• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generation of hyperentangled photon pairs based on lithium niobate waveguide

    2023-10-11 07:55:00YangHeChen陳洋河ZhenJiang姜震andGuangQiangHe何廣強(qiáng)
    Chinese Physics B 2023年9期
    關(guān)鍵詞:洋河

    Yang-He Chen(陳洋河), Zhen Jiang(姜震), and Guang-Qiang He(何廣強(qiáng)),?

    1SJTU Pinghu Institute of Intelligent Optoelectronics,Department of Electronic Engineering,Shanghai Jiao Tong University,Shanghai 200240,China

    2State Key Laboratory of Advanced Optical Communication Systems and Networks,Department of Electronic Engineering,Shanghai Jiao Tong University,Shanghai 200240,China

    Keywords: hyperentanglement,nonlinear photonic crystal,lithium niobate waveguide

    1.Introduction

    Quantum entanglement is a highly representative and attractive phenomenon in quantum physics, representing a fundamental quantum correlation in complex quantum systems.Quantum entanglement is widely used in various quantum applications and quantum technologies, laying the foundation for exponential performance acceleration of quantum computing,[1–3]safe and reliable quantum communication,[4–6]precise and sensitive quantum precision measurement,[7–11]etc.In quantum key distribution,the use of quantum entanglement enables the two communicating parties to share a random,secure key to encrypt and decrypt information,thus ensuring communication security.[12–14]Dense coding applies the quantum entanglement mechanism to transmit information, and for every two classical bits of information,only one quantum bit needs to be used,thus doubling the transmission efficiency.[15,16]Quantum entanglement also plays an important role in the architecture of quantum computers.For example, in a one-way quantum computer approach, a multibody entangled state, usually a graph state or cluster state,must first be prepared, and then the result is calculated by a series of measurements.[17,18]

    Quantum entanglement can arise in multiple degrees of freedom, such as polarization degrees of freedom, spatial mode degrees of freedom,and time degrees of freedom.[19,20]Such quantum states with entanglement relations in multiple degrees of freedom are called hyperentangled states.Hyperentanglement has many advantages over quantum entanglement in single degree of freedom: it can realize more effective Bell state measurement, construct asymmetric optical quantum networks, improve the channel capacity of quantum networks, and can also contribute to the physical realization of quantum purification and quantum computing, and can be applied to the in-depth study of fundamental problems of quantum mechanics such as nonlocality.[21,22]Hyperentangled photon pairs have excellent information carrying capability and are very ideal physical carriers for quantum communication systems.Since the hyperentangled state has multiple degrees of freedom, it can improve the channel capacity and security of quantum communication, and plays an important role in many practical areas of application such as quantum information science.[23,24]

    There are many schemes for the preparation of hyperentangled states.In 2015, Zhenda Xieet al.prepared highdimensional hyperentanglement with polarization entanglement and energy-time entanglement using a fibre Fabry–Pérot cavity(FFPC)and Hong–Ou–Mandel(HOM)interference.[25]In 2018, Chenetet al.achieved a polarization-based HOM interference-based preparation of polarization entanglement sources and extended it to the preparation of polarizationdiscrete frequency hyperentanglement sources in 2019.[26,27]However,these schemes can only prepare hyperentangled photon pairs of discrete variables and are difficult to achieve onchip integration.In our scheme,we will use carefully designed lithium niobate waveguides to directly generate hyperentanglement on a polarization and energy-time basis through spontaneous parametric downconversion(SPDC)process, and the generated two-photon pairs have a certain bandwidth.

    This paper is organized as follows.In Section 2, we introduce our scheme that generates hyperentangled biphoton states.In Section 3, the SPDC Hamiltonian is introduced and we derive the theoretical model of hyperentangled twophoton states.Section 4 demonstrates that the generated twophoton pair exists entanglement in the energy-time dimension,which finally proves the existence of hyperentanglement for our scheme.Section 5 gives the conclusion of this paper.

    2.The hyperentangled photon pairs source scheme

    In our hyperentangled photon pairs source scheme, we chose a 600 nm thickz-cut lithium niobate crystal film as the base processing material and etched a specific structure of waveguide on the crystal,as shown in Fig.1.The trapezoid in the center of the figure is the area where the pump light,signal light and idler light are transmitted, and the length of the waveguide is 8 mm.The effective refractive index dispersion curves of this waveguide structure for o-light and e-light are obtained by simulation,as shown in Fig.2(θ=75°).

    Fig.1.Scheme of our z-cut LN waveguide.(a) Overall schematic diagram.Purple arrows show the optical axis of LN and red arrows show the electric polarization direction of the transverse electric(TE)mode and the transverse magnetic(TM)mode.(b)Cross-section diagram.(c)Material refractive index of LN with different optical axes at 1570 nm.(d)Mode profile.

    Fig.2.Effective refractive index dispersion curves for o-light and e-light(θ =75°).

    We set the wavelength of the input pump lightλp=780 nm, and its angular frequencyωp= 2ω0= 2.4149×1015rad/s,whereω0denotes the center frequency of the signal light and idler light generated by SPDC.According to the equation of wave vectork(ω)=[n(ω)·ω]/c, we can obtainko(2ω0) = 1.7318×107m-1,ko(ω0) = 7.5741×106m-1,ke(ω0) = 8.0235×106m-1.A pump photon generates a signal photon and an idler photon, and the amount of wave vector mismatch of this nonlinear process needs to be provided by a periodically polarized crystal to compensate.In our scheme, we use single-period polarization to compensate only the wave vector mismatch amount when the signal light and idler light frequencies are equal, that is,kpp=ko(2ω0)-ko(ω0)-ke(ω0)=1.8205×106m-1.According to the theory of quasi-phase matching,the amount of wave vector mismatch that can be compensated by a periodically polarized crystal is related to the polarization period askpp=2π/Λ,then we can obtain the polarization periodΛ=3.4513 μm.

    We expect a broadband SPDC to occur in which the wavevector mismatch is still within a small range when the signal and idler light frequencies are not equal.At this point,the periodically polarized crystal is no longer able to compensate exactly for the wave vector mismatch of the downconversion process.Let the difference between the signal light and the idler light frequency is Δω, and assume that the signal light frequency is distributed on the left side ofω0and the idler light frequency is distributed on the right side ofω0,then the wave vector mismatch at this time is

    wherem,n=o,e denotes the polarization states of signal light and idler light.When the amount of wave vector mismatch is not fully compensated,the efficiency of the nonlinear process decreases according to sinc function, and the conversion efficiency is proportional to sinc2[(Δk·L)/2], whereLindicates the length of the waveguide.

    We expect the generated two-photon pair has hyperentanglement on a polarization and energy-time basis.To achieve entanglement in the polarization dimension,we need to make sure that only one of the two phase matching conditions can occur.Figure 3 shows conversion efficiencies corresponding to all possible SPDC processes, including type-I and type-II phase matching conditions.Figure 3 also shows conversion results corresponding to different cutting angleθ.In our actual work, we chooseθ= 75°.From Fig.3 we can see that when the frequency spacing of the two-photon grows to 1.92×1011Hz (192 GHz) for the type-II SPDC process,the function value drops to 0, which indicates that the conversion efficiency drops to 0,and we define the frequency interval at this point as the bandwidth of the quantum entanglement source.On the other hand, the value of the conversion efficiency function for type-I SPDC process tends to zero(approximately the order of 10-8), so it can be assumed that type-I SPDC process does not occur.Type-II SPDC process includes two cases: o→o+e and o→e+o.Given that two cases have nearly identical conversion efficiency functions,we can conclude that the two cases have the same probability of occurrence, that is, the generated two-photon state,which demonstrates the generated two-photon pair is entangled in the polarization dimension.

    Fig.3.Conversion efficiency curves of all possible SPDC processes.(a) and (b) SPDC processes satisfying type-II phase matching condition.(c)and(d)SPDC processes satisfying type-I phase matching condition.Conversion results corresponding to different cutting angles θ are also shown above.

    After we make sure the generated two-photon pair is entangled in the polarization dimension, we just need to prove that they are also entangled in the energy-time dimension,then the hyperentangled state will be obtained.

    3.Theoretical model of hyperentangled twophoton states

    In this section, we will derive the theoretical expression of our hyperentangled two-photon states on the basis of the Hamiltonian.In the interaction picture, the evolution of the quantum state with time satisfies the following equation:[28]

    where|ψ(t →-∞)〉=|0〉s|0〉i,and ?Hint(t)represents the nonlinear part of the three-wave mixing Hamiltonian that includes a pump photon annihilating and generating a signal photon and an idler photon,and its inverse process

    where h.c.denotes the Hermitian conjugate, which corresponds to the inverse process of SPDC.Hence,the two-photon state|ψ〉(disregarding the dominant contribution of vacuum)is

    We consider that the input pump light,due to its high intensity,can be treated as a classical electric field

    whereAP(ωP) denotes the spectral amplitude of the pump light.The quantized electric field operators for signal light and idler light can be expressed as

    wherem=s,i, andΛis the period of the structured waveguide.Substitute Eqs.(5)and(6)into Eq.(4),we can obtain

    Moreover, we go from thek-space to theω-space, where we can write dk= dω(ng(ω)/c),then we can derive

    B(ωs,ωi),C(ωs,ωi) andD(ωs,ωi) can be obtained by the same method.Given the fact that type-I SPDC process does not occur(which is mentioned in Section 2)in our scheme,we can assume thatC(ωs,ωi)≈D(ωs,ωi)≈0, thus we obtain the resulting biphoton state

    4.Simulation results

    In this section,we show the numerical simulation results of JSA and joint temporal amplitude(JTA)to explore the entanglement of the generated two-photon pair in the energytime dimension.The input pump light is a single frequency continuous laser with a wavelength of 780 nm and a full width at half maxima of 0.1 nm.The calculated and plotted frequency width is set toBW=192 GHz, and JSA of the generated two-photon pair is shown in Fig.4.

    Fig.4.Modulus distribution diagram of JSA.

    WhenA(ωs,ωi) can be split into the product of two univariate functions aboutωsandωi(i.e.,A(ωs,ωi) =A(ωs)A(ωi)), the generated state is separable; conversely, ifA(ωs,ωi) is not separable, the generated state is entangled,and this entangled state is referred to as a continuous frequency entangled state.[29]To investigate whetherA(ωs,ωi)is splittable,we can perform a Schmidt decomposition on it

    whereλnis the Schmidt coefficient,ψn(ωs)andφn(ωi)are a set of standard orthogonal functions in the Hilbert space where the signal optical quantum state and the idler optical quantum state are located,respectively.λn,ψn(ωs)andφn(ωi)are solutions of the following eigenvalue equations:

    withK1(ω,ω′)≡∫A(ω,ω2)A*(ω′,ω2)dω2andK2(ω,ω′)≡∫A(ω1,ω)A*(ω1,ω′)dω1.

    Based on the eigenvalueλnobtained from the Schmidt decomposition,two quantitative indicators,entropy of entanglementSand effective Schmidt rankK,can be used to measure the degree of entanglement,which are defined as

    Entropy of entanglementS >0 and effective Schmidt rankK >1 both indicate the presence of entanglement, and the larger value indicates the higher degree of entanglement.The joint-spectral amplitude is first normalized and then solved to obtain the Schmidt coefficients in the Schmidt decomposition.In the specific calculation,the discretization into 5001-dimensional vectors and matrices gives the 5001 eigenvalues, i.e., the Schmidt coefficients.The first 15 Schmidt coefficients, arranged from largest to smallest, are shown in Fig.5(a).More than one non-zero Schmidt coefficient in Fig.5(a)proves that the two-photon generated by this broadband entanglement source has the property of continuous frequency entanglement.The calculated effective Schmidt rankK=3.6532>1 also proves the continuous frequency entanglement property.Entropy of entanglementSis calculated and the result is shown in Fig.5(b), whereSfinally converges to 2.1276; and the first four basis functions in the Schmidt decomposition are shown in Figs.6(a)and 6(b),from which we can see the orthogonality of each basis function.

    Fig.5.Results of Schmidt decomposition.(a)The maximum 15 Schmidt coefficients after Schmidt decomposition of JSA.The latter coefficients are close to 0, and their contributions to entropy of entanglement S and effective Schmidt rank K are negligible.(b) Entropy of entanglement S of our designed entanglement source.The results of successive iterations are shown,and Sk finally converges to 2.1276.

    Fig.6.The first four basis functions (a) ψn and (b) φn after Schmidt decomposition.

    After JSA is obtained, the Fourier transform can be used[30,31]to obtain JTA,with the relationship

    The same entanglement analysis as JSA can be performed for JTA, i.e., continuous-time entanglement is judged by the Schmidt coefficients after Schmidt decomposition.After calculation,we obtain the exact same Schmidt coefficientsλnas JSA,which means that it also has the same entropy of entanglementS=2.1276 and effective Schmidt rankK=3.6532.Therefore, the two-photon state generated by this entangled source is also continuously time-entangled.

    Next we will discuss the energy-time entanglement properties of the entangled source.Considering the signal photon and the idler photon generated by SPDC, the product of the standard deviation of the sum of their frequencies Δ(ωs+ωi)and the standard deviation of the difference in arrival times Δ(ts-ti) is called the joint uncertainty product.The joint uncertainty product less than 1 is the most direct manifestation and evidence of energy-time entanglement between signal light and idler light.[32]From our scheme we derive Δ(ωs+ωi)=9.0358×1010s-1and Δ(ts-ti)=4.5520×10-12s,therefore the joint uncertainty product Δ(ωs+ωi)Δ(ts-ti)=0.4113<1,which demonstrates the energy-time entanglement property of signal light and idler light.Considering that in Section 2 it has been shown that the two-photon pair is also entangled in the polarization dimension,we successfully generate the hyperentangled two-photon pair in the polarization dimension and energy-time dimension.

    5.Conclusion

    This paper investigates a hyperentangled quantum entanglement source with a certain bandwidth based on lithium niobate straight waveguide.We verify the hyperentanglement in the polarization dimension by analyzing conversion efficiency functions of SPDC.The SPDC process is analyzed using quantum optics theory to obtain the theoretical model of the generated two-photon state.Corresponding simulation shows that the generated two-photon state also exhibits entanglement in energy-time dimension using Schmidt decomposition, which demonstrates that our entangled source generates a photon pair with a hyperentangled state finally.

    Acknowledgments

    Project supported by the Key-Area Research and Development Program of Guangdong Province of China (Grant No.2018B030325002), the National Natural Science Foundation of China (Grant No.62075129), the Open Project Program of SJTU-Pinghu Institute of Intelligent Optoelectronics (Grant No.2022SPIOE204), and the Science and Technology on Metrology and Calibration Laboratory (Grant No.JLJK2022001B002).

    猜你喜歡
    洋河
    國家白酒質(zhì)檢中心洋河實(shí)驗(yàn)室成立
    釀酒科技(2022年7期)2022-07-29 14:19:22
    天鵝洋河舞翩躚
    考試與招生(2022年3期)2022-03-15 07:24:24
    千年酒鎮(zhèn) 醉美洋河
    賦能綠色低碳發(fā)展 建設(shè)美麗生態(tài)洋河
    洋河失速
    洋河股份2019年前三季凈利71億元
    釀酒科技(2019年12期)2019-01-06 03:36:51
    基于改進(jìn)Tennant法的洋河流域生態(tài)基流估算研究
    [企業(yè)直擊]朋友圈“第一酒”,“洋河微分子”拔頭籌
    秦皇島市洋河水電站增效擴(kuò)容改造工程經(jīng)濟(jì)評(píng)價(jià)論述
    1.7億
    国产精品一区二区性色av| 精品国产三级普通话版| 国产色爽女视频免费观看| 国产av一区在线观看免费| 级片在线观看| 亚洲欧美成人精品一区二区| 日本一本二区三区精品| 国产伦精品一区二区三区四那| 国产激情偷乱视频一区二区| 国产亚洲精品久久久久久毛片| 夜夜看夜夜爽夜夜摸| 老熟妇乱子伦视频在线观看| 国产av在哪里看| 亚洲一级一片aⅴ在线观看| 偷拍熟女少妇极品色| 亚洲最大成人手机在线| 真实男女啪啪啪动态图| 亚洲国产高清在线一区二区三| 欧美日韩精品成人综合77777| 欧美一区二区国产精品久久精品| 久久午夜亚洲精品久久| 午夜福利成人在线免费观看| 久久久久免费精品人妻一区二区| 91久久精品电影网| 亚洲欧美成人综合另类久久久 | 国产成人a∨麻豆精品| 99热全是精品| 国产亚洲精品av在线| 久久精品91蜜桃| 欧美bdsm另类| 少妇裸体淫交视频免费看高清| 国产亚洲精品久久久com| 99久国产av精品| 成人欧美大片| 日本黄大片高清| 国产高清激情床上av| 久久久精品欧美日韩精品| 精品久久久久久久末码| 欧美另类亚洲清纯唯美| 国产毛片a区久久久久| av天堂在线播放| 免费不卡的大黄色大毛片视频在线观看 | 99热精品在线国产| 精品熟女少妇av免费看| 日韩精品有码人妻一区| 精品免费久久久久久久清纯| 干丝袜人妻中文字幕| 日韩视频在线欧美| 久久精品91蜜桃| 男人舔女人下体高潮全视频| 18禁在线播放成人免费| 99热全是精品| 麻豆成人av视频| 1000部很黄的大片| 国产av不卡久久| 久久午夜福利片| 成熟少妇高潮喷水视频| 成人高潮视频无遮挡免费网站| 国产三级中文精品| 中国国产av一级| 国产麻豆成人av免费视频| 国产在视频线在精品| 久久精品国产亚洲av涩爱 | 久久久国产成人精品二区| 一级毛片aaaaaa免费看小| 日本成人三级电影网站| 久久婷婷人人爽人人干人人爱| 天美传媒精品一区二区| 成熟少妇高潮喷水视频| 变态另类成人亚洲欧美熟女| 亚洲av.av天堂| 亚洲av熟女| 秋霞在线观看毛片| 赤兔流量卡办理| 国内少妇人妻偷人精品xxx网站| 日韩欧美一区二区三区在线观看| 精品久久久久久久末码| 国产在线精品亚洲第一网站| 永久网站在线| 精品午夜福利在线看| 99riav亚洲国产免费| 午夜精品国产一区二区电影 | 我的女老师完整版在线观看| 99riav亚洲国产免费| 欧洲精品卡2卡3卡4卡5卡区| 99久久九九国产精品国产免费| 村上凉子中文字幕在线| 青青草视频在线视频观看| 99在线视频只有这里精品首页| 久久精品久久久久久久性| 国产久久久一区二区三区| 午夜精品一区二区三区免费看| 99久久精品一区二区三区| 干丝袜人妻中文字幕| 亚洲欧美成人精品一区二区| 黄色日韩在线| 日产精品乱码卡一卡2卡三| 亚洲自偷自拍三级| а√天堂www在线а√下载| 插阴视频在线观看视频| 国产亚洲欧美98| 国产又黄又爽又无遮挡在线| 国产在线精品亚洲第一网站| 免费一级毛片在线播放高清视频| 亚洲性久久影院| 欧美三级亚洲精品| 精品人妻视频免费看| 国产精品国产三级国产av玫瑰| 亚洲国产欧美人成| 观看美女的网站| 日本一二三区视频观看| 亚洲精品456在线播放app| 日韩视频在线欧美| 中文资源天堂在线| 99热精品在线国产| 国产伦理片在线播放av一区 | 亚洲三级黄色毛片| 国产片特级美女逼逼视频| 亚洲电影在线观看av| 蜜桃久久精品国产亚洲av| 久久精品国产清高在天天线| 夜夜看夜夜爽夜夜摸| 欧美日韩乱码在线| 成人一区二区视频在线观看| 青春草亚洲视频在线观看| 精品少妇黑人巨大在线播放 | 国产精品麻豆人妻色哟哟久久 | 免费电影在线观看免费观看| 全区人妻精品视频| 波多野结衣巨乳人妻| 啦啦啦韩国在线观看视频| 极品教师在线视频| 熟女人妻精品中文字幕| 中出人妻视频一区二区| 大又大粗又爽又黄少妇毛片口| 久久精品国产亚洲av涩爱 | 日日摸夜夜添夜夜爱| 狂野欧美白嫩少妇大欣赏| 欧美成人免费av一区二区三区| av专区在线播放| 在线天堂最新版资源| 中文欧美无线码| 久久这里只有精品中国| 亚洲精品色激情综合| 国产av不卡久久| 嫩草影院精品99| а√天堂www在线а√下载| 国产精品嫩草影院av在线观看| 亚洲人成网站在线播| 国产精品国产高清国产av| www日本黄色视频网| 成人午夜高清在线视频| 国产大屁股一区二区在线视频| h日本视频在线播放| 91aial.com中文字幕在线观看| 淫秽高清视频在线观看| 久久精品国产99精品国产亚洲性色| 国产精品.久久久| 最新中文字幕久久久久| av女优亚洲男人天堂| 精品久久久久久久人妻蜜臀av| 2022亚洲国产成人精品| 免费观看人在逋| 亚洲久久久久久中文字幕| 中文亚洲av片在线观看爽| 亚洲18禁久久av| 国产精品美女特级片免费视频播放器| 国产免费男女视频| 菩萨蛮人人尽说江南好唐韦庄 | 一本久久精品| 国产av麻豆久久久久久久| 日日啪夜夜撸| 最后的刺客免费高清国语| 免费观看精品视频网站| 亚洲自拍偷在线| 观看美女的网站| 精品久久久久久成人av| av在线蜜桃| 九九热线精品视视频播放| 亚洲av电影不卡..在线观看| 国产熟女欧美一区二区| 最近视频中文字幕2019在线8| 国产v大片淫在线免费观看| 欧美不卡视频在线免费观看| 男女边吃奶边做爰视频| 亚洲欧美中文字幕日韩二区| 欧美激情国产日韩精品一区| 国产精品一及| 美女内射精品一级片tv| av专区在线播放| 久久99蜜桃精品久久| 午夜福利在线观看吧| 九九爱精品视频在线观看| 国产成人午夜福利电影在线观看| 久久亚洲精品不卡| 午夜免费激情av| 成人亚洲精品av一区二区| 变态另类成人亚洲欧美熟女| 国产精品精品国产色婷婷| 人妻久久中文字幕网| 偷拍熟女少妇极品色| 99热这里只有是精品在线观看| 亚洲欧美日韩东京热| 久久久久久伊人网av| 国产精品嫩草影院av在线观看| 亚洲成av人片在线播放无| 久久精品国产自在天天线| 日韩亚洲欧美综合| 久久久久久久久久成人| 色哟哟·www| 亚洲人成网站在线播| 国产精品综合久久久久久久免费| 国产高清有码在线观看视频| 欧美潮喷喷水| 久久久久久久久大av| 精品无人区乱码1区二区| 麻豆成人av视频| 中文字幕av成人在线电影| 精品午夜福利在线看| 99riav亚洲国产免费| 99久久人妻综合| 国产精品一区二区三区四区免费观看| 久久欧美精品欧美久久欧美| 中国国产av一级| 又爽又黄无遮挡网站| 变态另类成人亚洲欧美熟女| 淫秽高清视频在线观看| 国产大屁股一区二区在线视频| 亚洲精品亚洲一区二区| 男插女下体视频免费在线播放| 精品国内亚洲2022精品成人| 男女下面进入的视频免费午夜| 性色avwww在线观看| 欧美高清成人免费视频www| 亚洲欧洲国产日韩| 干丝袜人妻中文字幕| 国内精品美女久久久久久| 91在线精品国自产拍蜜月| 免费观看精品视频网站| 2021天堂中文幕一二区在线观| 欧美成人a在线观看| 99热精品在线国产| 欧美日韩精品成人综合77777| 久久久国产成人免费| 欧美不卡视频在线免费观看| 我要搜黄色片| 国产激情偷乱视频一区二区| 色吧在线观看| 成年免费大片在线观看| 男女啪啪激烈高潮av片| 一个人观看的视频www高清免费观看| 日韩一区二区视频免费看| 免费观看a级毛片全部| 久久午夜亚洲精品久久| 国产精品.久久久| 哪里可以看免费的av片| 级片在线观看| 久久99蜜桃精品久久| 国模一区二区三区四区视频| 亚洲欧美日韩东京热| 色哟哟·www| 99久久人妻综合| 日本五十路高清| 亚洲va在线va天堂va国产| av在线亚洲专区| 国产男人的电影天堂91| 亚洲国产精品国产精品| 色噜噜av男人的天堂激情| 久久精品夜色国产| 12—13女人毛片做爰片一| 69av精品久久久久久| 亚洲人成网站高清观看| 男女做爰动态图高潮gif福利片| 麻豆精品久久久久久蜜桃| 插逼视频在线观看| 六月丁香七月| 国产探花极品一区二区| 18禁在线播放成人免费| 国产成人午夜福利电影在线观看| 亚洲av免费在线观看| 中出人妻视频一区二区| 亚洲乱码一区二区免费版| 亚洲精品国产av成人精品| 特级一级黄色大片| 欧美性猛交╳xxx乱大交人| 十八禁国产超污无遮挡网站| 亚洲综合色惰| 日本三级黄在线观看| 中文欧美无线码| 久99久视频精品免费| 亚洲av二区三区四区| 久久久精品欧美日韩精品| 久久久a久久爽久久v久久| 欧美bdsm另类| 老司机福利观看| 亚洲激情五月婷婷啪啪| 免费观看的影片在线观看| 国产成人a区在线观看| 国产精品一区二区性色av| 欧美一区二区国产精品久久精品| 欧美成人免费av一区二区三区| 成年版毛片免费区| 国产国拍精品亚洲av在线观看| 精品一区二区三区视频在线| 免费av观看视频| 久久99蜜桃精品久久| 久久6这里有精品| 久久精品国产亚洲av天美| 人体艺术视频欧美日本| 一级毛片电影观看 | 亚洲aⅴ乱码一区二区在线播放| 别揉我奶头 嗯啊视频| 在线观看免费视频日本深夜| 国产黄a三级三级三级人| 麻豆乱淫一区二区| 国产白丝娇喘喷水9色精品| 亚洲av.av天堂| 亚洲国产精品成人久久小说 | 淫秽高清视频在线观看| 免费黄网站久久成人精品| 美女脱内裤让男人舔精品视频 | 亚洲成a人片在线一区二区| 身体一侧抽搐| 99久国产av精品国产电影| .国产精品久久| 欧美在线一区亚洲| 欧美激情久久久久久爽电影| 亚洲av第一区精品v没综合| kizo精华| 欧美性猛交黑人性爽| 美女被艹到高潮喷水动态| 国产精品国产三级国产av玫瑰| 99久久人妻综合| 久久精品久久久久久噜噜老黄 | 国产精品乱码一区二三区的特点| 亚洲av一区综合| 久久久久久久久中文| 久久精品影院6| 国产成人a区在线观看| 99久久中文字幕三级久久日本| 成熟少妇高潮喷水视频| 成人国产麻豆网| 午夜福利成人在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美精品综合久久99| 2021天堂中文幕一二区在线观| 99热6这里只有精品| 日韩欧美 国产精品| 久久久色成人| 身体一侧抽搐| 久99久视频精品免费| 日本成人三级电影网站| 亚洲精品国产av成人精品| 人体艺术视频欧美日本| 国产亚洲av嫩草精品影院| 插逼视频在线观看| 亚洲最大成人手机在线| 亚洲色图av天堂| 国产高清有码在线观看视频| 国产精品综合久久久久久久免费| 熟女人妻精品中文字幕| 久久久午夜欧美精品| 一进一出抽搐动态| 亚洲欧美精品自产自拍| 亚洲欧美中文字幕日韩二区| 欧美+亚洲+日韩+国产| 最近2019中文字幕mv第一页| 中文字幕av成人在线电影| 亚洲va在线va天堂va国产| 国产老妇女一区| 最后的刺客免费高清国语| 久久久久久久久久久免费av| 六月丁香七月| 亚洲中文字幕日韩| 国产亚洲精品久久久com| 精品熟女少妇av免费看| 亚洲欧美日韩高清专用| 男的添女的下面高潮视频| 久99久视频精品免费| 精品人妻偷拍中文字幕| 日韩一区二区三区影片| 日本色播在线视频| 午夜精品国产一区二区电影 | 国产精品一二三区在线看| 人人妻人人澡欧美一区二区| 女人被狂操c到高潮| 国产午夜精品久久久久久一区二区三区| 亚洲一区高清亚洲精品| 国产三级在线视频| 如何舔出高潮| 久久精品夜夜夜夜夜久久蜜豆| 亚洲美女搞黄在线观看| 国产精品国产三级国产av玫瑰| 国产在线精品亚洲第一网站| 男女边吃奶边做爰视频| 久久久久免费精品人妻一区二区| 日本免费a在线| 国产探花极品一区二区| 天天躁日日操中文字幕| 久久精品91蜜桃| 1024手机看黄色片| 欧美一区二区精品小视频在线| av女优亚洲男人天堂| 日韩av不卡免费在线播放| 国产黄色视频一区二区在线观看 | 中文字幕熟女人妻在线| 麻豆成人av视频| 亚洲七黄色美女视频| 99久久九九国产精品国产免费| 18禁在线无遮挡免费观看视频| 欧美区成人在线视频| 一本久久精品| 午夜福利高清视频| 麻豆av噜噜一区二区三区| 欧美日韩在线观看h| 久久久国产成人精品二区| 少妇被粗大猛烈的视频| 老师上课跳d突然被开到最大视频| 91麻豆精品激情在线观看国产| 老女人水多毛片| 久久人人爽人人爽人人片va| 赤兔流量卡办理| 深爱激情五月婷婷| 亚洲国产精品合色在线| 一区二区三区免费毛片| 12—13女人毛片做爰片一| 三级毛片av免费| 黄片无遮挡物在线观看| 一卡2卡三卡四卡精品乱码亚洲| 成人国产麻豆网| 国产综合懂色| 97在线视频观看| 欧美日韩国产亚洲二区| 欧美成人a在线观看| 欧美日韩一区二区视频在线观看视频在线 | 秋霞在线观看毛片| 精华霜和精华液先用哪个| 校园春色视频在线观看| 国产私拍福利视频在线观看| 久久这里有精品视频免费| 听说在线观看完整版免费高清| 亚洲,欧美,日韩| 日日干狠狠操夜夜爽| 一级黄色大片毛片| 午夜爱爱视频在线播放| 精品人妻视频免费看| 亚洲av电影不卡..在线观看| 日韩欧美三级三区| 中文字幕av在线有码专区| 天美传媒精品一区二区| 亚洲成人av在线免费| 久久国内精品自在自线图片| 亚洲av中文av极速乱| 亚洲欧美日韩高清专用| 亚洲精品亚洲一区二区| 中文字幕制服av| 久久精品国产清高在天天线| 国产伦精品一区二区三区四那| 深爱激情五月婷婷| 欧美最新免费一区二区三区| 亚洲最大成人手机在线| 只有这里有精品99| 欧美极品一区二区三区四区| 亚洲18禁久久av| 亚洲精华国产精华液的使用体验 | 国产极品精品免费视频能看的| 麻豆国产av国片精品| av在线观看视频网站免费| 成人亚洲精品av一区二区| 美女黄网站色视频| 97超碰精品成人国产| 嫩草影院新地址| 老熟妇乱子伦视频在线观看| 好男人在线观看高清免费视频| 国产极品天堂在线| 校园春色视频在线观看| 国产亚洲91精品色在线| 欧美+日韩+精品| 一个人观看的视频www高清免费观看| 免费观看在线日韩| 久久99热6这里只有精品| 热99在线观看视频| 久久久精品大字幕| 听说在线观看完整版免费高清| 免费无遮挡裸体视频| 在现免费观看毛片| av在线观看视频网站免费| 亚洲不卡免费看| 国产高清视频在线观看网站| 亚洲,欧美,日韩| 成人无遮挡网站| 成人毛片60女人毛片免费| 亚洲一区高清亚洲精品| 免费电影在线观看免费观看| 在线播放无遮挡| 亚洲精品影视一区二区三区av| 国内精品美女久久久久久| 国产精品一二三区在线看| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品国产高清国产av| 给我免费播放毛片高清在线观看| 日本与韩国留学比较| 精品久久久久久久久久久久久| 哪里可以看免费的av片| 国内精品一区二区在线观看| 国产老妇伦熟女老妇高清| 2021天堂中文幕一二区在线观| 在线播放国产精品三级| 淫秽高清视频在线观看| 波野结衣二区三区在线| 久久精品夜色国产| 婷婷六月久久综合丁香| 亚洲丝袜综合中文字幕| 69av精品久久久久久| 成人毛片60女人毛片免费| 一级av片app| 99久久中文字幕三级久久日本| kizo精华| 性色avwww在线观看| 亚洲精品久久久久久婷婷小说 | 赤兔流量卡办理| 卡戴珊不雅视频在线播放| 国内精品美女久久久久久| 国产单亲对白刺激| 美女黄网站色视频| 国产成人一区二区在线| 18禁裸乳无遮挡免费网站照片| 午夜福利在线在线| 一卡2卡三卡四卡精品乱码亚洲| АⅤ资源中文在线天堂| 大香蕉久久网| 麻豆国产av国片精品| 精品久久久久久久久亚洲| 99热这里只有是精品50| 欧美一区二区亚洲| 国产熟女欧美一区二区| 亚洲一区高清亚洲精品| 亚洲国产欧美在线一区| 内射极品少妇av片p| 最近手机中文字幕大全| 久久99精品国语久久久| 日本在线视频免费播放| 嫩草影院精品99| 九九在线视频观看精品| 青春草国产在线视频 | 国产高清三级在线| 欧美性猛交╳xxx乱大交人| 一级黄色大片毛片| 成年免费大片在线观看| 亚洲自偷自拍三级| 91精品一卡2卡3卡4卡| 18禁裸乳无遮挡免费网站照片| 自拍偷自拍亚洲精品老妇| 久久久a久久爽久久v久久| 欧美日韩乱码在线| 国产免费一级a男人的天堂| 中文字幕制服av| 亚洲欧洲日产国产| 变态另类成人亚洲欧美熟女| a级毛色黄片| 97超视频在线观看视频| 亚洲欧美日韩东京热| 成人av在线播放网站| 26uuu在线亚洲综合色| 天堂av国产一区二区熟女人妻| 卡戴珊不雅视频在线播放| 亚洲精品自拍成人| 老师上课跳d突然被开到最大视频| 国产精品女同一区二区软件| 国内精品美女久久久久久| 午夜福利成人在线免费观看| 一级毛片电影观看 | 欧美又色又爽又黄视频| 级片在线观看| 日韩成人av中文字幕在线观看| 亚洲欧美精品自产自拍| 校园春色视频在线观看| 亚洲最大成人av| 久久精品91蜜桃| 成熟少妇高潮喷水视频| 久久久久久大精品| 在线观看66精品国产| 欧美3d第一页| 变态另类丝袜制服| 国产白丝娇喘喷水9色精品| 久久精品国产亚洲网站| av又黄又爽大尺度在线免费看 | 边亲边吃奶的免费视频| 别揉我奶头 嗯啊视频| 一级二级三级毛片免费看| 亚洲一区二区三区色噜噜| 成年av动漫网址| 九九热线精品视视频播放| 亚洲国产高清在线一区二区三| 欧美成人免费av一区二区三区| 亚洲精品国产成人久久av| 女同久久另类99精品国产91| 美女高潮的动态| 变态另类丝袜制服| 日本成人三级电影网站| 久久草成人影院| 亚洲精品粉嫩美女一区| 亚洲经典国产精华液单| 国产69精品久久久久777片| 国产亚洲91精品色在线| 波野结衣二区三区在线| 久久久国产成人精品二区| 国产一区二区在线av高清观看| 黄色日韩在线| 国产单亲对白刺激| 一级毛片电影观看 | 亚洲自拍偷在线| av专区在线播放| 男插女下体视频免费在线播放| 26uuu在线亚洲综合色|