陳宇, 黃國東, 覃婷, 范氏泰和, 王慧玲, 莫超
中藥靶向外泌體防治糖尿病腎臟病的新進(jìn)展*
陳宇1, 黃國東2△, 覃婷3, 范氏泰和2, 王慧玲1, 莫超1
(1廣西中醫(yī)藥大學(xué)研究生院,廣西 南寧 530000;2廣西中醫(yī)藥大學(xué)附屬國際壯醫(yī)醫(yī)院,廣西 南寧 530000;3廣西中醫(yī)藥大學(xué)附屬瑞康醫(yī)院,廣西 南寧 530000)
糖尿病腎臟??;外泌體;中藥
糖尿病腎臟?。╠iabetic kidney disease, DKD)是由糖尿?。╠iabetes mellitus, DM)所導(dǎo)致的慢性腎臟病,是DM最嚴(yán)重的微血管并發(fā)癥,臨床上以持續(xù)性白蛋白尿和(或)估算的腎小球?yàn)V過率進(jìn)行性下降為主要特征。2021年全球約有5.37億成年人患有糖尿病,并且20%~40%的DM患者可合并有DKD[1]。隨著DM發(fā)病率不斷上升,DKD已成為終末期腎臟?。╡nd-stage renal disease, ESRD)的首要病因[2]。外泌體(exosome)是一種納米大小的膜囊泡,可被多種細(xì)胞釋放到細(xì)胞外空間,參與機(jī)體免疫應(yīng)答、細(xì)胞遷移、細(xì)胞分化、腫瘤侵襲等生命活動(dòng)[3]。近年的研究顯示,DKD病理生理過程也存在著外泌體的身影并發(fā)揮著重要作用[4]。此外,國內(nèi)學(xué)者報(bào)道中藥可靶向外泌體發(fā)揮治療作用[5]。因此,本文針對(duì)外泌體在DKD的作用機(jī)制及中藥干預(yù)進(jìn)行系統(tǒng)性的梳理和總結(jié),以期為中藥的研發(fā)及DKD的防治提供參考。
外泌體是細(xì)胞外微囊泡(extracellular vesicles, EVs)的一個(gè)亞群,其內(nèi)含豐富的脂質(zhì)、核酸及蛋白質(zhì),并具有磷脂雙分子層(圖1),通過體液運(yùn)輸與靶細(xì)胞匯合,以此完成細(xì)胞-細(xì)胞間信號(hào)通訊[6]。
Figure 1. The structure of exosomes. MHC: major histocompatibility complex; ICAMs: intercellular adhesion molecules; mRNA: messenger RNA; miRNA: microRNA; lncRNA: long non-coding RNA; HSP: heat shock protein.
外泌體始于核內(nèi)體系統(tǒng),或由多囊體(multivesicular bodies, MVBs)與質(zhì)膜融合釋放至胞外;或由質(zhì)膜內(nèi)泌體域囊泡向外(即遠(yuǎn)離細(xì)胞質(zhì))萌發(fā),于質(zhì)膜釋放至胞外;或由囊泡于胞內(nèi)質(zhì)膜連接室(intracellular plasma membrane-connected compartment, IPMC)萌發(fā)并蓄積,待IPMC頸部收縮解除后釋放至胞外[7-8]。
外泌體主要以3種方式被靶細(xì)胞攝取并發(fā)揮生物作用[6]:(1)直接與靶細(xì)胞表面受體結(jié)合;(2)通過誘導(dǎo)融合、內(nèi)吞被靶細(xì)胞內(nèi)化;(3)通過調(diào)節(jié)吞噬作用與靶細(xì)胞結(jié)合。
近年,越來越多研究報(bào)道外泌體直接或間接地影響腎臟的生理病理過程,可能是未來診斷和治療腎臟疾病的重要切入點(diǎn)[9-10]。
2.1外泌體干預(yù)纖維化病變固醇調(diào)節(jié)元件結(jié)合蛋白1(sterol regulatory element binding protein-1, SREBP-1)與轉(zhuǎn)化生長因子β1(transforming growth factor β1, TGF-β1)信號(hào)之間存在正反饋調(diào)節(jié)回路,并參與腎小球硬化進(jìn)程,該調(diào)節(jié)作用可能是依靠外泌體實(shí)現(xiàn)。抑制SREBP-1表達(dá)導(dǎo)致腎小球系膜細(xì)胞(glomerular mesangial cells, GMC)分泌富含功能性TGF-β受體的外泌體,進(jìn)而阻斷靶細(xì)胞TGF-β1信號(hào)轉(zhuǎn)導(dǎo)[11-12]。研究表明高糖促進(jìn)腎小球內(nèi)皮細(xì)胞(glomerular endothelial cells, GEC)釋放外泌體并誘發(fā)足細(xì)胞去分化及間充質(zhì)轉(zhuǎn)化[13]。不僅如此,高糖還誘導(dǎo)環(huán)狀RNA富集于外泌體內(nèi),GMC內(nèi)吞后可上調(diào)α-平滑肌肌動(dòng)蛋白(α-smooth muscle actin, α-SMA)和纖連蛋白(fibronectin, FN)表達(dá)水平[14]。其中磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)/蛋白激酶B(protein kinase B, PKB/AKT)和絲裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)信號(hào)的異常激活可能是外泌體環(huán)狀RNA介導(dǎo)GEC-GMC串?dāng)_的重要路徑。Liu等[15]的研究表明,Shh信號(hào)由外泌體輸送至間質(zhì)成纖維細(xì)胞產(chǎn)生信號(hào)級(jí)聯(lián)反應(yīng)所誘發(fā)的細(xì)胞活化是外泌體干預(yù)細(xì)胞外基質(zhì)(extracellular matrix, ECM)沉積的機(jī)制之一。TGF-β1刺激腎小管細(xì)胞分泌富含Shh、Smo和Gli1的外泌體,從而上調(diào)成纖維細(xì)胞中增殖細(xì)胞核抗原(proliferating cell nuclear antigen, PCNA)、α-SMA和FN表達(dá)水平。磷酸酶及張力蛋白同源物(phosphatase and tensin homolog,)是miR-21的靶基因,腎小管受損導(dǎo)致外泌體富含miR-21,進(jìn)而抑制成纖維細(xì)胞PTEN蛋白表達(dá),促進(jìn)AKT磷酸化,上調(diào)α-SMA、FN和I型膠原蛋白(collagen type I, Col-I)水平[16]。這與含TGF-β1外泌體誘導(dǎo)的結(jié)果基本一致,故TGF-β1、miR-21和PTEN/AKT之間的信號(hào)串?dāng)_可能是外泌體激活成纖維細(xì)胞,加重纖維化的重要機(jī)制。Zhu等[17]發(fā)現(xiàn),高糖環(huán)境下巨噬細(xì)胞源性外泌體TGF-β1 mRNA含量顯著增加,可激活TGF-β1/Smad3信號(hào)通路,上調(diào)FN、α-SMA和IV型膠原(collagen type IV, Col-IV)表達(dá)水平,促進(jìn)CMC活化。
然而,源自干細(xì)胞的外泌體在腎臟疾病中可能充當(dāng)保護(hù)者的身份。間充質(zhì)干細(xì)胞(mesenchymal stem cells, MSC)源性外泌體可下調(diào)PCNA和α-SMA表達(dá)水平并顯著減少腎臟膠原沉積,這可能與其攜帶的miRNAs抑制TGF-β1激活有關(guān)[18]。此外,骨髓MSC(bone marrow MSC, BM-MSC)源性外泌體可以激活前列腺素E受體2,進(jìn)而抑制M1、M2型巨噬細(xì)胞極化,降低FN和α-SMA水平,遏止巨噬細(xì)胞-肌成纖維細(xì)胞轉(zhuǎn)化,最終緩解腎纖維化[19]。因此,MSC源性外泌體有望成為治療DKD纖維化的新策略。
2.2外泌體干預(yù)炎癥反應(yīng)蛋白尿不僅是DKD的主要臨床表現(xiàn),也是腎小管間質(zhì)炎癥的重要誘因。牛血清白蛋白(bovine serum albumin, BSA)刺激腎小管上皮細(xì)胞(tubular epithelial cells, TEC)分泌外泌體,上調(diào)CC趨化因子配體2(CC chemokine ligand 2, CCL2)mRNA表達(dá),而CCL2過表達(dá)可誘發(fā)巨噬細(xì)胞活化,上調(diào)白細(xì)胞介素1β(interleukin-1β, IL-1β)和IL-6表達(dá)水平[20]。由此可見,CCL2 mRNA表達(dá)與蛋白尿水平呈正相關(guān),蛋白尿通過誘導(dǎo)含CCL2的外泌體釋放而引發(fā)炎癥。然而蛋白尿促進(jìn)外泌體釋放的具體機(jī)制尚不清楚。Feng等[21]的研究表明,干擾素調(diào)節(jié)因子1(interferon regulatory factor 1, IRF1)/Rab27a通路活化是蛋白尿刺激外泌體釋放并損傷腎小管的重要機(jī)制。BSA誘導(dǎo)IRF1過表達(dá),進(jìn)而上調(diào)Rab27a蛋白水平,促進(jìn)TEC釋放富含白蛋白的外泌體,導(dǎo)致細(xì)胞外空間蓄積大量白蛋白而誘發(fā)炎癥。由于上述研究缺乏多樣性,蛋白尿誘發(fā)炎癥是否涉及其它細(xì)胞源性外泌體的生物作用仍有待探索,但這也提示抑制外泌體釋放或許是減輕蛋白尿、緩解炎癥的切入點(diǎn)。
高糖誘導(dǎo)巨噬細(xì)胞源性外泌體激活TGF-β1信號(hào),上調(diào)FN、α-SMA和Col-IV表達(dá)水平,促進(jìn)IL-1β和腫瘤壞死因子α(tumor necrosis factor-α, TNF-α)分泌,導(dǎo)致系膜細(xì)胞纖維化與炎癥同步發(fā)生[17]。此類外泌體還能引發(fā)巨噬細(xì)胞活化及轉(zhuǎn)分化,激活核因子κB(nuclear factor-κB, NF-κB),上調(diào)IL-1β和誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase, iNOS)水平,從而再次活化巨噬細(xì)胞,形成炎癥的正反饋機(jī)制[22]。除此之外,高糖誘導(dǎo)的TEC源性外泌體也可以激活巨噬細(xì)胞,釋放炎癥介質(zhì),通過上調(diào)p-p38 MAPK、p-JNK和NF-κB蛋白水平,促進(jìn)iNOS表達(dá),最終增加IL-1β、TNF-α和MCP-1分泌量[23]。由此可見,高糖情況下外泌體介導(dǎo)的細(xì)胞間信號(hào)串?dāng)_可能推動(dòng)炎癥發(fā)展。但是,MSC源性外泌體可以調(diào)節(jié)炎癥相關(guān)基因的異常表達(dá),抑制炎癥因子分泌,保護(hù)腎組織[18, 24]。因此,外泌體對(duì)腎臟炎癥發(fā)揮促進(jìn)或抑制作用與其母體細(xì)胞類型有關(guān),并且該過程涉及的分子機(jī)制眾多,關(guān)鍵的調(diào)控機(jī)制有待深入探究。
2.3外泌體干預(yù)腎臟氧化損傷缺氧狀態(tài)下TEC源性外泌體可以減輕母細(xì)胞線粒體腫脹、空泡化,抑制活性氧(reactive oxygen species, ROS)產(chǎn)生,這與miR-20a-5p過表達(dá)有關(guān)[25],故腎小管細(xì)胞通過自我調(diào)節(jié)miRNAs表達(dá)以應(yīng)對(duì)急性氧化損傷。Ding等[26]的研究表明,高糖刺激巨噬細(xì)胞釋放富含miR-21-5p的外泌體,促進(jìn)ROS蓄積,降低腎病蛋白(nephrin)和足突蛋白(podocin)表達(dá)水平,導(dǎo)致足突融合和細(xì)胞損傷。
脂肪干細(xì)胞(adipose-derived stem cells, ADSC)源性外泌體可能通過激活核因子E2相關(guān)因子2(nuclear factor E2-related factor 2, Nrf2),下調(diào)NADPH氧化酶1(NADPH oxidase 1, NOX1)和NOX4蛋白表達(dá),降低ROS水平,最終減輕內(nèi)皮細(xì)胞氧化損傷[27]。BM-MSC源性外泌體則上調(diào)過氧化物氧化還原蛋白3(peroxiredoxin 3, Prx3)的mRNA表達(dá),抑制ROS蓄積,提高超氧化物歧化酶(superoxide dismutase, SOD)和谷胱甘肽過氧化物酶(glutathione peroxidase, GSH-Px)水平,從而緩解腎臟氧化損傷[24]。因此,干細(xì)胞源性外泌體可以調(diào)控多個(gè)氧化應(yīng)激信號(hào)以減輕腎損害。
綜上所述,外泌體主要發(fā)揮抗氧化作用,但相關(guān)研究多數(shù)集中在干細(xì)胞治療,研究方向較為單一。未來應(yīng)擴(kuò)展研究對(duì)象,挖掘不同種類外泌體對(duì)氧化應(yīng)激的作用機(jī)制。
2.4外泌體干預(yù)細(xì)胞自噬MSC源性外泌體預(yù)處理TEC可以上調(diào)自噬標(biāo)志物L(fēng)C3-II和beclin-1表達(dá)水平,以此反向抑制哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)磷酸化,激活自噬程序,減少細(xì)胞凋亡[28]。MSC源性外泌體還能阻斷mTOR與TGF-β1的信號(hào)串?dāng)_以恢復(fù)細(xì)胞自噬活性,減少膠原纖維沉積[29]。除此之外,ADSC源性外泌體也具有類似功能。其富含miR-486可抑制Smad1過表達(dá),進(jìn)而下調(diào)p-mTOR水平,上調(diào)LC3-II和beclin-1表達(dá)水平,修復(fù)足細(xì)胞自噬功能[30]。由此可見,干細(xì)胞源性外泌體通過阻止mTOR信號(hào)轉(zhuǎn)導(dǎo)恢復(fù)自噬活性,穩(wěn)定細(xì)胞狀態(tài)。
M2型巨噬細(xì)胞源性外泌體富含miR-25-3p,可抑制雙特異性磷酸酶1(dual-specificity phosphatase 1, DUSP1)過表達(dá),進(jìn)而下調(diào)波形蛋白(vimentin)和α-SMA蛋白水平,上調(diào)上皮鈣黏素(E-cadherin)和beclin-1蛋白水平,最終緩解高糖誘發(fā)的足細(xì)胞自噬功能障礙,修復(fù)細(xì)胞結(jié)構(gòu)[31]。然而,來源于巨噬細(xì)胞的外泌體并非絕對(duì)保護(hù)自噬程序。高糖環(huán)境中巨噬細(xì)胞源性外泌體可激活mTOR信號(hào),導(dǎo)致nephrin和beclin-1蛋白水平降低,自噬小體數(shù)量減少,從而誘發(fā)足細(xì)胞損傷[32]。遺憾的是,該項(xiàng)研究中巨噬細(xì)胞的分型不明。M1和M2型巨噬細(xì)胞可存在明顯的功能差異,故巨噬細(xì)胞源性外泌體在靶細(xì)胞內(nèi)發(fā)揮的生物作用可能取決于巨噬細(xì)胞的分型。
DKD雖屬現(xiàn)代醫(yī)學(xué)概念,但中醫(yī)古籍對(duì)其病因病機(jī)及癥狀早有記載,如《黃帝內(nèi)經(jīng)》、《古今錄驗(yàn)方》、《諸病源候論》等,最早可追溯至戰(zhàn)國時(shí)期,稱之為“消癉”“腎消”“水腫”等。
多數(shù)醫(yī)家認(rèn)為DKD是DM久病不愈,日久耗氣傷陰、陰損及陽,最終氣血陰陽俱虛所致,并出現(xiàn)痰濕、血瘀、濁毒交雜。本虛標(biāo)實(shí)是其基本病機(jī),本虛分為肺氣虛、脾胃氣陰兩虛、脾腎陽虛和腎陰陽兩虛,標(biāo)實(shí)分為水濕、瘀血和濁毒。也有醫(yī)家對(duì)此提出不同見解,呂仁和教授提出“微型癥瘕”病機(jī)學(xué)說[33],認(rèn)為DKD發(fā)展過程中機(jī)體可出現(xiàn)熱郁、氣滯、痰蘊(yùn)、血瘀等變化,而這些產(chǎn)物的膠結(jié)、纏綿可進(jìn)一步在腎臟形成有形可征的病理改變,以致影響臟腑功能和機(jī)體陰陽平衡。國醫(yī)大師周仲瑛認(rèn)為臟腑的氣血陰陽虧虛可導(dǎo)致濕熱、燥熱、痰熱郁結(jié),日久成瘀化熱,加重DKD病情,故瘀熱既是病理因素,也是病機(jī),由此提出“瘀熱論”[34]。南征教授提出“毒損腎絡(luò),邪伏膜原”理論,認(rèn)為DKD乃機(jī)體稟賦不足、過食肥甘厚味,導(dǎo)致脾胃、散膏功能失調(diào),毒邪下侵,伏于膜原,損傷腎絡(luò),腎氣大損所致,故毒邪是主要病因病機(jī)[35]。綜上所述,DKD致病因素多樣,可多個(gè)因素夾雜并共同推動(dòng)疾病的發(fā)展。
外泌體屬于現(xiàn)代分子生物學(xué)范疇,在傳統(tǒng)中醫(yī)學(xué)中并未出現(xiàn)相關(guān)描述。但外泌體可在人體臟腑正常生理或病理狀態(tài)下產(chǎn)生,并存在于各種體液內(nèi),故外泌體屬于傳統(tǒng)醫(yī)學(xué)的精、血、津、液范疇。中醫(yī)認(rèn)為精、氣、血、津液等精微物質(zhì)是人體臟腑、經(jīng)絡(luò)、形體、官竅生理活動(dòng)的物質(zhì)基礎(chǔ),而精微物質(zhì)的生成與代謝又依賴于臟腑、經(jīng)絡(luò)、形體、官竅的正常生理機(jī)能。因此,精微物質(zhì)的異常變化會(huì)影響臟腑的生理功能,導(dǎo)致疾病發(fā)生,而臟腑的病變也會(huì)引起精微物質(zhì)的病理變化,這與外泌體的生物學(xué)特性相符合。此外,利用外泌體反映母細(xì)胞狀態(tài)的特點(diǎn),把外泌體攜帶的蛋白、基因等信息作為診斷疾病的生物標(biāo)志物不僅體現(xiàn)中醫(yī)的整體觀,也符合中醫(yī)的微觀辨證。微觀辨證是現(xiàn)代中醫(yī)辨證論治的新思想[36]。沈自尹教授認(rèn)為利用現(xiàn)代醫(yī)學(xué)的先進(jìn)技術(shù),發(fā)揮它們?cè)跈C(jī)體微觀認(rèn)識(shí)的優(yōu)勢(shì),可以對(duì)證的物質(zhì)基礎(chǔ)更深入地闡明,與傳統(tǒng)醫(yī)學(xué)的宏觀辨證相結(jié)合有助于中醫(yī)的臨床應(yīng)用,也是中醫(yī)辨病、辨證相結(jié)合的大突破。檀金川教授也指出宏觀辨證與微觀辨證相結(jié)合可以更全面地掌握腎臟疾病的病機(jī)[37]。因此,在DKD辨證論治時(shí)運(yùn)用外泌體,對(duì)DKD不同證候中外泌體的表現(xiàn)或DKD發(fā)生證候變化時(shí)外泌體所做出的改變進(jìn)行分析,不僅有助于中醫(yī)的精準(zhǔn)診療,也將開啟中醫(yī)防治DKD的新篇章。
4.1中藥單體
4.1.1小檗堿小檗堿對(duì)高糖刺激GMC釋放外泌體有抑制作用,從而上調(diào)nephrin和podocin蛋白水平,修復(fù)足細(xì)胞結(jié)構(gòu)[38]。這可能與其下調(diào)外泌體TGF-β1表達(dá),抑制PI3K和AKT磷酸化有關(guān)。還有研究顯示,小檗堿抑制HeLa細(xì)胞釋放外泌體,下調(diào)PI3K和AKT蛋白表達(dá),最終降低細(xì)胞生長率和遷移率[39]。由此可見,小檗堿通過外泌體調(diào)控PI3K/AKT信號(hào)通路,進(jìn)而調(diào)節(jié)細(xì)胞功能。Gao等[40]把外泌體作為藥物載體,負(fù)載小檗堿的外泌體可以抑制脂多糖誘導(dǎo)的巨噬細(xì)胞M1極化,促進(jìn)M1-M2表型轉(zhuǎn)化,減少IL-1β、TNF-α和IL-6分泌。與常規(guī)給藥方式相比,外泌體模式更好地發(fā)揮了小檗堿的藥理作用。
4.1.2黃芪提取物研究表明,高糖會(huì)降低內(nèi)皮細(xì)胞活力,促進(jìn)細(xì)胞凋亡,而負(fù)載黃芪甲苷的內(nèi)皮祖細(xì)胞源性外泌體可抑制高糖誘導(dǎo)的內(nèi)皮細(xì)胞損傷,這與miR-214過表達(dá)進(jìn)而調(diào)控PI3K/AKT信號(hào)通路有關(guān)[41-42]。內(nèi)皮細(xì)胞受損可引發(fā)微血管病變,故黃芪甲苷保護(hù)內(nèi)皮細(xì)胞可以遏止DM進(jìn)展至DKD。除此之外,黃芪多糖抑制H460細(xì)胞釋放外泌體,并可能通過阻止NF-κB通路活化,緩解Toll樣受體4(Toll-like receptor 4, TLR4)激活所誘發(fā)的炎癥反應(yīng)[43]。
4.1.3姜黃素姜黃素刺激外泌體釋放并抑制細(xì)胞內(nèi)脂質(zhì)沉積,該過程受絲氨酸棕櫚酰轉(zhuǎn)移酶/神經(jīng)酰胺合成酶信號(hào)調(diào)控[44]。He等[45]的研究表明,巨噬細(xì)胞源性外泌體具有類似巨噬細(xì)胞的遷移、靶向能力,負(fù)載姜黃素的巨噬細(xì)胞源性外泌體可以穿透血腦屏障,抑制ROS蓄積,恢復(fù)線粒體功能,減少細(xì)胞色素C分泌,最終減輕腦組織缺血再灌注損傷。此外,姜黃素預(yù)處理的MSC源性外泌體可以上調(diào)miR-124和miR-143表達(dá),阻止下游靶點(diǎn)Rho激酶1和NF-κB過度激活,從而減輕關(guān)節(jié)炎癥[46]。姜黃素還能上調(diào)外泌體miR-92b-3p表達(dá),以此抑制Krüppel樣因子4表達(dá),下調(diào)Runt相關(guān)轉(zhuǎn)錄因子2蛋白水平,減輕血管鈣化[47]。綜上所述,姜黃素通過外泌體途徑改善炎癥、氧化應(yīng)激、脂代謝紊亂等病理損害,并對(duì)多種疾病發(fā)揮治療作用。
4.1.4白藜蘆醇有研究顯示,服用白藜蘆醇可以刺激含有外泌體的EVs(exosome-containing EVs, E-EVs)分泌,并且血漿E-EVs內(nèi)含白藜蘆醇代謝產(chǎn)物[48]。因此,白藜蘆醇及其代謝物可以被E-EVs包封,或以E-EVs為載體運(yùn)輸至全身靶點(diǎn),或以E-EVs為媒介誘發(fā)信號(hào)轉(zhuǎn)導(dǎo)。白藜蘆醇可以下調(diào)CD147表達(dá)水平,抑制含有β-淀粉樣蛋白的外泌體釋放,促進(jìn)神經(jīng)功能修復(fù)[49]。負(fù)載白藜蘆醇的外泌體還可以穿透血腦屏障,上調(diào)LC3B和beclin-1蛋白水平、下調(diào)caspase-3蛋白水平,保護(hù)神經(jīng)元,而PI3K抑制劑減弱外泌體誘導(dǎo)神經(jīng)元自噬的作用[50]。因此,調(diào)控PI3K信號(hào)可能是白藜蘆醇靶向外泌體保護(hù)中樞神經(jīng)系統(tǒng)的機(jī)制之一。
4.1.5其它中藥提取物Park等[51]的研究表明,向日葵提取物通過調(diào)節(jié)外泌體miRNAs表達(dá),進(jìn)而調(diào)控NF-κB和mTOR信號(hào),最終減輕細(xì)胞炎癥,改善自噬活性,但具體是哪個(gè)miRNA發(fā)揮主要作用仍需進(jìn)一步驗(yàn)證。另有研究表明,熟地黃水提液可以增加血清外泌體內(nèi)miR-29a-3p含量,從而降低低密度脂蛋白膽固醇、過氧化物酶體增殖物激活受體γ、TNF-α和IL-1β水平,緩解脂質(zhì)蓄積引發(fā)的炎癥反應(yīng)[52]。青蒿素則通過增加腎組織的外泌體含量,以此降低p-NF-κB和p-IκBα水平,抑制NF-κB/核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3, NLRP3)通路活化,緩解炎癥[53]。除此之外,牛膝和丹參的提取物也可以促進(jìn)外泌體釋放以抑制炎癥反應(yīng)。牛膝抑制NLRP3、TLR4和NF-κB信號(hào)激活,減輕關(guān)節(jié)軟組織炎癥損傷[54];丹參調(diào)控巨噬細(xì)胞表型轉(zhuǎn)化,抑制M1活化,促進(jìn)M2極化,緩解神經(jīng)炎癥[55]。因此,牛膝和丹參有望靶向外泌體對(duì)腎臟炎癥發(fā)揮治療作用。
4.2中藥復(fù)方Wu等[56]的研究表明,通心絡(luò)膠囊抑制高糖刺激GEC釋放富含TGF-β1 mRNA的外泌體,下調(diào)p-Smad3水平,從而阻止GMC中的TGF-β1/Smad3信號(hào)轉(zhuǎn)導(dǎo),下調(diào)α-SMA、Col-IV和FN蛋白表達(dá),減少ECM沉積。此外,加味黃芪赤風(fēng)湯也具有下調(diào)外泌體TGF-β1表達(dá)、抑制TGF-β1/Smad3通路活化的作用,并以此緩解腎纖維化[57]。保腎通絡(luò)方則通過下調(diào)外泌體miR-192表達(dá),進(jìn)而抑制高糖誘導(dǎo)的GMC活化和ECM沉積[58]。CCL2與其特異性受體CCR2結(jié)合可誘導(dǎo)巨噬細(xì)胞積累并過度促進(jìn)M2極化,而大黃蟄蟲丸可以降低外泌體CCL2水平,阻止CCL2-CCR2軸激活,最終調(diào)節(jié)巨噬細(xì)胞表型轉(zhuǎn)化,抑制纖維化[59]。綜上所述,通過外泌體干預(yù)細(xì)胞間信號(hào)通訊可能是中藥復(fù)方防治腎纖維化的新路徑,可為經(jīng)典方劑的應(yīng)用及組方研發(fā)提供新思路。
真武湯刺激TEC釋放外泌體,促進(jìn)GMC內(nèi)吞,以此阻止NF-κB/NLRP3通路活化,下調(diào)IL-1β和caspase-3蛋白水平,抑制炎癥反應(yīng)[60]??上У氖牵芯坎⑽催M(jìn)一步揭示真武湯調(diào)控外泌體釋放的分子機(jī)制,是否影響外泌體內(nèi)含物也尚屬未知。TAK1結(jié)合蛋白2(TAK1-binding protein 2,)是miR-let-7-5p的靶基因,益氣活血化痰方可能通過上調(diào)外泌體miR-let-7-5p表達(dá),進(jìn)而介導(dǎo)巨噬細(xì)胞-內(nèi)皮細(xì)胞信號(hào)交互,調(diào)控TAB2/NF-κB通路,最終減輕內(nèi)皮細(xì)胞慢性炎癥[61]。因此,抑制NF-κB信號(hào)激活是中藥復(fù)方靶向外泌體減輕炎癥損傷的重要方式之一。
歐陽過等[62]的研究表明,溫陽振衰顆粒增加血漿外泌體內(nèi)miR-155含量,還可上調(diào)腎臟miR-155表達(dá),從而抑制p38 MAPK蛋白表達(dá),減少腎臟損傷分子1含量,延緩疾病進(jìn)展。馮坤良等[63]的研究表明,健脾化瘀方干預(yù)的MHCC97H細(xì)胞源性外泌體可被MHCC97H細(xì)胞重新內(nèi)吞并上調(diào)E-cadherin蛋白表達(dá),下調(diào)神經(jīng)鈣黏素(N-cadherin)和vimentin蛋白表達(dá),阻止細(xì)胞發(fā)生上皮-間充質(zhì)轉(zhuǎn)化。但是,健脾化瘀方調(diào)控外泌體功能的分子機(jī)制尚不清楚。M2型丙酮酸激酶(pyruvate kinase M2, PKM2)上調(diào)p-PI3K、p-AKT和p-mTOR蛋白水平,導(dǎo)致腫瘤細(xì)胞增殖、分化,而健脾養(yǎng)正湯抑制外泌體PKM2表達(dá),阻斷PI3K/AKT/mTOR信號(hào)轉(zhuǎn)導(dǎo),以此重塑巨噬細(xì)胞功能,促進(jìn)腫瘤細(xì)胞凋亡[64]。
綜上所述,中藥復(fù)方可以靶向外泌體而干預(yù)DKD細(xì)胞增殖、凋亡、纖維化、炎癥等病理過程,發(fā)揮治療作用。
外泌體在細(xì)胞-細(xì)胞間信號(hào)通訊的承載及轉(zhuǎn)移有效介質(zhì)方面發(fā)揮著重大作用。上述研究表明,外泌體在腎臟疾病進(jìn)程中發(fā)揮的生物功能與外泌體種類、靶細(xì)胞類型及疾病階段有關(guān)。因此,外泌體對(duì)疾病的進(jìn)展可能存在雙重作用,或加重病理損傷,或促進(jìn)組織修復(fù)。不僅如此,豐富的外泌體內(nèi)含物也是醫(yī)學(xué)研究的寶藏。外泌體攜帶的生物信息可作用于靶細(xì)胞,是細(xì)胞間信息交互的天然媒介,為我們探索DKD進(jìn)程中腎臟固有細(xì)胞之間的相互作用提供新思路;分析外泌體的核酸和蛋白質(zhì)則有助于我們發(fā)現(xiàn)更多潛在致病分子及相關(guān)機(jī)制。此外,使用干細(xì)胞源性外泌體、抑制外泌體內(nèi)致病分子的活性或阻斷致病性外泌體的釋放等治療手段,將會(huì)成為外泌體防治DKD的研究重點(diǎn)。總之,外泌體有望成為早期診斷和防治DKD的新靶點(diǎn)。
如今,中醫(yī)藥防治DKD的研究日新月著。雖有研究報(bào)道中藥可通過外泌體減輕糖脂代謝紊亂、纖維化、炎癥、自噬等病理損傷,但是中藥靶向外泌體治療DKD的研究尚存不足。諸如腎臟細(xì)胞釋放外泌體、腎臟細(xì)胞外泌體的內(nèi)含物、靶細(xì)胞攝取外泌體等是否受中藥調(diào)控尚未完全解決,所涉及的具體分子機(jī)制尚未明晰。因此,在未來的科研工作中我們應(yīng)該重視上述問題,從多個(gè)維度深入探究。
[1]中華醫(yī)學(xué)會(huì)糖尿病學(xué)分會(huì)微血管并發(fā)癥學(xué)組. 中國糖尿病腎臟病防治指南(2021年版)[J]. 中華糖尿病雜志, 2021, 13(8):762-784.
Microvascular Complications Group, Diabetes Society of Chinese Medical Association. Chinese guidelines for prevention and treatment of diabetic nephropathy (2021 edition)[J]. Chin J Diabetes, 2021, 13(8):762-784.
[2] Ruiz-Ortega M, Rodrigues-Diez RR, Lavoz C, et al. Special issue "diabetic nephropathy: diagnosis, prevention and treatment"[J]. J Clin Med, 2020, 9(3):813.
[3] Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977.
[4] Lu Y, Liu D, Feng Q, Liu Z. Diabetic nephropathy: perspective on extracellular vesicles[J]. Front Immunol, 2020, 11:943.
[5]高忠林,白程菲,張曉鳳,等. 外泌體在中醫(yī)藥研究中的應(yīng)用進(jìn)展[J]. 中國醫(yī)藥導(dǎo)報(bào), 2021, 18(24):36-39.
Gao ZL, Bai CF, Zhang XF, et al. Application of exosomes in traditional Chinese medicine[J]. China Med Herald, 2021, 18(24):36-39.
[6] Farooqi AA, Desai NN, Qureshi MZ, et al. Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds[J]. Biotechnol Adv, 2018, 36(1):328-334.
[7] Huotari J, Helenius A. Endosome maturation[J]. EMBO J, 2011, 30(17):3481-3500.
[8] Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88:487-514.
[9] Zhou S, Fang J, Hu M, et al. Determining the influence of high glucose on exosomal lncRNAs, mRNAs, circRNAs and miRNAs derived from human renal tubular epithelial cells[J]. Aging (Albany NY), 2021, 13(6):8467.
[10]林玲,劉圓圓,吳俊標(biāo). 外泌體源miRNA在腎臟病中的調(diào)控及中藥的干預(yù)研究進(jìn)展[J]. 中藥藥理與臨床, 2022, 38(4):210-215.
Lin L, Liu YY, Wu JB. Regulation of exosome-derived miRNA in renal diseases and research progress of Chinese medicine intervention[J]. Pharmacol Clin Chin Mater Med, 2022, 38(4):210-215.
[11] Chen G, Wang T, Uttarwar L, et al. SREBP-1 is a novel mediator of TGFβ1 signaling in mesangial cells[J]. J Mol Cell Biol, 2014, 6(6):516-530.
[12] Van Krieken R, Chen G, Gao B, et al. Sterol regulatory element binding protein (SREBP)-1 is a novel regulator of the transforming growth factor (TGF)-β receptor I (TβRI) through exosomal secretion[J]. Cell Signal, 2017, 29:158-167.
[13] Wu X, Gao Y, Xu L, et al. Exosomes from high glucose-treated glomerular endothelial cells trigger the epithelial-mesenchymal transition and dysfunction of podocytes[J]. Sci Rep, 2017, 7(1):9371.
[14] Ling L, Tan Z, Zhang C, et al. CircRNAs in exosomes from high glucose-treated glomerular endothelial cells activate mesangial cells[J]. Am J Transl Res, 2019, 11(8):4667.
[15] Liu X, Miao J, Wang C, et al. Tubule-derived exosomes play a central role in fibroblast activation and kidney fibrosis[J]. Kidney Int, 2020, 97(6):1181-1195.
[16] Zhao S, Li W, Yu W, et al. Exosomal miR-21 from tubular cells contributes to renal fibrosis by activating fibroblasts via targeting PTEN in obstructed kidneys[J]. Theranostics, 2021, 11(18):8660.
[17] Zhu QJ, Zhu M, Xu XX, et al. Exosomes from high glucose-treated macrophages activate glomerular mesangial cells via TGF‐β1/Smad3 pathwayand[J]. FASEB J, 2019, 33(8):9279-9290.
[18] Yea JH, Yoon YM, Lee JH, et al. Exosomes isolated from melatonin-stimulated mesenchymal stem cells improve kidney function by regulating inflammation and fibrosis in a chronic kidney disease mouse model[J]. J Tissue Eng, 2021, 12:20417314211059624.
[19] Lu Y, Yang L, Chen X, et al. Bone marrow mesenchymal stem cell-derived exosomes improve renal fibrosis by reducing the polarisation of M1 and M2 macrophages through the activation of EP2 receptors[J]. IET Nanobiotechnol, 2022, 16(1):14-24.
[20] Lv LL, Feng Y, Wen Y, et al. Exosomal CCL2 from tubular epithelial cells is critical for albumin-induced tubulointerstitial inflammation[J]. J Am Soc Nephrol, 2018, 29(3):919-935.
[21] Feng Y, Zhong X, Tang TT, et al. Rab27a dependent exosome releasing participated in albumin handling as a coordinated approach to lysosome in kidney disease[J]. Cell Death Dis, 2020, 11(7):513.
[22] Zhu M, Sun X, Qi X, et al. Exosomes from high glucose-treated macrophages activate macrophages andinduce inflammatory responses via NF-κB signaling pathwayand[J]. Int Immunopharmacol, 2020, 84:106551.
[23] 王東,徐興欣,范哲,等. 高糖環(huán)境下腎小管上皮細(xì)胞來源外泌體誘導(dǎo)巨噬細(xì)胞激活的作用與機(jī)制[J]. 中華腎臟病雜志, 2018, 34(9):681-688.
Wang D, Xu XX, Fan Z, et al. Role and mechanism of macrophage activation induced by renal tubular epithelial-derived exosomes in hyperglycemic environment[J]. Chin J Nephrol, 2018, 34(9):681-688.
[24] Alasmari WA, El-Shetry ES, Ibrahim D, et al. Mesenchymal stem-cells' exosomes are renoprotective in postmenopausal chronic kidney injury via reducing inflammation and degeneration[J]. Free Radic Biol Med, 2022, 182:150-159.
[25] Yu W, Zeng H, Chen J, et al. miR-20a-5p is enriched in hypoxia-derived tubular exosomes and protects against acute tubular injury[J]. Clin Sci (Lond), 2020, 134(16):2223-2234.
[26] Ding X, Jing N, Shen A, et al. MiR-21-5p in macrophage-derived extracellular vesicles affects podocyte pyroptosis in diabetic nephropathy by regulating A20[J]. J Endocrinol Invest, 2021, 44:1175-1184.
[27] Li X, Xie X, Lian W, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model[J]. Exp Mol Med, 2018, 50(4):1-14.
[28] Wang B, Jia H, Zhang B, et al. Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy[J]. Stem Cell Res Ther, 2017, 8(1):75.
[29] Ebrahim N, Ahmed IA, Hussien NI, et al. Mesenchymal stem cell-derived exosomes ameliorated diabetic nephropathy by autophagy induction through the mTOR signaling pathway[J]. Cells, 2018, 7(12):226.
[30] Jin J, Shi Y, Gong J, et al. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte[J]. Stem Cell Res Ther, 2019, 10(1):95.
[31] Huang H, Liu H, Tang J, et al. M2 macrophage-derived exosomal miR-25-3p improves high glucose-induced podocytes injury through activation autophagy via inhibiting DUSP1 expression[J]. IUBMB Life, 2020, 72(12):2651-2662.
[32]饒超峰,薛笑楠,朱明英,等. 巨噬細(xì)胞外泌體通過抑制自噬誘導(dǎo)高血糖對(duì)腎小球足細(xì)胞的損傷作用[J]. 天津醫(yī)藥, 2021, 49(2):119-125.
Rao CF, Xue XN, Zhu MY, et al. Effects of macrophage exosomes on glomerular podocytes by inhibiting autophagy-induced hyperglycemia[J]. Tianjin Med J, 2021, 49(2):119-125.
[33] 傅強(qiáng),王世東,肖永華,等. 呂仁和教授分期辨治糖尿病學(xué)術(shù)思想探微[J]. 世界中醫(yī)藥, 2017, 12(1):21-24.
Fu Q, Wang SD, Xiao YH, et al. Exploration of Professor Lv Renhe's academic thought of treating diabetes by stages[J]. World Chin Med, 2017, 12(1):21-24.
[34] 孟加寧,姚源璋. 從瘀熱論治中晚期糖尿病腎?。跩]. 中國中醫(yī)基礎(chǔ)醫(yī)學(xué)雜志, 2017, 23(4):468-470.
Meng JN, Yao YZ. Treatment of middle and advanced diabetic nephropathy by stasis heat[J]. Chin J Basic Med Tradit Chin Med, 2017, 23(4):468-470.
[35] 孫健,南征. 南征教授“調(diào)散膏,達(dá)膜原”治療消渴腎?。跩]. 吉林中醫(yī)藥, 2020, 40(2):188-189, 274.
Sun J, Nan Z. Professor Nan Zheng's "Tiaosan Paste, Damoyuan" treatment of diabetic nephropathy[J]. Jilin J Chin Med, 2020, 40(2):188-189, 274.
[36] 沈自尹. 微觀辨證和辨證微觀化[J]. 中醫(yī)雜志, 1986, 21(2):55-57.
Shen ZY. Microsyndrome differentiation and microdifferentiation[J]. J Tradit Chin Med, 1986, 21(2):55-57.
[37] 李躍林,檀金川. 檀金川教授治療IgA腎病經(jīng)驗(yàn)[J]. 現(xiàn)代中西醫(yī)結(jié)合雜志, 2020, 29(26):2913-2915, 2919.
Li YL, Tan JC. Professor Tan Jinchuan's experience in the treatment of IgA nephropathy[J]. Mod J Integr Tradit Chin West Med, 2020, 29(26):2913-2915, 2919.
[38] Wang YY, Tang LQ, Wei W. Berberine attenuates podocytes injury caused by exosomes derived from high glucose-induced mesangial cells through TGFβ1-PI3K/AKT pathway[J]. Eur J Pharmacol, 2018, 824:185-192.
[39] 王景,葛靜,王旭,等. 鹽酸小檗堿對(duì)宮頸癌HeLa細(xì)胞外泌體的影響及其機(jī)制[J]. 吉林大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2020, 46(4):779-785.
Wang J, Ge J, Wang X, et al. Effect of berberine hydrochloride on exosomes of cervical cancer HeLa cells and its mechanism[J]. J Jilin Univ (Med Ed), 2020, 46(4):779-785.
[40] Gao ZS, Zhang CJ, Xia N, et al. Berberine-loaded M2 macrophage-derived exosomes for spinal cord injury therapy[J]. Acta Biomater, 2021, 126:211-223.
[41] 白雪,梁文菲,彭阿建,等. 黃芪甲苷介導(dǎo)內(nèi)皮祖細(xì)胞外泌體對(duì)高糖受損內(nèi)皮細(xì)胞增殖和凋亡的影響[J]. 中國臨床藥理學(xué)雜志, 2021, 37(15):2048-2050.
Bai X, Liang WF, Peng AJ, et al. Astragaloside IV mediates the effect of exosomes derived from endothelial progenitor cells on the proliferation and apoptosis of endothelial cells damaged by high glucose[J]. Chin J Clin Pharmacol, 2021, 37(15):2048-2050.
[42] Zou X, Xiao H, Bai X, et al. Astragaloside IV drug-loaded exosomes (AS-IV EXOs) derived from endothelial progenitor cells improve the viability and tube formation in high-glucose impaired human endothelial cells by promoting miR-214 expression[J]. Endokrynol Pol, 2022, 73(2):336-345.
[43] 胡康蝶,楊凱歌, Soumia C,等. 基于蛋白質(zhì)組學(xué)的黃芪多糖對(duì)TLR4激活的肺癌細(xì)胞來源外泌體的作用研究[J]. 中國中藥雜志, 2022, 47(21):5908-5915.
Hu KD, Yang KG, Soumia C, et al. Proteomics analysis ofpolysaccharide on TLR4-activated lung cancer cell-derived exosomes[J]. China J Chin Mater Med, 2022, 47(21):5908-5915.
[44] García-Seisdedos D, Babiy B, Lerma M, et al. Curcumin stimulates exosome/microvesicle release in anmodel of intracellular lipid accumulation by increasing ceramide synthesis[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2020, 1865(5):158638.
[45] He R, Jiang Y, Shi Y, et al. Curcumin-laden exosomes target ischemic brain tissue and alleviate cerebral ischemia-reperfusion injury by inhibiting ROS-mediated mitochondrial apoptosis[J]. Mater Sci Eng C Mater Biol Appl, 2020, 117:111314.
[46] Qiu B, Xu X, Yi P, et al. Curcumin reinforces MSC-derived exosomes in attenuating osteoarthritis via modulating the miR-124/NF-kB and miR-143/ROCK1/TLR9 signalling pathways[J]. J Cell Mol Med, 2020, 24(18):10855-10865.
[47] Chen C, Li Y, Lu H, et al. Curcumin attenuates vascular calcification via the exosomal miR-92b-3p/KLF4 axis[J]. Exp Biol Med (Maywood), 2022, 247(16):1420-1432.
[48] Iglesias-Aguirre CE, ávila-Gálvez Má, López de Las Hazas MC, et al. Exosome-containing extracellular vesicles contribute to the transport of resveratrol metabolites in the bloodstream: a human pharmacokinetic study[J]. Nutrients, 2022, 14(17):3632.
[49] Xie J, Li X, Zhou Y, et al. Resveratrol abrogates hypoxia-induced up-regulation of exosomal amyloid-β partially by inhibiting CD147[J]. Neurochem Res, 2019, 44:1113-1126
[50] Fan Y, Li Y, Huang S, et al. Resveratrol-primed exosomes strongly promote the recovery of motor function in SCI rats by activating autophagy and inhibiting apoptosis via the PI3K signaling pathway[J]. Neurosci Lett, 2020, 736:135262.
[51] Park Y, Lee K, Kim SW, et al. Effects of induced exosomes from endometrial cancer cells on tumor activity in the presence of Aurea helianthus extract[J]. Molecules, 2021, 26(8):2207.
[52] 梁梓雯,胡雪靈,鐘文強(qiáng),等. 熟地黃水提液通過外泌體miR-29a-3p調(diào)節(jié)OVX大鼠的脂代謝[J]. 中國病理生理雜志, 2022, 38(5):893-904.
Liang ZW, Hu XL, Zhong WQ, et al. Water extraction of Rehmanniae Radix Praeparata regulates lipid metabo?lism via exosomal miR-29a-3p in OVX rats[J]. Chin J Pathophysiol, 2022, 38(5):893-904.
[53] Bai L, Li J, Li H, et al. Renoprotective effects of artemisinin and hydroxychloroquine combination therapy on IgA nephropathy via suppressing NF-κB signaling and NLRP3 inflammasome activation by exosomes in rats[J]. Biochem Pharmacol, 2019, 169:113619.
[54] 馬篤軍,彭力平,蔣順琬,等. 牛膝醇提物干預(yù)BMSC-Exos對(duì)OA模型兔局部骨組織超微結(jié)構(gòu)及炎癥小體的影響[J]. 中醫(yī)藥導(dǎo)報(bào), 2022, 28(1):12-18.
Ma DJ, Peng LP, Jiang SW, et al. Effect of achyranthes bidentum ethanol extract on ultrastructure of bone tissue and inflammatory bodies in rabbits with OA[J]. Guiding J Tradit Chin Med Pharm, 2022, 28(1):12-18.
[55] 黃南渠,屠琳,王啟兵,等. 丹參酮ⅡA干預(yù)間充質(zhì)干細(xì)胞對(duì)LPS誘導(dǎo)N9小膠質(zhì)細(xì)胞激活的抑制作用[J]. 遵義醫(yī)科大學(xué)學(xué)報(bào), 2022, 45(1):19-24.
Huang NQ, Tu L, Wang QB, et al. Effect of Tanshinone ⅡA on mesenchymal stem cells on activation of LPs-induced N9 microglia[J]. J Zunyi Med Univ, 2022, 45(1):19-24.
[56] Wu XM, Gao YB, Xu LP, et al. Tongxinluo inhibits renal fibrosis in diabetic nephropathy: involvement of the suppression of intercellular transfer of TGF-β1-containing exosomes from GECs to GMCs[J]. Am J Chin Med, 2017, 45(5):1075-1092.
[57] Zhao M, Yang B, Li L, et al. Efficacy of modified Huangqi Chifeng decoction in alleviating renal fibrosis in rats with IgA nephropathy by inhibiting the TGF-β1/Smad3 signaling pathway through exosome regulation[J]. J Ethnopharmacol, 2022, 285:114795.
[58] 崔方強(qiáng),王悅芬,高彥彬,等. 保腎通絡(luò)方對(duì)高糖培養(yǎng)下腎小球系膜細(xì)胞外基質(zhì)增生及外泌體miR-192表達(dá)的影響[J]. 河北中醫(yī), 2020, 42(2):253-257, 263.
Cui FQ, Wang YF, Gao YB, et al. Effects of Baoshentongluo Formula on mesangial extracellular matrix proliferation and expression of exosome miR-192 in high glucose culture[J]. Hebei J Tradit Chin Med, 2020, 42(2):253-257, 263.
[59] Chen C, Yao X, Xu Y, et al. Dahuang Zhechong Pill suppresses colorectal cancer liver metastasis via ameliorating exosomal CCL2 primed pre-metastatic niche[J]. J Ethnopharmacol, 2019, 238:111878.
[60] Li H, Lu R, Pang Y, et al. Zhen-Wu-Tang protects IgA nephropathy in rats by regulating exosomes to inhibit NF-κB/NLRP3 pathway[J]. Front Pharmacol, 2020, 11:1080.
[61] 黃宇,趙漢君,蘇立杰,等. 益氣活血化痰方作用于巨噬細(xì)胞外泌體miRNA-let-7-5p/TAB2信號(hào)通路抗動(dòng)脈粥樣硬化的實(shí)驗(yàn)研究[J]. 中西醫(yī)結(jié)合心腦血管病雜志, 2022, 20(5):835-840.
Huang Y, Zhao HJ, Su LJ, et al. Effect of Yiqi Huoxue Huatan Fang on macrophage exosomal miRNA-let-7-5p/TAB2 signaling pathway on atherosclerosis[J]. Chin J Integr Med Cardio-cerebrovasc Dis, 2022, 20(5):835-840.
[62] 歐陽過,蔡虎志,王雅樂,等. 溫陽振衰顆粒對(duì)心腎綜合征模型大鼠血漿外泌體及心、腎組織p38MAPK表達(dá)的影響[J]. 中醫(yī)雜志, 2020, 61(15):1344-1349.
Ou YG, Cai HZ, Wang YL, et al. Effects of Wenyang Zhenshuai Granules on the expression of p38MAPK in plasma exosomes and cardiac and renal tissues of rats with cardio-renal syndrome[J]. J Tradit Chin Med, 2020, 61(15):1344-1349.
[63] 馮坤良,陳清蓮,謝春鳳,等. 健脾化瘀方體外通過外泌體影響肝癌細(xì)胞的遷移、侵襲及上皮間質(zhì)轉(zhuǎn)化[J]. 中藥新藥與臨床藥理, 2021, 32(12):1745-1751.
Feng KL, Chen QL, Xie CF, et al. Effects of Jianpi Huayu Formula on migration, invasion and epithelial mesenchymal transformation of hepatocellular carcinoma cells through exosomes[J]. Tradit Chin Drug Res Clin Pharmacol, 2021, 32(12):1745-1751.
[64] Wu J, Yuan M, Shen J, et al. Effect of modified Jianpi Yangzheng on regulating content of PKM2 in gastric cancer cells-derived exosomes[J]. Phytomedicine, 2022, 103:154229.
New progress in prevention and treatment of diabetic kidney disease by targeting exosomes with traditional Chinese medicine
CHEN Yu1, HUANG Guodong2△, QIN Ting3, PHAM Thithaihoa2, WANG Huiling1, MO Chao1
(1,530000,;2,530000,;3,530000,)
Diabetic kidney disease is one of the complications of diabetes mellitus, which may evolve into end-stage renal disease with the progression of diabetes mellitus. Exosomes are microvesicles secreted by cells, containing nucleic acids, proteins, lipids and other active substances, which play an important role in maintaining cell homeostasis and mediating signal communication between cells. With the gradual deepening of medical research, exosomes have been found to be closely related to fibrosis, inflammation, oxidative stress, autophagy and other pathological changes, which involve signal transduction of multiple pathways, such as TGF-β1/Smads, NF-κB/NLRP3, PTEN/PI3K/AKT, IRF1/Rab27a and mTOR. Traditional Chinese medicine has a long history of inheritance, and the clinical effect of Chinese herbal medicine in the treatment of diabetic kidney disease is definite. The research on the molecular mechanism of Chinese herbal medicine in modern medicine is getting more and more mature. Now, Chinese scholars have found that Chinese herbal medicine can play a therapeutic role in diabetic kidney disease by regulating the release and biological function of exosomes, targeting exosomes to interfere with signal transmission between cells, and using exosomes as carriers. This article combs and summarizes the mechanism of exosomes in diabetic kidney disease and the intervention of traditional Chinese medicine, in order to provide new ideas for the prevention and treatment of diabetic kidney disease.
diabetic kidney disease; exosome; traditional Chinese medicine
R259; R587.1; R363.2
A
10.3969/j.issn.1000-4718.2023.09.017
1000-4718(2023)09-1675-08
2023-01-30
2023-05-03
國家自然科學(xué)基金資助項(xiàng)目(No. 81960913);廣西中醫(yī)藥大學(xué)碩士研究生教育創(chuàng)新計(jì)劃項(xiàng)目(No. YCSW2022347);廣西名中醫(yī)傳承工作室(桂中醫(yī)藥科教發(fā)[2021]6號(hào));廣西中醫(yī)藥重點(diǎn)學(xué)科(中西醫(yī)結(jié)合臨床)建設(shè)項(xiàng)目(桂中醫(yī)藥科教發(fā)[2020]14號(hào))
Tel: 13768372258; E-mail: 644781538@qq.com
(責(zé)任編輯:宋延君,羅森)