• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis?

    2021-10-28 07:01:38BoSun孫博DongHe賀棟HongboWang王宏博JiangchaoLiu劉江超ZunjianKe柯尊健LiCheng程莉andXianghengXiao肖湘衡
    Chinese Physics B 2021年10期
    關(guān)鍵詞:宏博

    Bo Sun(孫博), Dong He(賀棟), Hongbo Wang(王宏博), Jiangchao Liu(劉江超),Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡)

    Department of Physics,Hubei Nuclear Solid Physics Key Laboratory,Wuhan University,Wuhan 430072,China

    Keywords: ion implantation,oxygen vacancy,oxygen evolution reaction,heteroatom doping

    1. Introduction

    In the face of the rapid growth of energy demand and the consumption of traditional fossil fuels,it is urgent need to develop sustainable energy sources.[1,2]As is well known, hydrogen has long been considered as an ideal energy carrier to replace traditional fossil fuels because of its high energy density and carbon neutral.[3,4]As one of the most promising methods for hydrogen production,electrochemical watersplitting mainly includes hydrogen evolution reaction (HER)and oxygen evolution reaction(OER).However,as a sluggish kinetics process, OER involves a four-electron and four protons transfer process, which impedes the energy conversion efficiency of hydrogen production by water electrolysis.[1,5–8]Currently,the commercial catalysts for water splitting are noble metals and their compounds such as ruthenium dioxide(RuO2)/iridium dioxide (IrO2) for OER in practical application, but their high price and instability limit the large-scale commercial application of those electrocatalysts.[9–11]Thus,it is urgent to develop earth-abundant and high-efficient catalysts to replace noble metal-based catalysts for OER catalysis.

    Recently, transition metal oxides (TMO) such as Ni/Co/Fe-based oxides have been widely concerned by researchers, considered to be the promising OER catalysts. Among TMO materials, Co3O4, B-doped Co3O4,CoO/Co3O4, CoFe2O4,etc., as potential non-precious metal OER electrocatalysts have been intensively investigated.[12–15]Specifically, Co3O4have been widely regarded as the wellstudied OER catalysts due to low cost, multivalence oxidation states, and high stabilities.[16,17]However, the relatively poor conductivity and unfavorable absorption ability to oxygen-containing reaction intermediates of Co-based TMOs impede their practical application.[18]Therefore, improving the conductivity and properly adjust the absorption behavior of Co3O4during the OER process is expected for a long time.[19,20]Recently,defects and oxygen vacancies(Ov)have been intensively explored as effective method to coordinate the electronic structure of Co3O4toward improving catalytic activity.[18,21]Creating oxygen vacancies are effective strategy to enhances the adsorption of intermediates and promote the electronic conductivity of Co3O4, and oxygen vacancies filled with OH? first could facilitate the pre-oxidation has been confirmed by operando spectroscopy and electrochemical measurement for Co3O4with oxygen vacancies (Ov–Co3O4).[12,22]Furthermore, doping suitable heteroatoms is widely used to improve conductivity and further enhance its OER performance of Co3O4. Although it has been reported that doping heteroatoms into cobalt oxide can improve the OER activity, but more work has focused on cation doping with some atomic whose size similar to Co atoms,limited by conventional chemical doping methods.[23]So far, compared with iron, nickel and manganese, there are rarely studies on vanadium as a dopant for electrocatalysts,so it is very meaningful to develop cobalt oxides with V-doping and oxygen vacancies.[24–26]Meanwhile, it is very important and meaningful to analyze on the synergistic interaction of V dopant and oxygen vacancies. However, limited by methods that simultaneously generate oxygen vacancies and V doping, the mechanism of the synergistic interaction still needs to be studied in depth. The development and application of simple, efficient and controllable doping and defect generated methods have always been the focus and deficiencies of research.

    Herein, we report an oxygen vacancy and V co-doped Co3O4(V–Ov–Co3O4)as an OER catalyst,prepared by novel and controllable V ion implantation. The increased of low valence state of Co species (demonstrated by XPS results) in V–Ov–Co3O4is higher than that of pristine Co3O4(Co3O4)and V–Co3O4represent the generated of oxygen vacancies by V ions implantation. At the contributed of the vanadium doping and the generation oxygen vacancies for the optimization of electronic properties,the overpotential of V–Ov–Co3O4on Ti foil was reduced to 329 mV, compared with Co3O4(403 mV) and V–Co3O4(381 mV). The Tafel slope of V–Ov–Co3O4is much smaller, 74.5 mV·dec?1, which is obviously better than that of Co3O4(172 mV·dec?1)and V–Co3O4(152.9 mV·dec?1). The density functional theory(DFT)simulations confirm synergistic interaction between V doping and oxygen vacancies generated by ions implantation. Apart from improving conductivity,another factor for the significantly improved OER activity is due to the energy barrier from O?to HOO?was decreased, caused by the increase of the charge density around Co atoms and the improvement of HOO?absorption.

    2. Results and discussion

    Cobalt hydroxide is prepared on Ti foil substrate using a general electrochemical deposition method, and it was converted to Co3O4after a thermal annealing process.[27]And then, Co3O4was subjected to vanadium ion-implantation at 40 kV (V–Ov–Co3O4) to the dosage of 4×1016ions·cm?2,and V?Co3O4was prepared from annealed V–Ov–Co3O4(Fig. 1(a)) in air atmosphere. The x-ray diffraction (XRD)patterns of Co3O4, V–Co3O4, and V–Ov–Co3O4were firstly tested as show in Fig. 1(b). The diffraction peaks of Co3O4sample located at 31.2°,36.7°,59.2°,and 65.2°,can be corresponded to(200),(211),(321),and(400)planes of the spinel Co3O4phase (JCPDS No. 43-1003), apart from diffraction peaks belongs to Ti foil. Meanwhile, the V–Ov–Co3O4(irradiated Co3O4) and V–Co3O4(annealed V–Ov–Co3O4) exhibited the similar diffraction pattern as Co3O4,indicating no obvious phase changes occurred during the implantation process. The morphology change of the high-energy vanadiumion implantation Co3O4was analyzed by scanning electron microscope (SEM). Figure 1(c) showed that the Co3O4sample was consisted of smooth and continuous two-dimensional(2D) nanosheets oriented and interconnected other. After the high-energy vanadium-ion implantation, broken surface and porous framework was observed for V–Ov–Co3O4(Fig.1(d))which was constructed by ion sputtering,and the similar morphology was also found in the sample of V–Co3O4(Fig.S1).Energy dispersive spectrometer(EDS)reveals that Co,O,and V elements homogenously distribution throughout the V–Ov–Co3O4(Fig.1(e)). Compared to Co3O4(Fig.S2),the elemental mapping images of V–Ov–Co3O4and V–Co3O4(Fig. S1)suggested that V element was successfully homogenously doped into Co3O4after the V-ion implantation. The vanadium content in V–Ov–Co3O4is 0.34 wt%.In short,V-ion implantation realized the doping of V element and increases the surface area in Co3O4nanosheets,which was supported by SEM and XRD results.

    Fig. 1. Illustration of fabrication, structural, and morphology characterization. (a) Schematic diagram of preparation Co3O4, V–Co3O4, and V–Ov–Co3O4. (b) XRD patterns of Co3O4, V–Co3O4, and V–Ov–Co3O4. SEM images of(c)Co3O4. SEM images(d)and elemental mapping images(e)of V–Ov–Co3O4.

    Fig. 2. Electronic structure characterization: Co 2p XPS spectra of Co3O4 (a) and V–Ov–Co3O4 (b). The O 1s XPS for Co3O4 (c) and V–Ov–Co3O4 (d).

    Since electrochemical reaction usually occurs on the solid–liquid interface between the surface of the electrocatalyst and the electrolyte, probing the surface electronic structure of the prepared catalyst samples is crucial to study the OER reaction. Hence, x-ray photoelectron spectroscopy(XPS),as a universal and super-sensitive instrument,was used to study electronic states on prepared catalyst surfaces. Figures 2(a), 2(b), and S3 show that the Co 2p XPS spectra of Co3O4,V–Co3O4,V–Ov–Co3O4. Two typical peaks at around 795 eV and 779.9 eV should be specified to Co 2p1/2and Co 2p3/2for Co3O4and V–Co3O4,respectively. After V-ion implantation, it could be distinctly observed that the peaks of the two new satellites are located at 787 eV and 803 eV, respectively, and the Co 2p of V–Ov–Co3O4peaks shift negatively(about 0.2 eV)(Fig.2(b)),which indicates the increase of electron density in the Co species. In order to explore the differences in the chemical valence of Co atoms before and after V-ion implantation,Co 2p spectra were fitted. There are two fitted peaks,located at 779.8 eV and 781 eV,which belong to Co3+oxidation state and Co2+oxidation state for Co 2p3/2,respectively.[27,28]From the fitted result,it is obviously exhibited that atomic ratios of Co2+/Co3+of V–Ov–Co3O4(1.1)is significantly higher than that Co2+/Co3+of Co3O4(0.4). The higher atomic ratios indicate that there is a higher proportion of Co2+in the V-ion-implanted Co3O4,and oxygen vacancies were created by sputtering effect of V-ion implantation. The atomic ratios of Co2+/Co3+of V–Co3O4are similar to that of Co3O4. The oxygen vacancies in V–Co3O4were also validated by fine-scanned O1s spectrum. Figures 2(c), 2(d), and S4 shows that there are two typically oxygen peaks located at 529.8 eV(O1)and 531.6 eV(O2)of Co3O4,V–Co3O4and V–Ov–Co3O4.[27,29]O1 is identified as a typical metal–oxygen bonds. The O2 with higher binding energy peak is considered to be oxygen defect species.[27]Comparing with O2 peak of Co3O4and V–Co3O4,the stronger intensity O2 peak of V–Ov–Co3O4(Fig.2(d))reveals a large number of oxygen defect sites with Co2+species are formed. The results shown in XPS for three samples indicated that Co2+species were produced with creating oxygen vacancies by V-ion implantation. Combined with the characterization of structure,morphology,and composition, it is confirmed that V-ion implantation can realize both of the doping of V element and the generation of oxygen vacancy in Co3O4without distinct phase change.

    The role of oxygen defect and doped V sites on Co3O4nanosheets were investigated herein by carefully evaluating the as-prepared catalysts performance for OER activity. All electrocatalytic performance tests are performed in a threeelectrode cell with workstation (CHI 760E) at 25°C in 1-M KOH solution. Due to Co3O4, V–Co3O4, and V–Ov–Co3O4electrocatalysts were supported on Ti foil, which were tested directly as work electrodes. The OER electrocatalytic activity of the prepared samples were measured by polarization curves with a scan rate of 5 mV·s?1and the data were presented with IR corrected by 90%. Figure 3(a) illustrates OER polarization curves of the Co3O4, V–Co3O4, and V–Ov–Co3O4.The V–Ov–Co3O4catalysts displayed outstanding OER catalytic activity. To maintain a current density of 10 mA·cm?2,the V–Ov–Co3O4only needs overpotential of 329 mV. The V–Co3O4(381 mV) and Co3O4(403 mV) need higher overpotential, indicating the great OER catalytic performance of V-ion implantation Co3O4. Tafel slope is a commonly used descriptor for studying the catalytic mechanism of OER catalysis. According to the Tafel equation, Tafel slope was fitted from the LSV curves.[30,31]It can be seen from Fig.3(b)that the Tafel slope of V–Ov–Co3O4is 74.5 mV·dec?1, which is smaller than that of Co3O4(172 mV·dec?1) and V–Co3O4(152.9 mV·dec?1), suggesting the rapid reaction kinetics of V–Ov–Co3O4. As displayed in Fig.3(c),the overpotential and Tafel of among all as-prepared samples are put together to emphasize the improve of the OER activity of V–Ov–Co3O4.Furthermore,electrochemical impedance spectroscopy(EIS)test,a cogent method to analyses the electrode kinetics in electrocatalytic process,performed from high frequencies 100 kHz to low frequencies 0.1 Hz in 1.0-M KOH.The Nyquist diagram of V–Ov–Co3O4, V–Co3O4, and Co3O4were compared under same potential in Fig.3(d). Apparently, the semicircle of V–Ov–Co3O4at the high-frequency range in Nyquist diagram,is much smaller compared with Co3O4and V–Co3O4, which indicated a smaller charge transfer resistance(Rct).As show in Fig.S8,the charge-transfer resistance values of V–Ov–Co3O4is 2.2 ?, which is far less than of V–Co3O4(10.3 ?) and Co3O4(34.9 ?). The smallerRctsuggest that high intrinsic activity performance can be ascribed to the great improvement interfacial electron-transfer kinetics and improved electrical conductivity. It is well known that the activity of a catalyst depends on the number of active centers and the inherent activity of each active centers. It is a widely recognized method to compare the electrochemical active surface area(ECSA)by measuring the electrochemical double-layer capacitance(Cdl).TheCdlwas obtained by measuring theC–Vcurve at different scan rates (Fig. S5).[32]As shown in Fig. 3(e), theCdlof V–Ov–Co3O4is 50.6 mF·cm?2,higher than that of the Co3O4(37.6 mF·cm?2).TheCdlof V–Co3O4(33.2 mF·cm?2)is similar than that of Co3O4,which due to the reduction in the number of active sites caused by defect repair during thermal annealing. This confirms that high-energy V-ion implantation produced and exposed more active sites. Moreover,the longterm stability is crucial factors of the OER catalyst. The stability measure of V–Ov–Co3O4was tested by chronopotentiometric curves at 10 mA·cm?2and 20 mA·cm?2for continuous 27 h, respectively. Indicating a good durability without appreciable increase in potential (Fig. 3(f)). The OER activity of three samples indicate that V-ion implantation is an efficient and stable method to generate oxygen vacancies and dope V element in Co3O4for improving electrochemical activity. From the point of view of the reaction process, it is essential to in-depth investigate the mechanism of oxygen vacancy and vanadium doping to enhance the activity of OER.

    Fig.3. Electrochemical catalytic measurement: (a)LSV curves of Co3O4,V–Co3O4,and V–Ov–Co3O4;(b)corresponding Tafel slopes of Co3O4,V–Co3O4,and V–Ov–Co3O4;(c)overpotential and Tafel slope of Co3O4,V–Co3O4,and V–Ov–Co3O4;(d)Nyquist plots of Co3O4,V–Co3O4,and V–Ov–Co3O4;(e)ECSAs of Co3O4,V–Co3O4,and V–Ov–Co3O4;(f)chronopotentiometric curves at 10 mA·cm?2 and 20 mA·cm?2,respectively.

    Fig.4. DFT calculations of Co3O4 and V-implanted Co3O4. (a)The top view structures of Co3O4 (001)plane and V–Ov–Co3O4 (001). Slices of side view electron density differences of Co3O4 (c)and V–Ov–Co3O4 (d). (e)PDOS plots for Co3O4 and V–Ov–Co3O4. (f)The calculated OER Gibbs free energy diagrams.

    Through density functional theory (DFT) calculations,the effects of oxygen vacancies and V doping on the electronic and catalytic properties of Co3O4at the atomic level were studied. As shown in Fig. 4(a), the Co3O4(001) crystal plane was first constructed, V-doped Co3O4(V–Co3O4,Fig. S5) and coexistence models of V and oxygen vacancies(V–Ov–Co3O4, Fig. 4(b)) were also constructed by V atom replacing and oxygen atom removing. As shown in Figs.4(c)and 4(d),due to the V doping and the oxygen vacancies caused by V ion implantation, the excess electrons generated by the oxygen vacancies are completely redistributed to the surrounding Co atoms, resulting in a decrease in the chemical state of the Co element compared with the original Co3O4, which is consistent with the result of XPS test. It can be clearly seen that the Millikan charge value of the exposed Co atom at the surface decreased from 0.87 to 0.84, which means that the charge density of the Co atom has increased. Therefore, its electronic structure can be effectively modulated to affect its catalytic activity. In addition, we found that the introduction of oxygen vacancies and V impurities can effectively adjust its band structure(Fig.4(e)).It can be seen that oxygen vacancies and V doping can introduce a large number of impurity states in the Co3O4band gap,thereby effectively enhancing the conductivity of the sample and accelerating its charge transfer process. The results are consistent with the EIS test data.

    In order to further reveal the enhancement essence of Vion implantation on catalytic activity from the perspective of the reaction mechanism, we calculated the energy profile of OER reaction pathway as shown in Fig 4(f).[33–35]It can be found that the limiting energy barrier of OER reaction pathway is from O?to HOO?step for Co3O4(001)plane(Fig.S7).There is a 2.05 eV energy barrier for OER reaction. Interestingly, as a result of V-ions implantation, the adsorption capacity of the Co3O4surface for OOH groups increases as the charge density of Co atoms increases, so the OER reaction barrier is effectively reduced.The OER reaction barriers of V–Co3O4and V–Ov–Co3O4are reduced from 2.05 eV to 1.82 eV and 1.75 eV,respectively. This calculation result is fully coupled with the LSV test,which provides an in-depth analysis of the enhancement mechanism of ion implantation.

    3. Conclusion

    In summary, we have confirmed that introducing V dopant and oxygen vacancy can significantly improve the OER activity of Co3O4. XPS, EDS, and DFT consistently proved that V-doping and oxygen vacancy produced by V-ion implantation effectively regulated the electronic density of Co3O4,which increased the electrical conductivity of Co3O4and obviously decreased the energy barrier from O?to HOO?. The reducing of the reaction barrier is attributed to the improved HOO?absorption.The optimized V–Ov–Co3O4shows a lower overpotential of 329 mV, compared with Co3O4(403 mV)and V–Co3O4(381 mV).Also, V–Ov–Co3O4has a low Tafel slope of 74.5 mV·dec?1. Therefore, ion implantation can be used precise approach to manipulating electronic properties of metal oxide based OER catalysts.

    猜你喜歡
    宏博
    Modeling of Micropores Drilling Force for Printed Circuit Board Micro-holes Based on Energy Method
    省了一味藥
    Influence of Ti3C2Tx (MXene) on the generation of dielectric barrier discharge in air
    省了一味藥
    上海故事(2021年1期)2021-03-18 12:38:56
    Simulation study on the influence of magnetic field in the near-anode region on anode power deposition of ATON-type Hall thruster
    安丘市宏博機(jī)械制造有限公司(原安丘市華
    ——機(jī)械廠)
    中國釀造(2019年9期)2019-10-08 05:44:04
    My English Learning
    頑固“臺獨(dú)”臺灣同胞告訴我們
    臺聲(2016年5期)2016-09-13 06:36:02
    取材宏博 立論中肯 成一家言——評《南北皮黃戲史述》
    黃腐酸與人血清白蛋白相互作用機(jī)制的光譜研究
    腐植酸(2015年6期)2015-04-17 00:21:21
    中文字幕av在线有码专区| 午夜福利视频精品| 欧美成人精品欧美一级黄| 成人综合一区亚洲| 精品国产露脸久久av麻豆 | 日韩成人av中文字幕在线观看| 亚洲欧美中文字幕日韩二区| 美女被艹到高潮喷水动态| 网址你懂的国产日韩在线| 亚洲乱码一区二区免费版| 高清av免费在线| 日本一二三区视频观看| 又爽又黄a免费视频| 岛国毛片在线播放| 欧美日韩精品成人综合77777| av在线天堂中文字幕| 国产成人aa在线观看| 亚洲精品一区蜜桃| 高清午夜精品一区二区三区| 亚洲av免费在线观看| 欧美xxxx黑人xx丫x性爽| 国产91av在线免费观看| 亚洲成色77777| 亚洲精品成人久久久久久| 一级毛片久久久久久久久女| 亚洲av电影不卡..在线观看| 亚洲三级黄色毛片| 久久久久久久国产电影| 最近中文字幕高清免费大全6| 男女视频在线观看网站免费| 欧美zozozo另类| 亚洲精品国产av成人精品| 天堂俺去俺来也www色官网 | 日韩,欧美,国产一区二区三区| 国产老妇女一区| 日韩人妻高清精品专区| 欧美bdsm另类| 嫩草影院精品99| 男插女下体视频免费在线播放| 一级黄片播放器| 国产亚洲av片在线观看秒播厂 | 国产av在哪里看| 久久99蜜桃精品久久| 久久久久久伊人网av| 91久久精品国产一区二区三区| 中国国产av一级| 国产成年人精品一区二区| 精华霜和精华液先用哪个| 搡女人真爽免费视频火全软件| 2018国产大陆天天弄谢| 亚洲av.av天堂| 街头女战士在线观看网站| 肉色欧美久久久久久久蜜桃 | 91精品一卡2卡3卡4卡| 久久精品国产亚洲av涩爱| 亚洲欧美日韩东京热| 精品久久久噜噜| 亚洲av电影不卡..在线观看| 国产片特级美女逼逼视频| 性插视频无遮挡在线免费观看| 国产亚洲最大av| 亚洲欧洲日产国产| 亚洲国产欧美在线一区| 激情 狠狠 欧美| 在线观看美女被高潮喷水网站| 一边亲一边摸免费视频| 精品久久久久久久久亚洲| 91久久精品电影网| 久久久久国产网址| 亚洲精品亚洲一区二区| 国产一区亚洲一区在线观看| 久久久精品94久久精品| 午夜亚洲福利在线播放| 国产精品久久久久久精品电影小说 | 国产在线一区二区三区精| 久久精品国产亚洲av天美| 精品久久久噜噜| 麻豆成人av视频| 国产白丝娇喘喷水9色精品| 国产精品综合久久久久久久免费| 免费观看a级毛片全部| 最近最新中文字幕免费大全7| 亚洲av电影在线观看一区二区三区 | 国产av码专区亚洲av| 国产永久视频网站| 日本与韩国留学比较| 免费播放大片免费观看视频在线观看| 五月玫瑰六月丁香| 听说在线观看完整版免费高清| 国精品久久久久久国模美| 欧美激情在线99| 免费av毛片视频| 国产精品女同一区二区软件| 国内精品宾馆在线| 18禁动态无遮挡网站| 亚洲在线自拍视频| 久久精品国产亚洲av涩爱| 国产女主播在线喷水免费视频网站 | 青春草亚洲视频在线观看| 日韩欧美精品免费久久| 国产精品久久久久久久久免| 欧美97在线视频| 麻豆成人av视频| 2022亚洲国产成人精品| 国产亚洲最大av| 日韩亚洲欧美综合| 91精品国产九色| 午夜免费观看性视频| 全区人妻精品视频| 国产精品福利在线免费观看| 久久99蜜桃精品久久| av线在线观看网站| 日韩成人伦理影院| 亚洲精品乱码久久久久久按摩| 精品午夜福利在线看| 亚洲高清免费不卡视频| 18禁在线无遮挡免费观看视频| 久久99精品国语久久久| 久久久亚洲精品成人影院| 神马国产精品三级电影在线观看| 黄片wwwwww| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久精品电影| 看非洲黑人一级黄片| 亚洲熟女精品中文字幕| 美女主播在线视频| 一边亲一边摸免费视频| av国产久精品久网站免费入址| 日本黄色片子视频| 免费观看精品视频网站| 高清午夜精品一区二区三区| 亚洲真实伦在线观看| 看非洲黑人一级黄片| 亚洲精品成人久久久久久| 亚洲欧美精品专区久久| 高清av免费在线| 日本免费a在线| 午夜福利在线观看吧| 韩国av在线不卡| 男人和女人高潮做爰伦理| 2021少妇久久久久久久久久久| 能在线免费看毛片的网站| 欧美xxxx黑人xx丫x性爽| 日韩欧美精品免费久久| 日本一二三区视频观看| 亚洲四区av| 精品一区二区三区视频在线| 国产淫片久久久久久久久| 亚洲成人久久爱视频| 亚洲成人久久爱视频| 国产中年淑女户外野战色| 非洲黑人性xxxx精品又粗又长| 麻豆乱淫一区二区| 建设人人有责人人尽责人人享有的 | 偷拍熟女少妇极品色| 两个人视频免费观看高清| 亚洲va在线va天堂va国产| 天堂俺去俺来也www色官网 | 国产色爽女视频免费观看| 黄色欧美视频在线观看| 成年版毛片免费区| 国产精品一区二区三区四区免费观看| 欧美区成人在线视频| 亚洲欧美精品自产自拍| 久久久午夜欧美精品| 国内揄拍国产精品人妻在线| 国产免费一级a男人的天堂| 日韩av在线免费看完整版不卡| 亚洲欧美日韩无卡精品| 国产爱豆传媒在线观看| 国产爱豆传媒在线观看| 日韩一本色道免费dvd| 天天躁夜夜躁狠狠久久av| 亚洲精品aⅴ在线观看| 麻豆久久精品国产亚洲av| 免费av不卡在线播放| 一个人看的www免费观看视频| 国产精品1区2区在线观看.| 国产男女超爽视频在线观看| 三级男女做爰猛烈吃奶摸视频| 国产男女超爽视频在线观看| 国产老妇女一区| 亚洲国产高清在线一区二区三| 成年女人看的毛片在线观看| 身体一侧抽搐| 边亲边吃奶的免费视频| 久久精品夜夜夜夜夜久久蜜豆| 国产精品精品国产色婷婷| 少妇熟女欧美另类| 欧美人与善性xxx| 精华霜和精华液先用哪个| 国产黄片视频在线免费观看| 如何舔出高潮| 三级男女做爰猛烈吃奶摸视频| 亚洲av成人精品一二三区| 亚洲精品乱码久久久v下载方式| 国产精品99久久久久久久久| 亚洲国产av新网站| videossex国产| 国产成人a区在线观看| 久久久久国产网址| 亚洲精品自拍成人| 久久久成人免费电影| 一级a做视频免费观看| 美女内射精品一级片tv| 97热精品久久久久久| 日本一二三区视频观看| 五月天丁香电影| 亚洲精品成人av观看孕妇| 婷婷色av中文字幕| 欧美极品一区二区三区四区| 高清在线视频一区二区三区| 欧美一级a爱片免费观看看| 欧美变态另类bdsm刘玥| 国产伦理片在线播放av一区| 伊人久久精品亚洲午夜| 伦理电影大哥的女人| 精品国产露脸久久av麻豆 | 一夜夜www| 亚洲精品日本国产第一区| 久久精品夜色国产| 国产精品伦人一区二区| 亚洲久久久久久中文字幕| av在线老鸭窝| 美女被艹到高潮喷水动态| 国产伦一二天堂av在线观看| 国内精品一区二区在线观看| 亚洲国产高清在线一区二区三| 国产成人精品婷婷| av女优亚洲男人天堂| 久久久久免费精品人妻一区二区| av播播在线观看一区| 久久久精品94久久精品| 欧美日韩视频高清一区二区三区二| 国产av国产精品国产| 午夜福利视频1000在线观看| 简卡轻食公司| 国产视频内射| 亚洲图色成人| 大又大粗又爽又黄少妇毛片口| 国产亚洲精品av在线| 国产白丝娇喘喷水9色精品| 人妻夜夜爽99麻豆av| 亚洲欧美精品专区久久| 色综合亚洲欧美另类图片| 精品久久久久久久久av| 免费观看性生交大片5| 日本一二三区视频观看| 99热全是精品| 高清毛片免费看| 久久精品熟女亚洲av麻豆精品 | 亚洲激情五月婷婷啪啪| 国产一区二区在线观看日韩| 在线免费观看的www视频| 国产亚洲最大av| av卡一久久| 亚洲欧美中文字幕日韩二区| 国产一级毛片在线| 又黄又爽又刺激的免费视频.| 波多野结衣巨乳人妻| 黄色一级大片看看| 欧美精品一区二区大全| 国产亚洲5aaaaa淫片| 精品久久久久久电影网| 久久久久久国产a免费观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲av免费高清在线观看| 欧美丝袜亚洲另类| 高清毛片免费看| 小蜜桃在线观看免费完整版高清| 色综合色国产| 国内少妇人妻偷人精品xxx网站| 久久精品国产自在天天线| 日韩av免费高清视频| 欧美zozozo另类| 国产人妻一区二区三区在| 蜜桃亚洲精品一区二区三区| 国产色婷婷99| 久久久久国产网址| 国内少妇人妻偷人精品xxx网站| 日韩中字成人| 日韩av免费高清视频| 毛片一级片免费看久久久久| 人妻少妇偷人精品九色| 蜜桃久久精品国产亚洲av| 国产在线男女| 成人亚洲欧美一区二区av| 亚洲真实伦在线观看| 久久久久久久久久黄片| 欧美日韩视频高清一区二区三区二| 春色校园在线视频观看| 亚洲精品456在线播放app| 99热这里只有是精品50| 精品少妇黑人巨大在线播放| av.在线天堂| 黄片wwwwww| a级毛片免费高清观看在线播放| 国产精品久久视频播放| 美女高潮的动态| 精品国内亚洲2022精品成人| 色综合色国产| 久久99精品国语久久久| 欧美精品国产亚洲| 毛片一级片免费看久久久久| 韩国av在线不卡| 天堂网av新在线| 最近的中文字幕免费完整| 久久精品国产亚洲av天美| 欧美日韩一区二区视频在线观看视频在线 | 观看免费一级毛片| 自拍偷自拍亚洲精品老妇| 色吧在线观看| 国产综合精华液| 亚洲最大成人手机在线| 天天躁日日操中文字幕| 久久久久性生活片| 亚洲三级黄色毛片| 人人妻人人澡人人爽人人夜夜 | 亚州av有码| 69av精品久久久久久| 国产精品一二三区在线看| 成人综合一区亚洲| av福利片在线观看| 哪个播放器可以免费观看大片| 精品久久国产蜜桃| 免费观看的影片在线观看| 精品99又大又爽又粗少妇毛片| 国产淫语在线视频| 老司机影院毛片| av国产免费在线观看| 国产精品精品国产色婷婷| av女优亚洲男人天堂| 老女人水多毛片| 色综合色国产| 亚洲国产精品sss在线观看| 日韩强制内射视频| 国产精品熟女久久久久浪| 伊人久久国产一区二区| 国产精品一区二区三区四区免费观看| 免费高清在线观看视频在线观看| 亚洲av福利一区| 性色avwww在线观看| 亚洲人成网站在线播| 久久久久久久久久成人| 午夜日本视频在线| 日本猛色少妇xxxxx猛交久久| 久久久久九九精品影院| 午夜精品国产一区二区电影 | 三级国产精品片| 亚洲av中文字字幕乱码综合| 男女边摸边吃奶| 久久韩国三级中文字幕| 99久久精品一区二区三区| 精品国产三级普通话版| 我要看日韩黄色一级片| 久久久久精品性色| 中文字幕久久专区| 国产一级毛片七仙女欲春2| www.色视频.com| 亚洲高清免费不卡视频| 中文字幕免费在线视频6| 伦精品一区二区三区| av播播在线观看一区| 青春草亚洲视频在线观看| 国产麻豆成人av免费视频| 国产日韩欧美在线精品| 一级毛片黄色毛片免费观看视频| www.色视频.com| 午夜福利在线观看吧| 久久精品国产亚洲av天美| 国产精品.久久久| 亚洲成人中文字幕在线播放| 亚洲最大成人av| 久久精品国产亚洲网站| 18+在线观看网站| 日日啪夜夜撸| 国产精品精品国产色婷婷| 日韩一区二区三区影片| 在线播放无遮挡| 只有这里有精品99| 18禁在线播放成人免费| 人妻系列 视频| 人妻一区二区av| 国产黄频视频在线观看| 欧美日韩视频高清一区二区三区二| 成年免费大片在线观看| 91狼人影院| 国产亚洲5aaaaa淫片| 美女xxoo啪啪120秒动态图| 麻豆av噜噜一区二区三区| 欧美+日韩+精品| av播播在线观看一区| 一夜夜www| 欧美极品一区二区三区四区| 网址你懂的国产日韩在线| 久久久成人免费电影| 一本久久精品| 真实男女啪啪啪动态图| 日本-黄色视频高清免费观看| 亚洲av成人av| 亚洲欧美一区二区三区国产| 午夜免费观看性视频| 国产黄色免费在线视频| 免费大片18禁| 女的被弄到高潮叫床怎么办| h日本视频在线播放| 久久久久久伊人网av| 午夜福利视频1000在线观看| 夜夜爽夜夜爽视频| 91午夜精品亚洲一区二区三区| 久久久精品欧美日韩精品| 成人鲁丝片一二三区免费| 黄色一级大片看看| 日日撸夜夜添| 国产老妇伦熟女老妇高清| 国产在线男女| 亚洲自拍偷在线| 亚洲国产精品成人综合色| 国产在视频线在精品| 成年女人看的毛片在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲一区高清亚洲精品| 亚洲欧美一区二区三区黑人 | 一级毛片久久久久久久久女| 国产精品蜜桃在线观看| h日本视频在线播放| 日韩欧美三级三区| 成人av在线播放网站| 国产亚洲精品av在线| 亚洲精品日韩在线中文字幕| 噜噜噜噜噜久久久久久91| 国产精品伦人一区二区| 国产黄片美女视频| 国产欧美另类精品又又久久亚洲欧美| 能在线免费观看的黄片| 日韩成人伦理影院| 在线观看一区二区三区| 亚洲欧美清纯卡通| 亚洲av中文字字幕乱码综合| 街头女战士在线观看网站| 色播亚洲综合网| 亚洲人成网站高清观看| 亚洲自拍偷在线| 男人爽女人下面视频在线观看| 白带黄色成豆腐渣| 国产精品女同一区二区软件| 免费观看精品视频网站| 久久精品久久久久久噜噜老黄| 午夜福利视频1000在线观看| 国产伦理片在线播放av一区| 又大又黄又爽视频免费| 成人鲁丝片一二三区免费| 一个人看的www免费观看视频| 综合色丁香网| 色5月婷婷丁香| 大话2 男鬼变身卡| av一本久久久久| 亚洲久久久久久中文字幕| 欧美三级亚洲精品| 久久久久久久午夜电影| 极品少妇高潮喷水抽搐| 国产精品久久久久久精品电影| 欧美 日韩 精品 国产| 亚洲精品自拍成人| 免费观看无遮挡的男女| 免费少妇av软件| 亚洲乱码一区二区免费版| 91久久精品国产一区二区成人| 观看免费一级毛片| 亚洲av国产av综合av卡| 性插视频无遮挡在线免费观看| 免费人成在线观看视频色| 少妇人妻一区二区三区视频| 丰满少妇做爰视频| 国产又色又爽无遮挡免| 免费播放大片免费观看视频在线观看| 好男人在线观看高清免费视频| 久久精品国产亚洲av涩爱| 日韩欧美三级三区| 欧美3d第一页| 亚洲第一区二区三区不卡| 18禁在线播放成人免费| 国产 一区 欧美 日韩| 亚洲乱码一区二区免费版| 亚洲综合精品二区| 少妇的逼水好多| 免费av毛片视频| 人妻系列 视频| 精品国产露脸久久av麻豆 | 插阴视频在线观看视频| 在线播放无遮挡| 免费电影在线观看免费观看| 麻豆精品久久久久久蜜桃| 在线天堂最新版资源| 久久综合国产亚洲精品| 乱码一卡2卡4卡精品| 国产精品福利在线免费观看| 亚洲欧美清纯卡通| 不卡视频在线观看欧美| 欧美精品国产亚洲| 亚洲精品国产av蜜桃| 天天躁夜夜躁狠狠久久av| 男女视频在线观看网站免费| 亚洲人成网站在线观看播放| 亚洲av.av天堂| 男人狂女人下面高潮的视频| 国产免费一级a男人的天堂| 色播亚洲综合网| 国产精品不卡视频一区二区| 在线免费观看的www视频| 男人狂女人下面高潮的视频| 国产免费一级a男人的天堂| 卡戴珊不雅视频在线播放| 人人妻人人看人人澡| 爱豆传媒免费全集在线观看| 亚洲国产成人一精品久久久| 男女啪啪激烈高潮av片| 午夜老司机福利剧场| 日本熟妇午夜| 日本免费a在线| 午夜免费男女啪啪视频观看| 有码 亚洲区| 国产日韩欧美在线精品| 精品一区二区免费观看| 中文字幕亚洲精品专区| 国内揄拍国产精品人妻在线| 精品亚洲乱码少妇综合久久| 久久久久久伊人网av| 国产 一区 欧美 日韩| 国产精品人妻久久久影院| 亚洲在线观看片| 亚洲av福利一区| 精品人妻一区二区三区麻豆| 国产午夜精品久久久久久一区二区三区| 久久国内精品自在自线图片| 白带黄色成豆腐渣| 亚洲av一区综合| 国产在线男女| 中文精品一卡2卡3卡4更新| 99久久人妻综合| 91av网一区二区| 麻豆精品久久久久久蜜桃| 国产免费一级a男人的天堂| videossex国产| 少妇高潮的动态图| 国产综合精华液| 欧美高清成人免费视频www| 亚洲av福利一区| 午夜久久久久精精品| 国产不卡一卡二| 久久99热6这里只有精品| 精品人妻偷拍中文字幕| 免费观看的影片在线观看| 夫妻性生交免费视频一级片| 国产av国产精品国产| 国产伦理片在线播放av一区| 色哟哟·www| 亚洲在线自拍视频| 国产成人免费观看mmmm| 免费黄网站久久成人精品| 日本色播在线视频| 天堂俺去俺来也www色官网 | 日韩欧美三级三区| 高清在线视频一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 嘟嘟电影网在线观看| 国产黄频视频在线观看| 国产中年淑女户外野战色| 久久热精品热| 国产精品一区www在线观看| 大话2 男鬼变身卡| 禁无遮挡网站| 国产精品1区2区在线观看.| 国产免费视频播放在线视频 | 舔av片在线| 18+在线观看网站| av一本久久久久| 少妇的逼水好多| a级毛片免费高清观看在线播放| 美女被艹到高潮喷水动态| 国产成人精品婷婷| 欧美97在线视频| 国产亚洲91精品色在线| 天堂网av新在线| 国产精品一区二区三区四区久久| 老女人水多毛片| 亚洲人与动物交配视频| 我的老师免费观看完整版| 男人和女人高潮做爰伦理| 高清午夜精品一区二区三区| 日韩欧美精品免费久久| 美女脱内裤让男人舔精品视频| 国产精品久久视频播放| 免费av不卡在线播放| 国产精品久久视频播放| 国产精品一区二区在线观看99 | 韩国高清视频一区二区三区| 人人妻人人澡欧美一区二区| 青春草国产在线视频| 2021天堂中文幕一二区在线观| 麻豆乱淫一区二区| 亚洲欧美精品专区久久| 成人二区视频| 美女主播在线视频| 精品99又大又爽又粗少妇毛片| 免费播放大片免费观看视频在线观看| 久久久久久久国产电影| 久久这里只有精品中国| 亚洲精品乱码久久久v下载方式| 日韩大片免费观看网站| 联通29元200g的流量卡| 激情五月婷婷亚洲| 搞女人的毛片| 亚洲精品影视一区二区三区av| 三级男女做爰猛烈吃奶摸视频|