• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultra-high photoresponsive photodetector based on ReS2/SnS2 heterostructure

    2023-10-11 07:56:34BinghuiWang王冰輝YanhuiXing邢艷輝ShengyuanDong董晟園JiahaoLi李嘉豪JunHan韓軍HuayaoTu涂華垚TingLei雷挺WenxinHe賀雯馨BaoshunZhang張寶順andZhongmingZeng曾中明
    Chinese Physics B 2023年9期
    關(guān)鍵詞:韓軍

    Binghui Wang(王冰輝), Yanhui Xing(邢艷輝), Shengyuan Dong(董晟園), Jiahao Li(李嘉豪),Jun Han(韓軍), Huayao Tu(涂華垚), Ting Lei(雷挺), Wenxin He(賀雯馨),Baoshun Zhang(張寶順), and Zhongming Zeng(曾中明),?

    1Key Laboratory of Opto-electronics Technology,Ministry of Education,College of Microelectronics,Beijing University of Technology,Beijing 100124,China

    2Nanofabrication Facility,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences,Suzhou 215123,China

    Keywords: two-dimensional material,ReS2,heterostructure,photodetector

    1.Introduction

    Transition metal dichalcogenides(TMDs)with the chemical formulaMX2(X=S, Se, Te andM=transition metal)are widely used in various fields due to their weak interlayer coupling, good optical transparency, and large bandgap,[1–3]such as gas sensors,[1]photodetectors,[4]inverters, and solar cells.Most of the previous researches on TMDs have focused on the Mo and W families, which summarized the material growth and device preparation of photodiodes and rectifiers.[5–9]However, the recently discovered ReS2possesses properties quite different from MoS2, which has aroused extensive researches.[10,11]First,due to the twisted 1T crystal structure of ReS2,it has a direct bandgap independent of thickness,[12,13]which makes the optical properties of bulk ReS2and single-layer ReS2similar,provides a good basis for mechanical exfoliation.In addition, ReS2has an ultra-high light absorption rate.It has been reported in the literature that the responsivity of multilayer ReS2photodetectors can reach 88600 A/W.[14]However,one of the most serious problems of ReS2photodetectors is the slow response speed,which reaches hundreds of seconds.[15]In order to solve this problem, researchers have adopted heterostructures.Two-dimensional heterojunctions materials are combined by van der Waals forces and not affected by lattice mismatch,and different materials can be freely matched, and the detectors with heterojunctions can exhibit various interesting properties.[15,16]For example, the ReS2/graphene/WSe2heterojunction photodetector prepared by Wanget al.has a response speed of 44 ms under 532-nm light.[17]The ReS2/ReSe2heterojunction photodetector prepared by Choet al.has a similar response time of 0.4 s under 400-nm and 550-nm light.[12]Although the response speed of the devices was been greatly improved, it is at the expense of the responsivity.The device responsivity of Wanget al.[17]is 430 mA/W,and that of Choet al.[12]is only 21.07 mA/W.

    In this paper, it is reported that the photodetector based on ReS2has ultra-high responsivity and response speed in seconds.We chose SnS2material as the light absorbing layer,and prepared a vertical structure ReS2/SnS2heterojunction photodetector.The detector has a responsivity of 4706 A/W under 365-nm light,which is higher than the previously reported detectors based on ReS2heterojunction,[15,18]and the response speed of the detector is only 1.4 seconds.In addition,our detector also had a high detectivity of 5.29×1012Jones and an ultra-high external quantum efficiency(EQE)of 1.602×106%.The study paved the way for improving responsivity and reducing response time of the ReS2-based heterostructures photodetector.

    2.Experimental details

    2.1.Device fabrication

    The ReS2/SnS2heterostructure device was fabricated on the SiO2/Si substrate using a dry transfer technique.The fewlayer flakes of ReS2and SnS2were mechanically exfoliated from commercially bulk crystal.First, the thin ReS2flakes were exfoliated on a highly p-doped Si substrate with a 300-nm-thick SiO2layer.Then,the same method was adopted for transferring several layers SnS2onto the ReS2under the optical microscope assisted by aligned transfer system.Finally,to fabricate the heterostructure device, the electrode patterns were produced by electron–beam lithography system (EBL,Raith eLINE Plus)and Ti/Au(10 nm/50 nm)metals were deposited by electron–beam evaporation (Ulvac Ei-5z) to form source and drain electrodes.

    2.2.Result and discussion

    Figure 1(a) shows the schematic diagram of the ReS2/SnS2heterojunction device.The mechanical exfoliation ReS2and SnS2were transferred to an SiO2/Si substrate sequentially.The electrodes are placed on the ReS2.In order to obtain the interface information of ReS2and SnS2layer of the device, the high-resolution transmission electron microscope (HRTEM) was used, as shown in Fig.1(b).The interfaces between SnS2and ReS2, ReS2and substrate are clear and flat.Figure 1(c) shows the energy dispersive x-ray spectroscopy (EDS) of the device.The distribution of each layer element was uniform, and these elements are corresponding to each layer material of HRTEM,indicating that no diffusion and impurity element were introduced in the process of device preparation.The thickness of ReS2(8 nm)and SnS2(14 nm)is shown by atomic force microscopy(AFM)in Fig.1(d),and the inset is the surface topography image of the heterojunction.Figure 1(e)is the Raman spectrum of the single ReS2and SnS2material and the ReS2/SnS2heterojunction.SnS2(the blue line)has a main peak A1gat 313.4 cm-1,which is consistent with the literature report.[19]Typical Raman characteristic peaks of ReS2(the red line) are also observed at 154 cm-1(E2g) and 215 cm-1(A1g).[20]The black line in Fig.1(e)shows the characteristic peaks of the ReS2/SnS2heterojunction.The above peaks are observed in overlapping areas, indicating the good quality of the heterojunction.Figure 1(f)is the scanning electron microscope image of the device after the preparation of the electrodes.The light absorption layer SnS2and the transmission layer ReS2could be clearly observed,and the electrodes are only connected on the ReS2,and the device is regular in shape and a clean surface.The above results show the good structure and successful fabrication of the ReS2/SnS2heterojunction device.

    Fig.1.Characterization of ReS2/SnS2 heterostructure.(a)Schematic diagram of the ReS2/SnS2 heterostructure.(b)HRTEM image.Scale bar:10 μm.(c)EDS of the corresponding elements of the photodetector.(d)Height profiles of corresponding ReS2 and SnS2 flakes in AFM.The inset shows a topographic AFM image of the ReS2/SnS2 device.(e)Raman spectrum of the isolated ReS2,isolated SnS2,and their overlapped regions.(f)The SEM image of the heterostructure,where the scale bar is 5 μm.

    The transport properties of the device under dark conditions were measured.Figure 2(a)shows the relationship of the source–drain current (Ids) and the source–drain voltage (Vds)when the gate voltage (Vg) varies from-80 V to 80 V.TheIds–Vdscurves are straight lines passing through the origin,indicating that ReS2forms a good ohmic contact with Ti/Au.AsVgincreases, the current increases accordingly, meaning that the device has obvious gate voltage control characteristic.Figure 2(b) shows theIds–Vgrelationship of the device whenVdschanges from-3 V to 3 V.WhenVgbelow-30 V(Vth),Idsapproaches 0 A,and whenVgover-30 V,Idsrises gradually.When theVgis negative, the direction of the external electric field is opposite to that of the built-in electric field.WhenVg<Vth(-30 V),the external electric field plays a major role,electrons flow from ReS2to SnS2and the carrier concentration decreased,resulting in the current approaches 0 A,whenVg>Vth(-30 V), the direction of the electric field pointed from ReS2to SnS2,and electrons entered ReS2under the action of the electric field, increasing the carrier concentration in the channel, thereby increasing the drain current.The device also switched from the insulating state to the conducting state,showing obvious n-type conductivity.Figure 2(c)shows the logarithmic curves ofIdsversusVg,which characterizes the on-off ratio of the device.The on-off ratio reaches 104, indicating that the device has a high current regulation capability.

    Fig.2.The I–V characteristics of the device based on ReS2/SnS2 heterostructure under non-illumination condition.(a) Ids–Vds output characteristics under various back gate voltages.(b) Ids–Vg transfer curves at various drain voltages.(c) The logarithmic curves of the transfer characteristic curves of the ReS2/SnS2 heterojunction.

    Fig.3.(a)Schematic diagram of the device measure setup.(b)Output characteristic curves under different incident power densities(Vg=0 V).(c)Transfer characteristic curves of the device under different incident power densities(Vds =1 V).(d)Photocurrent(Iph)as a function of Vg under different incident power densities(Vds=1 V).

    The optoelectrical properties of the device were tested under 365-nm light source.Figure 3(a) is a schematic diagram of the measurement setup,in which the gate voltage is applied on the backside of the heterojunction, and the source–drain voltage is applied on the ReS2.Figure 3(b)shows the output characteristic curves under different incident power intensities when the gate voltage is 0 V.Compared with theIdsunder dark conditions,theIdsis significantly improved under illumination.The light absorption layer SnS2was irradiated,a large number of photogenerated carriers were generated,and transported into ReS2under the action of the built-in electric field,resulting in increasing the drain current.WhenVdsis 1 V,the transfer characteristic curves of the device at different incident power densities are shown in Fig.3(c).Idsincreased with the increase of incident power densities.The gate voltage could effectively regulate the channel current,and a higher gate voltage induced and promoted more carriers to pass through the heterojunction,thereby increasing the photogenerated current.In order to characterize the change of photocurrent with gate voltage more intuitively, we plotted the photocurrent (Iph) as a function ofVg, as shown in Fig.3(d).At a certain optical power density and source–drain voltage (1 V), with the increase of the gate voltage, the photocurrent increased first and then decreased, and the peak value of each curve corresponds to a different gate voltage,and the gate voltage shifted to the right with the decrease of the optical power density.Because the photocurrent was modulated by the optical power density and the gate voltage.When the optical power density was high, SnS2can generate more photogenerated electrons and holes,the concentration of photogenerated electrons in the channel will be greater,so a smaller gate voltage is required to achieve saturation current.

    Then, we quantitatively characterized the detection performances of the ReS2/SnS2heterojunction at 365 nm,including responsivity(R),specific detectivity(D*),EQE,and noise equivalent power(NEP),which could be calculated by the following functions:

    wherePin,A,e,h,c,andλare the incident optical power density,effective illuminated area,electron charge,Planck’s constant,light speed,and incident light wavelength,respectively.

    Figure 4(a)shows the gate voltage dependence of responsivity under various incident power densities atVds= 1 V.The responsivity decreased with the increase of the optical power density.WhenPin=1.269 mW/cm2andVg=10 V,the detector reaches the highest responsivity of 4706 A/W,and the responsivity of the detector is much higher than other reported results.[15,18]In addition, the specific detectivity is also an important parameter to evaluate the performance of the detector, which represents the sensitivity of the detector.As shown in Fig.4(b), whenVg=0 V andVds=1 V,D*reduce with the increase of the incident power densities,and the maximum value 5.29×1012Jones is obtained at the minimum incident power densities.Figure 4(c) shows EQE as a function of incident power densities whenVg= 10 V andVds= 1 V.EQE reduces with the increase of the optical power density, and the maximum value is 1.602×106%whenPin=1.269 mW/cm2,which shows that our detector has an excellent photoelectric conversion capability.In addition,figure 4(d) shows NEP as a function of the incident power densities whenVg=0 V andVds=1 V, an ultra-low noise equivalent power of 1.2×10-16W/Hz1/2was obtained whenPin=1.269 mW/cm2.

    To further illustrate the reason for the high responsivity of the detector,we calculated the photoconductive gain and performed the energy band analysis.The photoconductive gainGis defined as the ratio of minority carrier lifetimeτlifeto transit timeτt, which can be obtained according to the following equations:

    whereWandLare the width and length of the detector channel,respectively,andCgis the capacitance of the gate insulator(CSiO2=1.033×10-8F/cm2).WhenVds=3 V,the field-effect mobilityμand the carrier transport timeτtof the device are calculated to be 22.386 cm2·V-1·s-1and 0.59 ns,respectively,and the photoconductive gainGis calculated to be about 1010,which provides a theoretical basis for producing high responsivity.Therefore,the high responsivity of our device is due to the built-in electric field formed by the heterojunction,resulting in an ultra-high photoconductive gain,and the high photoconductive gain allows high responsivity.

    Figure 5(a)shows the band arrangement structure of ReS2and SnS2.The minimum conduction band(Ec)and the maximum valence band(Ev)of SnS2[21](ReS2[22])are-5.14 eV(-4.68 eV) and-6.73 eV (-6.19 eV), respectively, which make the ReS2/SnS2heterojunction belong to a typical type-II band alignment structure.Electrons transition from SnS2the valence band to the conduction band under illumination,generating electron–hole pairs.Figure 5(b)is a schematic diagram of carrier transmission under light conditions.Under illumination conditions, photogenerated carriers in SnS2are collected into ReS2under the action of the built-in electric field, thus generating a higher photocurrent and greatly improving the photo responsivity of the ReS2/SnS2heterojunction.Figure 5(c) shows the dark current of the single ReS2and the ReS2/SnS2heterojunction as a function of the gate voltage.The dark current of the ReS2/SnS2heterojunction detector significantly reduced, because the electrons in ReS2flowed to SnS2with a low Fermi level under dark conditions,the carrier concentration in ReS2decreased,thereby reducing the dark current and improving the detectivity of the device for weak light.

    Response time is also one of the key parameters to characterize the detector.We compared the optical switching characteristics of the ReS2/SnS2heterojunction and a single ReS2detector under 365-nm light source.The response time refers to the time required for the device to generate photo-generated carriers to change the output current when the photodetector is irradiated.The rising time is defined as the current increase from the 10% to 90% of the saturation current.On the contrary, the falling time indicates the time falling from 90%to 10%of the saturation current when the optical source is removed.The response time of the single ReS2detector is shown in Fig.6(a).The rise time is 6.7 s and a fall time of 25.7 s.The long fall response time is attributed to trap states generated in the ReS2material as a result of its preparation.When ReS2absorbs photon energy,it generates electron–hole pairs, and a sort of the carriers can become trapped by a trap state,this impedes the recombination of electron–hole pairs in the conductive channel, thereby extending the response time of the ReS2detector.[14,23,24]The response time of the heterojunction is shown in Fig.6(b), with a rise time of 1.4 s and a fall time of 7 s.The response speed of the device is obviously improved.It is attributed to the fact that the built-in electric field between ReS2and SnS2heterojunction, accelerates the separation of photogenerated electron–hole pairs.Moreover,the device is still stable when the device is optically switched several times.In addition, we also tested the optical switching characteristics of the device under different light source,as shown in Figs.6(c) and 6(d).The device still has stable optical switching characteristics under 460-nm and 532-nm illuminations.

    Fig.6.(a)The optical switching characteristic of the ReS2 photodetector at λ =365 nm.(b)–(d)The optical switching characteristic of the ReS2/SnS2 heterostructure photodetector at λ =365-nm,460-nm,and 532-nm wavelengths,respectively.

    Table 1.Comparison with reported heterojunction photodetectors.

    To compare with other heterojunction photodetectors,Table 1 lists the results of other research groups.[12,17,22,25–29]According to the comparison and analysis in the table, although the response speed of the detector is not as fast as other reported results,the responsivity of the detector is much higher than other reported results,andD*is also about 2–3 orders of magnitude higher than most detectors.In order to improve the responsivity and the response speed of ReS2-based photodetector, the ReS2/SnS2heterojunction is a good choice, and it provides a direction for improving the comprehensive performance of the ReS2-based photodetector.

    3.Conclusion

    We have achieved an ReS2/SnS2heterojunction photodetector,which presents an ultra-high responsivity of 4706 A/W under 365-nm light irradiation, and the response time is only 1.4 s.In addition, the device also has a high specific detectivity of 5.29×1012Jones,an ultra-high EQE of 1.602×106%and an ultra-low noise equivalent power of 1.2×10-16.From the energy band analysis,such a high responsivity is obtained due to the effectively separated electron–hole pairs,which prolongs the lifetime of the carriers, thereby increasing the photocurrent.In conclusion,our ReS2/SnS2heterostructures photodetector provides a new way to improve the responsivity of ReS2-based photodetector and shorten the response time of a single ReS2photodetector.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.61574011,60908012,61575008,61775007, 61731019, 61874145, 62074011, and 62134008),the Beijing Natural Science Foundation(Grant Nos.4182015,4172011, and 4202010), and Beijing Nova Program (Grant No.Z201100006820096).The authors would like to thank the Nano Fabrication Facility, Vacuum Interconnected Nanotech Workstation at Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, and Laboratory of Nanodevices and Applications,Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences for their technical supports.

    猜你喜歡
    韓軍
    Recent advances in two-dimensional layered and non-layered materials hybrid heterostructures
    Negative photoconductivity in low-dimensional materials?
    離婚算算家務(wù)賬
    Based on the core competitiveness of enterprise innovation culture research
    青春歲月(2017年6期)2017-05-13 13:20:45
    內(nèi)網(wǎng)被黑客攻破令韓軍震驚
    飛翔的樹葉
    延河(2016年1期)2016-02-26 08:21:46
    好課堂讓人思緒萬千——基于韓軍老師《老王》課堂教學(xué)的深度思考
    韓媒:中國軍艦去年“侵犯韓軍作戰(zhàn)區(qū)域”76次
    欧美97在线视频| 超碰97精品在线观看| 少妇人妻 视频| 久久久久国产网址| 又爽又黄无遮挡网站| 日本与韩国留学比较| 可以在线观看毛片的网站| 国产乱来视频区| 一级毛片我不卡| 91在线精品国自产拍蜜月| 色哟哟·www| 精品久久久久久久久亚洲| 最近中文字幕2019免费版| 免费看日本二区| 在线观看免费高清a一片| 日韩三级伦理在线观看| 午夜日本视频在线| 国产探花极品一区二区| 晚上一个人看的免费电影| 亚洲欧美清纯卡通| 观看美女的网站| 又粗又硬又长又爽又黄的视频| 街头女战士在线观看网站| 波野结衣二区三区在线| 18+在线观看网站| 极品少妇高潮喷水抽搐| 色视频www国产| 一级毛片我不卡| 在线观看美女被高潮喷水网站| 最近最新中文字幕免费大全7| 亚洲熟女精品中文字幕| 国产黄色免费在线视频| 在线a可以看的网站| 国产淫语在线视频| 美女高潮的动态| 亚洲最大成人手机在线| 在线观看美女被高潮喷水网站| 精品国产乱码久久久久久小说| 身体一侧抽搐| 少妇的逼水好多| 新久久久久国产一级毛片| av国产久精品久网站免费入址| 搡老乐熟女国产| 国产欧美另类精品又又久久亚洲欧美| 亚洲真实伦在线观看| 人妻 亚洲 视频| 午夜福利高清视频| 国产欧美日韩一区二区三区在线 | 日韩欧美精品免费久久| 高清日韩中文字幕在线| 亚洲精品aⅴ在线观看| h日本视频在线播放| 伊人久久精品亚洲午夜| 国产精品国产av在线观看| av线在线观看网站| 久久久久国产精品人妻一区二区| 男插女下体视频免费在线播放| 久久97久久精品| 国产视频首页在线观看| 成人国产av品久久久| 亚洲精品第二区| 嫩草影院入口| 69人妻影院| 啦啦啦在线观看免费高清www| 26uuu在线亚洲综合色| 亚洲精品久久久久久婷婷小说| 午夜福利在线观看免费完整高清在| 国产又色又爽无遮挡免| 干丝袜人妻中文字幕| 欧美国产精品一级二级三级 | 精华霜和精华液先用哪个| 欧美三级亚洲精品| 日韩人妻高清精品专区| 你懂的网址亚洲精品在线观看| 国产毛片a区久久久久| 伦精品一区二区三区| 久热这里只有精品99| 赤兔流量卡办理| 国产探花在线观看一区二区| 男人添女人高潮全过程视频| 中文字幕制服av| 久久99热6这里只有精品| 国产精品久久久久久精品电影| 黄色配什么色好看| 99re6热这里在线精品视频| 免费av观看视频| 成人一区二区视频在线观看| 最近最新中文字幕大全电影3| 久久久久久久久久久丰满| 亚洲图色成人| 国产精品久久久久久久久免| 嘟嘟电影网在线观看| 日本三级黄在线观看| 中文字幕制服av| 成年免费大片在线观看| 水蜜桃什么品种好| 高清欧美精品videossex| 最后的刺客免费高清国语| 春色校园在线视频观看| 最近手机中文字幕大全| 一级毛片我不卡| 一区二区三区乱码不卡18| 国产视频内射| 午夜免费观看性视频| 国产高清不卡午夜福利| 久久国产乱子免费精品| 国产成人福利小说| 最后的刺客免费高清国语| 99热这里只有精品一区| 国产成人午夜福利电影在线观看| 精品熟女少妇av免费看| 国产精品久久久久久精品电影| 日本爱情动作片www.在线观看| 少妇裸体淫交视频免费看高清| 久久久久精品久久久久真实原创| 最新中文字幕久久久久| 蜜臀久久99精品久久宅男| 国内精品美女久久久久久| 欧美xxⅹ黑人| 身体一侧抽搐| 久久精品人妻少妇| 91久久精品电影网| 日本免费在线观看一区| 天堂中文最新版在线下载 | 人体艺术视频欧美日本| 看免费成人av毛片| 久久久久国产网址| 国产精品一区二区在线观看99| 熟女电影av网| 99视频精品全部免费 在线| 午夜福利在线观看免费完整高清在| 波野结衣二区三区在线| 久久女婷五月综合色啪小说 | 亚洲av中文av极速乱| 国产精品国产三级专区第一集| 国产亚洲5aaaaa淫片| 汤姆久久久久久久影院中文字幕| 我的老师免费观看完整版| 中文字幕av成人在线电影| 亚洲激情五月婷婷啪啪| 亚洲激情五月婷婷啪啪| 亚洲精品日韩在线中文字幕| 国产永久视频网站| 国产精品国产三级专区第一集| 日韩欧美精品v在线| 免费观看a级毛片全部| av免费在线看不卡| 777米奇影视久久| 国国产精品蜜臀av免费| av在线天堂中文字幕| 我要看日韩黄色一级片| 中国国产av一级| 亚洲高清免费不卡视频| 国产淫片久久久久久久久| 色婷婷久久久亚洲欧美| 国产片特级美女逼逼视频| 狂野欧美激情性bbbbbb| 51国产日韩欧美| 在线亚洲精品国产二区图片欧美 | 久久久久性生活片| 久久精品久久久久久久性| 99热这里只有精品一区| 真实男女啪啪啪动态图| 成人午夜精彩视频在线观看| 特级一级黄色大片| 人人妻人人澡人人爽人人夜夜| 在线a可以看的网站| 91aial.com中文字幕在线观看| 18禁裸乳无遮挡动漫免费视频 | 日本三级黄在线观看| 丝袜喷水一区| 日韩在线高清观看一区二区三区| 人妻制服诱惑在线中文字幕| 天堂中文最新版在线下载 | 一级a做视频免费观看| 有码 亚洲区| 国产精品女同一区二区软件| 听说在线观看完整版免费高清| 欧美亚洲 丝袜 人妻 在线| 国产真实伦视频高清在线观看| 日韩精品有码人妻一区| 啦啦啦在线观看免费高清www| 亚洲aⅴ乱码一区二区在线播放| 一级毛片我不卡| 国产精品久久久久久精品电影小说 | 亚洲国产日韩一区二区| 精品国产一区二区三区久久久樱花 | 日日摸夜夜添夜夜爱| 日本一二三区视频观看| 麻豆乱淫一区二区| 免费黄网站久久成人精品| 小蜜桃在线观看免费完整版高清| 伦精品一区二区三区| 国产高潮美女av| 黄片wwwwww| 亚洲国产欧美人成| 18禁在线无遮挡免费观看视频| 久久久色成人| 欧美3d第一页| 免费少妇av软件| 国产欧美日韩精品一区二区| 岛国毛片在线播放| 边亲边吃奶的免费视频| av国产免费在线观看| 大码成人一级视频| 偷拍熟女少妇极品色| 精品久久久久久久末码| 国产精品一区www在线观看| 极品教师在线视频| 成人综合一区亚洲| 欧美日本视频| 看免费成人av毛片| 成人毛片60女人毛片免费| 精品久久久久久久久亚洲| 亚洲内射少妇av| 午夜福利视频精品| 成年免费大片在线观看| 尤物成人国产欧美一区二区三区| 成人午夜精彩视频在线观看| 国产欧美亚洲国产| 欧美精品一区二区大全| av国产免费在线观看| 97超视频在线观看视频| 丝袜美腿在线中文| 国产黄色视频一区二区在线观看| 丝瓜视频免费看黄片| 在线播放无遮挡| 午夜福利在线观看免费完整高清在| 日本午夜av视频| 亚洲自偷自拍三级| 久久精品久久精品一区二区三区| 午夜激情福利司机影院| 老女人水多毛片| 麻豆成人av视频| 亚洲精品视频女| 18禁裸乳无遮挡动漫免费视频 | 日本一本二区三区精品| 亚洲,欧美,日韩| 成人毛片60女人毛片免费| 国内揄拍国产精品人妻在线| 国产精品精品国产色婷婷| 午夜爱爱视频在线播放| 亚洲美女搞黄在线观看| 尾随美女入室| 日韩一本色道免费dvd| 18禁裸乳无遮挡动漫免费视频 | 国产探花极品一区二区| 两个人的视频大全免费| 国产成人免费观看mmmm| 69人妻影院| 久久久久国产精品人妻一区二区| av黄色大香蕉| 日韩,欧美,国产一区二区三区| 国内少妇人妻偷人精品xxx网站| 国产伦精品一区二区三区视频9| 91在线精品国自产拍蜜月| 免费黄色在线免费观看| 国产成人a区在线观看| 特级一级黄色大片| 日日啪夜夜撸| 欧美精品国产亚洲| av国产精品久久久久影院| 少妇熟女欧美另类| 午夜免费观看性视频| 你懂的网址亚洲精品在线观看| 久久久久精品久久久久真实原创| 成人漫画全彩无遮挡| 熟女人妻精品中文字幕| 精品人妻一区二区三区麻豆| 搞女人的毛片| 国产极品天堂在线| 成人国产av品久久久| av免费在线看不卡| 国产成人免费无遮挡视频| 亚洲欧美日韩另类电影网站 | 91精品伊人久久大香线蕉| 99热全是精品| 赤兔流量卡办理| 天堂中文最新版在线下载 | 中文字幕亚洲精品专区| 欧美3d第一页| 赤兔流量卡办理| 91久久精品电影网| 国产成年人精品一区二区| 最近中文字幕高清免费大全6| 国产精品一二三区在线看| 秋霞伦理黄片| 麻豆久久精品国产亚洲av| 国产精品人妻久久久影院| 最近手机中文字幕大全| 久久久久久久久久久丰满| 内射极品少妇av片p| 成人毛片a级毛片在线播放| 色吧在线观看| 天天躁日日操中文字幕| 中文字幕亚洲精品专区| 中文资源天堂在线| 国产免费一级a男人的天堂| 国产成年人精品一区二区| 久久午夜福利片| 特大巨黑吊av在线直播| 免费人成在线观看视频色| 国产熟女欧美一区二区| 亚洲欧美成人综合另类久久久| 日本av手机在线免费观看| 韩国av在线不卡| 午夜免费男女啪啪视频观看| av.在线天堂| 国产真实伦视频高清在线观看| 一级二级三级毛片免费看| 亚洲欧美日韩另类电影网站 | 久久国内精品自在自线图片| 中文在线观看免费www的网站| 国产高清不卡午夜福利| 在线观看一区二区三区| av在线播放精品| 蜜桃亚洲精品一区二区三区| 伊人久久精品亚洲午夜| 黄片无遮挡物在线观看| av在线天堂中文字幕| 午夜激情福利司机影院| 精品久久久噜噜| 寂寞人妻少妇视频99o| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 熟女人妻精品中文字幕| 80岁老熟妇乱子伦牲交| av网站免费在线观看视频| 亚洲内射少妇av| 免费在线观看成人毛片| 国产精品不卡视频一区二区| 国产精品偷伦视频观看了| 美女xxoo啪啪120秒动态图| 国产69精品久久久久777片| 亚洲精品一二三| 午夜福利网站1000一区二区三区| 色吧在线观看| 亚洲av免费高清在线观看| 久久久a久久爽久久v久久| 日本-黄色视频高清免费观看| av又黄又爽大尺度在线免费看| 在线 av 中文字幕| 成年女人在线观看亚洲视频 | 亚洲精品成人av观看孕妇| 天天一区二区日本电影三级| 亚洲自拍偷在线| 国产高潮美女av| 免费大片18禁| 丝袜喷水一区| 91狼人影院| 精品久久久久久久久亚洲| 国内精品宾馆在线| 97超碰精品成人国产| 亚洲综合色惰| 狂野欧美激情性bbbbbb| 在线播放无遮挡| 七月丁香在线播放| 女人被狂操c到高潮| av在线蜜桃| 日日摸夜夜添夜夜爱| 欧美日本视频| 亚洲欧洲国产日韩| 少妇 在线观看| 国产老妇女一区| 超碰av人人做人人爽久久| 国产一区有黄有色的免费视频| 午夜福利在线在线| 欧美性感艳星| av免费在线看不卡| 亚洲va在线va天堂va国产| 国产高清三级在线| 22中文网久久字幕| 国产一区二区亚洲精品在线观看| 人妻少妇偷人精品九色| 国产伦理片在线播放av一区| 黄片wwwwww| 久久久久九九精品影院| 日韩欧美一区视频在线观看 | 一级毛片久久久久久久久女| 99热6这里只有精品| 精品少妇黑人巨大在线播放| 亚洲国产精品专区欧美| 麻豆成人午夜福利视频| 亚洲无线观看免费| 久久精品久久久久久噜噜老黄| 六月丁香七月| 成人综合一区亚洲| 欧美精品一区二区大全| 亚洲综合色惰| 国产片特级美女逼逼视频| 免费黄频网站在线观看国产| 久久久久国产网址| 我的女老师完整版在线观看| 男人爽女人下面视频在线观看| 免费人成在线观看视频色| 亚洲精品日韩av片在线观看| 97热精品久久久久久| 成人综合一区亚洲| 国产乱人视频| 嫩草影院新地址| 国产精品麻豆人妻色哟哟久久| 天天躁夜夜躁狠狠久久av| 亚洲精品久久午夜乱码| 尤物成人国产欧美一区二区三区| 永久免费av网站大全| 超碰av人人做人人爽久久| 国产精品蜜桃在线观看| 插逼视频在线观看| 欧美国产精品一级二级三级 | 亚洲第一区二区三区不卡| 九色成人免费人妻av| 国产精品国产三级国产专区5o| 大香蕉久久网| 国产精品国产三级国产av玫瑰| 国产精品99久久99久久久不卡 | 久久99热6这里只有精品| 国产精品av视频在线免费观看| av福利片在线观看| 精品酒店卫生间| 赤兔流量卡办理| 男人舔奶头视频| 亚洲欧洲日产国产| 在线免费观看不下载黄p国产| 一个人看视频在线观看www免费| 欧美亚洲 丝袜 人妻 在线| 久久精品久久精品一区二区三区| 天堂网av新在线| 亚洲欧美精品专区久久| 精品少妇久久久久久888优播| 尤物成人国产欧美一区二区三区| 亚洲av中文av极速乱| 少妇猛男粗大的猛烈进出视频 | 亚洲精品久久久久久婷婷小说| 欧美激情在线99| 国产免费又黄又爽又色| 自拍偷自拍亚洲精品老妇| 日日摸夜夜添夜夜爱| 久久精品熟女亚洲av麻豆精品| 亚洲真实伦在线观看| videossex国产| 国产又色又爽无遮挡免| 又大又黄又爽视频免费| 老司机影院成人| 日本熟妇午夜| 大码成人一级视频| 韩国高清视频一区二区三区| 亚洲成人av在线免费| 亚洲精品国产色婷婷电影| 别揉我奶头 嗯啊视频| 国产高潮美女av| 国产成人a∨麻豆精品| 成人美女网站在线观看视频| 少妇被粗大猛烈的视频| 国产人妻一区二区三区在| 亚洲欧美日韩东京热| 在线观看一区二区三区激情| 黄片无遮挡物在线观看| 99久久精品国产国产毛片| 亚洲,欧美,日韩| 一区二区av电影网| 人妻少妇偷人精品九色| 岛国毛片在线播放| 久久久久久久午夜电影| 丝瓜视频免费看黄片| 午夜福利在线在线| 禁无遮挡网站| 天天一区二区日本电影三级| 高清av免费在线| 欧美成人午夜免费资源| 亚洲av中文av极速乱| 最后的刺客免费高清国语| 欧美人与善性xxx| 久久久国产一区二区| 成人亚洲精品av一区二区| 精品人妻偷拍中文字幕| 免费观看性生交大片5| 黄色欧美视频在线观看| 搡女人真爽免费视频火全软件| 三级国产精品片| 欧美xxⅹ黑人| 国产成人免费无遮挡视频| 欧美高清成人免费视频www| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文字幕亚洲精品专区| 交换朋友夫妻互换小说| 一个人观看的视频www高清免费观看| 欧美老熟妇乱子伦牲交| 国产成年人精品一区二区| 免费看日本二区| av网站免费在线观看视频| 男插女下体视频免费在线播放| 国产毛片a区久久久久| 日韩强制内射视频| 国产免费又黄又爽又色| 国产精品av视频在线免费观看| 欧美3d第一页| 永久免费av网站大全| 亚洲高清免费不卡视频| 亚洲国产精品999| 精品久久久久久久久av| 亚洲人成网站在线播| 91aial.com中文字幕在线观看| 国产人妻一区二区三区在| 99视频精品全部免费 在线| 69人妻影院| 天堂网av新在线| 亚洲精品视频女| 婷婷色综合www| www.av在线官网国产| 亚洲国产精品专区欧美| 国产美女午夜福利| 国产免费福利视频在线观看| 欧美xxxx黑人xx丫x性爽| 岛国毛片在线播放| 国产av国产精品国产| 国产精品麻豆人妻色哟哟久久| 美女主播在线视频| 麻豆乱淫一区二区| 永久免费av网站大全| 午夜福利视频1000在线观看| 人人妻人人澡人人爽人人夜夜| 久久99热这里只频精品6学生| 欧美老熟妇乱子伦牲交| 日韩av免费高清视频| 丝袜喷水一区| 精品一区二区免费观看| 久久久久久久国产电影| 日本午夜av视频| 国产精品国产三级国产专区5o| 麻豆久久精品国产亚洲av| 日韩欧美精品免费久久| 精品酒店卫生间| 午夜亚洲福利在线播放| 男人和女人高潮做爰伦理| 在线精品无人区一区二区三 | 精品一区在线观看国产| tube8黄色片| 亚洲欧美成人综合另类久久久| 亚洲人成网站在线播| 婷婷色综合大香蕉| 麻豆精品久久久久久蜜桃| 中文字幕av成人在线电影| 亚洲av免费高清在线观看| 亚洲第一区二区三区不卡| 丰满少妇做爰视频| 黄色日韩在线| 国精品久久久久久国模美| 天天一区二区日本电影三级| 噜噜噜噜噜久久久久久91| 国产伦精品一区二区三区四那| 精品一区在线观看国产| 亚洲无线观看免费| 最近中文字幕高清免费大全6| 伦精品一区二区三区| 国产精品久久久久久av不卡| 九九在线视频观看精品| 亚洲国产色片| 汤姆久久久久久久影院中文字幕| 美女视频免费永久观看网站| 国产伦精品一区二区三区视频9| 极品少妇高潮喷水抽搐| 国产欧美另类精品又又久久亚洲欧美| 免费人成在线观看视频色| 九色成人免费人妻av| 联通29元200g的流量卡| 国产av不卡久久| 又黄又爽又刺激的免费视频.| 免费av毛片视频| 亚洲精品一区蜜桃| 少妇被粗大猛烈的视频| 国产黄色视频一区二区在线观看| 国产女主播在线喷水免费视频网站| 亚洲四区av| av天堂中文字幕网| 最后的刺客免费高清国语| 在线a可以看的网站| videossex国产| 熟女电影av网| 毛片女人毛片| 大话2 男鬼变身卡| 男人和女人高潮做爰伦理| 国内精品美女久久久久久| 日本欧美国产在线视频| 永久免费av网站大全| 水蜜桃什么品种好| 欧美精品人与动牲交sv欧美| 久久国内精品自在自线图片| 永久免费av网站大全| 狂野欧美白嫩少妇大欣赏| 成人毛片a级毛片在线播放| 日韩亚洲欧美综合| 午夜福利网站1000一区二区三区| av女优亚洲男人天堂| 男的添女的下面高潮视频| 97精品久久久久久久久久精品| 男人舔奶头视频| 久久精品久久久久久久性| 日韩欧美精品v在线| 91精品国产九色| 草草在线视频免费看| 乱码一卡2卡4卡精品| 国产成年人精品一区二区| 中文字幕久久专区| 国产黄a三级三级三级人| 青春草视频在线免费观看| 男女边吃奶边做爰视频| 亚洲av中文字字幕乱码综合| 国产亚洲最大av| 亚洲国产精品999| 欧美性猛交╳xxx乱大交人| 特级一级黄色大片| 欧美日韩视频高清一区二区三区二| 99re6热这里在线精品视频| 久久韩国三级中文字幕| 欧美三级亚洲精品| av女优亚洲男人天堂|