郭霞, 丁曉晨, 蘭雨, 劉兵,△, 侯思元,△
· 實(shí)驗(yàn)技術(shù) ·
體外誘導(dǎo)小鼠胚內(nèi)生血內(nèi)皮細(xì)胞向造血分化的不同培養(yǎng)體系的比較研究*
郭霞1, 丁曉晨2, 蘭雨1, 劉兵1,2△, 侯思元1,2△
(1暨南大學(xué)基礎(chǔ)醫(yī)學(xué)與公共衛(wèi)生學(xué)院血液學(xué)研究所,廣東 廣州 510632;2解放軍總醫(yī)院第五醫(yī)學(xué)中心,北京 100071)
比較二維平鋪法和三維懸滴法兩種培養(yǎng)體系對(duì)小鼠胚胎期生血內(nèi)皮細(xì)胞體外誘導(dǎo)生成造血產(chǎn)物的支持作用。分別利用二維平鋪法和三維懸滴法將流式細(xì)胞術(shù)分選的造血干細(xì)胞潛能的生血內(nèi)皮細(xì)胞PK44(CD41-CD43-CD45-CD31+CD201+Kit+CD44+)群體與OP9-DL1-GFP基質(zhì)細(xì)胞共孵育6 d后,在顯微鏡下觀察兩種培養(yǎng)體系產(chǎn)生造血產(chǎn)物的形態(tài)特點(diǎn);利用流式細(xì)胞術(shù)分析兩種培養(yǎng)體系孵育后的造血產(chǎn)物,并統(tǒng)計(jì)分析造血產(chǎn)物的比例和絕對(duì)數(shù)量;分別對(duì)兩種培養(yǎng)體系共孵育后的造血產(chǎn)物進(jìn)行造血細(xì)胞集落形成單位培養(yǎng)(colony-forming unit culture, CFU-C)實(shí)驗(yàn),并對(duì)不同形態(tài)的細(xì)胞集落進(jìn)行計(jì)數(shù)。(1)利用二維平鋪法形成的造血細(xì)胞平鋪或懸浮于基質(zhì)細(xì)胞上,而利用三維懸滴法共孵育后的產(chǎn)物形成了以基質(zhì)細(xì)胞為中心,造血細(xì)胞黏附在周圍的細(xì)胞聚集體。(2)二維平鋪法產(chǎn)生更多CD45+造血細(xì)胞;三維懸滴法對(duì)造血產(chǎn)物的分化具有譜系偏向性,更有利于肥大細(xì)胞的分化。(3)二維平鋪法誘導(dǎo)生血內(nèi)皮的分化產(chǎn)物在體外CFU-C實(shí)驗(yàn)中可以產(chǎn)生更多的造血集落。二維平鋪法更支持小鼠胚內(nèi)生血內(nèi)皮細(xì)胞體外誘導(dǎo)產(chǎn)生CD45+的造血細(xì)胞以及有集落形成能力的造血干祖細(xì)胞。
生血內(nèi)皮細(xì)胞;三維懸滴法;二維平鋪法;體外誘導(dǎo)造血分化
造血干細(xì)胞具有自我更新和多譜系分化的特性,具有長(zhǎng)期重建造血潛能的造血干細(xì)胞主要由胚胎發(fā)育中期主動(dòng)脈-性腺-中腎(aorta-gonad-mesonephros, AGM)區(qū)的生血內(nèi)皮細(xì)胞經(jīng)過(guò)內(nèi)皮-造血轉(zhuǎn)化過(guò)程生成[1-3]。利用體外造血誘導(dǎo)體系對(duì)內(nèi)皮細(xì)胞或造血前體細(xì)胞進(jìn)行造血誘導(dǎo)是評(píng)價(jià)其生血以及造血潛能的常用方法。利用體外造血誘導(dǎo)的策略,一方面可以快速方便的甄別和鑒定真正有功能的候選細(xì)胞群體,對(duì)于生血內(nèi)皮、造血干細(xì)胞前體以及其異質(zhì)性的評(píng)價(jià)具有重要作用。另一方面,體外造血誘導(dǎo)也很便于用來(lái)評(píng)價(jià)一些候選基因、分子以及信號(hào)通路等在生血和造血過(guò)程中發(fā)揮的作用。二維細(xì)胞培養(yǎng)體系是常見(jiàn)的細(xì)胞體外培養(yǎng)方法,在此體系中,細(xì)胞常以單層形式生長(zhǎng),這種培養(yǎng)體系由于細(xì)胞與液體表面的距離相同,使細(xì)胞得到更均一的氣體交換、營(yíng)養(yǎng)供應(yīng)和代謝物清除,并且此系統(tǒng)下細(xì)胞產(chǎn)物更加易于監(jiān)測(cè)、篩選和收集以供進(jìn)一步使用[4-5]。二維培養(yǎng)體系被廣泛應(yīng)用于內(nèi)皮或者造血前體的造血分化潛能研究,研究者證實(shí)了此系統(tǒng)可以支持細(xì)胞體外分化為具有功能的造血干細(xì)胞[5-8]。除此之外,研究表明三維培養(yǎng)體系可以一定程度上模擬細(xì)胞生長(zhǎng)過(guò)程中微環(huán)境的支持性,如可以重建細(xì)胞-細(xì)胞、細(xì)胞-細(xì)胞外基質(zhì)相互作用的生物信號(hào)通路網(wǎng)絡(luò),從而促進(jìn)細(xì)胞的增殖和活力,并維持細(xì)胞的分化潛能、干性和內(nèi)在表型特征[9-11]。研究者開(kāi)發(fā)的三維重聚團(tuán)/共聚團(tuán)實(shí)驗(yàn)體系,實(shí)現(xiàn)了造血干細(xì)胞前體體外的成熟和擴(kuò)增[12-13]。最近有研究者利用三維懸滴培養(yǎng)體系評(píng)價(jià)了內(nèi)皮中特定群體誘導(dǎo)后產(chǎn)生造血集落的能力[14]。但是目前仍缺乏平行的實(shí)驗(yàn)來(lái)系統(tǒng)的評(píng)價(jià)二維平鋪以及三維懸滴兩種培養(yǎng)系統(tǒng)對(duì)于生血內(nèi)皮向造血轉(zhuǎn)化過(guò)程中的誘導(dǎo)和支持作用,而尋找更加高效的造血體外誘導(dǎo)系統(tǒng)對(duì)于研究?jī)?nèi)皮造血轉(zhuǎn)化過(guò)程乃至指導(dǎo)造血干細(xì)胞的體外再生都具有重要意義。
近期,結(jié)合單細(xì)胞轉(zhuǎn)錄組、計(jì)算分析以及體內(nèi)外功能實(shí)驗(yàn),已經(jīng)證實(shí)了小鼠胚胎妊娠中期的生血內(nèi)皮細(xì)胞PK44(CD41-CD43-CD45-CD31+CD201+Kit+CD44+)群體可以標(biāo)記生血內(nèi)皮細(xì)胞,并且利用二維平鋪法將其與OP9-DL1-GFP細(xì)胞共孵育造血誘導(dǎo)后進(jìn)行移植實(shí)驗(yàn),顯示出此策略可以支持生血內(nèi)皮細(xì)胞體外分化為有功能的造血干細(xì)胞[6]。在此,本研究進(jìn)一步分別利用二維平鋪法和三維懸滴法兩種不同的培養(yǎng)策略對(duì)PK44生血內(nèi)皮細(xì)胞進(jìn)行OP9-DL1-GFP細(xì)胞共孵育和體外造血誘導(dǎo),通過(guò)產(chǎn)物分析及產(chǎn)物的造血細(xì)胞集落形成單位培養(yǎng)(colony-forming unit culture, CFU-C)來(lái)評(píng)價(jià)兩種培養(yǎng)體系對(duì)生血內(nèi)皮向造血轉(zhuǎn)化過(guò)程的支持作用,也為誘導(dǎo)干細(xì)胞體外分化的研究提供了方法[5, 15]。
本實(shí)驗(yàn)所用的是10~12周齡SPF級(jí)雌性和雄性的C57BL/6小鼠,體重20~22 g,購(gòu)自斯貝福(北京)生物技術(shù)有限公司[動(dòng)物質(zhì)量合格許可證號(hào):SCXK(京)2019-0010];所有小鼠均飼養(yǎng)在軍事科學(xué)院軍事醫(yī)學(xué)研究院實(shí)驗(yàn)動(dòng)物中心的SPF級(jí)小鼠飼養(yǎng)房,文中所有的動(dòng)物實(shí)驗(yàn)操作流程均已得到動(dòng)物保護(hù)和使用委員會(huì)的同意及批準(zhǔn)。
α-MEM培養(yǎng)液購(gòu)自Gibco;胎牛血清(fetal bovine serum, FBS)和青/鏈霉素購(gòu)自HyClone;Ⅰ型膠原酶購(gòu)自Sigma;牛血清白蛋白購(gòu)自Sigma;磷酸鹽緩沖液(phosphate-buffered saline, PBS)購(gòu)自天津市灝洋生物制品科技有限責(zé)任公司;0.25%胰酶細(xì)胞消化液購(gòu)自上海碧云天生物技術(shù)有限公司;甲基纖維素半固體培養(yǎng)基購(gòu)自STEMCELL;用于懸浮培養(yǎng)的72孔板(貨號(hào):654102)購(gòu)自格瑞納生物科技有限公司;小鼠mFlt3L配體(murine Flt3 ligand, mFlt3-L)、小鼠白細(xì)胞介素3(murine interleukin-3, mIL-3)和小鼠干細(xì)胞生長(zhǎng)因子(murine stem cell factor, mSCF)均購(gòu)自PeproTech。
3.1小鼠AGM區(qū)取材10~12周齡SPF級(jí)的雌性和雄性的C57BL/6小鼠在下午6點(diǎn)前合籠,次日上午8點(diǎn)左右對(duì)雌性小鼠檢陰道栓,檢到陰道栓的當(dāng)天中午胚胎記為胚胎期(embryo day, E)0.5 d;在檢到陰道栓第10天,采用頸椎脫臼的方法處死孕鼠,在75%乙醇中浸泡2~3 min;用鑷子提起小鼠平放在直徑為10 cm的培養(yǎng)皿上暴露腹部皮膚,用剪刀小心將腹部皮膚剪開(kāi),取出腹腔兩側(cè)子宮內(nèi)串珠樣胚胎,在解剖顯微鏡下分離成單個(gè)孕囊,用解剖鑷從孕囊的兩側(cè)子宮角插入后撕開(kāi),剝離胎盤,獲得由卵黃囊包裹的胚胎,用鑷子小心撕開(kāi)卵黃囊并截?cái)嗄氀芎吐腰S血管,繼續(xù)剝離一層透明的羊膜后完全暴露胚胎,數(shù)體節(jié)(E10.0胚胎體節(jié)數(shù)約為30~35個(gè))后從胚胎上肢芽下方和下肢芽上方截?cái)啾臣箓?cè),分離原腸后得到含有AGM區(qū)的組織,將組織平放,可以看到AGM區(qū)與周圍組織存在明顯界限,鈍性分離后即得到實(shí)驗(yàn)所需AGM區(qū),將AGM區(qū)放進(jìn)已提前加入200 μL 10% FBS/α-MEM溶液的1.5 mL離心管中,編號(hào)后以作備用。由于此時(shí)處于胚胎發(fā)育中期,顯微鏡下不能識(shí)別胚胎性別,因此取材過(guò)程中未區(qū)分胚胎性別。
3.2單細(xì)胞懸液制備將含有AGM區(qū)的1.5 mL離心管于310×、4 ℃離心2 min,棄上清,每管加入800 μL 0.1% Ⅰ型膠原酶,用力搖晃,盡量解離大塊組織,在37 ℃恒溫金屬浴消化30 min,每隔5 min搖晃一次樣品管觀察消化效果,消化結(jié)束后向得到的均一液體中加入含10% FBS/α-MEM培養(yǎng)液中和消化,310×、4 ℃離心6 min,棄上清,加入1 mL含2% FBS/PBS溶液重懸獲得單細(xì)胞懸液,計(jì)數(shù),以作備用。
3.3流式抗體染色及流式細(xì)胞術(shù)分選將單細(xì)胞懸液310×、4 ℃離心6 min,棄上清后加入抗體組合液,放入4 ℃搖床上,孵育30 min即完成抗體孵育。隨后用2% FBS/PBS中和抗體,310×、4 ℃離心6 min,棄上清,7-AAD染色5 min,過(guò)濾后轉(zhuǎn)移至流式管,通過(guò)BD FACS Aria II流式細(xì)胞儀檢測(cè)目的細(xì)胞或者分選PK44細(xì)胞以備接種。PK44的表型:7-AAD-CD41-CD43-CD45-CD31+CD201+Kit+CD44+。流式細(xì)胞術(shù)分選相關(guān)抗體信息見(jiàn)表1。
3.4二維平鋪法誘導(dǎo)體外造血潛能
3.4.1OP9-DL1-GFP基質(zhì)細(xì)胞鋪板從37 ℃、5%濃度的CO2細(xì)胞培養(yǎng)箱中取出含OP9-DL1-GFP基質(zhì)細(xì)胞的培養(yǎng)皿,棄培養(yǎng)液,用不含Ca2+和Mg2+的PBS洗一遍,加入0.25%胰酶消化液1.5 mL,置于細(xì)胞培養(yǎng)箱3 min,使其充分消化。取出培養(yǎng)皿,用10% FBS/α-MEM中和消化,并移至15 mL離心管中,130×、4 ℃離心6 min,加入1 mL 10% FBS/α-MEM重懸,充分混勻后計(jì)數(shù)。取出48孔板,每孔鋪板1.2×104個(gè)基質(zhì)細(xì)胞,每孔細(xì)胞培養(yǎng)液約200 μL過(guò)夜[5-6]。
3.4.2目的細(xì)胞接種及培養(yǎng)從細(xì)胞培養(yǎng)箱中取出已鋪板過(guò)夜的48孔板,棄培養(yǎng)液,每孔加入200 μL造血誘導(dǎo)液,將分選的PK44細(xì)胞按照胚胎當(dāng)量接種在含OP9-DL1-GFP基質(zhì)細(xì)胞的孔板中,置于細(xì)胞培養(yǎng)箱中培養(yǎng)。在培養(yǎng)的第3天,補(bǔ)充造血誘導(dǎo)液100 μL。在培養(yǎng)的第6天,在顯微鏡下觀察孵育產(chǎn)物的形態(tài)特點(diǎn)并拍照。造血誘導(dǎo)液成份[14]: 20% FBS/α-MEM、L-谷氨酰胺(4 mmol/L)、青霉素/鏈霉素(50 U/mL)、巰基乙醇(0.1 mmol/L)、mIL-3 (150 μg/L)、mSCF (100 μg/L)、mFIt3-L (100 μg/L)。
3.4.3孵育產(chǎn)物消化及流式細(xì)胞術(shù)檢測(cè)在細(xì)胞培養(yǎng)箱共孵育6 d后,取出48孔板,吸出培養(yǎng)液置于15 mL離心管中,加入PBS清洗,清洗后的液體置于上述15 mL離心管中,隨后每孔加入0.25%胰酶細(xì)胞消化液200 μL,置于細(xì)胞培養(yǎng)箱5 min,取出后立即用10% FBS/α-MEM溶液中和,以防消化過(guò)度,破壞細(xì)胞。用移液器反復(fù)吹打,在顯微鏡下觀察是否已消化成單細(xì)胞[6]。消化好的細(xì)胞吸入上述15 mL離心管中,310×、4 ℃離心6 min,加入1 mL 2% FBS/PBS溶液重懸,吹打混勻后吸取10 μL細(xì)胞,用細(xì)胞計(jì)數(shù)儀計(jì)數(shù)。計(jì)數(shù)后進(jìn)行流式抗體標(biāo)記及流式細(xì)胞術(shù)分析操作。流式細(xì)胞術(shù)分析主要檢測(cè)CD45+的造血細(xì)胞、表型造血干祖細(xì)胞(7-AAD-GFP-CD45+Sca-1+CD201+Kit+)、肥大細(xì)胞(7-AAD-GFP-CD45+T1/ST2+Kit+)、粒-單核細(xì)胞/巨噬細(xì)胞(7-AAD-GFP-CD45+F4/80+/Gr1+/Mac1+)、紅細(xì)胞(7-AAD-GFP-CD45-Ter119+)和巨核細(xì)胞(7-AAD-GFP-CD45-CD41+),流式細(xì)胞術(shù)分析相關(guān)抗體信息見(jiàn)表2。
3.5三維懸滴法誘導(dǎo)體外造血潛能
3.5.1目的細(xì)胞接種及培養(yǎng)同上述方法對(duì)小鼠胚胎取材,制備單細(xì)胞懸液,流式細(xì)胞術(shù)分選PK44細(xì)胞。在流式細(xì)胞術(shù)分選的當(dāng)天消化基質(zhì)細(xì)胞,步驟同上,計(jì)數(shù)后備用。分選的PK44細(xì)胞按照胚胎當(dāng)量與1.2×104個(gè)OP9-DL1-GFP基質(zhì)細(xì)胞充分混勻于35 μL的造血誘導(dǎo)液(成分同3.4.2)中,并接種在特定的用于懸浮培養(yǎng)的72孔板,于細(xì)胞培養(yǎng)箱中倒置培養(yǎng)[14]。在培養(yǎng)的第3天,取出72孔板置于超凈臺(tái)中,正置孔板,補(bǔ)充造血誘導(dǎo)液10 μL,繼續(xù)倒置培養(yǎng)。培養(yǎng)6 d后,在熒光顯微鏡下觀察細(xì)胞形態(tài)并拍照。
3.5.2孵育產(chǎn)物消化及流式細(xì)胞術(shù)檢測(cè)培養(yǎng)6 d后,從培養(yǎng)箱中取出72孔板置于超凈臺(tái),提前在1.5 mL EP管中加入800 μL的PBS,將孔板中的細(xì)胞聚集體及液體吸入至PBS中,310×離心5 min,棄上清。加入0.25%胰酶細(xì)胞消化液100 μL,在細(xì)胞培養(yǎng)箱中消化5 min,隨后加入10% FBS/α-MEM溶液中和,310×離心6 min后,加入1 mL 2% FBS/PBS溶液重懸,吹打混勻后用吸取10 μL細(xì)胞,用細(xì)胞計(jì)數(shù)儀計(jì)數(shù)[16]。計(jì)數(shù)后進(jìn)行流式抗體標(biāo)記及流式細(xì)胞術(shù)分析操作。流式細(xì)胞術(shù)分析同3.4.3。
3.6集落形成(CFU-C)實(shí)驗(yàn)取多個(gè)直徑為35 mm的培養(yǎng)皿,用注射器在每個(gè)小皿中輕慢吸取2~3 mL甲基纖維素培養(yǎng)基使其平鋪于小皿中,將PK44細(xì)胞分別通過(guò)二維平鋪和三維懸滴體外培養(yǎng)體系生成的造血產(chǎn)物消化成單細(xì)胞懸液后按胚胎當(dāng)量接種至培養(yǎng)皿中,輕柔吹打混勻,避免產(chǎn)生過(guò)多氣泡,做好標(biāo)記,將培養(yǎng)皿放置在37 ℃、5%濃度的CO2細(xì)胞培養(yǎng)箱培養(yǎng)。分別于接種后的第3天、第7天、第12天觀察集落形態(tài)[16],進(jìn)行集落定量分析。在培養(yǎng)的第3天可以觀察到CFU-E(紅細(xì)胞集落形成單位)、第7天觀察CFU-GM(粒細(xì)胞-巨噬細(xì)胞集落形成單位)、CFU-GEMM(集落形成單位-粒細(xì)胞、紅細(xì)胞、巨噬細(xì)胞、巨核細(xì)胞)、第12天左右觀察BFU-E(爆式紅細(xì)胞集落形成單位)。
流式數(shù)據(jù)由FlowJo v10分析,其余實(shí)驗(yàn)數(shù)據(jù)由GraphPad Prism 8.3.0處理,計(jì)量資料采用均數(shù)±標(biāo)準(zhǔn)誤(mean±SEM)表示。用檢驗(yàn)進(jìn)行差異性分析,以<0.05為差異具有統(tǒng)計(jì)學(xué)意義。
首先分別利用二維平鋪法和三維懸滴法將分選的PK44生血內(nèi)皮群體在含有mIL3、mFlt3-L和mSCF三種細(xì)胞因子的造血誘導(dǎo)體系下與OP9-DL1-GFP基質(zhì)細(xì)胞共孵育6 d,分選策略見(jiàn)圖1A;在形態(tài)上,二維平鋪法培養(yǎng)孔內(nèi)產(chǎn)生大量鵝卵石樣的造血細(xì)胞克隆,這些造血克隆的細(xì)胞平鋪、懸浮或半懸浮于基質(zhì)細(xì)胞上(圖1B);三維懸滴法培養(yǎng)后的產(chǎn)物形成了微球體結(jié)構(gòu),并以O(shè)P9-DL1-GFP基質(zhì)細(xì)胞為中心(在熒光顯微鏡下為綠光),直徑約為120~150 μm;基質(zhì)細(xì)胞的外圍為不表達(dá)綠色熒光的造血產(chǎn)物,當(dāng)小心的吸取細(xì)胞聚集體時(shí),外圍的造血產(chǎn)物極容易散開(kāi)(圖1C)。
Figure 1. Morphology diagram of the PK44 population sorted by flow cytometry and co-incubated with OP9-DL1-GFP stromal cells in the two culture systems. A: representative FACS plots for sorting of the PK44 cells from E10.0 mouse AGM region; B and C: morphology of the products after co-incubation with two culture systems. The products of the 3D hanging drop method formed an aggregate of cells centered on the stromal cells with hematopoietic products attached to the periphery, and the hematopoietic products were easily dispersed. Scale bar=100 μm.
為了評(píng)價(jià)兩種培養(yǎng)體系對(duì)于內(nèi)皮-造血轉(zhuǎn)化過(guò)程的支持作用,本研究將PK44生血內(nèi)皮細(xì)胞經(jīng)兩種培養(yǎng)體系誘導(dǎo)后的產(chǎn)物進(jìn)行消化制備單細(xì)胞懸液,流式細(xì)胞術(shù)檢測(cè)其中CD45+的造血細(xì)胞在非基質(zhì)細(xì)胞中的占比,以及比較了同樣接種一個(gè)胚胎當(dāng)量的生血內(nèi)皮細(xì)胞所產(chǎn)生的孵育產(chǎn)物的絕對(duì)數(shù)量。實(shí)驗(yàn)結(jié)果顯示三維懸滴法孵育產(chǎn)物中CD45+的造血細(xì)胞的比例與二維平鋪法無(wú)顯著差異(圖2A、B)。但是在絕對(duì)數(shù)量上,二維平鋪法產(chǎn)生了更多的CD45+造血細(xì)胞,平均為39 959個(gè),約為三維懸滴法產(chǎn)生的CD45+細(xì)胞數(shù)量的3倍(圖2C)。
Figure 2. Comparison of the proportion and absolute number of CD45+ hematopoietic cells produced by the incubation of hemogenic endothelial cells with two culture systems. A: representative FACS plots of CD45+ hematopoietic cells produced after co-incubation using the two culture systerm; B: graph showing that the proportions of CD45+ hematopoietic cells have no significant difference after co-incubation using two culture systerms; C: graph showing the 2D tiling method produced more CD45+ hematopoietic cells after co-incubation by each embryonic equivalent of PK44 cells. ee: embryonic equivalent. Mean±SEM. n=3. *P<0.05 vs 2D tiling method group.
為了評(píng)價(jià)兩種體系對(duì)造血分化的支持是否具有譜系偏向性,進(jìn)一步對(duì)二維平鋪法和三維懸滴法共孵育后的造血產(chǎn)物中各造血譜系的比例及絕對(duì)數(shù)量進(jìn)行分析。通過(guò)對(duì)PK44生血內(nèi)皮群體與基質(zhì)細(xì)胞共孵育6 d后的造血產(chǎn)物進(jìn)行流式實(shí)驗(yàn),在非基質(zhì)細(xì)胞中(即OP9-DL1-GFP-),兩種培養(yǎng)方法孵育的產(chǎn)物均被檢測(cè)到可以產(chǎn)生除B細(xì)胞以外的多種造血譜系,如表型造血干祖細(xì)胞、肥大細(xì)胞、粒-單核細(xì)胞/巨噬細(xì)胞,以及CD45-的紅細(xì)胞和巨核細(xì)胞(圖3A)。通過(guò)進(jìn)一步對(duì)產(chǎn)物中各譜系細(xì)胞的比例進(jìn)行統(tǒng)計(jì),結(jié)果顯示三維懸滴法孵育產(chǎn)物中紅細(xì)胞、巨核細(xì)胞的組成比例均與二維平鋪法無(wú)顯著差異(>0.05),而表型造血干祖細(xì)胞、粒-單核細(xì)胞/巨噬細(xì)胞、肥大細(xì)胞的比例均高于二維平鋪法。其中,三維懸滴法共孵育后產(chǎn)生免疫表型造血干祖細(xì)胞的比例約為二維平鋪法的47倍,產(chǎn)生粒-單核細(xì)胞/巨噬細(xì)胞的比例約為二維平鋪法的1.3倍,產(chǎn)生肥大細(xì)胞的比例約為二維平鋪法的6倍(圖3B)。
接著,本研究對(duì)一個(gè)胚胎當(dāng)量的生血內(nèi)皮細(xì)胞所產(chǎn)生的不同造血譜系產(chǎn)物的絕對(duì)數(shù)量也進(jìn)行了比較。結(jié)果顯示二維平鋪法產(chǎn)生了更多的粒-單核細(xì)胞/巨噬細(xì)胞,細(xì)胞數(shù)平均為28 385個(gè),數(shù)目約為三維懸滴法的2.5倍;而三維懸滴法則產(chǎn)生了更多數(shù)目的表型造血干祖細(xì)胞,平均為224個(gè),比二維平鋪法高了近18倍;三維懸滴法也產(chǎn)生了更多的肥大細(xì)胞,平均為825個(gè),約為二維平鋪方法的3倍;此外,兩種方法同樣胚胎當(dāng)量共培養(yǎng)后產(chǎn)生的巨核細(xì)胞及紅細(xì)胞無(wú)顯著性差異(>0.05),見(jiàn)圖3C。
Figure 3. Comparison of the proportion and absolute number of hematopoietic products produced by the incubation of hemogenic endothelial cells with two culture systems. A: representative FACS plots of hematopoietic products produced after co-incubation using the two culture systerm; B: graph showing that the 3D hanging drop method was more conducive to the differentiation of mast cells, GM and HSPC; C: graph showing that the 2D tiling method produced more granulo-monocytes/macrophages, and the 3D hanging drop method produced more mast cells. Mast: mast cells; HSPC: hematopoietic stem and progenitor cells; GM: granulo-monocytes/macrophages; B: B-lymphocytes; Ery: erythrocytes; Mega: megalokaryocyte. ee: embryonic equivalent. Mean±SEM. n=3. *P<0.05,**P<0.01 vs 2D tiling method group.
基于上述對(duì)孵育產(chǎn)物的比例及絕對(duì)數(shù)量的統(tǒng)計(jì)分析結(jié)果,進(jìn)一步將兩種方法的孵育產(chǎn)物收集進(jìn)行CFU-C實(shí)驗(yàn),以對(duì)其產(chǎn)物的功能進(jìn)行進(jìn)一步評(píng)價(jià)。分別對(duì)兩種方法的孵育產(chǎn)物所產(chǎn)生的造血集落如CFU-E、BFU-E、CFU-GM、CFU-GEMM等進(jìn)行觀察和分類統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果顯示二維平鋪法產(chǎn)生的多種造血集落的數(shù)量均多于三維懸滴法,如產(chǎn)生CFU-E數(shù)約為95~125個(gè)、CFU-GM數(shù)約為70~90個(gè)、CFU-GEMM集落數(shù)約為35~45個(gè)、BFU-E的集落數(shù)約為3~4個(gè);而三維懸滴法產(chǎn)生的CFU-E數(shù)約為0~1個(gè)、CFU-GM數(shù)約為12~18個(gè)、CFU-GEMM集落數(shù)約為8~13個(gè)、BFU-E的集落數(shù)約為4~6個(gè)(圖4A)。將集落數(shù)量統(tǒng)計(jì)后進(jìn)行差異性分析,結(jié)果顯示除BFU-E外,其它的集落類型均有顯著的統(tǒng)計(jì)學(xué)差異(<0.05),見(jiàn)圖4B。
Figure 4. Comparison of the CFU-C function assays of the co-incubation products of the two culture systems. A: morphology of different hematopoietic CFUs; B: graph showing the number of different hematopoietic CFUs after co-incubation with two culture systems, and the graph shows that products from the 2D tiling method produced more hematopoietic colonies in the CFU-C assay. ee: embryonic equivalent. Scale bar=200 μm. Mean±SEM. n=3. **P<0.01 vs 2D tiling method group.
本研究主要利用流式細(xì)胞術(shù)檢測(cè)、體外共孵育及CFU-C功能實(shí)驗(yàn)探討了二維平鋪法和三維懸滴法在體外誘導(dǎo)小鼠胚內(nèi)的內(nèi)皮-造血轉(zhuǎn)化效率方面的差異。首次將兩種培養(yǎng)方法對(duì)內(nèi)皮造血轉(zhuǎn)化過(guò)程中的支持作用進(jìn)行了系統(tǒng)性的平行比較。
在形態(tài)上,三維懸滴法培養(yǎng)后的產(chǎn)物形成了以基質(zhì)細(xì)胞為中心的微球體,這與之前報(bào)道的骨髓來(lái)源的基質(zhì)細(xì)胞(OP9-DL1基質(zhì)細(xì)胞)相互之間可以緊密結(jié)合相一致[15],而且基質(zhì)細(xì)胞的外圍的造血產(chǎn)物極容易散開(kāi),這反映了在共培養(yǎng)時(shí)造血產(chǎn)物之間及造血產(chǎn)物與基質(zhì)細(xì)胞之間的低黏附親和力;在絕對(duì)數(shù)量上,二維平鋪法相較于三維懸滴法顯示出了更加突出的造血支持作用,體現(xiàn)在用此方法誘導(dǎo)小鼠胚內(nèi)生血內(nèi)皮后產(chǎn)生了更多的CD45+的造血細(xì)胞,以及在體外CFU功能實(shí)驗(yàn)中,孵育產(chǎn)物產(chǎn)生的多種造血克隆的數(shù)目都遠(yuǎn)遠(yuǎn)高于三維懸滴法。與之相一致的是,之前有研究者使用人臍帶血來(lái)源的CD34+的造血干祖細(xì)胞與基質(zhì)細(xì)胞共孵育,證明二維平鋪法相較于三維懸滴法更有利于細(xì)胞增殖[15]。本研究為體外誘導(dǎo)造血細(xì)胞增殖的研究提供了培養(yǎng)體系的選擇方案。值得注意的是,三維懸滴法孵育產(chǎn)生了更多的表型干祖細(xì)胞,基于CFU-C功能實(shí)驗(yàn)的結(jié)果,推測(cè)這些免疫表型的造血干祖細(xì)胞細(xì)胞并非為真正具有功能的造血干祖細(xì)胞。將孵育產(chǎn)物進(jìn)行致死劑量輻照后小鼠的體內(nèi)移植實(shí)驗(yàn)可以進(jìn)一步確認(rèn)兩種孵育體系對(duì)功能性造血干祖細(xì)胞生成的支持作用。
此外,兩種培養(yǎng)體系顯示出支持造血分化的譜系偏向性。研究表明,細(xì)胞外基質(zhì)的維度從二維增加到三維可以顯著影響細(xì)胞的分化,機(jī)械反應(yīng)和存活能力[18-19]。在本研究中,三維懸滴法相較于二維平鋪法的孵育體系顯示出對(duì)于表型造血干祖細(xì)胞、肥大細(xì)胞分化支持作用的偏向性,這在之前的研究中沒(méi)有報(bào)道過(guò),造成這種偏向性的原因除了細(xì)胞和基質(zhì)細(xì)胞間的相互作用模式外,一部分可能也來(lái)源于不同的機(jī)械刺激[10-11]。研究不同培養(yǎng)體系對(duì)不同譜系細(xì)胞支持偏向性的特征,有利于治療工程和再生醫(yī)學(xué)中特定譜系的誘導(dǎo)分化[20]。
另外,這兩種培養(yǎng)體系均未誘導(dǎo)出B淋系細(xì)胞,可能有以下兩方面原因:一是由于不同的基質(zhì)細(xì)胞對(duì)于各譜系造血誘導(dǎo)的支持作用不同,本實(shí)驗(yàn)所用的OP9-DL1基質(zhì)細(xì)胞可能不適合誘導(dǎo)B細(xì)胞的產(chǎn)生[21],而OP9以及OP9-DL4基質(zhì)細(xì)胞被報(bào)道更適用于淋系造血產(chǎn)物誘導(dǎo)[22-23]。此外,經(jīng)過(guò)特殊處理例如持續(xù)激活A(yù)KT的內(nèi)皮細(xì)胞也被報(bào)道支持胚胎造血特化和B細(xì)胞分化[24-26];二是由于兩種培養(yǎng)體系并未將淋系分化作為重點(diǎn),因此在培養(yǎng)過(guò)程中未添加誘導(dǎo)淋系細(xì)胞產(chǎn)生的細(xì)胞因子以及未達(dá)到淋系分化的檢測(cè)時(shí)間。
綜上所述,本研究報(bào)道了利用平行的實(shí)驗(yàn)來(lái)系統(tǒng)的評(píng)價(jià)二維平鋪以及三維懸滴兩種培養(yǎng)系統(tǒng)對(duì)于小鼠胚胎生血內(nèi)皮向造血轉(zhuǎn)化過(guò)程中的誘導(dǎo)和支持作用,結(jié)果表明,二維平鋪法的孵育體系更支持小鼠胚內(nèi)生血內(nèi)皮細(xì)胞體外誘導(dǎo)產(chǎn)生CD45+的造血細(xì)胞以及有集落形成能力的造血干祖細(xì)胞,而三維懸滴法的孵育體系顯示出對(duì)于表型造血干祖細(xì)胞、肥大細(xì)胞分化支持作用的偏向性,這些研究結(jié)果為體外造血孵育方法的選擇、乃至指導(dǎo)造血干細(xì)胞的體外再生都具有重要意義。
[1] Kissa K, Herbomel P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition[J]. Nature, 2010, 464(7285):112-115.
[2] De Bruijn MF, Speck NA, Peeters MC, et al. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo[J]. EMBO J, 2000, 19(11):2465-2474.
[3] Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region[J]. Cell, 1996, 86(6):897-906.
[4] Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue[J]. Nat Rev Mol Cell Biol, 2007, 8(10):839-845.
[5] Zhou F, Li X, Wang W, et al. Tracing haematopoietic stem cell formation at single-cell resolution[J]. Nature, 2016, 533(7604):487-492.
[6] Hou S, Li Z, Zheng X, et al. Embryonic endothelial evolution towards first hematopoietic stem cells revealed by single-cell transcriptomic and functional analyses[J]. Cell Res, 2020, 30(5):376-392.
[7] Wang H, Liu D, Chen H, et al. Nupr1 negatively regulates endothelial to hematopoietic transition in the aorta-gonad-mesonephros region[J]. Adv Sci (Weinh), 2023, 10(6):e2203813.
[8]吳木潮,程樺,陳黎紅,等. 三種不同細(xì)胞培養(yǎng)方式對(duì)體外小鼠胚胎干細(xì)胞分化為胰島素分泌細(xì)胞誘導(dǎo)效果的比較[J]. 中國(guó)病理生理雜志, 2006, 22(8):1591-1596.
Wu MC, Cheng H, Chen LH. et al.Comparison of the effects on differentiation of mouse embryonic stem cells into insulin-secreting cells among three cell culture protocols [J]. Chin J Pathophysiol, 2006, 22(8):1591-1596.
[9] Rosso F, Giordano A, Barbarisi M, et al. From cell-ECM interactions to tissue engineering[J]. J Cell Physiol, 2004, 199(2):174-180.
[10] Qutub AA, Popel AS. Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting[J]. BMC Syst Biol, 2009, 3:13.
[11] Friedrich J, Seidel C, Ebner R, et al. Spheroid-based drug screen: considerations and practical approach[J]. Nat Protoc, 2009, 4(3):309-324.
[12] Rybtsov S, Sobiesiak M, Taoudi S, et al. Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region[J]. J Exp Med, 2011, 208(6):1305-1315.
[13] Taoudi S, Gonneau C, Moore K, et al. Extensive hematopoietic stem cell generation in the AGM region via maturation of VE-cadherin+CD45+pre-definitive HSCs[J]. Cell Stem Cell, 2008, 3(1):99-108.
[14] Fadlullah MZH, Neo WH, Lie ALM, et al. Murine AGM single-cell profiling identifies a continuum of hemogenic endothelium differentiation marked by ACE[J]. Blood, 2022, 139(3):343-356.
[15] Schmal O, Seifert J, Sch?ffer TE, et al. Hematopoietic stem and progenitor cell expansion in contact with mesenchymal stromal cells in a hanging drop model uncovers disadvantages of 3D culture[J]. Stem Cells Int, 2016, 2016:4148093.
[16] Sroczynska P, Lancrin C, Pearson S, et al.differentiation of mouse embryonic stem cells as a model of early hematopoietic development[J]. Methods Mol Biol, 2009, 538:317-334.
[17] Dzierzak E, Bigas A. Blood development: hematopoietic stem cell dependence and independence[J]. Cell Stem Cell, 2018, 22(5):639-651.
[18] Bonnier F, Keating ME, Wróbel TP, et al. Cell viability assessment using the alamar blue assay: a comparison of 2D and 3D cell culture models[J]. Toxicol In Vitro, 2015, 29(1):124-131.
[19] Gauvin R, Chen YC, Lee JW, et al. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography[J]. Biomaterials, 2012, 33(15):3824-3834.
[20] Bao M, Xie J, Huck WTS. Recent advances in engineering the stem cell microniche in 3D[J]. Adv Sci (Weinh), 2018, 5(8):1800448.
[21] Schmitt TM, Zú?iga-Pflücker JC. Induction of T cell development from hematopoietic progenitor cells by delta-like-1[J]. Immunity, 2002, 17(6):749-756.
[22] Li Z, Lan Y, He W, et al. Mouse embryonic head as a site for hematopoietic stem cell development[J]. Cell Stem Cell, 2012, 11(5):663-675.
[23] Zhou J, Xu J, Zhang L, et al. Combined single-cell profiling of lncRNAs and functional screening reveals that H19 is pivotal for embryonic hematopoietic stem cell development[J]. Cell Stem Cell, 2019, 24(2):285-298.e285.
[24] Hadland BK, Varnum-Finney B, Poulos MG, et al. Endothelium and NOTCH specify and amplify aorta-gonad-mesonephros-derived hematopoietic stem cells[J]. J Clin Invest, 2015, 125(5):2032-2045.
[25] Hadland BK, Varnum-FinneyB, Mandal PK, et al. A common origin for B-1a and B-2 lymphocytes in clonal pre-hematopoietic stem cells[J]. Stem Cell Rep, 2017, 8(6):1563-1572.
[26] Hadland BK, Varnum-Finney B, Nourigat-Mckay C, et al. Clonal analysis of embryonic hematopoietic stem cell precursors using single cell index sorting combined with endothelial cell niche co-culture[J]. J Vis Exp, 2018,(135):56973.
A comparative study of different incubation culture systems for hematopoietic differentiation of mouse embryonic hemogenic endothelial cells
GUO Xia1, DING Xiaochen2, LAN Yu1, LIU Bing1,2△, HOU Siyuan1,2△
(1,,,510632,;2,100071,)
To compare the supportive effects of two-dimension (2D) tiling and three-dimension (3D) hanging drop culture systems on theinduction of hematopoiesis of mouse embryonic hemogenic endothelial cells.The hematopoietic stem cell-competent hemogenic endothelial cell PK44 (CD41-CD43-CD45-CD31+CD201+Kit+CD44+) populations were sorted by flow cytometry and co-cultured with OP9-DL1-GFP stromal cells for 6 d using 2D tiling and 3D hanging drop culture systems, respectively, and the morphological characteristics of hematopoietic products were observed under the microscope. Hematopoietic products of the two induction systems were analyzed by flow cytometry, and the proportion and absolute number of hematopoietic products were counted and analyzed. Hematopoietic products after co-incubation with the two induction systems were subjected to colony-forming unit culture (CFU-C) assay and the different types of colonies were counted.(1) The hematopoietic products formed by incubation with the 2D tiling method laid or suspended on the stromal cells, whereas the products of co-incubation by the 3D hanging drop method formed an aggregate of cells centered on the stromal cells with hematopoietic cells adhering to the surrounding area. (2) The 2D tiling method produced more CD45+hematopoietic cells; the 3D hanging drop method had a biased effect on hematopoietic lineage differentiation, which was more conducive to the differentiation of mast cells. (3) The products from the 2D tiling method produced more hematopoietic colonies in theCFU-C assay.The 2D tiling method is more conducive to mouse embryonic hemogenic endothelial cells to produce CD45+hematopoietic cells and hematopoietic stem/progenitor cells with colony-forming ability in the induction of hematopoiesis.
hemogenic endothelial cells; 3D hanging drop method; 2D tiling method; induction of hematopoietic differentiation
R363; R331; R551
A
10.3969/j.issn.1000-4718.2023.00.001
2023-07-12
2023-08-08
國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 82000111; No. 81890991; No. 31930054)
劉兵Tel: 010-66947281; E-mail: bingliu17@yahoo.com;侯思元 Tel: 010-66947281; E-mail: hsy12340@163.com
1000-4718(2023)09-1708-08
(責(zé)任編輯:李淑媛,羅森)