• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    pth-Moment Stabilization of Hybrid Stochastic Differential Equations by Discrete-Time Feedback Control

    2023-10-29 11:51:04LUYunLUJianqiu陸見(jiàn)秋

    LU Yun(路 蕓) , LU Jianqiu(陸見(jiàn)秋)

    College of Science, Donghua University, Shanghai 201620, China

    Abstract:The given unstable hybrid stochastic differential equation is stabilized in the sense of pth-moment exponential stability. We achieve the results by feedback controls based on the discrete-time state and mode observations. The upper bound on the duration between two consecutive observations is obtained as well. Finally, a numerical example is given to verify the validity of the theoretical conclusions.

    Key words:Brownian motion; Markov chain; moment exponential stability; feedback control; exponential stability

    0 Introduction

    Hybrid stochastic differential equations (SDEs) with Markovian switching have been used to model many practical systems where they may experience abrupt changes in parameters and structures[1]. For example, financial and power systems affected by changes in structure or parameters can be characterized by SDEs[2].

    A class of classical problems in hybrid stochastic systems is automatic control. In this field, many efforts have been devoted to investigating the stabilization of hybrid SDEs by regular feedback controls[3-5]. In general, scholars design a feedback control in the drift part to stabilize an unstable SDE based on continuous state observations as,

    dx(t)=[f(x(t),r(t),t)+μ(x(t),r(t),t)]dt+
    g(x(t),r(t),t)dB(t).

    (1)

    wherex(t) is the state of the system,r(t) is the mode of the system,fandgare referred to as the drift and the diffusion coefficients, andμ(x(t),r(t),t) is a feedback control based on the current state.

    In order to reduce cost, Mao[6]proposed feedback controls based on discrete-time state observations to stabilize a given unstable hybrid SDE. This topic has drawn some attention since then[7-11]. He also obtained an upper bound on the duration between two consecutive observations.

    Obviously, this is perfectly fine if the mode of the system is obvious (fully observable at no cost). For example, the stochastic differential equation is often used in a financial system where the mode represents the interest rate[12]. However, it could often be the case where the mode is not obvious and it costs to identify the current mode of the system. Therefore, it is necessary for us to design a controller whose states and modes are discrete to meet the practical requirements[13-16].

    Under the condition of Global Lipschitz inf,g, andμ, Songetal.[17]studied the following controlled hybrid SDEs (a feedback control based on the discrete-time statesx(kτ) and modesr(kτ)

    dx(t)=[f(x(t),r(t),t)+μ(x(δ(t)),
    r(δ(t)),t)]dt+g(x(t),r(t),t)dB(t),

    (2)

    whereδ(t)=[t/τ]τ.It shows that if the SDE (1) is mean-square exponentially stable, then the SDE (2) is stable as long asτis sufficiently small. As we all know, many scholars have studied the mean square stability[18-22].

    However, some practical problems need to study the higherpth-moment exponential stability. For example, in Refs. [23-24] the researchers studied thepth-moment stability of stochastic delay system and proved that the considered stochastic system had a unique global solution. Correspondingly, some problems only require a lower moment stability. Dongetal.[25]stated the necessity of studying the moment exponential stability ofp<2.Although lower moment stability can be derived from mean square exponential stability, the condition of mean square stability is too strong for almost sure exponential stability. Therefore, it is necessary to study the order of moments on a larger scale.

    Considering that the observations may have a delay in practical problems, Hu[18]considered adding a feedback control with a time delay to stabilize the unstable stochastic system. In addition, the previous linear matrix inequalities (LMI) techniques required the feedback control to be linear or the system to be linear[26]. Hu[14]used a new approach to overcome this limitation. When the time delay is relatively small, the system ispth-moment exponentially stable (p>0).

    Therefore, we try to study whether discrete-time feedback controls can also be applied to stabilize hybrid SDEs in the sense ofpth-moment exponential stability (p>0) in this paper. This article highlights two main contributions as follows.

    1) Compared with employing a Lyapunov functional[26-27], the mathematical technique applied in this paper can investigate the exponential stability in the sense of a wider range of thepth moment (p>0).

    2)Feedback controls are designed based on discrete-time state and mode observations in this paper. Compared with continuous time observations, discrete-time observations of state and mode cost less in practice. This makes the theory more likely to be applied in practice.

    The writing route of this paper is as follows. Section 1 introduces the basic knowledge. Section 2 states the lemmas to prove thepth-moment exponential stability of controlled SDEs by discrete-time feedback controls. Section 3 illustrates the main result of this paper through the detailed proof process. Section 4 is the conjecture and how the theorem in this paper is implemented in the controller design. Section 5 introduces a numerical example to support our results. Section 6 makes a simple summary of this paper.

    1 Preliminaries

    Throughout this paper, we let (Ω,,{t}t≥0,P) be a complete probability space with a filtration{t}t≥0 satisfying the usual conditions (i.e., it is right continuous and0contains all P-null sets. LetB(t)=(B1(t),B2(t),…,Bm(t))Tbe anm-dimensional Brownian motion defined on the probability space. IfAis a vector or matrix, its transpose is denoted byAT.Ifx∈Rn, then |x|is the Euclidean norm. IfAis a matrix, we letbe its trace norm.A=max|Ax|:|x|=1 be the operator norm. If bothaandbare real numbers, thena∨b=max{a,b}anda∧b=min{a,b}.

    Letr(t),t≥0 be a right continuous Markov chain on the same probability space and it takes values in a finite state spaceS={1, 2, …,N} with its generator Γ=(γij)N×Ngiven by

    (3)

    where Δ >0. Hereγij≥0 is the transition rate fromitojifi≠jwhile

    (4)

    Considering an unstable hybrid SDE

    dx(t) =f(x(t),r(t),t) dt+
    g(x(t),r(t),t)dB(t),t≥0,

    (5)

    where the statex(t)takes values inRnand the moder(t) is described by a Markov chain taking values in a finite spaceS={1,2,…,N},B(t)is a Brownian motion, andfis the drift coefficient,gis the diffusion coefficient. The coefficientsf:Rn×S×R+→Rnandg:Rn×S×R+→Rn×mare Borel measurable.

    The purpose of this article is to design a Borel measurable control functionu:Rn×S×R+→Rnthat makes the followingn-dimensional hybrid SDE exponentially stable in thepth-moment

    dx(t)=[f(x(t),r(t),t)+u(x(δ(t)),
    r(δ(t)),t)]dt+g(x(t),r(t),t)dB(t),

    (6)

    whereδ(t)=[t/τ]τ.Hereτ>0 and [t/τ]is the integer part oft/τ.We only need to observe at discrete time0,τ,2τ,3τand so on. To make the hybrid SDE (6) have a unique solution, we impose the global Lipschitz condition.

    Assumption1Assume that there are positive constantsL1,L2,L3such that

    (7)

    for all (x,y,i,t)∈Rn×Rn×S×R+.Moreover,

    (8)

    for all (i,t)∈S×R+.Condition (7) is for the stability purpose of this paper and condition (8) is for the existence and uniqueness of the solution[28]. We should point out that these conditions imply the following linear growth condition:

    (9)

    for all (x,i,t)∈Rn×S×R+.We claim that under Assumption 1, for any initial data

    (10)

    for allt≥0.

    In fact, it is known that {r(δ(t,0,τ))}t≥0={r(kτ)}k≥0is a discrete-time Markov chain with a one-step transition probability matrix eτΓ.From the importance of the initial value, denote the solution byx(t;x0,r0, 0) and the Markov chain byr(t;r0, 0).Moreover, fort∈[0,τ], SDE (3) becomes a hybrid SDE

    dx(t)=[f(x(t),r(t),t)+u(x0,r0, 0)]dt+
    g(x(t),r(t),t)dB(t),

    (11)

    Repeating this procedure on time intervals [kτ,(k+1)τ] fork≥1, the arguments show that the process has the following property at the discrete timeskτ,k≥0

    (x(t;x0,r0, 0),r(t;x0,r0, 0)) =x(t;x(kτ),

    r(kτ),kτ), +r(t;r(x(kτ)),r(kτ),kτ),

    (12)

    For allt≥kτ, wherex(kτ)=x(kτ;x0,r0, 0) andr(kτ)=r(kτ;x0,r0, 0).

    Let us consider the controlled hybrid SDE (2). To avoid confusion, we usey(t)for the state to distinguish it from the solution of the SDE (1). Considering the auxiliary controlled hybrid SDE

    dy(t)=[f(y(t),r(t),t)+u(y(t),r(t),t)]dt+
    g(y(t),r(t),t)dB(t),

    (13)

    ont≥0, write initial data

    It is known that under Assumption 1, the SDE (13) has a unique solutiony(t) ont≥0.Meanwhile, it has the property thatE|y(t)|p<∞for allt≥0.

    If we denote the solution byy(t)=y(t;y0,r0,0) , we put forward the following assumption about the solutiony(t).

    Assumption2Assume that there is a pair of positive constantsMand γ such that the solution of the continuous-time controlled SDE (13) satisfies

    (14)

    Under this Assumption, the aim is to prove that the same control function also makes thepth-moment exponentially stable for the controlled system, provided thatτis sufficiently small.

    2 Lemmas

    To prove our main theorem, let’s first list some lemmas. It is important to emphasize that the following discussion is based onp>0.

    Lemma 1 Under Assumption 1, for anyt≥0,

    (15)

    and

    (16)

    Specifically,

    (17)

    and

    (18)

    where

    Ci(p) =

    (19)

    (20)

    From Assumptions 1 and 2, we know

    (21)

    The second term on the right-hand side increases witht, so we get

    The desired assertion holds under the well-known Gronwall inequality

    Therefore,

    Hence,

    Taking the expectation on both sides gets the desired assertion formula (15).

    Then we can proceed to deduce formula (16) from Eq.(2) again. Note that ?t≥0, there exists a unique positive integervfort∈[vτ, (v+1)τ).Thenδ(t)=vτholds for ?t∈[vτ, (v+1)τ).Let’s consider the case ofp≥2,

    Firstly, using the inequality(a+b)p≤2p-1(ap+bp),the above equation becomes the following inequality

    And then using the theorem 7.1 in Ref. [4],

    Then

    Finally, repeating the similar steps whenp∈(0,2), we get

    Lemma2[29]For anyt≥0,v>0, andi∈S,

    (22)

    where

    (23)

    Lemma 3 Let Assumption 1 hold. Fort≥0, writingy(t;y0,r0, 0)=y0,the following inequality holds,

    (24)

    where

    (25)

    (26)

    dX(t)=[f(x(t),r(t),t) +μ(x(δ(t)),r(δ(t)),t)-f(y(t),r(t),t)-μ(y(t),r(t),t)]dt+

    [g(x(t),r(t),t)-g(y(t),r(t),t)]dB(t).

    (27)

    Meanwhile, let

    F(t)=f(x(t),r(t),t)+μ(x(δ(t)),r(δ(t)),t)-f(y(t),r(t),t)-μ(y(t),r(t),t).

    (28)

    (29)

    where

    (30)

    M1(t)is a martingale withM1(0) = 0, soEM1(t)=0.Under Assumption 1, we begin to discuss the case ofp≥2.

    (31)

    where

    u(x(s),r(s),s)]+[u(x(s),r(s),s)-u(y(s),r(s),s)]|ds≤J3(t)+

    (32)

    By H?lder inequality, we have

    and from Lemma 1 and assertion (15)

    So

    Concretely,

    (33)

    Letp0=0∨(p-1),?kτ≤s≤(k+1)τby the well-known Fubini theorem, we definetk=kτfork=0,1,2…,

    By Assumption 1 and conditional expectation?tk≤s≤t∧tk+1,

    (34)

    From Lemma 2, we get

    (35)

    and we integrate it with

    (36)

    By Lemma 1, the inequality becomes

    After the above deduction, we finally get

    But there is still a part that needs to use the above Lemma 1, then bringK3into it

    (37)

    An application of the well-known Gronwall inequality yields

    (38)

    So whenp≥2,

    Whenp=2,

    Combining knowledge of conditional expectation, there must be

    Therefore, the proof is complete.

    3 Main Results

    Under all the Assumptions and Lemmas, we can present our main theorem in this section.

    Theorem1Let Assumptions 1 and 2 hold. Then there exists a positive numberτ*, such that the stochastic controlled hybrid system SDE (2) is exponentially stable in thepth-moment. That means ifτ≤τ*, then there is a pair of positive constantsCandλ, such that the solution of the controlled hybrid SDE (2) satisfies

    (39)

    It is important that we find out how to determineτ*.

    Proposition1p0=0∨(p-1) has been defined in Lemma 3. We can choose a constantε∈(0, 1) andτ* is the unique solution of the equation.

    (40)

    whereγandMhave been given in Assumption 2. Obviously, whenτ=0,the left-hand-side term of Eq. (40) is 0. Meanwhile, it’s an increasing continuous function ofτint≥0.So Eq. (40) has a uique solution. In fact, we have no way to represent this number concretely. But with the help of the computer, we can find its value numerically. Note thatτ*followsε.If we can pick out a largerτ* with the value ofε, it would make a lot of sense in practice.

    Then let’s begin to state the proof of Theorem 1.

    ProofFork=0,1,2…,then we writekτ=tkandxkτ=xk,r(kτ)=rk.By the assertion formula (9), we know

    x(t)=x(t;xk,rk,tk)?t≥tk.

    (41)

    This implies

    (42)

    Furthermore, by the elementary inequality, (a+b)p≤2p0(ap+bp),a,b>0, we can deduce that

    From Lemma 3,

    so we get

    (43)

    (44)

    so we have

    Let the right part of the upper form beN(p,τ).

    Through the assertion (40), we know

    ε+N(p,τ)<1.

    Therefore, ?λ>0,

    It then follows from formula (43)

    Therefore,

    (45)

    holds. Then by Lemma 1 and assertion (45), whenp≥2

    (46)

    (47)

    4 Enforcement

    In this chapter, we consider how to enforce our theory. The given unstable hybrid SDE (5) needs a feedback controlu(x(t),r(t),t) in the drift. That can make the hybrid SDE (1) exponentially stable in thepth-moment. The form ofpth-moment stability has been shown in Assumption 2. There are plenty of documents that discuss how to determine the controller. In this paper, the controller is based on Ref. [3] and some conjectures are presented to enable Theorem 1 to be implemented.

    Assumption3Letp>0.Assume that there are real numbersqi,i∈S, such that

    (48)

    for all(x,i,t)∈(Rn-0)×S×R+,while

    H(p):=diag(q1,q2, …,qN)-Γ.

    (49)

    This a nonsingular M-matrix. Here’s an explanation of the M-matrix:H(p)=(hij)N×N,hij<0,i≠j,H-1>0.

    Theorem2Under the conditions of Assumption 1 and Theorem 1, then Assumption 2 holds with

    (50)

    Consequently, Theorem 1 holds under Assumptions 1 and 3.

    ProofWe observe that allqiare positive. Meanwhile,Ais a nonsingular M-matrix[24]. From the assertion (50), we know that

    (51)

    First, combining what we know from the theorem 5.8 in Ref. [24], we know that to make the SDE (1) stable, designing a Lyapunov function is necessary. Now we determine the initial value representation for Eq. (13). Lety(t0)=y0∈Rn, andr(t0)=r0∈S.Obviously, ify0=0, the equation holds, so we consider the case whenp>2 andr0∈Sarbitrarily and writey(t;x0,r0)=x(t).

    within

    Then,LV(x,i,t) is defined by

    From Assumption 3, we get

    However, by assertion Eq. (51), it’s easy to obtain

    LV(x,i,t)≤0,EV≤V(x0,r0, 0).

    (52)

    Finally, substituting this into formula (52) yields

    So

    We now consider the general case: the controlled SDE (14) with the initial data

    5 Examples

    Example 1 Consider a two-dimensional hybrid SDEs

    dx(t)=f(x(t),r(t))dt+g(x(t),r(t))dB(t),

    (53)

    whereB(t) is a scalar Brownian motion;r(t) is a Markov chain on the state spaceS={1,2}with the generator

    Letx(t)=(x1(t),x2(t))T, then the coefficients of the HSDE are

    The coefficients of the SDE are

    By simulation (Fig.1), we can observe that the given SDE is unstable.

    Fig.1 Simulation of the paths of r(t), x1(t) and x2(t) for the hybrid SDE using the Euler-Maruyama method with step size 0.001 and initial values: (a) r(0)=1; (b) x1(0)=-0.19; (c)x2(0)=1.4×1023

    In order to prove that our theory can be applied to the stabilization of hybrid SDEs, we consider a uniform form of feedback control at first in this example. To make the later calculations easier, we design a linear control tox1.The form of linear control is as follows:

    where all (x,i)∈(R2×S);e1ande2are both positive numbers to be chosen. It is not difficult to find that because of the coefficient characteristicf(x,i),g(x,i) of the equation, only the first statex1can be observed, the linear control of the two statesx1andx2is invalid.

    From Assumption 1, we get

    L1=0.2,L2=0.267 8,L3=0.2.

    Therefore, we have

    for(x,i)∈{R2-{0}}×S, where

    After putting specific values into this expression, we get

    The goal is to find the right valuese1ande2to stabilize the given SDE. Therefore, it is not difficult to find thatp<1 is an ideal case.

    Now we consider the case whenp=0.98.Meanwhile, in order to make the calculation easier, we let 0.1-e1+0.02(p-1)=-0.1+0.005(p-1).Soe1=0.199 7.In the same way,e2=0.100 3.Consequently,

    It is then easy to see thatq1=0.721 2 andq2=0.240 4.The nonsingular M-matrix defined by assertion (49) has the following form

    It turns out that Assumption 3 is right whenp=0.98.It’s available nowβ1=5.591 9 andc2=5.732 5.Therefore, we getM=1.040 8 andγ=0.178 8 by Eq.(50).

    By using Theorem 1 and Theorem 3, the solution of the uniform controlled SDEs

    dy(t)=[f(y(t),r(t),t)+μ(y(t),r(t),t)]dt+
    g(y(t),r(t),t)dB(t)

    ispth-moment exponentially stable.

    N(0.98,τ)=2p0K3(0.98,τ)=1-ε=0.2,

    which has a unique positive rootτ*=7.340 8×10-8. By Theorem 1, the discrete feedback-controlled system

    dy(t)=[f(x(t),r(t),t)+μ(x(δ(t)),
    r(δ(t)),t)]dt+g(x(t),r(t),t)dB(t)

    with the control functionμ(x,i,t) beingpth-moment exponentially stable as long asτ<7.340 8×10-8.Once again, the computer simulation (Fig.2) supports this theoretical result clearly.

    Fig.2 Simulation of the paths of r(t), x1(t), and x2(t) for the hybrid SDE using the Euler-Maruyama method with step size 0.001 and initial values: (a) r(0)=1; (b) x1(0)=-0.012; (c) x2(0)=0.010 5

    6 Conclusions

    In this paper, we prove that hybrid SDEs can be stabilized by feedback controls based on discrete-time state and mode observations in the sense ofpth-moment exponential stability (p>0).In addition, we obtain the upper bound for the duration between two consecutive observations.

    黄色配什么色好看| 亚洲精品,欧美精品| 欧美人与善性xxx| 蜜桃在线观看..| 国产伦精品一区二区三区四那| 免费少妇av软件| 亚洲第一av免费看| 18+在线观看网站| 国产在线视频一区二区| 97超碰精品成人国产| 精品少妇黑人巨大在线播放| 五月开心婷婷网| 成年人免费黄色播放视频 | av视频免费观看在线观看| a级一级毛片免费在线观看| 亚洲国产欧美日韩在线播放 | 亚洲精品亚洲一区二区| 欧美精品人与动牲交sv欧美| 寂寞人妻少妇视频99o| 亚洲第一区二区三区不卡| h日本视频在线播放| 亚洲av二区三区四区| 九草在线视频观看| 亚洲在久久综合| 熟女av电影| 人妻 亚洲 视频| 亚洲国产毛片av蜜桃av| 国产免费又黄又爽又色| 91成人精品电影| 99热这里只有是精品50| 黄色欧美视频在线观看| 日本欧美视频一区| 日韩精品免费视频一区二区三区 | 国产熟女午夜一区二区三区 | 久久久亚洲精品成人影院| 日韩一本色道免费dvd| 最新的欧美精品一区二区| 欧美精品人与动牲交sv欧美| 国产精品偷伦视频观看了| 国产一区二区三区av在线| 久久久久精品久久久久真实原创| 日韩中字成人| 99热国产这里只有精品6| 欧美bdsm另类| 免费人妻精品一区二区三区视频| 国产极品天堂在线| 国产精品国产三级专区第一集| 22中文网久久字幕| 婷婷色麻豆天堂久久| 久久久午夜欧美精品| 国内少妇人妻偷人精品xxx网站| 永久网站在线| 免费观看在线日韩| 国产成人精品久久久久久| 伊人亚洲综合成人网| 亚洲一区二区三区欧美精品| 伊人亚洲综合成人网| 街头女战士在线观看网站| 如日韩欧美国产精品一区二区三区 | √禁漫天堂资源中文www| 亚洲色图综合在线观看| 亚洲色图综合在线观看| 国模一区二区三区四区视频| 国产淫片久久久久久久久| 天堂俺去俺来也www色官网| 插阴视频在线观看视频| 国产一区二区在线观看日韩| 国国产精品蜜臀av免费| 一区二区三区四区激情视频| 免费观看性生交大片5| 高清av免费在线| 亚洲欧美精品自产自拍| 一级,二级,三级黄色视频| 五月伊人婷婷丁香| 国产国拍精品亚洲av在线观看| 嫩草影院新地址| 乱系列少妇在线播放| 国产精品蜜桃在线观看| 最近的中文字幕免费完整| 99热网站在线观看| 777米奇影视久久| 亚洲自偷自拍三级| 激情五月婷婷亚洲| 91在线精品国自产拍蜜月| 亚洲成人手机| 男人爽女人下面视频在线观看| 国产精品99久久99久久久不卡 | 免费观看无遮挡的男女| 精品一区在线观看国产| av在线播放精品| 春色校园在线视频观看| 免费观看的影片在线观看| 少妇人妻精品综合一区二区| 18禁动态无遮挡网站| 91成人精品电影| 国产av一区二区精品久久| 国产精品99久久久久久久久| av有码第一页| 日本黄大片高清| 男人舔奶头视频| 日韩人妻高清精品专区| 婷婷色麻豆天堂久久| 五月伊人婷婷丁香| 一级毛片 在线播放| xxx大片免费视频| 亚洲精品国产成人久久av| 国产日韩一区二区三区精品不卡 | 日韩人妻高清精品专区| 久久久亚洲精品成人影院| 最新的欧美精品一区二区| 日韩伦理黄色片| 亚洲av.av天堂| 成人漫画全彩无遮挡| 久久精品久久精品一区二区三区| 亚洲国产最新在线播放| 亚洲精品日本国产第一区| 国产成人aa在线观看| 成人二区视频| 国产亚洲av片在线观看秒播厂| 成年av动漫网址| 亚洲精品乱码久久久v下载方式| 老女人水多毛片| a级一级毛片免费在线观看| 伦精品一区二区三区| 夫妻性生交免费视频一级片| 久久热精品热| 久久99蜜桃精品久久| av在线观看视频网站免费| 久久99蜜桃精品久久| 久久精品久久久久久噜噜老黄| 女人精品久久久久毛片| 午夜久久久在线观看| 最近中文字幕高清免费大全6| 99九九在线精品视频 | 亚洲av日韩在线播放| 午夜av观看不卡| 久久久国产一区二区| 国产成人免费无遮挡视频| 少妇 在线观看| 色视频www国产| 国产日韩欧美在线精品| 人人妻人人看人人澡| 欧美日本中文国产一区发布| 成人亚洲精品一区在线观看| 国产女主播在线喷水免费视频网站| 亚洲欧美精品专区久久| 日韩不卡一区二区三区视频在线| 我的女老师完整版在线观看| 青春草亚洲视频在线观看| 日韩欧美精品免费久久| 最近2019中文字幕mv第一页| 男人狂女人下面高潮的视频| 高清毛片免费看| 久久婷婷青草| 人妻制服诱惑在线中文字幕| 精品国产一区二区三区久久久樱花| 91久久精品电影网| 日本色播在线视频| 国产男人的电影天堂91| 中国国产av一级| 青春草亚洲视频在线观看| 日日爽夜夜爽网站| 韩国av在线不卡| 亚洲国产精品国产精品| 国产欧美日韩精品一区二区| 久久精品国产亚洲av涩爱| 三级经典国产精品| 美女大奶头黄色视频| 亚洲精品aⅴ在线观看| 精华霜和精华液先用哪个| 国产亚洲欧美精品永久| 国产精品女同一区二区软件| 在线观看美女被高潮喷水网站| 国产亚洲精品久久久com| 人妻人人澡人人爽人人| 国产无遮挡羞羞视频在线观看| av在线老鸭窝| 岛国毛片在线播放| 日日啪夜夜撸| 一区二区av电影网| 欧美性感艳星| 少妇 在线观看| 一级av片app| 久久久a久久爽久久v久久| 久久这里有精品视频免费| 黑丝袜美女国产一区| 午夜av观看不卡| 九色成人免费人妻av| 国产成人a∨麻豆精品| 午夜激情福利司机影院| 精品亚洲成a人片在线观看| 国产毛片在线视频| 伊人亚洲综合成人网| 大码成人一级视频| 亚洲国产av新网站| 搡老乐熟女国产| 中文乱码字字幕精品一区二区三区| 99热6这里只有精品| 99热这里只有精品一区| 欧美激情国产日韩精品一区| 欧美最新免费一区二区三区| 国产一区二区三区av在线| 各种免费的搞黄视频| 九色成人免费人妻av| 能在线免费看毛片的网站| 中文在线观看免费www的网站| 国产在线视频一区二区| 我的老师免费观看完整版| 国产精品秋霞免费鲁丝片| 久久精品久久精品一区二区三区| 国产视频内射| 新久久久久国产一级毛片| 少妇的逼水好多| 亚洲电影在线观看av| 成人黄色视频免费在线看| 欧美精品国产亚洲| 一本大道久久a久久精品| 久久精品国产a三级三级三级| .国产精品久久| av福利片在线| 精品少妇久久久久久888优播| 国产视频内射| 亚洲av成人精品一区久久| 亚洲人成网站在线观看播放| 人妻夜夜爽99麻豆av| 天天操日日干夜夜撸| 只有这里有精品99| 久久久久久久久大av| 91在线精品国自产拍蜜月| 最近的中文字幕免费完整| 美女中出高潮动态图| 日本-黄色视频高清免费观看| 草草在线视频免费看| 97在线视频观看| 精品人妻偷拍中文字幕| 国产一区二区在线观看av| 一区二区三区四区激情视频| 亚洲无线观看免费| 精品卡一卡二卡四卡免费| 成年av动漫网址| 曰老女人黄片| 国产真实伦视频高清在线观看| 91久久精品国产一区二区三区| 精品一品国产午夜福利视频| 妹子高潮喷水视频| 一级黄片播放器| 亚洲国产最新在线播放| 成年人午夜在线观看视频| 久久久久久久久大av| 中文字幕人妻丝袜制服| 夫妻性生交免费视频一级片| 国产精品国产av在线观看| 中文字幕人妻熟人妻熟丝袜美| 中文字幕精品免费在线观看视频 | 日韩大片免费观看网站| 在线观看免费高清a一片| 精品久久国产蜜桃| 亚洲精品日韩av片在线观看| 人人妻人人澡人人爽人人夜夜| 99热全是精品| 亚洲成人一二三区av| 欧美精品人与动牲交sv欧美| 亚洲精华国产精华液的使用体验| 亚洲欧洲国产日韩| 国产免费一区二区三区四区乱码| 三级经典国产精品| 免费久久久久久久精品成人欧美视频 | 国产精品久久久久久精品电影小说| 国产精品一区二区在线观看99| 久久久久久伊人网av| 熟女av电影| 日韩欧美精品免费久久| 少妇人妻久久综合中文| 全区人妻精品视频| 黄片无遮挡物在线观看| 国产伦精品一区二区三区视频9| 人人妻人人添人人爽欧美一区卜| 国内精品宾馆在线| 夜夜爽夜夜爽视频| 高清午夜精品一区二区三区| 各种免费的搞黄视频| 免费观看的影片在线观看| 涩涩av久久男人的天堂| 肉色欧美久久久久久久蜜桃| 国产精品国产三级国产av玫瑰| 国产日韩一区二区三区精品不卡 | 97在线视频观看| 简卡轻食公司| 国产精品人妻久久久久久| 如日韩欧美国产精品一区二区三区 | 麻豆成人av视频| 日韩人妻高清精品专区| 精品午夜福利在线看| 最近的中文字幕免费完整| 久久久国产精品麻豆| 九色成人免费人妻av| 高清毛片免费看| 少妇高潮的动态图| 国产精品一区二区在线不卡| 涩涩av久久男人的天堂| 国内揄拍国产精品人妻在线| 在现免费观看毛片| 精品少妇黑人巨大在线播放| a级毛片免费高清观看在线播放| 午夜福利网站1000一区二区三区| 最近手机中文字幕大全| 伦精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 内地一区二区视频在线| 国产精品福利在线免费观看| 久久人人爽人人片av| 免费观看av网站的网址| 最新的欧美精品一区二区| 伦理电影免费视频| 成人美女网站在线观看视频| 国产一区二区在线观看av| 欧美丝袜亚洲另类| 男人舔奶头视频| 亚洲,一卡二卡三卡| 丝瓜视频免费看黄片| 国产av码专区亚洲av| 你懂的网址亚洲精品在线观看| 三级国产精品欧美在线观看| 在线观看av片永久免费下载| 国精品久久久久久国模美| 精品亚洲乱码少妇综合久久| 精华霜和精华液先用哪个| 久久久久人妻精品一区果冻| 精品少妇内射三级| 麻豆乱淫一区二区| 性色av一级| 少妇精品久久久久久久| 日韩一区二区视频免费看| h日本视频在线播放| 成人毛片60女人毛片免费| 国产有黄有色有爽视频| av在线观看视频网站免费| 亚洲精品国产成人久久av| 午夜老司机福利剧场| 国产精品伦人一区二区| 尾随美女入室| 久久99一区二区三区| 亚洲综合色惰| 丝袜脚勾引网站| 久久久国产欧美日韩av| 免费看不卡的av| 国产熟女欧美一区二区| 黄色一级大片看看| 国产一区二区三区av在线| 欧美少妇被猛烈插入视频| 老司机亚洲免费影院| 极品少妇高潮喷水抽搐| 国产高清不卡午夜福利| 日本wwww免费看| 亚洲色图综合在线观看| 女的被弄到高潮叫床怎么办| 亚洲在久久综合| 多毛熟女@视频| 我要看日韩黄色一级片| 欧美一级a爱片免费观看看| 美女国产视频在线观看| 国产视频内射| 久久久久久久久久久久大奶| 嫩草影院新地址| 国产精品国产av在线观看| 免费久久久久久久精品成人欧美视频 | 99久久人妻综合| 高清午夜精品一区二区三区| 国产一区有黄有色的免费视频| 在线观看一区二区三区激情| 天堂8中文在线网| 午夜老司机福利剧场| 韩国av在线不卡| 亚洲在久久综合| 一区二区av电影网| 我要看日韩黄色一级片| a 毛片基地| 伊人久久国产一区二区| 伊人久久精品亚洲午夜| 99国产精品免费福利视频| 成人亚洲欧美一区二区av| 午夜av观看不卡| 97在线视频观看| 麻豆成人午夜福利视频| 久热这里只有精品99| 麻豆成人av视频| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美视频二区| 国产亚洲5aaaaa淫片| 51国产日韩欧美| 国产男女超爽视频在线观看| 成人无遮挡网站| 亚洲国产精品999| 久久久精品94久久精品| 国产av一区二区精品久久| 七月丁香在线播放| 中文字幕人妻熟人妻熟丝袜美| 99热网站在线观看| 国产精品蜜桃在线观看| 99热国产这里只有精品6| 欧美日韩亚洲高清精品| 这个男人来自地球电影免费观看 | 妹子高潮喷水视频| 精品一区在线观看国产| 免费黄频网站在线观看国产| 丝袜在线中文字幕| 女性被躁到高潮视频| 超碰97精品在线观看| 中文字幕免费在线视频6| 久久久国产欧美日韩av| 国产精品人妻久久久久久| 人体艺术视频欧美日本| 亚洲自偷自拍三级| 久久精品国产亚洲av天美| 人人妻人人澡人人爽人人夜夜| 久久精品久久久久久噜噜老黄| 国产美女午夜福利| 久久鲁丝午夜福利片| 一级a做视频免费观看| 97在线人人人人妻| 蜜臀久久99精品久久宅男| 99久久精品国产国产毛片| 国产在线视频一区二区| 18禁裸乳无遮挡动漫免费视频| 国产精品蜜桃在线观看| 亚洲精品久久久久久婷婷小说| 久久久久久久精品精品| 久久久精品免费免费高清| 22中文网久久字幕| 亚洲综合精品二区| 亚洲电影在线观看av| 日韩成人av中文字幕在线观看| 国产探花极品一区二区| 在线观看美女被高潮喷水网站| 蜜桃在线观看..| 欧美日韩视频高清一区二区三区二| 久久婷婷青草| 天堂8中文在线网| 欧美高清成人免费视频www| 天堂8中文在线网| 亚洲欧美成人精品一区二区| av国产精品久久久久影院| 久久久国产精品麻豆| 一区二区三区四区激情视频| 夫妻性生交免费视频一级片| 美女福利国产在线| 大香蕉久久网| 免费久久久久久久精品成人欧美视频 | 你懂的网址亚洲精品在线观看| 国产精品熟女久久久久浪| 欧美+日韩+精品| 国产精品一区二区在线不卡| 岛国毛片在线播放| 久久青草综合色| 人妻制服诱惑在线中文字幕| 91在线精品国自产拍蜜月| 久久久欧美国产精品| 亚洲情色 制服丝袜| 成年女人在线观看亚洲视频| 免费大片18禁| 国产精品不卡视频一区二区| 在线观看国产h片| 蜜桃久久精品国产亚洲av| 亚洲精品,欧美精品| 国产成人aa在线观看| 这个男人来自地球电影免费观看 | 女性生殖器流出的白浆| a级毛片免费高清观看在线播放| 在线精品无人区一区二区三| 国产免费视频播放在线视频| 欧美区成人在线视频| 成人国产av品久久久| 中文字幕人妻丝袜制服| 噜噜噜噜噜久久久久久91| 在线观看人妻少妇| 成人亚洲欧美一区二区av| 久久 成人 亚洲| 丰满饥渴人妻一区二区三| 少妇高潮的动态图| av国产精品久久久久影院| 日本欧美视频一区| 日日撸夜夜添| 乱系列少妇在线播放| 国产精品一区二区性色av| 99久久中文字幕三级久久日本| 嫩草影院入口| 欧美变态另类bdsm刘玥| √禁漫天堂资源中文www| 国产视频内射| 91午夜精品亚洲一区二区三区| 综合色丁香网| 人妻 亚洲 视频| 哪个播放器可以免费观看大片| 日本黄色片子视频| 国产熟女欧美一区二区| 久久精品国产亚洲网站| 免费高清在线观看视频在线观看| 丝瓜视频免费看黄片| 亚洲怡红院男人天堂| 黄色欧美视频在线观看| 国产亚洲欧美精品永久| 99国产精品免费福利视频| 成人漫画全彩无遮挡| 18+在线观看网站| 黄色毛片三级朝国网站 | av在线播放精品| 久久精品国产亚洲av涩爱| 欧美日韩国产mv在线观看视频| 岛国毛片在线播放| 男人爽女人下面视频在线观看| 永久免费av网站大全| 午夜福利视频精品| 夫妻性生交免费视频一级片| 国语对白做爰xxxⅹ性视频网站| 22中文网久久字幕| 日韩一区二区三区影片| 美女国产视频在线观看| 在线观看一区二区三区激情| 天堂8中文在线网| 一个人看视频在线观看www免费| 春色校园在线视频观看| 亚洲国产精品一区二区三区在线| 啦啦啦啦在线视频资源| 午夜av观看不卡| 一级爰片在线观看| 免费久久久久久久精品成人欧美视频 | 在线观看免费高清a一片| 日韩电影二区| 九九久久精品国产亚洲av麻豆| 亚洲国产欧美日韩在线播放 | 国模一区二区三区四区视频| 亚洲国产成人一精品久久久| 久久热精品热| 大片免费播放器 马上看| 成人综合一区亚洲| 黄片无遮挡物在线观看| 精品久久久久久久久av| 国产视频内射| 高清午夜精品一区二区三区| a级毛片免费高清观看在线播放| 十八禁高潮呻吟视频 | 一级二级三级毛片免费看| 99热这里只有是精品50| 国产一区二区在线观看av| 国产片特级美女逼逼视频| 成人亚洲欧美一区二区av| 亚洲情色 制服丝袜| 国产午夜精品一二区理论片| 国产精品欧美亚洲77777| 天堂俺去俺来也www色官网| 99视频精品全部免费 在线| 91久久精品国产一区二区成人| 久久久欧美国产精品| 七月丁香在线播放| 久久99热6这里只有精品| 欧美日韩一区二区视频在线观看视频在线| 一区二区三区四区激情视频| 伦精品一区二区三区| 少妇人妻 视频| 国产免费一区二区三区四区乱码| 日韩欧美一区视频在线观看 | videos熟女内射| 日韩人妻高清精品专区| 亚洲va在线va天堂va国产| 久久久欧美国产精品| 美女国产视频在线观看| 99热这里只有是精品在线观看| 成人毛片60女人毛片免费| 国产 精品1| .国产精品久久| 黄色毛片三级朝国网站 | 久久久久久伊人网av| 纯流量卡能插随身wifi吗| 高清午夜精品一区二区三区| 亚洲色图综合在线观看| 精品亚洲乱码少妇综合久久| 欧美精品人与动牲交sv欧美| 最后的刺客免费高清国语| 精品视频人人做人人爽| 精品久久久久久久久亚洲| 我要看黄色一级片免费的| 国产一区有黄有色的免费视频| 国产永久视频网站| a级毛片免费高清观看在线播放| av在线app专区| 成年美女黄网站色视频大全免费 | 女性被躁到高潮视频| 最近2019中文字幕mv第一页| kizo精华| 国产精品成人在线| 18禁在线无遮挡免费观看视频| 美女中出高潮动态图| 欧美精品人与动牲交sv欧美| 好男人视频免费观看在线| 国产69精品久久久久777片| 精品国产一区二区久久| 2021少妇久久久久久久久久久| 国产真实伦视频高清在线观看| 精品视频人人做人人爽| 视频区图区小说| 国产精品久久久久久精品电影小说| 伊人久久精品亚洲午夜| 日本爱情动作片www.在线观看| 久久国产精品男人的天堂亚洲 | 久久青草综合色| 免费av不卡在线播放| 久久青草综合色| 搡老乐熟女国产| 乱码一卡2卡4卡精品| 最近最新中文字幕免费大全7| 日本91视频免费播放| av播播在线观看一区| 免费在线观看成人毛片| 一级,二级,三级黄色视频| 国产视频内射|