oxygen vacancies (Ov–Co3O4).[12,22]Furthermore, doping suitable heteroatoms is widely used to improve conductivity and further enhance its OER performance of Co3O4. Although it has been reported that doping heteroatoms into cobalt oxide can improve the OER activity, but more work has focused on cation doping with some atomic whose size similar to Co atoms,limited by conventional chemical doping methods.[23]So far, compared with iron, nickel and manganese, there are rarely studies on vanadium as a dopant for electrocatalysts,so it is very meaningful to develop cobalt oxides with V-doping and oxygen vacancies.[24–26]Meanwhile, it is very important and meaningful to analyze on the synergistic interaction of V dopant and oxygen vacancies. However, limited by methods that simultaneously generate oxygen vacancies and V doping, the mechanism of the synergistic interaction still needs to be studied in depth. The development and application of simple, efficient and controllable doping and defect generated methods have always been the focus and deficiencies of research.

    Herein, we report an oxygen vacancy and V co-doped Co3O4(V–Ov–Co3O4)as an OER catalyst,prepared by novel and controllable V ion implantation. The increased of low valence state of Co species (demonstrated by XPS results) in V–Ov–Co3O4is higher than that of pristine Co3O4(Co3O4)and V–Co3O4represent the generated of oxygen vacancies by V ions implantation. At the contributed of the vanadium doping and the generation oxygen vacancies for the optimization of electronic properties,the overpotential of V–Ov–Co3O4on Ti foil was reduced to 329 mV, compared with Co3O4(403 mV) and V–Co3O4(381 mV). The Tafel slope of V–Ov–Co3O4is much smaller, 74.5 mV·dec?1, which is obviously better than that of Co3O4(172 mV·dec?1)and V–Co3O4(152.9 mV·dec?1). The density functional theory(DFT)simulations confirm synergistic interaction between V doping and oxygen vacancies generated by ions implantation. Apart from improving conductivity,another factor for the significantly improved OER activity is due to the energy barrier from O?to HOO?was decreased, caused by the increase of the charge density around Co atoms and the improvement of HOO?absorption.

    2. Results and discussion

    Cobalt hydroxide is prepared on Ti foil substrate using a general electrochemical deposition method, and it was converted to Co3O4after a thermal annealing process.[27]And then, Co3O4was subjected to vanadium ion-implantation at 40 kV (V–Ov–Co3O4) to the dosage of 4×1016ions·cm?2,and V?Co3O4was prepared from annealed V–Ov–Co3O4(Fig. 1(a)) in air atmosphere. The x-ray diffraction (XRD)patterns of Co3O4, V–Co3O4, and V–Ov–Co3O4were firstly tested as show in Fig. 1(b). The diffraction peaks of Co3O4sample located at 31.2°,36.7°,59.2°,and 65.2°,can be corresponded to(200),(211),(321),and(400)planes of the spinel Co3O4phase (JCPDS No. 43-1003), apart from diffraction peaks belongs to Ti foil. Meanwhile, the V–Ov–Co3O4(irradiated Co3O4) and V–Co3O4(annealed V–Ov–Co3O4) exhibited the similar diffraction pattern as Co3O4,indicating no obvious phase changes occurred during the implantation process. The morphology change of the high-energy vanadiumion implantation Co3O4was analyzed by scanning electron microscope (SEM). Figure 1(c) showed that the Co3O4sample was consisted of smooth and continuous two-dimensional(2D) nanosheets oriented and interconnected other. After the high-energy vanadium-ion implantation, broken surface and porous framework was observed for V–Ov–Co3O4(Fig.1(d))which was constructed by ion sputtering,and the similar morphology was also found in the sample of V–Co3O4(Fig.S1).Energy dispersive spectrometer(EDS)reveals that Co,O,and V elements homogenously distribution throughout the V–Ov–Co3O4(Fig.1(e)). Compared to Co3O4(Fig.S2),the elemental mapping images of V–Ov–Co3O4and V–Co3O4(Fig. S1)suggested that V element was successfully homogenously doped into Co3O4after the V-ion implantation. The vanadium content in V–Ov–Co3O4is 0.34 wt%.In short,V-ion implantation realized the doping of V element and increases the surface area in Co3O4nanosheets,which was supported by SEM and XRD results.

    Fig. 1. Illustration of fabrication, structural, and morphology characterization. (a) Schematic diagram of preparation Co3O4, V–Co3O4, and V–Ov–Co3O4. (b) XRD patterns of Co3O4, V–Co3O4, and V–Ov–Co3O4. SEM images of(c)Co3O4. SEM images(d)and elemental mapping images(e)of V–Ov–Co3O4.

    Fig. 2. Electronic structure characterization: Co 2p XPS spectra of Co3O4 (a) and V–Ov–Co3O4 (b). The O 1s XPS for Co3O4 (c) and V–Ov–Co3O4 (d).

    Since electrochemical reaction usually occurs on the solid–liquid interface between the surface of the electrocatalyst and the electrolyte, probing the surface electronic structure of the prepared catalyst samples is crucial to study the OER reaction. Hence, x-ray photoelectron spectroscopy(XPS),as a universal and super-sensitive instrument,was used to study electronic states on prepared catalyst surfaces. Figures 2(a), 2(b), and S3 show that the Co 2p XPS spectra of Co3O4,V–Co3O4,V–Ov–Co3O4. Two typical peaks at around 795 eV and 779.9 eV should be specified to Co 2p1/2and Co 2p3/2for Co3O4and V–Co3O4,respectively. After V-ion implantation, it could be distinctly observed that the peaks of the two new satellites are located at 787 eV and 803 eV, respectively, and the Co 2p of V–Ov–Co3O4peaks shift negatively(about 0.2 eV)(Fig.2(b)),which indicates the increase of electron density in the Co species. In order to explore the differences in the chemical valence of Co atoms before and after V-ion implantation,Co 2p spectra were fitted. There are two fitted peaks,located at 779.8 eV and 781 eV,which belong to Co3+oxidation state and Co2+oxidation state for Co 2p3/2,respectively.[27,28]From the fitted result,it is obviously exhibited that atomic ratios of Co2+/Co3+of V–Ov–Co3O4(1.1)is significantly higher than that Co2+/Co3+of Co3O4(0.4). The higher atomic ratios indicate that there is a higher proportion of Co2+in the V-ion-implanted Co3O4,and oxygen vacancies were created by sputtering effect of V-ion implantation. The atomic ratios of Co2+/Co3+of V–Co3O4are similar to that of Co3O4. The oxygen vacancies in V–Co3O4were also validated by fine-scanned O1s spectrum. Figures 2(c), 2(d), and S4 shows that there are two typically oxygen peaks located at 529.8 eV(O1)and 531.6 eV(O2)of Co3O4,V–Co3O4and V–Ov–Co3O4.[27,29]O1 is identified as a typical metal–oxygen bonds. The O2 with higher binding energy peak is considered to be oxygen defect species.[27]Comparing with O2 peak of Co3O4and V–Co3O4,the stronger intensity O2 peak of V–Ov–Co3O4(Fig.2(d))reveals a large number of oxygen defect sites with Co2+species are formed. The results shown in XPS for three samples indicated that Co2+species were produced with creating oxygen vacancies by V-ion implantation. Combined with the characterization of structure,morphology,and composition, it is confirmed that V-ion implantation can realize both of the doping of V element and the generation of oxygen vacancy in Co3O4without distinct phase change.

    The role of oxygen defect and doped V sites on Co3O4nanosheets were investigated herein by carefully evaluating the as-prepared catalysts performance for OER activity. All electrocatalytic performance tests are performed in a threeelectrode cell with workstation (CHI 760E) at 25°C in 1-M KOH solution. Due to Co3O4, V–Co3O4, and V–Ov–Co3O4electrocatalysts were supported on Ti foil, which were tested directly as work electrodes. The OER electrocatalytic activity of the prepared samples were measured by polarization curves with a scan rate of 5 mV·s?1and the data were presented with IR corrected by 90%. Figure 3(a) illustrates OER polarization curves of the Co3O4, V–Co3O4, and V–Ov–Co3O4.The V–Ov–Co3O4catalysts displayed outstanding OER catalytic activity. To maintain a current density of 10 mA·cm?2,the V–Ov–Co3O4only needs overpotential of 329 mV. The V–Co3O4(381 mV) and Co3O4(403 mV) need higher overpotential, indicating the great OER catalytic performance of V-ion implantation Co3O4. Tafel slope is a commonly used descriptor for studying the catalytic mechanism of OER catalysis. According to the Tafel equation, Tafel slope was fitted from the LSV curves.[30,31]It can be seen from Fig.3(b)that the Tafel slope of V–Ov–Co3O4is 74.5 mV·dec?1, which is smaller than that of Co3O4(172 mV·dec?1) and V–Co3O4(152.9 mV·dec?1), suggesting the rapid reaction kinetics of V–Ov–Co3O4. As displayed in Fig.3(c),the overpotential and Tafel of among all as-prepared samples are put together to emphasize the improve of the OER activity of V–Ov–Co3O4.Furthermore,electrochemical impedance spectroscopy(EIS)test,a cogent method to analyses the electrode kinetics in electrocatalytic process,performed from high frequencies 100 kHz to low frequencies 0.1 Hz in 1.0-M KOH.The Nyquist diagram of V–Ov–Co3O4, V–Co3O4, and Co3O4were compared under same potential in Fig.3(d). Apparently, the semicircle of V–Ov–Co3O4at the high-frequency range in Nyquist diagram,is much smaller compared with Co3O4and V–Co3O4, which indicated a smaller charge transfer resistance(Rct).As show in Fig.S8,the charge-transfer resistance values of V–Ov–Co3O4is 2.2 ?, which is far less than of V–Co3O4(10.3 ?) and Co3O4(34.9 ?). The smallerRctsuggest that high intrinsic activity performance can be ascribed to the great improvement interfacial electron-transfer kinetics and improved electrical conductivity. It is well known that the activity of a catalyst depends on the number of active centers and the inherent activity of each active centers. It is a widely recognized method to compare the electrochemical active surface area(ECSA)by measuring the electrochemical double-layer capacitance(Cdl).TheCdlwas obtained by measuring theC–Vcurve at different scan rates (Fig. S5).[32]As shown in Fig. 3(e), theCdlof V–Ov–Co3O4is 50.6 mF·cm?2,higher than that of the Co3O4(37.6 mF·cm?2).TheCdlof V–Co3O4(33.2 mF·cm?2)is similar than that of Co3O4,which due to the reduction in the number of active sites caused by defect repair during thermal annealing. This confirms that high-energy V-ion implantation produced and exposed more active sites. Moreover,the longterm stability is crucial factors of the OER catalyst. The stability measure of V–Ov–Co3O4was tested by chronopotentiometric curves at 10 mA·cm?2and 20 mA·cm?2for continuous 27 h, respectively. Indicating a good durability without appreciable increase in potential (Fig. 3(f)). The OER activity of three samples indicate that V-ion implantation is an efficient and stable method to generate oxygen vacancies and dope V element in Co3O4for improving electrochemical activity. From the point of view of the reaction process, it is essential to in-depth investigate the mechanism of oxygen vacancy and vanadium doping to enhance the activity of OER.

    Fig.3. Electrochemical catalytic measurement: (a)LSV curves of Co3O4,V–Co3O4,and V–Ov–Co3O4;(b)corresponding Tafel slopes of Co3O4,V–Co3O4,and V–Ov–Co3O4;(c)overpotential and Tafel slope of Co3O4,V–Co3O4,and V–Ov–Co3O4;(d)Nyquist plots of Co3O4,V–Co3O4,and V–Ov–Co3O4;(e)ECSAs of Co3O4,V–Co3O4,and V–Ov–Co3O4;(f)chronopotentiometric curves at 10 mA·cm?2 and 20 mA·cm?2,respectively.

    Fig.4. DFT calculations of Co3O4 and V-implanted Co3O4. (a)The top view structures of Co3O4 (001)plane and V–Ov–Co3O4 (001). Slices of side view electron density differences of Co3O4 (c)and V–Ov–Co3O4 (d). (e)PDOS plots for Co3O4 and V–Ov–Co3O4. (f)The calculated OER Gibbs free energy diagrams.

    Through density functional theory (DFT) calculations,the effects of oxygen vacancies and V doping on the electronic and catalytic properties of Co3O4at the atomic level were studied. As shown in Fig. 4(a), the Co3O4(001) crystal plane was first constructed, V-doped Co3O4(V–Co3O4,Fig. S5) and coexistence models of V and oxygen vacancies(V–Ov–Co3O4, Fig. 4(b)) were also constructed by V atom replacing and oxygen atom removing. As shown in Figs.4(c)and 4(d),due to the V doping and the oxygen vacancies caused by V ion implantation, the excess electrons generated by the oxygen vacancies are completely redistributed to the surrounding Co atoms, resulting in a decrease in the chemical state of the Co element compared with the original Co3O4, which is consistent with the result of XPS test. It can be clearly seen that the Millikan charge value of the exposed Co atom at the surface decreased from 0.87 to 0.84, which means that the charge density of the Co atom has increased. Therefore, its electronic structure can be effectively modulated to affect its catalytic activity. In addition, we found that the introduction of oxygen vacancies and V impurities can effectively adjust its band structure(Fig.4(e)).It can be seen that oxygen vacancies and V doping can introduce a large number of impurity states in the Co3O4band gap,thereby effectively enhancing the conductivity of the sample and accelerating its charge transfer process. The results are consistent with the EIS test data.

    In order to further reveal the enhancement essence of Vion implantation on catalytic activity from the perspective of the reaction mechanism, we calculated the energy profile of OER reaction pathway as shown in Fig 4(f).[33–35]It can be found that the limiting energy barrier of OER reaction pathway is from O?to HOO?step for Co3O4(001)plane(Fig.S7).There is a 2.05 eV energy barrier for OER reaction. Interestingly, as a result of V-ions implantation, the adsorption capacity of the Co3O4surface for OOH groups increases as the charge density of Co atoms increases, so the OER reaction barrier is effectively reduced.The OER reaction barriers of V–Co3O4and V–Ov–Co3O4are reduced from 2.05 eV to 1.82 eV and 1.75 eV,respectively. This calculation result is fully coupled with the LSV test,which provides an in-depth analysis of the enhancement mechanism of ion implantation.

    3. Conclusion

    In summary, we have confirmed that introducing V dopant and oxygen vacancy can significantly improve the OER activity of Co3O4. XPS, EDS, and DFT consistently proved that V-doping and oxygen vacancy produced by V-ion implantation effectively regulated the electronic density of Co3O4,which increased the electrical conductivity of Co3O4and obviously decreased the energy barrier from O?to HOO?. The reducing of the reaction barrier is attributed to the improved HOO?absorption.The optimized V–Ov–Co3O4shows a lower overpotential of 329 mV, compared with Co3O4(403 mV)and V–Co3O4(381 mV).Also, V–Ov–Co3O4has a low Tafel slope of 74.5 mV·dec?1. Therefore, ion implantation can be used precise approach to manipulating electronic properties of metal oxide based OER catalysts.

    猜你喜歡
    宏博
    Modeling of Micropores Drilling Force for Printed Circuit Board Micro-holes Based on Energy Method
    省了一味藥
    Influence of Ti3C2Tx (MXene) on the generation of dielectric barrier discharge in air
    省了一味藥
    上海故事(2021年1期)2021-03-18 12:38:56
    Simulation study on the influence of magnetic field in the near-anode region on anode power deposition of ATON-type Hall thruster
    安丘市宏博機(jī)械制造有限公司(原安丘市華
    ——機(jī)械廠)
    中國釀造(2019年9期)2019-10-08 05:44:04
    My English Learning
    頑固“臺獨(dú)”臺灣同胞告訴我們
    臺聲(2016年5期)2016-09-13 06:36:02
    取材宏博 立論中肯 成一家言——評《南北皮黃戲史述》
    黃腐酸與人血清白蛋白相互作用機(jī)制的光譜研究
    腐植酸(2015年6期)2015-04-17 00:21:21
    国产高清有码在线观看视频 | 亚洲少妇的诱惑av| 亚洲色图综合在线观看| 国产97色在线日韩免费| 中文字幕另类日韩欧美亚洲嫩草| 久久婷婷人人爽人人干人人爱 | 欧美日韩中文字幕国产精品一区二区三区 | 亚洲 欧美一区二区三区| 热99re8久久精品国产| 日韩av在线大香蕉| 精品乱码久久久久久99久播| 最好的美女福利视频网| 亚洲 国产 在线| 每晚都被弄得嗷嗷叫到高潮| 国产精品亚洲一级av第二区| 天天一区二区日本电影三级 | 国产精品免费视频内射| 黑人欧美特级aaaaaa片| 亚洲人成电影免费在线| 国产亚洲av嫩草精品影院| 一个人观看的视频www高清免费观看 | 国产麻豆成人av免费视频| 老鸭窝网址在线观看| 一个人观看的视频www高清免费观看 | 久久午夜亚洲精品久久| 一进一出好大好爽视频| 嫩草影视91久久| 国产熟女xx| 国产成人欧美在线观看| 亚洲七黄色美女视频| 99久久久亚洲精品蜜臀av| 黄色丝袜av网址大全| 1024视频免费在线观看| 精品一品国产午夜福利视频| 9191精品国产免费久久| 嫁个100分男人电影在线观看| 黄色视频,在线免费观看| 波多野结衣高清无吗| 亚洲精品在线美女| 日本黄色视频三级网站网址| 亚洲av成人一区二区三| 丝袜美足系列| 色播在线永久视频| 午夜福利影视在线免费观看| 久久精品国产综合久久久| 中文字幕高清在线视频| 亚洲色图综合在线观看| 精品国内亚洲2022精品成人| 国产精品一区二区免费欧美| 少妇的丰满在线观看| 最近最新免费中文字幕在线| 97人妻精品一区二区三区麻豆 | av有码第一页| 亚洲欧美日韩无卡精品| 国产精品1区2区在线观看.| 亚洲免费av在线视频| 久久中文字幕人妻熟女| 99热只有精品国产| 国产xxxxx性猛交| 国产亚洲精品第一综合不卡| 亚洲成人免费电影在线观看| 亚洲av成人一区二区三| 亚洲情色 制服丝袜| 国产亚洲欧美精品永久| 国产麻豆69| 久久午夜亚洲精品久久| 一级,二级,三级黄色视频| 母亲3免费完整高清在线观看| 男女下面插进去视频免费观看| 日本a在线网址| 一夜夜www| 香蕉丝袜av| 高清黄色对白视频在线免费看| 久久精品国产清高在天天线| 18禁观看日本| 亚洲欧美激情在线| 亚洲中文字幕日韩| 亚洲精品中文字幕在线视频| 色哟哟哟哟哟哟| 黄色成人免费大全| 欧美国产精品va在线观看不卡| 国产精品国产高清国产av| 曰老女人黄片| 一边摸一边做爽爽视频免费| 亚洲国产欧美日韩在线播放| 男女午夜视频在线观看| 久久国产乱子伦精品免费另类| 国产在线观看jvid| 久久婷婷人人爽人人干人人爱 | tocl精华| 极品人妻少妇av视频| 夜夜夜夜夜久久久久| 美女扒开内裤让男人捅视频| 成在线人永久免费视频| 丁香欧美五月| 久久久久久免费高清国产稀缺| 午夜久久久久精精品| 禁无遮挡网站| 亚洲av熟女| 丁香欧美五月| 天天一区二区日本电影三级 | 免费在线观看影片大全网站| 妹子高潮喷水视频| 自线自在国产av| 女人高潮潮喷娇喘18禁视频| 丁香欧美五月| 亚洲激情在线av| 久久香蕉国产精品| 俄罗斯特黄特色一大片| 18禁美女被吸乳视频| 久久精品成人免费网站| 欧美成狂野欧美在线观看| 国产精华一区二区三区| 香蕉国产在线看| 午夜精品久久久久久毛片777| 国产成人精品久久二区二区91| АⅤ资源中文在线天堂| 亚洲,欧美精品.| av在线播放免费不卡| 亚洲中文字幕一区二区三区有码在线看 | 男女下面插进去视频免费观看| 欧美日韩乱码在线| 亚洲九九香蕉| 51午夜福利影视在线观看| 一个人免费在线观看的高清视频| 亚洲成av片中文字幕在线观看| 久热这里只有精品99| 中文字幕人成人乱码亚洲影| 亚洲精品久久成人aⅴ小说| 啦啦啦 在线观看视频| 久久久精品欧美日韩精品| 亚洲熟妇中文字幕五十中出| 日韩三级视频一区二区三区| 午夜福利免费观看在线| 亚洲av熟女| 日韩大码丰满熟妇| 别揉我奶头~嗯~啊~动态视频| 久99久视频精品免费| 两人在一起打扑克的视频| 色尼玛亚洲综合影院| 国产精品久久电影中文字幕| 法律面前人人平等表现在哪些方面| 老司机午夜福利在线观看视频| 精品国产乱子伦一区二区三区| 亚洲自偷自拍图片 自拍| 欧美成人午夜精品| 婷婷精品国产亚洲av在线| 亚洲国产毛片av蜜桃av| 18禁国产床啪视频网站| 久久久久亚洲av毛片大全| 免费少妇av软件| 人人妻人人爽人人添夜夜欢视频| 少妇裸体淫交视频免费看高清 | 欧美日韩一级在线毛片| 亚洲一区高清亚洲精品| 久久久久精品国产欧美久久久| 亚洲 欧美一区二区三区| 757午夜福利合集在线观看| 999久久久精品免费观看国产| 无遮挡黄片免费观看| 午夜免费观看网址| 久久久久亚洲av毛片大全| 女同久久另类99精品国产91| 一边摸一边做爽爽视频免费| 中文字幕高清在线视频| 免费观看精品视频网站| 国产精品久久电影中文字幕| av福利片在线| 国产麻豆成人av免费视频| 人成视频在线观看免费观看| 一个人观看的视频www高清免费观看 | 91精品国产国语对白视频| 丝袜美足系列| 亚洲中文字幕日韩| 日韩 欧美 亚洲 中文字幕| 天堂√8在线中文| 电影成人av| 最新在线观看一区二区三区| 欧美国产日韩亚洲一区| 国产成人精品久久二区二区免费| 欧美精品亚洲一区二区| 久久久久久人人人人人| 国产真人三级小视频在线观看| 国产真人三级小视频在线观看| 91成人精品电影| 亚洲国产精品sss在线观看| 精品久久久久久,| 91成人精品电影| 国产精品久久久av美女十八| 久久狼人影院| 国产精品久久久人人做人人爽| 在线免费观看的www视频| 在线天堂中文资源库| 色综合站精品国产| 久久人妻熟女aⅴ| 桃红色精品国产亚洲av| 国产av又大| 麻豆国产av国片精品| 最新在线观看一区二区三区| 正在播放国产对白刺激| 日日爽夜夜爽网站| 国产成人免费无遮挡视频| 黄色成人免费大全| 一区二区三区高清视频在线| 男人舔女人下体高潮全视频| 国产精品日韩av在线免费观看 | 精品国产国语对白av| 夜夜看夜夜爽夜夜摸| 婷婷精品国产亚洲av在线| 欧美黑人欧美精品刺激| 日韩av在线大香蕉| 欧美色欧美亚洲另类二区 | 久久青草综合色| 免费在线观看完整版高清| 老鸭窝网址在线观看| 人人妻人人澡人人看| 精品熟女少妇八av免费久了| 久久久久久久久久久久大奶| 国语自产精品视频在线第100页| 天天一区二区日本电影三级 | 狂野欧美激情性xxxx| 日韩一卡2卡3卡4卡2021年| www.精华液| 免费观看精品视频网站| 好看av亚洲va欧美ⅴa在| 手机成人av网站| 亚洲少妇的诱惑av| 婷婷六月久久综合丁香| 97人妻精品一区二区三区麻豆 | 欧美 亚洲 国产 日韩一| 国产精品国产高清国产av| 黑人巨大精品欧美一区二区mp4| 久久久久亚洲av毛片大全| 欧美激情 高清一区二区三区| 国产高清有码在线观看视频 | 国内精品久久久久精免费| 九色亚洲精品在线播放| 欧美日本亚洲视频在线播放| 亚洲人成77777在线视频| 国产精品美女特级片免费视频播放器 | 无遮挡黄片免费观看| 久久精品aⅴ一区二区三区四区| 免费看美女性在线毛片视频| 精品国产一区二区久久| 9色porny在线观看| av免费在线观看网站| 精品国产一区二区三区四区第35| 国产精品二区激情视频| av网站免费在线观看视频| 在线av久久热| 搡老熟女国产l中国老女人| 成人三级黄色视频| 久久久国产精品麻豆| 高清毛片免费观看视频网站| 一卡2卡三卡四卡精品乱码亚洲| 午夜日韩欧美国产| 国产精品综合久久久久久久免费 | 搡老妇女老女人老熟妇| 日本vs欧美在线观看视频| 香蕉久久夜色| 亚洲全国av大片| 一二三四社区在线视频社区8| 69av精品久久久久久| 日韩高清综合在线| 黄色视频,在线免费观看| 色播亚洲综合网| 欧美日韩中文字幕国产精品一区二区三区 | 午夜福利成人在线免费观看| 99久久综合精品五月天人人| 可以在线观看毛片的网站| 精品国内亚洲2022精品成人| 欧美成人午夜精品| 久久香蕉精品热| 99re在线观看精品视频| 国产欧美日韩精品亚洲av| 午夜福利在线观看吧| 欧美日韩亚洲国产一区二区在线观看| 国产伦一二天堂av在线观看| 好男人电影高清在线观看| 中文字幕人妻丝袜一区二区| 一级片免费观看大全| 女人被狂操c到高潮| 亚洲国产欧美网| 好男人电影高清在线观看| 岛国视频午夜一区免费看| 一级,二级,三级黄色视频| www.熟女人妻精品国产| 欧美绝顶高潮抽搐喷水| 乱人伦中国视频| 国产成年人精品一区二区| 大型av网站在线播放| 日本三级黄在线观看| 久久精品国产综合久久久| 妹子高潮喷水视频| 日韩成人在线观看一区二区三区| 久久天堂一区二区三区四区| 99国产精品一区二区蜜桃av| 人人妻人人澡人人看| 老司机福利观看| 久久久久久久久中文| 欧美成人午夜精品| 国产不卡一卡二| 国产精品av久久久久免费| 亚洲一卡2卡3卡4卡5卡精品中文| 免费久久久久久久精品成人欧美视频| 丝袜美足系列| 亚洲电影在线观看av| 欧美av亚洲av综合av国产av| 国产一区二区在线av高清观看| 午夜免费激情av| 欧美日韩亚洲国产一区二区在线观看| 波多野结衣巨乳人妻| 国产成人欧美在线观看| 人妻丰满熟妇av一区二区三区| 亚洲精品国产区一区二| 人人妻人人爽人人添夜夜欢视频| 大香蕉久久成人网| 最新美女视频免费是黄的| 亚洲欧美精品综合一区二区三区| 日韩精品免费视频一区二区三区| av网站免费在线观看视频| 成人18禁在线播放| 黄色成人免费大全| 岛国视频午夜一区免费看| 男人的好看免费观看在线视频 | 麻豆成人av在线观看| av视频免费观看在线观看| 一个人观看的视频www高清免费观看 | 国产精品免费视频内射| 一a级毛片在线观看| 69av精品久久久久久| 天堂影院成人在线观看| 亚洲熟女毛片儿| 国产精品一区二区三区四区久久 | 国产免费av片在线观看野外av| 国产精品 国内视频| 免费久久久久久久精品成人欧美视频| 精品不卡国产一区二区三区| 亚洲av美国av| 国产亚洲av嫩草精品影院| 制服人妻中文乱码| 国产一区二区三区视频了| 国产精品二区激情视频| 国产精品美女特级片免费视频播放器 | 午夜福利18| 欧美午夜高清在线| 视频区欧美日本亚洲| 色播亚洲综合网| 精品无人区乱码1区二区| 久久久久精品国产欧美久久久| 国产伦一二天堂av在线观看| 国产精品亚洲一级av第二区| 精品久久久久久,| 国产伦人伦偷精品视频| 欧美乱妇无乱码| 操美女的视频在线观看| 制服人妻中文乱码| 91在线观看av| 国产午夜福利久久久久久| 亚洲精品在线观看二区| 日韩欧美一区视频在线观看| 国产三级黄色录像| 大型av网站在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美黄色淫秽网站| 国产在线精品亚洲第一网站| netflix在线观看网站| 精品不卡国产一区二区三区| 老汉色∧v一级毛片| 午夜影院日韩av| 深夜精品福利| 成人亚洲精品一区在线观看| 欧美日韩亚洲综合一区二区三区_| 最近最新中文字幕大全免费视频| 亚洲人成电影观看| 国产色视频综合| 精品欧美一区二区三区在线| 亚洲自偷自拍图片 自拍| 国产成人系列免费观看| 18禁美女被吸乳视频| 免费久久久久久久精品成人欧美视频| 精品福利观看| 欧美老熟妇乱子伦牲交| 好男人在线观看高清免费视频 | 亚洲国产中文字幕在线视频| 九色亚洲精品在线播放| 99re在线观看精品视频| 欧美成人一区二区免费高清观看 | 大码成人一级视频| 亚洲国产日韩欧美精品在线观看 | 黄色丝袜av网址大全| 老司机靠b影院| 大陆偷拍与自拍| 国产亚洲欧美98| 精品福利观看| 国产亚洲欧美在线一区二区| 中出人妻视频一区二区| 成人特级黄色片久久久久久久| 国产黄a三级三级三级人| 国产单亲对白刺激| 日本黄色视频三级网站网址| 精品国产美女av久久久久小说| 亚洲国产欧美一区二区综合| 国产精品一区二区免费欧美| 99久久久亚洲精品蜜臀av| 久久中文字幕一级| 色尼玛亚洲综合影院| 999久久久国产精品视频| 51午夜福利影视在线观看| 国产精品一区二区免费欧美| 日韩欧美国产一区二区入口| а√天堂www在线а√下载| 天堂影院成人在线观看| 大型黄色视频在线免费观看| 老鸭窝网址在线观看| 丁香六月欧美| 日韩 欧美 亚洲 中文字幕| 亚洲人成电影观看| 女人爽到高潮嗷嗷叫在线视频| 久久天堂一区二区三区四区| 两人在一起打扑克的视频| 日韩一卡2卡3卡4卡2021年| 国产成人免费无遮挡视频| 美女大奶头视频| 香蕉国产在线看| 亚洲一区中文字幕在线| 涩涩av久久男人的天堂| 国产精品爽爽va在线观看网站 | 日本 av在线| 人成视频在线观看免费观看| 啦啦啦韩国在线观看视频| 亚洲成人免费电影在线观看| 88av欧美| 欧美人与性动交α欧美精品济南到| 国产成人av激情在线播放| 国产高清视频在线播放一区| 一二三四社区在线视频社区8| 桃色一区二区三区在线观看| 又紧又爽又黄一区二区| 天堂√8在线中文| 可以免费在线观看a视频的电影网站| 黄网站色视频无遮挡免费观看| 成人亚洲精品一区在线观看| 国产成人啪精品午夜网站| 日本免费一区二区三区高清不卡 | 男男h啪啪无遮挡| 国产又色又爽无遮挡免费看| 成年人黄色毛片网站| 一本大道久久a久久精品| 岛国视频午夜一区免费看| e午夜精品久久久久久久| 精品不卡国产一区二区三区| 久久久久久国产a免费观看| 校园春色视频在线观看| av中文乱码字幕在线| www.www免费av| 男男h啪啪无遮挡| av欧美777| 99精品久久久久人妻精品| 色播在线永久视频| 久久精品国产清高在天天线| 非洲黑人性xxxx精品又粗又长| 在线十欧美十亚洲十日本专区| 91麻豆精品激情在线观看国产| 人人妻人人澡人人看| 亚洲午夜精品一区,二区,三区| 中文字幕人妻丝袜一区二区| 少妇的丰满在线观看| 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产高清在线一区二区三 | 久久精品国产亚洲av香蕉五月| 好男人在线观看高清免费视频 | xxx96com| 国产三级在线视频| 99riav亚洲国产免费| 在线国产一区二区在线| 精品一品国产午夜福利视频| 三级毛片av免费| 侵犯人妻中文字幕一二三四区| 国产成人精品在线电影| 天堂影院成人在线观看| 国产成人系列免费观看| 黄色片一级片一级黄色片| 在线观看66精品国产| 午夜亚洲福利在线播放| 黄色a级毛片大全视频| 国产真人三级小视频在线观看| 丝袜人妻中文字幕| 天堂影院成人在线观看| 乱人伦中国视频| 最近最新免费中文字幕在线| 亚洲中文日韩欧美视频| 在线永久观看黄色视频| 操美女的视频在线观看| 国产一级毛片七仙女欲春2 | 国产私拍福利视频在线观看| 69精品国产乱码久久久| 一本综合久久免费| АⅤ资源中文在线天堂| 国产人伦9x9x在线观看| 色在线成人网| 欧美日韩一级在线毛片| 久久香蕉精品热| 一夜夜www| 在线国产一区二区在线| 午夜福利,免费看| 日韩欧美在线二视频| 涩涩av久久男人的天堂| 可以在线观看的亚洲视频| 中文亚洲av片在线观看爽| 亚洲一码二码三码区别大吗| 精品国产国语对白av| 国产欧美日韩精品亚洲av| 国产av一区在线观看免费| av中文乱码字幕在线| 在线观看日韩欧美| 亚洲国产高清在线一区二区三 | 日本黄色视频三级网站网址| 国产成人精品在线电影| 午夜成年电影在线免费观看| 大型黄色视频在线免费观看| 国产成人精品久久二区二区91| av电影中文网址| 在线免费观看的www视频| 夜夜夜夜夜久久久久| av天堂在线播放| 香蕉国产在线看| 激情视频va一区二区三区| 狠狠狠狠99中文字幕| 免费在线观看视频国产中文字幕亚洲| 日韩欧美三级三区| 首页视频小说图片口味搜索| 婷婷精品国产亚洲av在线| 免费看十八禁软件| 国产亚洲精品一区二区www| 99在线人妻在线中文字幕| 久久影院123| 国产蜜桃级精品一区二区三区| 性欧美人与动物交配| 乱人伦中国视频| 亚洲人成伊人成综合网2020| 国产高清视频在线播放一区| 后天国语完整版免费观看| 国产亚洲精品久久久久久毛片| 一个人观看的视频www高清免费观看 | 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av电影不卡..在线观看| 亚洲美女黄片视频| 97超级碰碰碰精品色视频在线观看| 久久人人97超碰香蕉20202| 男人操女人黄网站| 黄色 视频免费看| 久久香蕉激情| 久久婷婷成人综合色麻豆| a在线观看视频网站| 丁香欧美五月| 国产熟女午夜一区二区三区| 日韩中文字幕欧美一区二区| 18美女黄网站色大片免费观看| 欧美不卡视频在线免费观看 | 亚洲精品av麻豆狂野| 99国产精品免费福利视频| 久久国产精品人妻蜜桃| 国产精品久久久人人做人人爽| 成熟少妇高潮喷水视频| 亚洲国产精品999在线| 久久久国产成人精品二区| 久久人人精品亚洲av| 18禁黄网站禁片午夜丰满| 午夜精品国产一区二区电影| 一级作爱视频免费观看| 女人被躁到高潮嗷嗷叫费观| 波多野结衣一区麻豆| 久久婷婷成人综合色麻豆| 后天国语完整版免费观看| 国产午夜福利久久久久久| 久久性视频一级片| 亚洲成人免费电影在线观看| 午夜福利在线观看吧| 国产精品1区2区在线观看.| 免费搜索国产男女视频| 少妇熟女aⅴ在线视频| 亚洲av第一区精品v没综合| 国产精品亚洲美女久久久| 日韩欧美免费精品| 欧美乱色亚洲激情| 搡老妇女老女人老熟妇| 熟妇人妻久久中文字幕3abv| 亚洲九九香蕉| 国产免费男女视频| 国产高清有码在线观看视频 | 国产成人系列免费观看| 中文字幕色久视频| 美女午夜性视频免费| 日韩欧美在线二视频| 久久婷婷人人爽人人干人人爱 | 久久狼人影院| 国产精品永久免费网站| 99精品欧美一区二区三区四区| 精品国内亚洲2022精品成人| 日韩三级视频一区二区三区| 精品久久久久久久人妻蜜臀av | 午夜精品久久久久久毛片777| 黄网站色视频无遮挡免费观看| 久久久久九九精品影院| 亚洲中文字幕日韩| 一区在线观看完整版| 女人被躁到高潮嗷嗷叫费观| 人人妻人人澡人人看| 人人妻人人澡欧美一区二区 | 一区二区三区高清视频在线| 女警被强在线播放| 午夜免费成人在线视频| 性欧美人与动物交配| 国产一区在线观看成人免费|