• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      肝臟脂質(zhì)從頭合成的機制及其抑制劑在非酒精性脂肪性肝病中的研究進展*

      2023-10-11 02:30:26范超文高維蔓柯尊麗俞琦
      中國病理生理雜志 2023年9期
      關(guān)鍵詞:輔酶乙酰脂質(zhì)

      范超文, 高維蔓, 柯尊麗, 俞琦

      · 綜述 ·

      肝臟脂質(zhì)從頭合成的機制及其抑制劑在非酒精性脂肪性肝病中的研究進展*

      范超文, 高維蔓, 柯尊麗△, 俞琦△

      (貴州中醫(yī)藥大學基礎醫(yī)學院,貴州 貴陽 550025)

      非酒精性脂肪性肝?。恢|(zhì)從頭合成;代謝酶;轉(zhuǎn)錄因子;抑制劑

      非酒精性脂肪性肝?。╪on-alcoholic fatty liver disease, NAFLD)是在排除了飲酒及其他明確的肝損傷因素的情況下,以肝細胞內(nèi)三酰甘油(triacylglycerol, TAG)過度堆積導致的肝臟脂質(zhì)沉積為特征,包括了非酒精性脂肪肝、非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH),并可進展為肝纖維化、肝硬化和肝細胞癌的一種代謝綜合征[1]。據(jù)估計,全球1/4的人口患有NAFLD,僅在中國就有超過1.2億的患者,這給世界醫(yī)療衛(wèi)生系統(tǒng)造成了極大負擔[2]。脂質(zhì)從頭合成(de novo lipogenesis, DNL)是通過碳水化合物等非脂質(zhì)物質(zhì)合成TAG的一個復雜但被高度調(diào)節(jié)的代謝途徑,通常只發(fā)生在肝臟細胞和脂肪細胞中[3]。NAFLD的肝臟脂質(zhì)沉積主要受高碳水化合物飲食后的DNL增加所驅(qū)動,并且NAFLD患者的肝臟DNL水平是正常人的3倍以上,過度的DNL是導致NAFLD的主要原因之一[4]。近年來的研究顯示,固醇調(diào)節(jié)元件結(jié)合蛋白1c(sterol-regulatory element binding protein-1c, SREBP-1c)等多種轉(zhuǎn)錄因子參與肝臟DNL的調(diào)控,而抑制肝臟DNL成為了治療NAFLD的研究熱點。本文旨在闡明肝臟DNL介導NAFLD的機制,并歸納其相關(guān)抑制劑,為防治NAFLD的研究提供新的思路。

      1 NAFLD中肝臟脂質(zhì)沉積與肝臟DNL的關(guān)系

      肝臟中脂肪的堆積由TAG合成和分解之間的平衡決定,而TAG合成的底物脂肪酸(fatty acid, FA)來源于飲食攝取的外源性FA和通過肝臟細胞和脂肪細胞DNL獲取的內(nèi)源性FA[5]。在餐后狀態(tài)下,未消化的膳食通過腸道菌發(fā)酵產(chǎn)生乙酸鹽等短鏈脂肪酸(short-chain fatty acid, SCFA),被結(jié)腸吸收后經(jīng)由門靜脈入肝[6],膳食中的長鏈脂肪酸(long chain fatty acid, LCFA)則由小腸細胞所吸收。而后LCFA主要以乳糜微粒(chyle microsome, CM)中的TAG形式進入血液循環(huán),其中大部分TAG被脂蛋白脂肪酶(lipoprotein lipase, LPL)分解為非酯化脂肪酸(non-esterified fatty acid, NEFA),或被組織細胞氧化利用,或被輸送到脂肪組織儲存起來,剩余約1/3則被肝臟吸收[7]。在碳水化合物過量的情況下,肝臟和脂肪組織啟動DNL;而處于饑餓狀態(tài)時,白色脂肪組織中的TAG會發(fā)生脂解,并將產(chǎn)生的NEFA釋放入血,血漿中的NEFA在滿足了組織供能需求后會被肝臟回收[8]。肝臟內(nèi)的FA有氧化、自噬以及酯化為TAG并與載脂蛋白B(apolipoprotein B, APOB)組裝成極低密度脂蛋白(very-low-density lipoprotein, VLDL)輸送到肝外等三條去路[9]。當肝臟TAG產(chǎn)生速率大于消耗速率時便會沉積在肝細胞內(nèi)形成脂滴(lipid droplets, LDs)。肝臟DNL的增加在肝臟脂質(zhì)沉積的形成過程中至關(guān)重要。已有研究證實,NAFLD患者肝臟中TAG總量的15%來源于膳食攝入,26%來自肝臟DNL,59%來自血漿NEFA,其肝臟DNL水平較正常人顯著升高[10]。NAFLD中肝臟脂質(zhì)沉積形成的過程詳見圖1。

      Figure 1. The process of the formation of hepatic lipid deposition in NAFLD.

      2 肝臟DNL的機制與NAFLD的發(fā)生發(fā)展

      過量的葡萄糖和果糖攝入是導致NAFLD的重要飲食風險因素,而肝臟DNL主要從葡萄糖和果糖的糖酵解中獲得底物[11],其中果糖在肝臟中的代謝速度約是葡萄糖的4倍,對DNL的貢獻要遠大于葡萄糖[12]。在餐后狀態(tài)下,葡萄糖和果糖通過葡萄糖轉(zhuǎn)運蛋白5(glucose transporter 5, GLUT5)被腸道吸收,并通過腸細胞基底外側(cè)膜中的GLUT2流出到門靜脈血中,而肝臟GLUT5的表達較低,肝臟中葡萄糖和果糖的吸收主要由GLUT2介導[13]。盡管葡萄糖和果糖的代謝途徑不同,但最終都通過糖酵解生成丙酮酸,丙酮酸氧化脫羧生成乙酰輔酶A,而后進入肝細胞線粒體內(nèi)。

      2.1乙酰輔酶A的合成對肝臟DNL的影響乙酰輔酶A是DNL的中心代謝物和底物,其作為中央碳代謝的一種樞紐性物質(zhì),聯(lián)系著糖、脂質(zhì)、蛋白質(zhì)等多條代謝途徑。參與DNL的乙酰輔酶A主要來源于檸檬酸轉(zhuǎn)運系統(tǒng):在線粒體的三羧酸(tricarboxylic acid, TCA)循環(huán)中,乙酰輔酶A與草酰乙酸在檸檬酸合酶的催化下縮合,以檸檬酸鹽的形式進入胞質(zhì),并在ATP檸檬酸裂解酶(ATP-citrate lyase, ACLY)的作用下釋放出乙酰輔酶A[14]。Morrow等[15]的研究發(fā)現(xiàn),抑制NASH小鼠肝細胞中的ACLY可以改善肝細胞脂肪變性,并降低血糖、TAG和膽固醇等指標,這與乙酰輔酶A的減少有關(guān)。除ACLY外,胞質(zhì)乙酰輔酶A也可由乙酸鹽通過乙酰輔酶A合成酶短鏈家族成員2(acyl-CoA synthetase short chain family member 2, ACSS2)產(chǎn)生[16]。Zhao等[17]使用同位素示蹤技術(shù)證明了小鼠肝臟特異性敲除無法抑制果糖誘導的肝臟DNL異常,膳食果糖提供的成脂乙酰輔酶A主要通過被腸道菌轉(zhuǎn)化為乙酸鹽后,由ACSS2催化產(chǎn)生。乙酸鹽大部分來自于腸道菌的發(fā)酵,小部分可由組蛋白脫乙酰內(nèi)源性生成[18];其不僅可以為DNL提供原料,也參與了信號分子的傳遞,如Hong等[19]發(fā)現(xiàn)膳食補充乙酸鹽可以通過下調(diào)脂肪酸合酶(fatty acid synthase, FASN)蛋白表達的方式抑制NAFLD小鼠的肝臟DNL。出乎預料的是,Yenilmez等[20]通過D2O摻入棕櫚酸的方式測量ACLY及ACSS2選擇性耗竭小鼠肝臟總DNL水平的變化,發(fā)現(xiàn)ACLY耗竭反常地提高了小鼠肝臟DNL水平,ACSS2耗竭則沒有影響;并且ACLY 耗竭后肝臟DNL的增加與SREBP-1c及下游成脂基因的表達升高有關(guān),這表明肝臟DNL受相關(guān)代謝酶和轉(zhuǎn)錄因子的影響或許遠大于其直接底物乙酰輔酶A。

      2.2肝臟DNL相關(guān)代謝酶與NAFLD的關(guān)系

      2.2.1乙酰輔酶A羧化酶1(acetyl-CoA carboxylase 1, ACC1)肝臟DNL涉及復雜的胞內(nèi)酶促反應,其中多步反應的催化酶表達都在NAFLD中上調(diào)[21]。ACC作為DNL的限速酶,是目前最有潛力的NASH治療靶點之一,其亞型ACC1在肝臟內(nèi)高度表達,負責將乙酰輔酶A羧化為丙二酰輔酶A。最近的研究[22]發(fā)現(xiàn),花生四烯酸12-脂氧合酶可以直接靶向ACC1,通過阻礙ACC1的溶酶體降解途徑引起肝臟DNL代謝異常,從而促進NASH的發(fā)展。除了檸檬酸鹽可以通過促進聚合激活ACC外,AMP依賴的蛋白激酶(AMP-activated protein kinase, AMPK)作為細胞能量變化的感受器,也是控制ACC活性的主要激酶;當細胞能量低時,AMPK被激活,導致ACC1磷酸化而失活[23]。AMPK的激活劑PF-06409577在嚙齒動物和猴子的NAFLD模型中表現(xiàn)出降低肝臟和全身脂質(zhì)的作用,這與ACC1的磷酸化密切相關(guān)[24]。

      2.2.2FASNFASN催化肝臟DNL的最后步驟:7個丙二酰輔酶A與1個乙酰輔酶A產(chǎn)生16碳的棕櫚酸;隨后棕櫚酸被極長鏈脂肪酸延長酶6(elongation of very long chain fatty acids protein 6, ELOVL6)和硬脂酰輔酶A去飽和酶1(stearoyl-CoA desaturase 1, SCD1)分別拉長和去飽和,生成棕櫚油酸[25]。FASN能驅(qū)動DNL并通過產(chǎn)生內(nèi)源性棕櫚酸介導促炎和促纖維化的信號傳導。在NAFLD發(fā)病機制的“脂毒性”學說中,棕櫚酸及其脂毒性代謝產(chǎn)物如甘油二脂(diacylglycerol, DAG)和神經(jīng)酰胺的積累被認為是胰島素信號受損的主要原因[25]。這些脂毒性物質(zhì)也是一種重要的細胞內(nèi)信號分子,其能通過肝星狀細胞(hepatic stellate cell, HSC)的核因子κB信號通路介導炎癥,并導致促纖維化基因如轉(zhuǎn)化生長因子β的激活和表達[26]。肝臟特異性敲除小鼠出現(xiàn)了預料之中的結(jié)果:肝細胞內(nèi)丙二酰輔酶A水平升高,棕櫚酸水平降低[27]。最近的研究[28]還通過蛋白質(zhì)組學分析篩選并鑒定了分選連接蛋白8作為FASN的關(guān)鍵結(jié)合蛋白,并進一步證明了其能夠直接與FASN結(jié)合從而促進FASN的泛素化降解,為干預DNL治療NAFLD的研究提供了新的靶點。

      2.2.3SCD1SCD1可以將膳食中的硬脂酸和FASN產(chǎn)生的棕櫚酸等飽和脂肪酸分別轉(zhuǎn)化為油酸和棕櫚油酸等單不飽和脂肪酸(monounsaturated fatty acid, MUFA),這兩種MUFA是人體TAG、磷脂和膽固醇的主要組成部分[25]。SCD1的總體耗竭能增加胰島素的敏感性,在分子水平上促進AMPK磷酸化和抑制磷脂酰肌醇-3-激酶/蛋白激酶B/哺乳動物雷帕霉素靶標(phosphatidylinositol-3-kinase/protein kinase B/the mammalian target of rapamycin, PI3K/AKT/mTOR)信號通路,使肝臟DNL受阻[29]。MUFA在肝細胞脂肪變性期間表現(xiàn)出改善胰島素抵抗(insulin resistance, IR)和炎癥的有益作用,同樣可以通過AMPK以及PI3K/AKT調(diào)節(jié)DNL,而MUFA缺乏會增加NAFLD的易感性[30-31]。極低脂肪飲食喂養(yǎng)的SCD1敲除小鼠顯示出嚴重的肝損傷,在膳食補充油酸后,肝損傷明顯得到緩解,這是MUFA缺乏以及敲除導致肝臟基因表達顯著變化引起的副作用[29]。所以在將SCD1作為NAFLD治療新靶點的同時,SCD1與MUFA之間的矛盾關(guān)系也應納入考慮。

      2.2.4甘油-3-磷酸?;D(zhuǎn)移酶(glycerol-3-phosphate acyltransferase, GPAT)肝臟DNL生成的FA并不能直接與甘油反應,而是先在長鏈脂酰輔酶A合成酶(long-chain acyl-CoA synthetase, ACSL)的作用下生成乙酰輔酶A,并轉(zhuǎn)移到內(nèi)質(zhì)網(wǎng)中;然后GPAT催化甘油-3-磷酸和乙酰輔酶A生成溶血磷脂酸(lysophosphatidic acid, LPA);LPA是溶血磷脂酸?;D(zhuǎn)移酶(lysophosphatide acid acyltransferase, LPAAT)的底物,用于催化磷脂酸(phosphatidic acid, PA)的形成;PA又被磷脂酸磷酸酶除去磷酸基,得到DAG[32]。GPAT在以上催化酶中顯示出最低的比活性,是反應的限速酶,其四種亞型中的GPAT1在肝臟中的表達最高,受到胰島素基于SREBP-1c的轉(zhuǎn)錄調(diào)節(jié),也能被AMPK負調(diào)控[33]。Liao等[34]的研究發(fā)現(xiàn),三種不同病因的NAFLD模型動物的mRNA水平均顯著升高,這表明GPAT1表達上調(diào)可以作為NAFLD模型成模與否的重要指標。

      2.2.5二酰甘油?;D(zhuǎn)移酶(diacylglycerol acyltransferase, DGAT)DGAT是產(chǎn)生TAG最后一步反應的催化酶,它有兩種亞型:DGAT1在小腸細胞中表達,主要從膳食FA中重組TAG以形成CM,而DGAT2存在于肝臟、皮膚和脂肪組織中,負責將DAG轉(zhuǎn)化為TAG[25]。Gluchowski等[35]的研究發(fā)現(xiàn),肝臟缺乏能夠顯著減少NAFLD小鼠的肝臟DNL相關(guān)基因的表達,并將肝臟TAG水平降低約70%,為DGAT2抑制劑作為NAFLD治療藥物的開發(fā)提供了有力支持。

      在合成反應完成后,新生的TAG會被釋放到內(nèi)質(zhì)網(wǎng)膜的脂雙層之間,當肝臟DNL功能亢進時,過量的TAG便突破內(nèi)質(zhì)網(wǎng)膜進入胞質(zhì)中形成LDs[32],最終導致NAFLD的發(fā)生。

      2.3肝臟DNL相關(guān)轉(zhuǎn)錄因子與NAFLD的關(guān)系當前NAFLD患者肝臟DNL水平升高的機制尚不明確,但與高碳水飲食或IR導致的血漿胰島素和血糖持續(xù)性升高有密切關(guān)系[36]。成脂基因的表達量升高是一種響應葡萄糖和胰島素信號傳導的復雜機制,涉及多種轉(zhuǎn)錄因子。葡萄糖和胰島素都被證明可以通過激活SREBP-1c、碳水化合物反應元件結(jié)合蛋白(carbohydrate response element binding protein, ChREBP)和肝X受體(liver X receptor, LXR)上調(diào)肝臟成脂基因的表達[37]。葡萄糖和胰島素也能激活特定的激酶,而這些激酶將導致相應的轉(zhuǎn)錄因子核轉(zhuǎn)位,如葡萄糖能通過AMPK/mTOR通路促進SREBP-1c的活化[38];胰島素則通過PI3K/AKT/mTOR通路或AKT直接激活SREBP-1c[39]。

      2.3.1SREBP-1cSREBP-1c是調(diào)控肝臟脂質(zhì)代謝的關(guān)鍵核轉(zhuǎn)錄因子,幾乎參與所有肝臟FA和TAG合成基因的轉(zhuǎn)錄,當受到葡萄糖和胰島素的信號刺激,內(nèi)質(zhì)網(wǎng)中的SREBP裂解激活蛋白(SREBP cleavage-activating protein, SCAP)-SREBP-1c復合物與胰島素誘導基因(insulin induced gene, INSIG)解離,其活性N端在高爾基體中被剪切下來,核轉(zhuǎn)位后與膽固醇反應元件(sterol-regulatory element, SRE)結(jié)合,促進下游成脂基因的轉(zhuǎn)錄翻譯[40]。遺憾的是,Kawamura等[41]通過抑制NASH小鼠的SREBP發(fā)現(xiàn),盡管減少了肝臟脂質(zhì)沉積,但SREBP抑制會加劇肝臟損傷、纖維化甚至癌變,開發(fā)SREBP-1c抑制劑用于治療NAFLD的策略并不可行。

      2.3.2ChREBPSREBP-1c并非唯一參與DNL調(diào)節(jié)的轉(zhuǎn)錄因子,ChREBP可以響應碳水化合物代謝,直接調(diào)節(jié)、、和等基因的表達[42],并且ChREBP也能通過激活肝臟中的靶基因ACSS2,在腸道菌發(fā)酵產(chǎn)生的乙酸鹽轉(zhuǎn)化為乙酰輔酶A的過程中發(fā)揮關(guān)鍵作用[17]。ChREBP的活性取決于細胞中葡萄糖的濃度,過量的碳水化合物飲食后,葡萄糖及其代謝產(chǎn)物能夠激活蛋白磷酸酶2A(protein phosphatase 2A, PP2A),導致ChREBP-Max樣蛋白(Max-like protein, MLX)異二聚體與核內(nèi)DNL相關(guān)基因啟動子中的碳水化合物反應元件(carbohydrate response element, ChRE)結(jié)合,促進其轉(zhuǎn)錄[43]。有趣的是,小鼠的被敲除后,成脂基因的表達量顯著下調(diào),但SREBP家族任何成員的表達都未受影響,這表明ChREBP的調(diào)脂能力獨立于SREBP-1c之外[44]。

      2.3.3LXRLXR是一種配體依賴的的核受體超家族成員,它與類視黃醇X受體(retinoid X receptor, RXR)形成異二聚體,能響應葡萄糖和胰島素的刺激,核轉(zhuǎn)位并結(jié)合肝X受體反應元件(liver X receptor response element, LXRE),進而募集啟動靶基因轉(zhuǎn)錄的共激活因子[45]。LXR可以通過活化SREBP-1c和ChREBP間接控制DNL,也能通過不同于激活SREBP-1c的方式直接上調(diào)DNL相關(guān)代謝酶的基因表達[37]。不過LXR在NAFLD的治療中仍存在著較大爭議[46],其抑制劑會增加心血管疾病的風險,這可能與LXR在不同組織中的表達各異有關(guān)。Korach-André等[47]敲除小鼠全身的后發(fā)現(xiàn),脂肪組織中的DNL增加,肝臟中的DNL卻顯著減少;另有研究報道[48],LXR在NAFLD患者的肝臟中上調(diào),而在回腸中下調(diào)。所以如何精準下調(diào)肝臟基因表達而不對其他組織器官產(chǎn)生不良影響,是靶向LXR減輕肝臟DNL引起的NAFLD脂質(zhì)沉積的研究要點。肝臟DNL相關(guān)代謝酶與轉(zhuǎn)錄因子在NAFLD中的作用機制如圖2。

      Figure 2. The mechanism of hepatic DNL-related metabolic enzymes and transcription factors in NAFLD.

      3 肝臟DNL抑制劑在治療NAFLD中的開發(fā)現(xiàn)狀

      肝細胞內(nèi)過量的脂滴堆積是NAFLD的標志性特征,而肝臟DNL是肝臟內(nèi)TAG水平升高的關(guān)鍵驅(qū)動因素,因此肝臟DNL抑制劑的開發(fā)在NAFLD的臨床治療中具有重要意義。由于過度強烈和廣泛的脂質(zhì)生成抑制對NAFLD的治療適得其反,目前肝臟DNL抑制劑的靶點主要是ACC和FASN等代謝酶,也有部分抑制ACLY、SCD1和DGAT活性的化合物嶄露頭角(表1),而肝臟DNL相關(guān)轉(zhuǎn)錄因子抑制劑的報道則較為罕見。

      表1 肝臟DNL相關(guān)代謝酶抑制劑

      ACLY通過控制成脂乙酰輔酶A的來源,將葡萄糖分解代謝與肝臟DNL聯(lián)系起來,其抑制劑的開發(fā)一直備受關(guān)注。羥基檸檬酸[49]和ETC-1002[50]是ACLY的競爭性抑制劑,都能通過抑制ACLY和激活AMPK干預肝臟DNL進程,但兩者在NAFLD中的研究較少,且都止步于動物實驗,缺少大規(guī)模臨床試驗以驗證其有效性和安全性。

      基于ACC在調(diào)節(jié)肝臟DNL及FA氧化中的優(yōu)勢,ACC抑制劑用于治療NAFLD的研究不斷涌現(xiàn)。GS-0976和PF-05221304都是肝臟特異性的ACC1、ACC2雙重抑制劑,GS-0976能夠促進FA氧化、抑制肝臟DNL和IR[51];而PF-05221304的口服利用度高,并且其高肝臟選擇性的特點可以極大地避免骨髓巨核細胞DNL抑制所導致的血小板生成障礙[52]。GS-0976和PF-05221304都可以通過抑制HSC的活化緩解NASH的纖維化進程,但另一種ACC抑制劑MK-4074在NASH大鼠模型中不影響纖維化,這表明ACC抑制對纖維化的影響可能是藥物特異性的[53]。值得注意的是,這些ACC抑制劑的單獨使用都不可避免的導致了高甘油三酯血癥的發(fā)生[53],已有研究表明[54]該副作用在分子水平上與LXR/SREBP1的高表達密切相關(guān)。有研究發(fā)現(xiàn)[55],PF-05221304與DGAT2抑制劑PF-06865571的聯(lián)合用藥可以改善血清TAG水平升高的副作用,有可能解決ACC單獨抑制的部分局限性。Tamura等[56]在對一種新型的ACC1選擇性抑制劑的研究中發(fā)現(xiàn),該化合物在改善NAFLD/NASH小鼠的肝臟脂質(zhì)沉積和纖維化的同時,血漿TAG水平并未升高,提示開發(fā)肝臟ACC1選擇性抑制劑或許是一種更為可行的方法。

      與ACC抑制劑相比,F(xiàn)ASN抑制劑并沒有明顯的副作用。TVB-3664、TVB-3166和TVB-2640都可以針對NASH的三個關(guān)鍵標志,在阻礙肝臟DNL進程的同時,也可以直接抑制免疫細胞和HSC等炎癥和纖維化的主導因素[57]。FT-4101在健康受試者和NAFLD患者的兩項隨機試驗中,證明了其能夠安全有效地減少NAFLD患者的肝臟DNL和脂質(zhì)沉積[58]。

      因為全身SCD1抑制引起的MUFA缺乏會降低胰島素敏感性從而造成嚴重后果[59],所以肝臟選擇性SCD1抑制劑的開發(fā)顯得尤為重要。SCD1部分抑制劑Aramchol等在早期實驗中被確定對嚙齒動物NASH模型的脂肪變性、炎癥和纖維化有抑制作用,且未見明顯的肝臟損傷[60],現(xiàn)已進入Ⅲ期臨床試驗,預計在不久的將來能為NASH的臨床用藥增添新的選項。

      DGAT是FA合成TAG的核心代謝酶之一,目前處于臨床試驗階段的DGAT1抑制劑GSK3008356觀察到高脂肪餐受試者餐后TAG水平的下降[61];而DGAT2抑制劑包括PF-06865571、PF-06427878和反義寡核苷酸抑制劑Ionis-DGAT2Rx,對NAFLD的肝臟脂質(zhì)沉積和血漿TAG水平升高也都有顯著的改善效果[62-64]。但相比于DGAT1抑制劑導致的胃腸道不良反應,DGAT2抑制劑在臨床上具有更好的耐受性,是今后開發(fā)的重點方向[65]。

      4 總結(jié)與展望

      近年來NAFLD的流行有著低齡化和擴大化的趨勢,而隨著認識的加深,醫(yī)學界對NAFLD的重視程度也與日俱增,甚至一些專家建議將NAFLD的命名法更改為代謝相關(guān)脂肪性肝病,可見代謝紊亂在其中的重要性。作為NAFLD中TAG合成代謝失控的主要參與者,肝臟DNL具體機制的研究一直在推陳出新,針對肝臟DNL的抑制劑也相繼問世。然而ACLY和LXR在肝臟DNL機制中的作用依然存在爭議,ACLY抑制劑還停留在臨床前研究階段,并且如何最大程度地減輕肝臟DNL抑制劑引起的不良反應也是一個困擾著國內(nèi)外學者的難題。只有在不斷探索肝臟DNL機制的同時,用最新的理論支撐相關(guān)靶點抑制劑的研發(fā),才能使NAFLD的臨床治療邁入新階段。

      [1]王夢,孫岳,楊安寧,等. 巨噬細胞基因敲除對非酒精性脂肪性肝病小鼠肝細胞凋亡的影響[J]. 中國病理生理雜志, 2023, 39(1):123-130.

      Wang M, Sun Y, Yang AN, et al. Effect of macrophagegene knockout on apoptosis of hepatocytes in mice with non-alcoholic fatty liver disease[J]. Chin J Pathophysiol, 2023, 39(1):123-130.

      [2] Xiao J, Wang F, Wong NK, et al. Global liver disease burdens and research trends: analysis from a Chinese perspective[J]. J Hepatol, 2019, 71(1):212-221.

      [3] Lawitz EJ, Li KW, Nyangau E, et al. Elevated de novo lipogenesis, slow liver triglyceride turnover, and clinical correlations in nonalcoholic steatohepatitis patients[J]. J Lipid Res, 2022, 63(9):1362.

      [4] Esler WP, Bence KK. Metabolic targets in nonalcoholic fatty liver disease[J]. Cell Mol Gastroenterol Hepatol, 2019, 8(2):247-267.

      [5] Rowland LA, Guilherme A, Henriques F, et al. De novo lipogenesis fuels adipocyte autophagosome and lysosome membrane dynamics[J]. Nat Commun, 2023, 14(1):1362.

      [6] Zhu ZM, Zhu LY, Jiang L. Dynamic regulation of gut-derived short-chain fatty acids[J]. Trends Biotechnol, 2021, 40(3):266-270.

      [7] Wen Y, Chen YQ, Konrad RJ. The regulation of triacylglycerol metabolism and lipoprotein lipase activity[J]. Adv Biol (Weinh), 2022, 6(10):e2200093.

      [8] Wang XX, Rao HY, Liu F, et al. Recent advances in adipose tissue dysfunction and its role in the pathogenesis of non-alcoholic fatty liver disease[J]. Cells, 2021, 10(12):3300.

      [9] Huang JK, Lee HC. Emerging evidence of pathological roles of very-low-density lipoprotein (VLDL)[J]. Int J Mol Sci, 2022, 23(8):4300.

      [10] Donnelly KL, Smith CI, Schwarzenberg SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease[J]. J Clin Invest, 2005, 115(5):1343-1351.

      [11] Geidl-Flueck B, Gerber PA. Fructose drives de novo lipogenesis affecting metabolic health[J]. J Endocrinol, 2023, 257(2):e220270.

      [12] Heinz F, Lamprecht W, Kirsch J. Enzymes of fructose metabolism in human liver[J]. J Clin Invest, 1968, 47(8):1826-1832.

      [13] Herman MA, Birnbaum MJ. Molecular aspects of fructose metabolism and metabolic disease[J]. Cell Metab, 2021, 33(12):2329-2354.

      [14] Dominguez M, Brüne B, Namgaladze D. Exploring the role of ATP-Citrate lyase in the immune system[J]. Front Immunol, 2021, 12:632526.

      [15] Morrow MR, Batchuluun B, Wu J, et al. Inhibition of ATP-citrate lyase improves NASH, liver fibrosis, and dyslipidemia[J]. Cell Metab, 2022, 34(6):919-936.e8.

      [16] Luong A, Hannah VC, Brown MS, et al. Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins[J]. J Biol Chem, 2000, 275(34):26458-66.

      [17] Zhao S, Jang C, Liu J, et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate[J]. Nature, 2020, 579(7800):586-591.

      [18] Bose S, Ramesh V, Locasale JW. Locasale. Acetate metabolism in physiology, cancer, and beyond[J]. Trends Cell Biol, 2019, 29(9):695-703.

      [19] Hong Y, Sheng LL, Zhong J, et al., a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice[J]. Gut Microbes, 2021, 13(1):21-20.

      [20] Yenilmez B, Kelly M, Zhang GF, et al. Paradoxical activation of transcription factor SREBP1c and de novo lipogenesis by hepatocyte-selective ATP-citrate lyase depletion in obese mice[J]. J Biol Chem, 2022, 298(10):102401.

      [21] Kohjima M, Enjoji M, Higuchi N, et al. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease[J]. Int J Mol Med, 2007, 20(3):351-358.

      [22] Zhang XJ, She ZG, Wang J, et al. Multiple omics study identifies an interspecies conserved driver for nonalcoholic steatohepatitis[J]. Sci Trans Med, 2021, 13(624):eabg8117.

      [23] Hunkeler M, Hagmann A, Stuttfeld E, et al. Structural basis for regulation of human acetyl-CoA carboxylase[J]. Nature, 2018, 558(7710):470-474.

      [24] Esquejo RM, Salatto CT, Delmore J, et al. Activation of liver AMPK with PF-06409577 corrects NAFLD and lowers cholesterol in rodent and primate preclinical models[J]. EBioMedicine, 2018, 31:122-132.

      [25] Parlati L, Régnier M, Guillou H, et al. New targets for NAFLD[J]. JHEP Rep, 2021, 3(6):100346.

      [26] Dong ZX, Zhuang Q, Ning M, et al. Palmitic acid stimulates NLRP3 inflammasome activation through TLR4-NF-κB signal pathway in hepatic stellate cells[J]. Ann Trans Med, 2020, 8(5):168.

      [27] Chakravarthy MV, Pan ZJ, Zhu YM, et al. "New" hepatic fat activates PPARα to maintain glucose, lipid, and cholesterol homeostasis[J]. Cell Metab, 2005, 1(5):309-322.

      [28] Hu Y, He W, Huang Y, et al. Fatty acid synthase-suppressor screening identifies sorting nexin 8 as a therapeutic target for NAFLD[J]. Hepatology, 2021, 74(5):2508-2525.

      [29] Piccinin E, Cariello M, De Santis S, et al. Role of oleic acid in the gut-liver axis: from diet to the regulation of its synthesis via stearoyl-CoA desaturase 1 (SCD1)[J]. Nutrients, 2019, 11(10):2283-2283.

      [30] Ducheix S, Piccinin E, Peres C, et al. Reduction in gut-derived MUFAs via intestinal stearoyl-CoA desaturase 1 deletion drives susceptibility to NAFLD and hepatocarcinoma[J]. Hepatol Commun, 2022, 6(10):2937-2949.

      [31] Ravaut G, Légiot A, Bergeron KF, et al. Monounsaturated fatty acids in obesity-related inflammation[J]. Inter J Mol Sci, 2020, 22(1):330-330.

      [32] Jarc E, Petan T. Lipid droplets and the management of cellular stress[J]. Yale J Biol Med, 2019, 92(3):435-452.

      [33] Karasawa K, Tanigawa K, Harada A, et al. Transcriptional regulation of acyl-CoA:glycerol--3-phosphate acyltransferases[J]. Int J Mol Sci, 2019, 20(4):964.

      [34] Liao K, Pellicano AJ, Jiang K, et al. Glycerol-3-phosphate acyltransferase1 is a model-agnostic node in nonalcoholic fatty liver disease: implications for drug development and precision medicine[J]. ACS Omega, 2020, 5(29):18465-18471.

      [35] Gluchowski NL, Gabriel KR, Chitraju C, et al. Hepatocyte deletion of triglyceride-synthesis enzyme acyl CoA: diacylglycerol acyltransferase 2 reduces steatosis without increasing inflammation or fibrosis in mice[J]. Hepatology, 2019, 70(6):1972-1985.

      [36] Smith GI, Shankaran M, Yoshino M, et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease[J]. J Clin Invest, 2019, 130(3):1453-1460.

      [37] Viscarra J, Sul HS. Epigenetic regulation of hepatic lipogenesis: role in hepatosteatosis and diabetes[J]. Diabetes, 2020, 69(4):525-531.

      [38] Yoon I, Nam M, Kim HK, et al. Glucose-dependent control of leucine metabolism by leucyl-tRNA synthetase 1[J]. Science, 2020, 367(6474):205-210.

      [39] Yellaturu CR, Deng X, Cagen LM, et al. Insulin enhances post-translational processing of nascent SREBP-1c by promoting its phosphorylation and association with COPII vesicles[J]. J Biol Chem, 2009, 284(12):7518-7532.

      [40] Ferré P, Phan F, Foufelle F. SREBP-1c and lipogenesis in the liver: an update[J]. Biochem J, 2021, 478(20):3723-3739.

      [41] Kawamura S, Matsushita Y, Kurosaki S, et al. Inhibiting SCAP/SREBP exacerbates liver injury and carcinogenesis in murine nonalcoholic steatohepatitis[J]. J Clin Invest, 2022, 132(11):e151895.

      [42] Iizuka K, Takao K, Yabe D. ChREBP-mediated regulation of lipid metabolism: involvement of the gut microbiota, liver, and adipose tissue[J]. Front Endocrinol (Lausanne), 2020, 11:587189.

      [43] Régnier M, Carbinatti T, Parlati L, et al. The role of ChREBP in carbohydrate sensing and NAFLD development[J]. Nat Rev Endocrinol, 2023, 19(6):336-349.

      [44] Iizuka K, Bruick RK, Liang GS, et al. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis[J]. Proc Natl Acad Sci U S A, 2004, 101(19):7281-7286.

      [45] Cariello M, Piccinin E, Moschetta A. Transcriptional regulation of metabolic pathways via lipid-sensing nuclear receptors PPARs, FXR, and LXR in NASH[J]. Cell Mol Gastroenterol Hepatol, 2021, 11(5):1519-1539.

      [46] Ni MZ, Zhang BB, Zhao J, et al. Biological mechanisms and related natural modulators of liver X receptor in nonalcoholic fatty liver disease[J]. Biomed Pharmacother, 2019, 113:108778.

      [47] Korach-André M, Archer A, Gabbi C, et al. Liver X receptors regulate de novo lipogenesis in a tissue-specific manner in C57BL/6 female mice[J]. Am J Physiol Endocrinol Metab, 2011, 301(1):E210-E222.

      [48] Ahn SB, Jun DW, Jang K, et al. Duodenal Niemann-Pick C1-like 1 expression was negatively correlated with liver X receptor expression in nonalcoholic fatty liver disease[J]. Korean J Inter Med, 2019, 34(4):777-784.

      [49] Li LL, Chu X, Yao Y, et al. (-)-Hydroxycitric acid alleviates oleic acid induced steatosis, oxidative stress and inflammation in primary chicken hepatocytes by regulating AMPK mediated ROS levels[J]. J Agric Food Chem, 2020, 68(40):11229-11241.

      [50] Sanjay KV, Vishwakarma S, Zope BR, et al. ATP citrate lyase inhibitor bempedoic acid alleviate long term HFD induced NASH through improvement in glycemic control, reduction of hepatic triglycerides & total cholesterol, modulation of inflammatory & fibrotic genes and improvement in NAS score[J]. Curr Res Pharmacol Drug Discov, 2021, 2:100051.

      [51] Goedeke L, Bates J, Vatner DF, et al. Acetyl-CoA carboxylase inhibition reverses NAFLD and hepatic insulin resistance but promotes hypertriglyceridemia in rodents[J]. Hepatology, 2018, 68(6):2197-2211.

      [52] 楊柳,李錦忠,李敏然. 脂肪生成抑制劑治療非酒精性脂肪性肝病的研究進展[J]. 世界華人消化雜志, 2022, 30(16):735-742.

      Yang L, Li JZ, Li MR. Progress in research of lipogenesis inhibitors for treatment of nonalcoholic fatty liver disease[J]. World Chin J Digestol, 2022, 30(16):735-742.

      [53] Neokosmidis G, Cholongitas E, Tziomalos K. Acetyl-CoA carboxylase inhibitors in non-alcoholic steatohepatitis: is there a benefit?[J]. World J Gastroenterol, 2021, 27(39):6522-6526.

      [54] Kim CW, Addy C, Kusunoki J, et al. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation[J]. Cell Metab, 2017, 26(3):576-576.

      [55] Calle RA, Amin NB, Carvajal-Gonzalez S, et al. ACC inhibitor alone or co-administered with a DGAT2 inhibitor in patients with non-alcoholic fatty liver disease: two parallel, placebo-controlled, randomized phase 2a trials[J]. Nat Med, 2021, 27(10):1836-1848.

      [56] Tamura YO, Sugama J, Iwasaki S, et al. Selective acetyl-CoA carboxylase 1 inhibitor improves hepatic steatosis and hepatic fibrosis in a pre-clinical NASH model[J]. J Pharmacol Exp Ther, 2021, 379(3):280-289.

      [57] O'Farrell M, Duke G, Crowley R, et al. FASN inhibition targets multiple drivers of NASH by reducing steatosis, inflammation and fibrosis in preclinical models[J]. Sci Rep, 2022, 12(1):15661-15661.

      [58] Beysen C , Schroeder P, Wu E, et al. Inhibition of fatty acid synthase with FT-4101 safely reduces hepatic de novo lipogenesis and steatosis in obese subjects with NAFLD non-alcoholic fatty liver disease:results from two early phase randomized trials[J]. Diabetes Obes metab, 2020, 23(3):700-710.

      [59] Nowak C, Salihovic S, Ganna A, et al. Effect of insulin resistance on monounsaturated fatty acid levels: a multi-cohort non-targeted metabolomics and mendelian randomization study[J]. PLoS Genet, 2016, 12(10):e1006379.

      [60] Ratziu V, de Guevara L, Safadi R, et al. Aramchol in patients with nonalcoholic steatohepatitis: a randomized, double-blind, placebo-controlled phase 2b trial[J]. Nat Med, 2021, 27(10):1825-1835.

      [61] Okour M, Gress A, Zhu XY, et al. First-in-human pharmacokinetics and safety study of GSK3008356, a selective DGAT1 inhibitor, in healthy volunteers[J]. Clin Pharmacol Drug Dev, 2019, 8(8):1088-1099.

      [62] Amin NB, Darekar A, Anstee QM, et al. Efficacy and safety of an orally administered DGAT2 inhibitor alone or coadministered with a liver-targeted ACC inhibitor in adults with non-alcoholic steatohepatitis (NASH): rationale and design of the phase II, dose-ranging, dose-finding, randomised, placebo-controlled MIRNA (Metabolic Interventions to Resolve NASH with fibrosis) study[J]. BMJ Open, 2022, 12(3):e056159.

      [63] Amin NB, Carvajal-Gonzalez S, Purkal J, et al. Targeting diacylglycerol acyltransferase 2 for the treatment of nonalcoholic steatohepatitis[J]. Sci Transl Med, 2019, 11(520):eaav9701.

      [64] Loomba R, Morgan E, Watts L, et al. Novel antisense inhibition of diacylglycerol-acyltransferase 2 for treatment of non-alcoholic fatty liver disease: a multicentre, double-blind, randomised, placebo-controlled phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2020, 5(9):829-838.

      [65] Amin NB, Saxena AR, Somayaji V, et al. Inhibition of diacylglycerol acyltransferase 2 versus diacylglycerol acyltransferase 1: potential therapeutic implications of pharmacology[J]. Clin Ther, 2023, 45(1):55-70.

      Research advances in mechanism of liver de novo lipogenesis and its inhibitors in non-alcoholic fatty liver disease

      FAN Chaowen, GAO Weiman, KE Zunli△, YU Qi△

      (,,550025,)

      Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disease in China. However, there is no officially approved specific drug in clinic. Hepatic lipid deposition is a characteristic pathological manifestation of NAFLD and often used as the first indicator in the diagnosis of the disease. Involving a variety of metabolic enzymes and transcription factors, the hepatic de novo lipogenesis (DNL) is a major factor to induce the formation of lipid deposition in NAFLD. At present, liver DNL has attracted wide attention as it regards as a potential target for the prevention and treatment of NAFLD. A large number of inhibitors targeting DNL have shown good therapeutic effect in animal models and clinical trials. In this review, the recent progression of the mechanism and inhibitors of liver DNL in NAFLD will be elucidated, aiming to provide more clues for lipid-lowering therapy of NAFLD.

      non-alcoholic fatty liver disease; de novo lipogenesis; metabolic enzyme; transcription factor; inhibitor

      R575.5; R363

      A

      10.3969/j.issn.1000-4718.2023.09.013

      1000-4718(2023)09-1642-08

      2023-04-03

      2023-06-30

      國家自然科學基金資助項目(No. 82060797; No. 81960796; No. 81860776);貴州省科技計劃項目(黔科合基礎-ZK[2021]一般400號);中央支持地方高校改革發(fā)展資金(黔教技[2023]067號)

      俞琦 Tel: 0851-88233038; E-mail: 756128099@qq.com;柯尊麗 Tel: 0851-88308014; E-mail: Zunli_Ke2015@163.com

      (責任編輯:宋延君,羅森)

      猜你喜歡
      輔酶乙酰脂質(zhì)
      脲衍生物有機催化靛紅與乙酰乙酸酯的不對稱Aldol反應
      分子催化(2022年1期)2022-11-02 07:11:08
      國家藥監(jiān)局關(guān)于修訂輔酶Q10注射劑說明書的公告(2022年第11號)
      中老年保健(2022年4期)2022-08-22 02:58:30
      復方一枝蒿提取物固體脂質(zhì)納米粒的制備
      中成藥(2018年9期)2018-10-09 07:18:36
      白楊素固體脂質(zhì)納米粒的制備及其藥動學行為
      中成藥(2018年1期)2018-02-02 07:19:53
      馬錢子堿固體脂質(zhì)納米粒在小鼠體內(nèi)的組織分布
      中成藥(2017年4期)2017-05-17 06:09:26
      前列地爾聯(lián)合復合輔酶治療急性腎損傷的療效探討
      HPLC測定5,6,7,4’-四乙酰氧基黃酮的含量
      反式-4-乙酰氨基環(huán)己醇催化氧化脫氫生成4-乙酰氨基環(huán)已酮反應的研究
      N-(取代苯基)-N′-氰乙酰脲對PVC的熱穩(wěn)定作用:性能遞變規(guī)律與機理
      中國塑料(2014年4期)2014-10-17 03:00:50
      益腎活血湯聯(lián)合輔酶Q10膠囊治療弱精子癥50例
      南丰县| 马尔康县| 宜昌市| 娄底市| 类乌齐县| 东平县| 西藏| 濮阳县| 内江市| 曲靖市| 伊宁市| 丰宁| 台湾省| 宿州市| 开原市| 乃东县| 洱源县| 鲁甸县| 冕宁县| 淄博市| 长海县| 新闻| 隆化县| 江山市| 绥中县| 吴桥县| 那曲县| 营山县| 莆田市| 阿克苏市| 武宣县| 东海县| 昌宁县| 东阳市| 东阿县| 扶余县| 织金县| 兰西县| 洞口县| 耿马| 朔州市|