趙雅靜, 張文靜, 張諾, 徐夢(mèng)宇, 楊子, 張小鳳△
櫻花素通過拮抗腸上皮細(xì)胞凋亡減輕小鼠克羅恩病樣結(jié)腸炎與調(diào)控TLR4信號(hào)有關(guān)*
趙雅靜1, 張文靜2, 張諾2, 徐夢(mèng)宇1, 楊子3, 張小鳳1△
(1炎癥相關(guān)性疾病基礎(chǔ)與轉(zhuǎn)化研究安徽省重點(diǎn)實(shí)驗(yàn)室,安徽 蚌埠 233004;2蚌埠醫(yī)學(xué)院第一附屬醫(yī)院檢驗(yàn)科,安徽 蚌埠 233004;3蚌埠醫(yī)學(xué)院第一附屬醫(yī)院胃腸外科,安徽 蚌埠 233004)
明確櫻花素(SK)對(duì)2,4,6-三硝基苯磺酸(TNBS)誘導(dǎo)的小鼠克羅恩病(CD)樣結(jié)腸炎的作用及可能的分子機(jī)制。將24只C57BL/6J小鼠隨機(jī)分為對(duì)照(control)組、模型組(TNBS組)和SK(20 mg·kg-1·d-1)干預(yù)組,每組8只。采用疾病活動(dòng)度指數(shù)(DAI)、體質(zhì)量變化評(píng)估各組小鼠腸炎癥狀。以結(jié)腸長(zhǎng)度、炎癥評(píng)分及腸黏膜炎癥介質(zhì)腫瘤壞死因子α(TNF-α)、白細(xì)胞介素6(IL-6)、IL-17A和IL-1β水平評(píng)估結(jié)腸炎癥程度。通過測(cè)量外周血4 kD異硫氰酸熒光素-葡聚糖(FD4)和腸型脂肪酸結(jié)合蛋白(I-FABP)水平、跨上皮電阻(TEER)及腸道細(xì)菌移位率評(píng)估小鼠腸屏障功能。采用GO功能富集分析和KEGG通路富集分析預(yù)測(cè)SK可能的作用途徑和機(jī)制,并用動(dòng)物實(shí)驗(yàn)進(jìn)行驗(yàn)證。SK干預(yù)組小鼠DAI評(píng)分和體質(zhì)量顯著低于TNBS組,但高于control組(<0.05)。SK干預(yù)組小鼠結(jié)腸縮短,組織學(xué)炎癥評(píng)分和腸黏膜TNF-α、IL-6、IL-17A和IL-1β水平較TNBS組顯著降低,但仍高于control組(<0.05)。SK干預(yù)組小鼠外周血FD4和I-FABP水平顯著低于TNBS組,但仍高于干預(yù)組(<0.05),而TEER值則相反(<0.05)。SK干預(yù)組小鼠腸道細(xì)菌移位到肝臟、脾臟及腸系膜淋巴結(jié)的比例顯著低于TNBS組,但仍高于control組(<0.05)。GO功能富集和KEGG通路富集分析提示SK的作用可能與細(xì)胞凋亡和Toll樣受體(TLR)信號(hào)相關(guān)。TUNEL染色顯示SK干預(yù)組腸上皮細(xì)胞凋亡比例較TNBS組顯著下降,但仍高于control組(<0.05)。Western blot實(shí)驗(yàn)顯示,SK干預(yù)組結(jié)腸黏膜組織中Bcl-2表達(dá)水平顯著低于TNBS組,仍高于control組(<0.05);而Bax/cleaved caspase-3 (C-caspase-3)比值則相反(<0.05)。此外,SK干預(yù)組TLR4、MyD88及p-NF-κB p65蛋白水平較TNBS組均顯著降低,但仍高于control組(<0.05)。SK拮抗腸上皮細(xì)胞凋亡從而減輕CD樣腸炎小鼠腸屏障功能障礙和腸炎癥狀可能與抑制TLR4信號(hào)激活有關(guān)。
克羅恩?。粰鸦ㄋ?;腸屏障;細(xì)胞凋亡;Toll樣受體4
克羅恩病(Crohn disease, CD)是一種慢性、透壁性腸道炎癥性疾病,主要累及青壯年人群,具有不可治愈性和致殘性等特點(diǎn)[1-2]。近年來(lái),CD在我國(guó)的發(fā)病率呈逐年上升趨勢(shì),社會(huì)危害性極大[3]。手術(shù)切除病變腸管是緩解CD腸炎最為直接的方式,但患者術(shù)后仍有終身復(fù)發(fā)傾向,因此內(nèi)科藥物治療仍是當(dāng)前CD治療的主要手段[4]。盡管糖皮質(zhì)激素、氨基水楊酸類和免疫抑制劑等在控制CD患者腸炎方面具有一定效果,但仍存在療效不穩(wěn)定、耐藥性及藥物抵抗等問題[5]。因此,研發(fā)新型且安全有效的CD治療藥物是當(dāng)前的研究重點(diǎn)。
櫻花素(sakuranetin, SK)是一種甲氧基類黃烷酮物質(zhì),主要提取自櫻花中,具有多種藥理學(xué)特性[6-7]。既往研究顯示,櫻花素可通過抑制MAPK和STAT3-SOCS3通路減輕小鼠慢性過敏氣道炎癥,也可以緩解脂多糖誘導(dǎo)的急性炎性肺損傷[8-9]。然而SK在CD中的作用尚未見報(bào)道。本研究以2,4,6-三硝基苯磺酸(2,4,6-trinitrobenzene sulfonic acid, TNBS)誘導(dǎo)的結(jié)腸炎小鼠作為CD動(dòng)物模型,觀察SK對(duì)小鼠腸道炎癥的作用,并進(jìn)一步通過網(wǎng)絡(luò)藥理學(xué)預(yù)測(cè)分析SK可能的生物學(xué)作用和分子機(jī)制,以期為CD藥物研發(fā)提供參考。
24只健康雄性C57BL/6J小鼠,無(wú)特定病原體(specific pathogen free, SPF)級(jí),6~8周齡,體質(zhì)量為(22.0±2.0) g,購(gòu)自江蘇集萃藥康生物科技股份有限公司,動(dòng)物許可證號(hào)為SCXK(蘇)2018-0008。于SPF環(huán)境中飼養(yǎng),環(huán)境溫度為(23±2)℃,自由進(jìn)食和飲水。本項(xiàng)目獲得蚌埠醫(yī)學(xué)院動(dòng)物倫理委員會(huì)批準(zhǔn)。
2.1動(dòng)物模型的建立將24只小鼠隨機(jī)分為對(duì)照(control)組、模型組(TNBS組)和SK干預(yù)組(TNBS+SK組),每組8只。TNBS誘導(dǎo)的小鼠結(jié)腸炎模型,參考既往文獻(xiàn)造模方法簡(jiǎn)述如下[10]:使用0.7%戊巴比妥鈉(腹腔注射)麻醉小鼠,然后經(jīng)肛門給予2.5% TNBS乙醇溶液(5% TNBS與無(wú)水乙醇溶液按1:1混合)0.1 mL,并保持倒立體位5 min。TNBS+SK組小鼠每日給予SK灌胃干預(yù)(20 mg/kg),TNBS組和control組每日給予等量生理鹽水。連續(xù)干預(yù)1周后,采用頸椎脫臼法處死小鼠,留取外周血、結(jié)腸、腸系膜淋巴結(jié)(mesenteric lymph nodes, MLN)、肝臟及脾臟等組織進(jìn)行后續(xù)的檢測(cè)分析。
2.2小鼠營(yíng)養(yǎng)狀況和疾病活動(dòng)度評(píng)估每日測(cè)量各組小鼠體質(zhì)量,計(jì)算小鼠體重改變。根據(jù)小鼠體質(zhì)量變化、糞便隱血及糞便狀態(tài)進(jìn)行腸炎疾病活動(dòng)度指數(shù)(disease activity index, DAI)評(píng)分,分值范圍為0~4分(體重不變?yōu)?分,體重下降1%~5%為1分,下降6%~10%為2分,下降11%~18%為3分,下降大于18%為4分;大便正常為0分,松軟大便為2分,腹瀉為4分;無(wú)便血為0分,隱血陽(yáng)性為2分,顯性出血為4分),分值越高代表腸炎癥狀越重[11]。造模結(jié)束后分離小鼠結(jié)直腸,并測(cè)量長(zhǎng)度。
2.3小鼠結(jié)腸炎癥組織學(xué)評(píng)估小鼠結(jié)腸組織使用甲醛固定后進(jìn)行石蠟包埋,制作石蠟切片(5 μm),使用HE染色并采用Spencer推薦的組織學(xué)評(píng)分標(biāo)準(zhǔn)對(duì)各組小鼠結(jié)腸組織炎癥程度進(jìn)行評(píng)估,方法如下:在顯微鏡下任意選取3個(gè)不同視野分別進(jìn)行評(píng)分,并采取雙盲法進(jìn)行組織病理學(xué)評(píng)分,分值范圍為0~4分,分值越高炎癥越重,評(píng)分標(biāo)準(zhǔn)參考文獻(xiàn)[11]所述,(0分:無(wú)炎癥;1分:固有層輕度浸潤(rùn);2分:?jiǎn)魏思?xì)胞浸潤(rùn)導(dǎo)致隱窩分離,黏膜輕度增生;3分:大量炎癥細(xì)胞浸潤(rùn)導(dǎo)致黏膜結(jié)構(gòu)紊亂,杯狀細(xì)胞丟失,黏膜明顯增生;4分:隱窩膿腫,潰瘍)。取各切片炎癥評(píng)分均數(shù)作為該張切片的最終分值。結(jié)腸黏膜組織炎癥因子水平評(píng)估簡(jiǎn)述如下:取0.1 g小鼠結(jié)腸粘膜組織加1 mL PBS制備勻漿,離心后留取上清液,并采用ELISA檢測(cè)腫瘤壞死因子α(tumor necrosis factor-α, TNF-α)、白細(xì)胞介素6(interleukin-6, IL-6)、IL-17A和IL-1β水平。依據(jù)試劑盒說(shuō)明書進(jìn)行操作,并使用酶標(biāo)儀檢測(cè)450 nm處吸光度()。
2.4小鼠腸屏障功能評(píng)估
2.4.14 kD異硫氰酸熒光素葡聚糖(fluorescein isothiocyanate-dextran 4 kD, FD4)通透性實(shí)驗(yàn)小鼠禁食4 h,予以FD4灌胃(500 mg/kg)處理;4 h后采用頸椎脫臼法處死,并經(jīng)心臟穿刺采血,最后使用紫外-可見分光光度計(jì)檢測(cè)血清FD4水平[12]。
2.4.2外周血腸型脂肪酸結(jié)合蛋白(intestinal fatty acid binding protein, I-FABP)水平檢測(cè)心臟取血法收集小鼠血清,采用ELISA試劑盒檢測(cè)I-FABP水平[12]。具體步驟依據(jù)試劑盒說(shuō)明書。
2.4.3跨上皮電阻(transepithelial electric resistance, TEER)檢測(cè)收集小鼠新鮮結(jié)腸組織,用PBS沖洗并置于Krebs緩沖液中(37 °C,pH:7.33~7.37)。將腸管沿腸系膜軸切成2.8 mm×11 mm大小放入矩形滑塊中,再將滑塊放入U(xiǎn)ssing chamber系統(tǒng)(chamber Systems CSYS-4HA)。兩腔均充滿Krebs緩沖液,血清側(cè)加入10 mmol/L葡萄糖作為能量源,管腔側(cè)加入10 mmol/L甘露醇維持滲透壓平衡。通過系統(tǒng)和分析軟件調(diào)節(jié)電壓和電流,測(cè)量總電子發(fā)射比。待組織保持平衡15 min后進(jìn)行讀數(shù)[13]。
2.4.4腸道細(xì)菌移位率檢測(cè)取小鼠肝臟、脾臟和腸系膜淋巴結(jié)組織各0.1 g,并加入0.9 mL生理鹽水研磨,制備為組織勻漿。取100 μL組織勻漿接種于MacConkey瓊脂培養(yǎng)基上,于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)24 h,計(jì)算菌落數(shù)量;當(dāng)菌落數(shù)量超過102單位/g時(shí)認(rèn)為細(xì)菌移位陽(yáng)性,每只小鼠每種組織類型進(jìn)行3份獨(dú)立檢測(cè),計(jì)算細(xì)菌移位率[14]。
2.5腸上皮細(xì)胞凋亡水平評(píng)估
2.5.1TUNEL染色使用原位細(xì)胞死亡檢測(cè)試劑盒(TMR-red,Roche)分析小鼠腸上皮細(xì)胞凋亡情況。使用DAPI進(jìn)行細(xì)胞核染色。于激光共聚焦掃描顯微鏡下分析實(shí)驗(yàn)結(jié)果并采集圖片[15]。計(jì)算并分析每張切片4個(gè)隨機(jī)視野中上皮細(xì)胞中TUNEL陽(yáng)性細(xì)胞的平均數(shù)。最終得出各組小鼠腸上皮細(xì)胞凋亡率:細(xì)胞凋亡率(%)=(凋亡上皮細(xì)胞數(shù)/總上皮細(xì)胞數(shù))×100%。具體操作依據(jù)試劑盒產(chǎn)品說(shuō)明書進(jìn)行。
2.5.2Western blot檢測(cè)凋亡相關(guān)蛋白水平分離小鼠結(jié)腸黏膜組織,0.1 g組織加2 mL 蛋白裂解液,離心提取組織中總蛋白。經(jīng)BCA法檢測(cè)蛋白濃度,依次進(jìn)行上樣、電泳、轉(zhuǎn)膜、脫脂牛奶封閉、孵育Ⅰ抗Bcl-2、Bax、cleaved caspase-3 (C-caspase-3)或β-actin(稀釋比均為1∶2 000;所有抗體均為Abcam產(chǎn)品),再經(jīng)TBST洗滌、孵育兔源辣根過氧化物酶標(biāo)記的Ⅱ抗、ECL化學(xué)發(fā)光液顯色及凝膠成像儀顯影,最后使用ImageJ軟件分析目的條帶的灰度值并以β-actin為內(nèi)參照計(jì)算相對(duì)蛋白表達(dá)量[13]。
2.6基因本體(Gene Ontology, GO)富集分析及京都基因和基因組百科全書(Kyoto Encyclopedia of Genesand Genomes, KEGG)通路分析預(yù)測(cè)SK可能的作用途徑和機(jī)制通過DisGeNet(https://www.disgenet.org/)數(shù)據(jù)庫(kù)以“Crohn's disease”為關(guān)鍵詞獲取CD疾病相關(guān)靶點(diǎn);通過SWISS(http://www.swisstargetprediction.ch/)數(shù)據(jù)庫(kù)和SEA數(shù)據(jù)庫(kù)(http://sea.bkslab.org/)獲取SK藥物作用靶點(diǎn)(Probability>0)。利用VENNY(https://bioinfogp.cnb.csic.es/tools/venny/)軟件繪制韋恩圖,并獲得CD疾病和SK藥物作用的交集靶點(diǎn),即為潛在靶點(diǎn)。利用DAVID(https://david.ncifcrf.gov/tools.jsp)數(shù)據(jù)庫(kù)對(duì)獲取的潛在靶點(diǎn)進(jìn)行GO富集分析和KEGG通路分析。
2.7分子機(jī)制分析Western blot檢測(cè)小鼠結(jié)腸黏膜組織中p-NF-κB p65(1∶1 000; Abcam)、MyD88(1∶1 000; Abcam)及TLR4(1∶1 000;Abcam)蛋白表達(dá)水平,方法同2.5。
使用SPSS 26.0軟件進(jìn)行實(shí)驗(yàn)數(shù)據(jù)分析。計(jì)量資料使用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,采用檢驗(yàn)進(jìn)行兩組間均數(shù)比較;多組間均數(shù)比較采用單因素方差分析(one-way ANOVA),以<0.05為差異具有統(tǒng)計(jì)學(xué)意義。
通過對(duì)各組小鼠腸炎臨床癥狀進(jìn)行評(píng)估,TNBS+SK組小鼠DAI評(píng)分和體質(zhì)量降低幅度均顯著低于TNBS組,但仍高于control組(<0.05)。且TNBS+SK組小鼠結(jié)腸縮短程度顯著低于TNBS組小鼠,但仍高于control組(<0.05),見圖1。
Figure 1. Effect of SK intervention on clinical symptoms of TNBS mice. A: disease activity index; B: weight change; C: representative pictures of the colon and colon length. Mean±SD. n=8. *P<0.05 vs control group;#P<0.05 vs TNBS group.
HE染色結(jié)果顯示,WT組小鼠結(jié)腸組織結(jié)構(gòu)完整,可見大量杯狀細(xì)胞且無(wú)炎癥細(xì)胞浸潤(rùn),而TNBS組小鼠結(jié)腸組織嚴(yán)重破壞,腺體變形甚至消失,大量炎癥細(xì)胞浸潤(rùn)且杯狀細(xì)胞丟失。TNBS+SK組小鼠上述病理?yè)p傷逐漸減輕。ELISA結(jié)果進(jìn)一步顯示TNBS+SK組小鼠結(jié)腸黏膜組織中的炎癥介質(zhì)(TNF-α、IL-6、IL-17A和IL-1β)水平均顯著低于TNBS組,但仍高于control組(<0.05),見圖2。
Figure 2. Effect of SK intervention on colon tissue injury in TNBS mice.A: HE staining of colon tissue (control group: the structure of colon was complete and clear without inflammatory cell infiltration; TNBS group: the colonic mucosa was damaged, and the number of crypts decreased or even disappeared completely, accompanied by a large number of inflammatory cell infiltration; TNBS+SK group: the colonic tissue injury of mice was significantly reduced, and a small amount of inflammatory cells infiltrated the lamina propria); B: colonic inflammatory scores; C: the levels of inflammatory factors in colonic mucosa detected by ELISA. Mean±SD. n=8. *P<0.05 vs control group;#P<0.05 vs TNBS group.
SK干預(yù)顯著降低了TNBS小鼠外周血FD4和I-FABP水平,并提高結(jié)腸TEER值(<0.05)。此外,細(xì)菌移位實(shí)驗(yàn)顯示,TNBS+SK組小鼠肝臟、脾臟和MLN細(xì)菌移位率顯著低于TNBS組(<0.05),但仍高于WT組(<0.05),見圖3。
Figure 3. Effect of SK intervention on intestinal barrier function in TNBS mice. A: serum FD4 concentration; B: peripheral blood I-FABP levels; C: TEER value of the colon; D: proportion of intestinal bacteria translocated to the liver; E: proportion of intestinal bacteria translocated to the MLN; F: proportion of intestinal bacteria translocated to the spleen. Mean±SD. n=8. *P<0.05 vs control group;#P<0.05 vs TNBS group.
GO功能富集分析顯示,SK作用于CD的可能生物過程主要涉及對(duì)細(xì)胞凋亡的調(diào)控。KEGG通路富集分析顯示,SK可能通過TLR信號(hào)發(fā)揮其生物學(xué)功能,見圖4。
Figure 4. GO and KEGG enrichment analysis of SK-treated CD targets. A: GO functional enrichment analysis of SK treatment targets for CD; B: KEGG pathway enrichment analysis of SK treatment targets for CD.
如圖5所示,TUNEL染色顯示TNBS+SK組小鼠腸上皮細(xì)胞凋亡率顯著低于TNBS組,仍高于control組(<0.05)。同時(shí),進(jìn)一步的Western blot檢測(cè)結(jié)果顯示,SK干預(yù)可顯著上調(diào)TNBS小鼠結(jié)腸黏膜組織中抗凋亡蛋白Bcl-2水平(<0.05),并顯著下調(diào)促凋亡蛋白Bax和C-caspase-3水平(<0.05)。
Figure 5. Effect of SK intervention on excessive apoptosis of intestinal epithelial cells in TNBS mice. A: representative images of TUNEL staining of mouse intestinal epithelial cells (control group: a small amount of apoptosis was observed in intestinal epithelial cells; TNBS group: extensive apoptosis of intestinal epithelial cells was observed; TNBS+SK group: the apoptosis of intestinal epithelial cells was significantly decreased); B: the number of apoptotic intestinal epithelial cells of mice was quantitatively analyzed; C: Western blot was used to detect the levels of apoptosis-related proteins. Mean±SD. n=8. *P<0.05 vs control group;#P<0.05 vs TNBS group.
如圖5所示,Western blot實(shí)驗(yàn)結(jié)果顯示TNBS+SK組小鼠結(jié)腸黏膜組織中TLR4、MyD88及p-NF-κB p65水平較TNBS組顯著降低(<0.05),但仍高于control組(<0.05)。
Figure 6. Effects of SK on the expression of TLR4, MyD88, p-NF-κB p65 and NF-κB p65 proteins in colon tissues of TNBS mice. Mean±SD. n=8. *P<0.05 vs controlgroup;#P<0.05 vs TNBS group.
本研究采用TNBS誘導(dǎo)的小鼠結(jié)腸炎模型證實(shí)了SK在體治療具有拮抗腸炎的作用。TNBS誘導(dǎo)的結(jié)腸炎模型小鼠是目前國(guó)內(nèi)外較為認(rèn)可的CD動(dòng)物模型,該模型不僅具有與人類CD相似的腸道炎性損傷和病理組織學(xué)改變,還具有模型表型穩(wěn)定和造模簡(jiǎn)單等優(yōu)勢(shì)[16]。
本研究證實(shí),通過灌胃SK可顯著減輕TNBS誘導(dǎo)的結(jié)腸炎模型小鼠的腸炎癥狀和腸道組織損傷,減少腸道炎癥介質(zhì)的表達(dá)。這提示在CD動(dòng)物模型背景下SK具有抗炎療效。既往研究顯示,SK在多個(gè)疾病模型中具有保護(hù)作用,例如:通過調(diào)控MAPK和STAT3-SOCS3信號(hào),抑制小鼠慢性氣道炎癥反應(yīng)[9],同時(shí)還可顯著緩解LPS誘導(dǎo)的小鼠急性肺組織損傷[17]。本工作進(jìn)一步拓展了SK的潛在治療性作用。
腸屏障功能障礙是CD重要的疾病特征之一,也是誘發(fā)和維持腸道慢性炎癥的關(guān)鍵病理學(xué)改變[18-19]。腸道通透性增加是CD腸屏障功能障礙的主要表現(xiàn)[20-21],F(xiàn)D4被廣泛用于細(xì)胞通透性的研究,其可在一定程度上反映腸道對(duì)大分子物質(zhì)的滲透性[22]。I-FABP是一種主要表達(dá)于腸上皮細(xì)胞中小分子蛋白,在腸屏障損傷早期其血漿水平會(huì)明顯增加[23-24]。研究數(shù)據(jù)顯示SK治療可以顯著降低TNBS小鼠腸道對(duì)大分子物質(zhì)(FD4)的通透性,同時(shí)也降低了因腸屏障損傷而移位入血的I-FABP水平,以及腸道細(xì)菌的臟器移位率(肝臟、脾臟及腸系膜淋巴結(jié))。通過TEER檢測(cè)實(shí)驗(yàn),本研究明確SK干預(yù)顯著提高了TNBS小鼠結(jié)腸TEER,提示降低了小鼠腸道的通透性。目前尚未見有關(guān)SK改善腸屏障功能的研究,但本研究以上結(jié)果證實(shí)SK干預(yù)對(duì)TNBS小鼠腸屏障功能障礙具有緩解作用,這也部分解釋了SK拮抗CD樣結(jié)腸炎的可能原因。
本研究嘗試采用生信分析工具進(jìn)一步分析了SK減輕TNBS小鼠結(jié)腸炎的可能途徑和機(jī)制。GO和KEGG富集分析結(jié)果提示SK的作用可能與細(xì)胞凋亡和TLRs信號(hào)有關(guān)。腸上皮細(xì)胞過度凋亡是引發(fā)CD腸屏障功能障礙的重要因素之一,而抑制腸上皮細(xì)胞凋亡是保護(hù)腸屏障和治療腸炎的可能途徑[25-27]。在以上啟發(fā)下,本研究分析并明確SK治療顯著降低了TNBS小鼠腸上皮細(xì)胞凋亡比例以及凋亡信號(hào)的激活(上調(diào)Bcl-2,下調(diào)Bax和C-caspase3)。調(diào)控腸上皮細(xì)胞凋亡的信號(hào)通路復(fù)雜,其中包括TLR4/NF-κB信號(hào),該通路的持續(xù)激活可誘發(fā)細(xì)胞慢性炎癥反應(yīng)并啟動(dòng)凋亡程序[28-29]。研究數(shù)據(jù)顯示,SK在體干預(yù)可顯著抑制TNBS小鼠腸黏膜組織中TLR4、p-NF-κB p65水平,抑制TLR4/NF-κB信號(hào)的激活,這一結(jié)果提示SK對(duì)CD樣腸炎的保護(hù)性作用可能和抑制腸上皮細(xì)胞凋亡,以及調(diào)控TLR4/NF-κB信號(hào)有關(guān)。
本研究具有如下價(jià)值:首先,通過在體動(dòng)物實(shí)驗(yàn)觀察到SK可減輕TNBS小鼠CD樣結(jié)腸炎,提示其具有潛在的藥物開發(fā)及臨床應(yīng)用價(jià)值;其次,本研究通過富集分析和在體實(shí)驗(yàn)證實(shí)SK拮抗腸上皮細(xì)胞凋亡可能與調(diào)控TLR4信號(hào)有關(guān),這進(jìn)一步豐富了SK發(fā)揮抗凋亡作用的信號(hào)機(jī)制。
本研究仍存在一些不足。一方面,盡管TNBS小鼠作為CD動(dòng)物模型已經(jīng)受到國(guó)內(nèi)外學(xué)者的廣泛認(rèn)可,但該模型仍無(wú)法模擬CD全部的疾病規(guī)律。另一方面,雖然研究聯(lián)合網(wǎng)絡(luò)藥理學(xué)和在體動(dòng)物實(shí)驗(yàn)顯示SK可能通過拮抗TNBS模型小鼠腸上皮細(xì)胞凋亡進(jìn)而保護(hù)腸屏障功能損傷和CD樣腸道炎癥,但鑒于CD發(fā)病機(jī)制的復(fù)雜性,SK能否通過調(diào)控腸道菌群失調(diào)及腸黏膜免疫反應(yīng)紊亂等其他途徑發(fā)揮其抗炎作用仍值得進(jìn)一步探討。
綜上所述,SK拮抗腸上皮細(xì)胞凋亡減輕CD模型小鼠腸屏障功能障礙和腸道炎癥可能與調(diào)控TLR4信號(hào)有關(guān)。
[1] Torres J, Mehandru S, Colombel JF, et al. Crohn's disease[J]. Lancet, 2017, 389(10080):1741-1755.
[2] Veauthier B, Hornecker JR. Crohn's disease: diagnosis and management[J]. Am Fam Physician, 2018, 98(11):661-669.
[3] Roda G, Chien Ng S, Kotze PG, et al. Crohn's disease[J]. Nat Rev Dis Primers, 2020, 6(1):22.
[4] Ng A. Maintenance therapy in crohn's disease: does the drug matter?[J]. Clin Gastroenterol Hepatol, 2022, 20(2):472-473.
[5] van Rheenen PF, Aloi M, Assa A, et al. The medical management of paediatric Crohn's disease: an ECCO-ESPGHAN guideline update[J]. J Crohns Colitis, 2021, 15(2):171-194.
[6] Stompor M. A review on sources and pharmacological aspects of sakuranetin[J]. Nutrients, 2020, 12(2):513.
[7] Junaid M, Basak B, Akter Y, et al. Sakuranetin and its therapeutic potentials: a comprehensive review[J]. Z Naturforsch C J Biosci, 2023, 78(1/2):27-48.
[8] Sakoda C, de Toledo AC, Perini A, et al. Sakuranetin reverses vascular peribronchial and lung parenchyma remodeling in a murine model of chronic allergic pulmonary inflammation[J]. Acta Histochem, 2016, 118(6):615-624.
[9] Santana F, da Silva RC, Grecco S, et al. Inhibition of MAPK and STAT3-SOCS3 by sakuranetin attenuated chronic allergic airway inflammation in mice[J]. Mediators Inflamm, 2019, 2019:1356356.
[10] 楊子,趙天豪,程陽(yáng),等. 香葉木素通過調(diào)節(jié)小鼠的腸道免疫平衡減輕克羅恩病樣結(jié)腸炎:基于抑制PI3K/AKT通路[J]. 南方醫(yī)科大學(xué)學(xué)報(bào), 2023, 43(3):474-482.
Yang Z, Zhao TH, Cheng Y, et al. Diosmetin relieves 2,4,6-trinitrobenzene sulfonic acid-induced Crohn's disease-like colitis in mice by inhibiting PI3K/AKT signaling to regulate intestinal immune balance[J]. J South Med Univ, 2023, 43(3):474-482.
[11] Wirtz S, Popp V, Kindermann M, et al. Chemically induced mouse models of acute and chronic intestinal inflammation[J]. Nat Protoc, 2017, 12(7):1295-1309.
[12] Zhang X, Zuo L, Geng Z, et al. Vindoline ameliorates intestinal barrier damage in Crohn's disease mice through MAPK signaling pathway[J]. FASEB J, 2022, 36(11):e22589.
[13] Wen H, Zhang X, Li Q, et al. Ruscogenins improve CD-like enteritis by inhibiting apoptosis of intestinal epithelial cells and activating NRF2/NQO1 pathway[J]. Oxid Med Cell Longev, 2022, 2022:4877275.
[14] Fachi JL, Felipe JS, Pral LP, et al. Butyrate protects mice from clostridium difficile-induced colitis through an HIF-1-dependent mechanism[J]. Cell Rep, 2019, 27(3):750-761.e7.
[15] Guo H, Zhang L, Wang Y, et al. Mechanisms of HuR in regulation of epithelial cell apoptosis in rat ulcerative colitis[J]. Cell Signal, 2021, 82:109957.
[16] Radi ZA, Heuvelman DM, Masferrer JL, et al. Pharmacologic evaluation of sulfasalazine, FTY720, and anti-IL-12/23p40 in a TNBS-induced Crohn's disease model[J]. Dig Dis Sci, 2011, 56(8):2283-2291.
[17] Bittencourt-Mernak MI, Pinheiro NM, Santana FP, et al. Prophylactic and therapeutic treatment with the flavonone sakuranetin ameliorates LPS-induced acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 312(2):L217-L230.
[18] Holmberg F, Pedersen J, J?rgensen P, et al. Intestinal barrier integrity and inflammatory bowel disease: stem cell-based approaches to regenerate the barrier[J]. J Tissue Eng Regen Med, 2018, 12(4):923-935.
[19] Mehandru S, Colombel JF. The intestinal barrier, an arbitrator turned provocateur in IBD[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(2):83-84.
[20] 李曉媚,陳絲秦,梁雪,等. 蛋白質(zhì)精氨酸甲基轉(zhuǎn)移酶1在糖尿病小鼠腸屏障功能障礙中的作用[J]. 中國(guó)病理生理雜志, 2022, 38(5):819-828.
Li XM, Chen SQ, Liang X, et al. Role of protein arginine methyltransferase 1 in intestinal barrier dysfunction of diabetic mice[J]. Chin J Pathophysiol, 2022, 38(5):819-828.
[21]張同坤,賈海,季昀,等. 姜酮緩解3-乙酰嘔吐毒素誘導(dǎo)的豬腸上皮細(xì)胞損傷研究[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2022, 34(10):6695-6701.
Zhang TK, Jia H, Ji Y,et al. Study on Zingerone alleviating injury of porcine intestinal epithelial cells induced by 3-acetyldeoxynivalenol[J]. Chin J Anim Nutr, 2022, 34(10):6695-6701.
[22] Zhang X, Zuo L, Geng Z, et al. Vindoline ameliorates intestinal barrier damage in Crohn's disease mice through MAPK signaling pathway[J]. FASEB J, 2022, 36(11):e22589.
[23] Sarikaya M, Ergül B, Do?an Z, et al. Intestinal fatty acid binding protein (I-FABP) as a promising test for Crohn's disease: a preliminary study[J]. Clin Lab, 2015, 61(1/2):87-91.
[24]高帆,許青文,徐鵬遠(yuǎn). D-乳酸、I-FABP作為腸屏障功能障礙預(yù)警指標(biāo)的生物學(xué)意義[J]. 臨床醫(yī)藥文獻(xiàn)電子雜志, 2019, 6(5):22.
Gao F, Xu QW, Xu PY. Biological significance of D-lactic acid and I-FABP as early warning indicators of intestinal barrier dysfunction[J]. Elec J Clin Med Liter, 2019, 6(5):22.
[25] Ma TY. Intestinal epithelial barrier dysfunction in Crohn's disease[J]. Proc Soc Exp Biol Med, 1997, 214(4):318-327.
[26] Günther C, Neumann H, Neurath MF, et al. Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium[J]. Gut, 2013, 62(7):1062-1071.
[27] Zhang J, Cen L, Zhang X, et al. MPST deficiency promotes intestinal epithelial cell apoptosis and aggravates inflammatory bowel disease via AKT[J]. Redox Biol, 2022, 56:102469.
[28] Kawai T, Akira S. Signaling to NF-κB by Toll-like receptors[J]. Trends Mol Med, 2007, 13(11):460-469.
[29] Mitchell S, Vargas J, Hoffmann A. Signaling via the NF-κB system[J]. Wiley Interdiscip Rev Syst Biol Med, 2016, 8(3):227-241.
[30] Schreiber S, Nikolaus S, Hampe J. Activation of nuclear factor κB inflammatory bowel disease[J]. Gut, 1998, 42(4):477-484.
[31] Nenci A, Becker C, Wullaert A, et al. Epithelial nemo links innate immunity to chronic intestinal inflammation[J]. Nature, 2007, 446(7135):557-561.
Sakuranetin attenuates Crohn disease-like colitis in mice by antagonizing intestinal epithelial cell apoptosis and regulating TLR4 signaling pathway
ZHAO Yajing1, ZHANG Wenjing2, ZHANG Nuo2, XU Mengyu1, YANG Zi3, ZHANG Xiaofeng1△
(1,233004,;2,,233004,;3,,233004,)
To investigate the effect and possible mechanism of sakuranetin (SK) on 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced Crohn disease (CD)-like colitis in mice.A total of 24 C57BL/6J mice were randomly divided into a control, model (TNBS), and SK (20 mg·kg-1·d-1) treatment groups (TNBS+SK), with eight mice in each group. Colitis symptoms were evaluated using the disease activity index (DAI) and body weight change. The colon injury was evaluated based on colon length, histological inflammation score, and levels of intestinal mucosal inflammatory mediators (TNF-α, IL-6, IL-17A, and IL-1β). The intestinal barrier function was assessed by measuring the levels of fluorescein isothiocyanate-dextran 4 kD (FD4) and intestinal fatty acid binding protein (I-FABP) in the peripheral blood, colonic transepithelial electric resistance (TEER), and intestinal bacterial translocation rate. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to predict the potential pathways and SK mechanisms, followed by validation through animal experiments.The DAI score and body weight loss in the TNBS+SK group were significantly lower than those in the TNBS group but higher than those in the control group (<0.05). The TNBS+SK group showed a significant reduction in colonic shortening, histological inflammatory scores, and levels of colonic mucosal inflammatory mediators compared to the TNBS group, but higher than those in the control group (<0.05). The levels of FD4 and I-FABP in the peripheral blood of the TNBS+SK group were significantly lower than those of the TNBS group, but higher than those of the control group (<0.05), while the opposite was observed for the colonic TEER (<0.05). The proportion of intestinal bacteria translocated to the liver, spleen, and mesenteric lymph nodes in the TNBS+SK group was significantly lower than that in the TNBS group, but higher than that in the control group (<0.05). The GO functional enrichment and KEGG pathway enrichment analyses indicated that TNBS+SK may be related to apoptosis and Toll-like receptor (TLR) signaling pathways. Furthermore, TUNEL staining showed that the proportion of apoptotic intestinal epithelial cells in the TNBS+SK group was significantly lower than that in the TNBS group, but higher than that in the control group (<0.05). Western blot analysis demonstrated that Bcl-2 expression was significantly lower in the TNBS+SK group than that in the TNBS group but was higher than that in the control group (<0.05). However, the Bax/cleaved caspase-3 (C-caspase-3) ratio showed the opposite trend (<0.05). Lastly, the protein levels of TLR4, MyD88, and p-NF-κB p65 were significantly lower in the colonic mucosa of the TNBS+SK group compared to those in TNBS group, but higher than those observed in control group (<0.05).Treatment with SK alleviates intestinal barrier dysfunction and CD-like colitis in TNBS mice by inhibiting intestinal epithelial cell apoptosis, which may be related to the inhibition of TLR4 signaling.
Crohn disease; sakuranetin; intestinal barrier; apoptosis; Toll-like receptor 4
R363.2; R285; R574.62
A
10.3969/j.issn.1000-4718.2023.09.012
1000-4718(2023)09-1634-08
2023-06-20
2023-09-05
蚌埠醫(yī)學(xué)院自然科學(xué)重點(diǎn)項(xiàng)目(No. 2022byzd073);蚌埠醫(yī)學(xué)院研究生科研創(chuàng)新計(jì)劃項(xiàng)目(No. Byycx22093)
Tel: 18134555877; E-mail: byfyzxf@163.com
(責(zé)任編輯:余小慧,李淑媛)