陳蔓瑩,莫泳鋒,覃洪宇,葉雨
生物信息學分析腎透明細胞癌中NLR信號通路的作用和臨床意義
陳蔓瑩1,2,莫泳鋒1,2,覃洪宇1,2,葉雨1,2
1.廣西醫(yī)科大學第二臨床醫(yī)學院,廣西南寧 530000;2.廣西醫(yī)科大學第二附屬醫(yī)院急診科,廣西南寧 530000
探討寡聚化核苷酸結(jié)合結(jié)構(gòu)域樣受體(nucleotide-binding structural domain-like receptor,NLR)信號通路在腎透明細胞癌(clear cell renal cell carcinoma,ccRCC)中的作用和臨床意義,為尋找新靶點提供參考。從癌癥基因組圖譜(The Cancer Genome Atlas,TCGA)、基因表達綜合(gene expression omnibus,GEO)、ArrayExpress和GEPAI2.0等數(shù)據(jù)庫中下載ccRCC相關(guān)數(shù)據(jù),利用R軟件分析NLR信號通路在正常組織和癌組織中的富集差異,及其與T、N、M、腫瘤分級和分期等臨床指標間的相關(guān)性,進一步分析該通路與ccRCC患者預后的關(guān)系,單細胞測序數(shù)據(jù)用于聚類和基因表達分析,通過免疫逃逸相關(guān)的基因集富集分析(gene set enrichment analysis,GSEA)和相關(guān)分析研究免疫與通路的關(guān)系,用免疫治療數(shù)據(jù)進行生存分析和構(gòu)建免疫相關(guān)生存預后模型。NLR信號通路在ccRCC中異常富集(<0.05),其富集趨勢與各臨床指標趨勢相同,高富集該信號通路與不良預后有關(guān)(<0.05),上調(diào)NLR信號通路與下調(diào)NK細胞、M1巨噬細胞,上調(diào)中性粒細胞、巨噬細胞等免疫細胞浸潤水平相關(guān),同時分析表明該通路與免疫逃逸間存在相互作用,基于11個差異基因構(gòu)建的免疫治療生存預后模型預測患者1年、3年、5年生存率的受試者工作特征曲線曲線下面積分別為0.64、0.69、0.75。NLR信號通路是ccRCC的關(guān)鍵生物途徑,與免疫逃逸之間的竄擾促使ccRCC發(fā)生、發(fā)展,11個NLR通路相關(guān)基因成功構(gòu)建免疫療法的生存預后模型,免疫療法中它們可能是預后生物標志物和潛在治療靶點。
腎透明細胞癌;寡聚化核苷酸結(jié)合結(jié)構(gòu)域樣受體信號通路;單細胞測序分析;免疫逃逸;生存預后模型
全球范圍內(nèi),ccRCC的發(fā)病率與死亡率逐年升高[1-2],酪氨酸激酶抑制劑和免疫檢查點抑制劑單藥或聯(lián)合治療的中位無進展生存期最高為2年,中位總生存期不超5年[3]。因此仍需進一步探索ccRCC發(fā)生、發(fā)展的關(guān)鍵生物途徑和關(guān)鍵機制,為尋找新的關(guān)鍵靶點提供理論參考。NLR信號通路在調(diào)控非特異性免疫反應(yīng)中具有重要作用。它通過NLRC和NLRP兩個NOD受體亞家族識別非特異性抗原,介導自噬和炎癥等反應(yīng)發(fā)生[4-5]。研究表明,NLR信號通路參與了多種腫瘤發(fā)生、增殖和侵襲。已有的研究中,激活該信號通路可誘導大部分癌癥發(fā)生與進展,其中包括結(jié)直腸癌[6]、乳腺癌[7]、皮膚癌[8]、肝癌[9]、非小細胞肺癌[10]等,也可抑制胃癌、膀胱癌和部分肝癌增殖與轉(zhuǎn)移[11-12]。而ccRCC中,有研究發(fā)現(xiàn)NLR信號通路是患者生存和腫瘤進展的危險因素[13],高表達NLRP3可誘導癌細胞轉(zhuǎn)移[14],然而有關(guān)該生物途徑在ccRCC中的臨床意義、具體作用仍缺乏明確的研究。
本研究基于公共數(shù)據(jù)庫的測序數(shù)據(jù)和臨床信息,使用相關(guān)R軟件包分析NLR信號通路在ccRCC組織中的富集情況,探討其與患者預后和腫瘤分級、分期等臨床指標,以及與腫瘤免疫浸潤和免疫逃逸間的關(guān)系,探索該信號通路的作用和其發(fā)揮作用時參與的生物過程,明確其臨床預后價值。為研究ccRCC發(fā)生、發(fā)展的機制提供部分理論支撐,為尋找新的腫瘤預后生物標志物和腫瘤治療的新靶點提供新的理論依據(jù)。
從TCGA數(shù)據(jù)庫下載534例ccRCC數(shù)據(jù)和72例癌旁數(shù)據(jù),利用R軟件(4.1.3版本)對轉(zhuǎn)錄數(shù)據(jù)進行Log2(TPM+1)轉(zhuǎn)換。自ArrayExpress數(shù)據(jù)庫(https://www.ebi.ac.uk/biostudies/arrayexpress)下載E-MTAB-1980隊列數(shù)據(jù)。GSE178481單細胞測序數(shù)據(jù)從GEO數(shù)據(jù)庫下載。在GEPAI2.0數(shù)據(jù)庫(http://gepia2.cancer-pku.cn/#index)獲得ccRCC差異性表達基因3183個(<0.05),其中高表達基因579個,低表達基因2604個。
TCGA和E-MTAB-1980隊列數(shù)據(jù)中,利用ssGSEA R軟件包對NLR基因集進行ssGSEA評分,用于評估該通路活性水平和富集程度。通過相關(guān)R軟件包(NMF包)對TCGA-KIRC和E-MTAB-1980隊列進行無監(jiān)督聚類分析(NMF分析),將樣本分組。
使用相關(guān)R軟件包分析ccRCC的T、N、M分期、腫瘤分級和臨床分期與NLR信號通路之間的關(guān)系。TCGA-KIRC和E-MTAB-1980隊列聚類分組后進行生存分析,其中E-MTAB-1980隊列作為外部驗證。
GEPAI2.0數(shù)據(jù)庫的差異表達基因與NLR基因集交集后獲得11個差異上調(diào)基因,使用Seurat R軟件包對ccRCC的單細胞數(shù)據(jù)進行免疫與非免疫細胞分群,而后對免疫細胞進一步聚類和分析NLR基因集差異基因主要富集的免疫細胞。
使用GZMA與PRL1表達量的幾何平均值代表溶細胞活性評分(cytolytic activity score,CYT),通過相關(guān)R軟件包獲得CYT和差異基因間的相關(guān)性列表,進行GSEA分析和相關(guān)性分析。
自Miao等[15]的研究中下載ccRCC免疫治療數(shù)據(jù),進行生存分析,利用11個差異基因構(gòu)建免疫治療生存預后模型,通過列線圖可視化,使用受試者操作特征(receiver operator characteristic,ROC)曲線評估該模型的預測效能。
利用ssGSEA R軟件包對NLR基因集評分,分析癌組織和正常腎組織間的評分差異。結(jié)果如圖1A所示,NLR受體信號通路在ccRCC中顯著富集。臨床病理特征相關(guān)性分析顯示,兩個數(shù)據(jù)集中,NLR信號通路評分與病理N分期均顯著相關(guān)(<0.05)。而與T、M分期、腫瘤分級和臨床分期在TCGA數(shù)據(jù)集中顯著相關(guān)(<0.05,圖1B),在E-MTAB-1980數(shù)據(jù)集中高富集該信號通路與更高的T、M分期、腫瘤分級和臨床分期的趨勢變化差異無統(tǒng)計學意義(0.05,圖1C)。該結(jié)果表明NLR信號通路影響ccRCC的進展,增強該信號通路可能會誘導癌細胞遷移。
圖1 通路富集差異與臨床特征的相關(guān)性分析
A.NLR信號通路的富集差異;B.TCGA-KIRC樣本中臨床特征的相關(guān)性分析;C.E-MTAB-1980隊列中臨床特征的相關(guān)性分析
基于NLR基因集進行NMF分析(圖2A、B),將TCGA-KIRC樣本和E-MTAB-1980隊列樣本分別分為高、低組,進行Kaplan-Meier分析。結(jié)果如圖2C、D所示,NLRhigh組的總生存期(OS)顯著低于NLRlow組。
利用R軟件評估22種免疫浸潤細胞在ccRCC中的浸潤水平,分析NLR信號通路與腫瘤免疫浸潤間的關(guān)系,結(jié)果如圖3A所示,高表達NLR信號通路與更高的幼稚B細胞、巨噬細胞M0、中性粒細胞、漿細胞、活化的記憶性CD4+T細胞、濾泡輔助性T細胞(Tfh)和Treg細胞等免疫細胞浸潤水平顯著相關(guān)(<0.05);低表達NLR信號通路則與浸潤程度更高的靜息DC細胞、巨噬細胞M1、肥大細胞、NK細胞和靜息的記憶性CD4+T細胞等免疫細胞顯著相關(guān)(<0.05)。
圖2 生存分析
A-B.TCGA-KIRC數(shù)據(jù)的NLR聚類分組;C.TCGA-KIRC樣本的生存曲線;D.E-MTAB-1980隊列的生存曲線
圖3 免疫分析與單細胞測序分析
A.NLR信號通路與免疫細胞浸潤水平的相關(guān)分析;B.差異基因和NLR基因集的交集;C.兩聚類結(jié)果;D.兩聚類中差異基因的表達分布;E、F.11個基因在各免疫細胞亞群中的表達
注:*<0.05,**<0.01,***<0.001
取2852個差異表達基因與該信號通路的62個基因的交集,獲得11個差異性高表達基因(CXCL2、TRIP6、MAPK1、IKBKB、CCL2、MAPK10、IL18、MAPK13、CCL13、MAPK11、MAPK12,圖3B)。利用Seurat包對單細胞測序數(shù)據(jù)進行質(zhì)控、標準化后,將細胞分為免疫細胞、非免疫細胞兩類(圖3C),分析11個基因的分布情況,發(fā)現(xiàn)它們主要表達于免疫細胞(圖3D)。繼續(xù)對免疫細胞分群和可視化各免疫細胞群中差異基因的表達,結(jié)果如圖3E、F所示,在癌組織中,11個差異基因主要表達于巨噬細胞、M1、M2型巨噬細胞、單核細胞、NK細胞、DC細胞和CD8+T細胞。
依據(jù)CYT其中位值將TCGA樣本分為兩組(CYTHigh和CYTLow)進行GSEA分析,發(fā)現(xiàn)NLR信號通路顯著富集于CYTHigh組(圖4A),相關(guān)性分析表明NLR信號通路與CYT呈顯著正相關(guān)(=0.520,<0.001,圖4B)。
由圖5A可見,免疫治療相關(guān)生存分析發(fā)現(xiàn),高富集NLR信號通路的患者預后不良。利用11個差異表達基因構(gòu)建免疫療法的預后預測模型,使用列線圖可視化該模型(圖5B),ROC曲線分析評估該模型的預后預測效能,如圖5C所示,免疫治療中,ccRCC患者1年、3年、5年的總生存預后AUC分別為0.64、0.69、0.75,在ccRCC的免疫療法中,該模型對患者的預后預測具有良好的敏感度和特異性。
圖4 免疫逃逸相關(guān)性分析
A.GSEA富集;B.NLR信號通路與免疫逃逸相關(guān)性
圖5 生存預后預測
A.免疫療法中的總生存曲線;B.預后生存模型的列線圖;C.ROC曲線分析
NLR信號通路通過介導自噬、炎癥、血管生成、細胞焦亡等生物過程參與了多種腫瘤發(fā)生、發(fā)展[13, 17-18]。本研究通過對公開數(shù)據(jù)庫中的測序數(shù)據(jù)和臨床信息進行整合分析,探索NLR信號通路在ccRCC中的臨床意義和具體作用,為進一步理解ccRCC的發(fā)生、發(fā)展機制和尋找新的有效靶點提供理論依據(jù)。
通過ssGSEA評分定量NLR信號通路的活性和富集水平,發(fā)現(xiàn)NLR信號通路在ccRCC組織中顯著富集,并且其富集趨勢與更高的T、N、M分期、腫瘤分級和腫瘤分期趨勢一致,生存分析則表明激活該信號通路時,患者預后不良。
利用R軟件分析NLR基因集與免疫浸潤的相關(guān)性,使用單細胞測序數(shù)據(jù)進行細胞聚類和分析11個差異基因的表達分布,發(fā)現(xiàn)NLR信號通路與多種免疫細胞的浸潤水平有關(guān),其中與DC細胞、M1巨噬細胞、肥大細胞、NK細胞等免疫細胞的浸潤程度呈負相關(guān);與幼稚B細胞、M0巨噬細胞、中性粒細胞、Tfh和Treg細胞等呈正相關(guān)。ccRCC是免疫原性腫瘤,DC細胞通過抗原呈遞作用呈遞腫瘤新抗原可阻止ccRCC癌細胞免疫逃逸。更低級的ccRCC與更高的肥大細胞、巨噬細胞浸潤有關(guān),成熟的巨噬細胞分化為M1、M2巨噬細胞并多以M1、M2連續(xù)體存在,M1巨噬細胞和肥大細胞合成分泌促炎因子誘導炎癥發(fā)生,M2巨噬細胞是促癌相關(guān)細胞,發(fā)揮炎癥抑制作用,當連續(xù)體狀態(tài)失衡可導致ccRCC發(fā)生與進展[19-20]。中性粒細胞由TGF-β信號介導與Tfh、Treg細胞共同參與腫瘤免疫抑制作用,促使腫瘤進展[21]。此外該信號通路的11個差異表達基因主要在NK細胞、中性粒細胞、巨噬細胞、M1、M2型巨噬細胞群中富集,并且該信號通路與免疫逃逸呈正相關(guān),激活該通路不利于免疫治療后患者的生存。因此在ccRCC中增強NLR信號通路可能下調(diào)NK細胞、巨噬細胞M1,上調(diào)中性粒細胞、M0巨噬細胞等的浸潤水平,調(diào)節(jié)腫瘤浸潤性免疫細胞的浸潤水平和構(gòu)成,與免疫逃逸相互竄擾,參與腫瘤發(fā)生和發(fā)展。
NLR基因集的11個差異表達基因主要參與NF-κB和MAPK生物途徑的信號傳導。NF-κB和MAPK信號通路等調(diào)控癌組織的細胞因子水平是NLR信號通路影響癌癥進展的主要機制[17]。基因集中,CCL2、CCL7、CCL8、CCL11、CCL13是一組趨化因子,它們通過募集腫瘤相關(guān)成纖維細胞和腫瘤相關(guān)巨噬細胞,參與癌細胞與兩類細胞間的相互作用,調(diào)節(jié)MAPK信號通路,誘導上皮-間充質(zhì)轉(zhuǎn)化,促使癌細胞轉(zhuǎn)移和侵襲[22-23]?;蚣腃XCL1、CXCL2、CXCL8作為NF-κB依賴性趨化因子,可通過上調(diào)腫瘤相關(guān)巨噬細胞和中性粒細胞抑制腫瘤免疫反應(yīng),誘導癌癥轉(zhuǎn)移[24-26]。
綜上所述,本研究通過生物信息學技術(shù),利用多個組織測序數(shù)據(jù)和單細胞測序數(shù)據(jù)分析證明了NLR信號通路是影響ccRCC發(fā)生、發(fā)展的關(guān)鍵生物途徑,可能通過NF-κB和MAPK信號調(diào)節(jié)與免疫逃逸間的免疫竄擾,誘導ccRCC的發(fā)生與進展。免疫療法的生存預后中,增強NLR信號通路與免疫治療的不良預后有關(guān),基于11個差異基因所構(gòu)建的生存預后模型在預測免疫療法的生存預后上具有良好的準確性。因此該基因集的11個差異基因可作為生物標志物和潛在靶點進行深入研究,同時后續(xù)可以通過探索介導該信號通路的基因?qū)ふ腋袧摿Φ纳飿酥疚锖退幬镒饔冒悬c。
[1] SUNG W W, KO P Y, CHEN W J, et al. Trends in the kidney cancer mortality-to-incidence ratios according to health care expenditures of 56 countries[J]. Sci Rep, 2021, 11(1): 1479.
[2] HE Y, LIANG D, LI D, et al. Incidence and mortality of laryngeal cancer in China, 2015[J]. Chin J Cancer Res, 2020, 32(1): 10–17.
[3] 李長嶺, 齊雋, 陳立軍, 等. 晚期腎透明細胞癌一線靶向治療的優(yōu)化選擇中國專家共識(2022)[J]. 臨床泌尿外科雜志, 2022, 37(5): 329–337.
[4] 林巧衛(wèi), 張思, 陸維祺. NOD樣受體介導的信號轉(zhuǎn)導通路及其與腫瘤關(guān)系的研究進展[J]. 中國癌癥雜志, 2019, 29(3): 223–228.
[5] ZHANG W J, CHEN S J, HOU S C, et al. Inflammasomes and Fibrosis[J]. Front Immunol, 2021, 12: 643149.
[6] DENG Q, GENG Y, ZHAO L, et al. NLRP3 inflammasomes in macrophages drive colorectal cancer metastasis to the liver[J]. Cancer Lett, 2019, 442: 21–30.
[7] WANG Y, ZHANG H, XU Y, et al. NLRP3 induces the autocrine secretion of IL-1rectal cancer metastasis to the liver[J]. Sci Rep Sci, 2021, 560: 72–79.
[8] CI??Y?SKA M, BEDNARSKI I A, WóDZ K, et al. NLRP1 and NLRP3 inflammasomes as a new approach to skin carcinogenesis[J]. Oncol Lett, 2020, 19(3): 1649–1656.
[9] CHEN W, WEI T, CHEN Y, et al. Downregulation of IRAK1 prevents the malignant behavior of hepatocellular carcinoma cells by blocking activation of the MAPKs/ NLRP3/IL-1β pathway[J]. Onco Targets Ther, 2020, 13: 12787–12796.
[10] LU Z H, TU G J, FU S L, et al. BMI1 induces ubiquitination and protein degradation of Nod-like receptor family CARD domain containing 5 and suppresses human leukocyte antigen classⅠexpression to induce immune escape in non-small cell lung cancer[J]. Kaohsiung J Med Sci, 2022, 38(12): 1190–1202.
[11] WANG H, XU G, HUANG Z, et al. LRP6 targeting suppresses gastric tumorigenesis via P14(ARF)-Mdm2- P53-dependent cellular senescence[J]. Oncotarget, 2017, 8(67): 111597–111607.
[12] HU B, DING G Y, FU P Y, et al. NOD-like receptor X1 functions as a tumor suppressor by inhibiting epithelial- mesenchymal transition and inducing aging in hepatocellular carcinoma cells[J]. J Hematol Oncol, 2018, 11(1): 28.
[13] HE L, JIANG H, LAI Z, et al. Up-regulation expression and prognostic significance of Syntaxin4 in kidney renal clear cell carcinoma[J]. BMC Cancer, 2021, 21(1): 992.
[14] WANG K, XU T, RUAN H, et al. LXRKepromotes cell metastasis by regulating the NLRP3 inflammasome in renal cell carcinoma[J]. Cell Death Dis, 2019, 10(3): 159.
[15] MIAO D, MARGOLIS C A, GAO W, et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma[J]. Science, 2018, 359(6377): 801–806.
[16] ROONEY M S, SHUKLA S A, WU C J, et al. Molecular and genetic properties of tumors associated with local immune cytolytic activity[J]. Cell, 2015, 160(1-2): 48–61.
[17] LIU P, LU Z, LIU L, et al. NOD-like receptor signaling in inflammation-associated cancers: From functions to targeted therapies[J]. Phytomedicine, 2019, 64: 152925.
[18] WANG J, HUANG Z, LU H, et al. A pyroptosis-related gene signature to predict patients’ prognosis and immune landscape in liver hepatocellular carcinoma[J]. Comput Math Methods Med, 2022, 2022: 1258480.
[19] SU S, AKBARINEJAD S, SHAHRIYARI L. Immune classification of clear cell renal cell carcinoma[J]. Sci Rep, 2021, 11(1): 4338.
[20] MOTOSHIMA T, MIURA Y, WAKIGAMI N, et al. Phenotypical change of tumor-associated macrophages in metastatic lesions of clear cell renal cell carcinoma[J]. Med Mol Morphol, 2018, 51(1): 57–63.
[21] WCULEK S K, BRIDGEMAN V L, PEAKMAN F, et al. Early Neutrophil responses to chemical carcinogenesis shape long-term lung cancer susceptibility[J]. iScience, 2020, 23(7): 101277.
[22] KORBECKI J, KOJDER K, SIMI?SKA D, et al. CC chemokines in a tumor: a review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4[J]. Int J Mol Sci, 2020, 21(21): 8412.
[23] CHAKIRYAN N H, KIMMEL G J, KIM Y, et al. Geospatial cellular distribution of cancer-associated fibroblasts significantly impacts clinical outcomes in metastatic clear cell renal cell carcinoma[J]. Cancers (Basel), 2021, 13(15): 3743.
[24] ZHANG W, WU Q, WANG C, et al. AKIP1 promotes angiogenesis and tumor growth by upregulating CXC-chemokines in cervical cancer cells[J]. Mol Cell Biochem, 2018, 448(1-2): 311–320.
[25] PENG Z P, JIANG Z Z, GUO H F, et al. Glycolytic activation of monocytes regulates the accumulation and function of neutrophils in human hepatocellular carcinoma[J]. J Hepatol, 2020, 73(4): 906–917.
[26] XU X, YE L, ZHANG Q, et al. Group-2 innate lymphoid cells promote HCC progression through CXCL2- neutrophil-induced immunosuppression[J]. Hepatology, 2021, 74(5): 2526–2543.
Role and clinical significance of NLR signaling pathway in renal clear cell carcinoma were analyzed by bioinformatics
CHEN Manying, MO Yongfeng, QIN Hongyu, YE Yu
1.The Second Clinical Medical College of Guangxi Medical University, Nanning 530000, Guangxi, China; 2.Department of Emergency, the second Affiliated Hospital of Guangxi Medical, Nanning 530000, Guangxi, China
To investigate the role and clinical significance of the oligomerized nucleotide-binding structural domain-like receptor (NLR) signaling pathway in clear cell renal cell carcinoma (ccRCC), and to provide a reference for the search of new targets.The TCGA-KIRC, GSE178481, E-MTAB-1980 and ccRCC different-expressed gene sets were downloaded from The Cancer Genome Atlas (TCGA), gene expression synthesis (GEO), ArrayExpress and GEPAI2.0 databases, respectively. The enrichment difference of NLR signaling pathway in normal tissues and ccRCC, and the correlation between T, N, M, tumor grade and stage were analyzed using the R package. And then prognosis of patients with ccRCC was analyzed. Cluster and gene expression analysis were performed on single-cell sequencing data, and The relationship between NLR signaling pathways and immune escape was analyzed by gene set enrichment analysis (GSEA) and correlation analysis. Immunotherapy-related data were used for survival analysis and construction of immune-related survival prognostic models.NLR signaling pathway was abnormally enriched in ccRCC (<0.05), and its enrichment trend was the same as that of all clinical indicators. High enrichment of this signaling pathway was associated with poor prognosis (<0.05). The activated NLR signaling pathway was associated with down-regulation of NK cells and M1 macrophages, and up-regulation of neutrophils and macrophages etc. GSEA analysis and correlation analysis of immune escape indicated the interaction between this pathway and immune escape. The AUC of immunotherapy survival model constructed with 11 differential genes of NLR signaling pathway was 0.64, 0.69 and 0.75 in predicting 1-year, 3-year and 5-year survival, respectively.NLR signaling pathway is a key biological pathway of ccRCC, and this pathway interacts with immune escape and promotes the development of ccRCC and eleven NLR pathway related genes successfully constructed immunotherapy survival prognostic models, which may be prognostic biomarkers and potential therapeutic targets in immunotherapy.
Clear cell renal cell carcinoma; NLR signaling pathway; Single cell sequencing analysis; Immune escape; Survival prognosis model
R737.11
A
10.3969/j.issn.1673-9701.2023.26.018
葉雨,電子信箱:yeyu9698@163.com
(2022–12–07)
(2023–08–24)