• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A ten-fold coordinated high-pressure structure in hafnium dihydrogen with increasing superconducting transition temperature induced by enhancive pressure

    2023-10-11 07:56:18YanQiWang王妍琪ChuanZhaoZhang張傳釗JinQuanZhang張金權(quán)SongLi李松MengJu巨濛WeiGuoSun孫偉國(guó)XiLongDou豆喜龍andYuanYuanJin金園園
    Chinese Physics B 2023年9期
    關(guān)鍵詞:李松

    Yan-Qi Wang(王妍琪), Chuan-Zhao Zhang(張傳釗), Jin-Quan Zhang(張金權(quán)), Song Li(李松),Meng Ju(巨濛), Wei-Guo Sun(孫偉國(guó)), Xi-Long Dou(豆喜龍), and Yuan-Yuan Jin(金園園),?

    1Department of Physics and Optoelectronic Engineering,Yangtze University,Jingzhou 434023,China

    2School of Physical Science and Technology,Southwest University,Chongqing 400715,China

    3College of Physics and Electronic Information,Luoyang Normal University,Luoyang 471022,China

    4Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,China

    Keywords: transition metal dihydrogen,first principles,phase transition,superconducting transition temperature

    1.Introduction

    High pressure is an excellent external condition.Under high pressure, the volume of the material is compressed and the spacing between atoms or molecules in the material is gradually reduced, resulting in the overlap of electronic orbitals of adjacent atoms, resulting in the phase transition in the structure of the material.These new structures present distinctive physical and chemical properties.Kotmoolet al.[1]predicted the phase transition of the boride RuB4under high pressure with the transition sequence ofP63/mmc →C2/c →Immmand the corresponding transition pressures of 198 GPa and 388 GPa,respectively.Moreover,they also confirmed that the hardness value of theImmmphase (19.7 GPa) is much higher than that of theC2/cstructure (7.6 GPa).[1]In the oxide, Dekuraet al.[2]demonstrated that TiO2has a phase transition of cotunnite-type to Fe2P-type(P-62m)structure at 161 GPa through the x-ray diffraction measurement.There is a reduction of band gap from 3.0 eV to 1.9 eV across the phase change, which improves the photocatalytic activity of TiO2.[2]Xinet al.also verified the phase transition process ofPm-3→Cm →P1→I41mdunder high pressure in the nitride ZnN6and theI41mdphase has an excellent energy densities of 4.70 kJ/g.[3]In the meantime,there are also numerous interesting phase transitions in other compounds under high pressure.To better understand them,our attention has focused on other compounds.

    Metal hydrides exhibit peculiar electron–phonon coupling under high pressure, making them potential superconducting materials.The researches of metal hydride superconducting materials under high pressure can be mainly divided into two aspects.One to is to uncover new compounds with excellent superconductivity under high pressure.Recent theoretical and experimental studies suggest that LaH10,which has a face-centered cubicFm-3mstructure,exhibits superconducting at temperatures as high as 250 K.[4–7]The critical temperatures of YLuH12can reach 283 K at 120 GPa.[8]Besides, a large number of researches exhibited that CaH6,[9]YH10,[10]and HfH10,[11]have the estimatedTcof 220 K–235 K,303 K,and 213 K–234 K under high pressures, respectively.The other is to generate new structures through the pressureinduced phase transition for the hydrides,which can be stable at ambient pressure.It is evident that the superconductivity of these high-pressure new structures surpasses that observed under ambient pressure condition.For example, YH3crystal forms a semiconductor hcp-structured at ambient pressure,but the predictedTcfor the high-pressure structure fcc-YH3can achieve 40 K at 17.7 GPa.[12]Both aspects on the superconductivity of the metal hydrides aim to reveal the maximalTcof each metal hydrides,which is urgently for investigating theTcvariation process under increasing pressure.Some structures,such asP63/mmc-CrH3(76 GPa–200 GPa),[13]P6/mmm-VH5(125 GPa–250 GPa),[14]I4/mmm-FeH5(150 GPa–300 GPa),[15]I4/mmm-ScH4(120 GPa–250 GPa),[16]andFm-3m-ThH10(100 GPa–300 GPa),[17]exhibit a decreasing trend inTcwith pressure increasing.Some are the opposite (e.g.,R-3m-VH (150 GPa–250 GPa),[14]Immm-ScH8(300 GPa–400 GPa),[18]andIm-3m-MgH6(300 GPa–400 GPa)[19]).In addition, the pressure dependence ofTcof other metals is weak (e.g.,P6mm-WH5(230 GPa–300 GPa),[20]Fm-3m-YH10(250 GPa–350 GPa)[21]).The trend ofTcvariation upon further compression provides guidance for achieving maximalTcfor each metal hydride,thereby motivating us to explore theTcvariation trend with the increasing pressure for the novel structures of the metal hydrides under high pressure.

    Hafnium is a typical early transition metal element.Previous theoretical and experimental investigations have shown that HfH2is the only known hafnium hydride found to be stable under ambient conditions.[22–24]Through the research of the phase transition and superconducting properties of HfH2crystal at 0 GPa–300 GPa, Liuet al.[25]indicated that the phase transition of HfH2isI4/mmm →Cmma →P21/mat 180 GPa and 250 GPa,respectively.TheTcvalues ofI4/mmmat 1 atm (1 atm=1.01325×105Pa),Cmmaat 180 GPa, andP21/mat 260 GPa are 47 mK–193 mK, 5.99 K–8.16 K, and 10.62 K–12.8 K,respectively.[25]Later on,Dudaet al.calculatedTcvalues that are similar to each other.[26]However, it remains unclear whether new structures of HfH2emerge under higher pressure(>300 GPa)and what is the trend for the superconducting transition temperature of these new structures with pressure increasing.These two questions have promoted further investigation into HfH2material at higher pressures.

    In this work, we extend the research pressure range of HfH2material to 0 GPa–500 GPa and find that HfH2has a phase transition sequence ofI4/mmm →Cmma →P-3m1 at 220.21 GPa and 359.18 GPa, respectively.Among them, the freshP-3m1 structure is firstly discovered in transition metal dihydrides.The structural characteristics, dynamic stability,mechanical properties,hardness,electronic structure,bonding properties,and superconductivity of three stable structures of HfH2are systematically investigated.It is found that the coordination number of HfH2evolution process is 8→9→10 with pressure increasing.The calculatedTcofP-3m1 at 500 GPa is 19.737 K.It is worthy noting that the values ofTcexhibit an upward trend with pressure further increasing.

    2.Methods

    In order to extensively explore the highpressure phases of HfH2, we employed the CALYPSO code,[27,28]an unbiased structure prediction method based on the particle swarm optimization algorithm.Structure searches are conducted by using unit cells containing up to six formula units(f.u.) in the pressure range of 0 GPa–500 GPa.The superior efficiency of this method has been proved in various systems.[29–35]The followup structural optimizations and electronic structure calculations under different pressures were performed within density functional theory in the Viennaab initiosimulation package (VASP).[36]We utilized the Perdew–Burke–Ernzerhof(PBE) exchange–correlation function in generalized gradient approximation (GGA)[37,38]by using plane wave basis set and projection augmented wave (PAW)[39]method.Moreover,functional was used with valence electrons of 5p66s25d2and 1s1and cutoff radii of 2.5 a.u.and 0.8 a.u.to deal with Hf and H atoms,respectively.The cutoff energy of 800 eV for the plane-wave basis expansion of the electronic wave functions and a densek-point sampling with the grid spacing less than 2π×0.03 ?A-1in the Brillouin zone were selected to ensure that all the enthalpy calculations are well converged to better than 1 meV/atom.The electron localization functions(ELF)[40,41]were also computed by using VASP with ELF diagrams plotted in Visualization for Electronic and STructural Analysis (VESTA).[42]For Bader charge transfer analysis, the Bader’s quantum theory of atoms in molecules analysis method[43]was utilized.The phonon dispersion were computed by using the PHONOPY code with the supercell and finite displacement method.[44,45]The electron–phonon coupling(EPC)were computed within the linear response theory through the QUANTUM ESPRESSO package[46]with a kinetic energy cutoff of 80 Ry (1 Ry=13.6056923 eV).In the first Brillouin zone, theq-point mesh of the electron–phonon interaction matrix elements adopted 4×4×4 for each considered structure.

    3.Results and discussion

    3.1.Crystal structure and structural phase transition

    Firstly,based on the CALYPSO method for crystal structure prediction with 1–6 formula units (f.u.) per simulation cell,seven low-energy candidate HfH2structures(Cmma,P4/nmm,I4/mmm,P-3m1,R-3m,Fm-3m, andP21/m) are predicted over a wide pressure range of 0 GPa–500 GPa.The crystal structures and structural parameters of the above seven low-energy structures under ambient pressure are summarized in Fig.S1 and Table S1 of supplementary information.A series of the earlier known HfH2structures (e.g.,Fm-3m,Cmma,P4/nmm, andI4/mmm)[47–51]is successfully replicated within a specific pressure range, which demonstrates the effectiveness of the CALYPSO method adopted in structure search of HfH2.To further clarify the high-pressure structural phase transition of HfH2, we plot the enthalpy–pressure curve (relative to the reference phaseI4/mmm) in Fig.1(a).As shown in Fig.1(a),the tetragonalI4/mmmphase is the most stable structure under ambient pressure, which is also the common ground-state configuration of the group IVB of dihydrides (HfH2, ZrH2, and TiH2)[25,47,52–54]and contrary to other transitionmetal dihydrides (VH2, NbH2, CrH2,CoH2)[14,49–51,55,56]whose ground-state configuration adopts the cubicFm-3mstructure.With the increase of pressure,theI4/mmmphase is no longer stable until the first phase transition occurs at 220.21 GPa.The orthorhombicCmmaphase becomes an energetically advantageous structure over the pressure range of 220.21 GPa–359.18 GPa, identical to the highpressure phase raised by Liuet al.[25]Above a higher pressure of 359.18 GPa,an extraordinary trigonalP-3m1 phase is the most energetically favorable and maintained at least up to 500 GPa.Hence,we can conclude that the phase transition sequence of HfH2under high pressure isI4/mmm →Cmma →P-3m1 with the respective transition pressures of 220.21 GPa and 359.18 GPa.This structural transformation can be further verified by the volume–pressure curve of HfH2under the pressure range of 0 GPa–500 GPa, as displayed in Fig.1(b).Herein, obvious volume collapses of 0.5% and 0.9% are uncovered at the transformation pressures of 220.21 GPa and 359.18 GPa, respectively.Subsequently, we focus our attention mainly on the novelP-3m1 crystal to show its particularly structural characteristics, electronic structure, and superconductivity while also discussing the similar properties for the previously proposedI4/mmmandCmmastructures.

    Fig.1.(a) Enthalpy–pressure curves of HfH2 with respect to the I4/mmm phase and(b)volume–pressure relations for HfH2.

    3.2.Structural characteristics and coordination number

    To elucidate the structural features and the coordination environments for theI4/mmmphase at 1 atm, theCmmaphase at 300 GPa,and theP-3m1 phase at 400 GPa,we depict their structure diagrams in Fig.2 and summarize the structural parameters in Table S2.Based on Table S2, the lattice constants ofI4/mmmstructure under ambient pressure area=b= 3.52890 ?A andc= 4.35240 ?A, which are highly consistent with the previous results (a=b= 3.48130 ?A,c=4.29830 ?A) derived by Liuet al.[25]TheI4/mmmstructure at atmospheric pressure is composed of an HfH8cuboid.In this HfH8cuboid,each Hf atom is located at the body center with eight equal Hf–H separation of 1.71 ?A, two types H–Hf–H angles of 48°and 80°, and the shortest H–H contact is 2.17 ?A.In theCmmaphase under 300 GPa, one Hf atom is surrounded by three types of H atoms with the distances of 1.75 ?A, 1.83 ?A, and 1.87 ?A, respectively, and the H–Hf–H angles vary between 60°and 90°.Besides, the shortest H–H contact is 1.81 ?A.These results show that the coordination number of Hf increases from 8 to 9 with the formation of H-sharing HfH9hendecahedrons.Compressed under 400 GPa, theP-3m1 structure has the lattice constants:a=b=2.62060 ?A,c=4.77939 ?A,where Hf atoms at the 2d Wyckoff sites are coordinated by three inequivalent H atoms at 2d site,1b site,and 1a site,respectively.The Hf–H separation varies from 1.68 ?A to 1.95 ?A and the shortest H–H separation is 1.57 ?A.In addition,the H–Hf–H angle varies between 51°and 125°.TheP-3m1 structure consists of strongly distorted 10-fold HfH10dodecahedron,which is rarely observed in other transition metal hydrides.It is noteworthy that H2or H3units are absent in three stable crystals as the shortest H–H bond is much longer than that of free H2molecule(0.75 ?A)or H3unit(<1.00 ?A).[57–60]Moreover,the H coordination number of Hf atom becomes larger with the increase of pressure,and its growth mode is to insert an H atom at the bottom of the polyhedron in turn, which is similar to the growth mode of TiO2and VO2.[61–63]Interestingly, it is evident that the sharing mechanism of polyhedral small units in HfH2varies with the coordination number.With the occurrence ofI4/mmm →Cmma →P-3m1 phase transition, it can be clearly noticed that theI4/mmmstructure with 8 coordination number is mainly edge sharing, and theCmmastructure with 9 coordination number is edge and surface sharing until theP-3m1 structure with 10 coordination numbers is essentially transformed into surface sharing.

    Fig.2.Crystal structures of three stable HfH2 phases ((a) I4/mmm phase at 1 atm, (b)Cmma phase at 300 GPa, and (c) P-3m1 phase at 400 GPa),together with metal coordination polyhedra,with blue and red spheres representing Hf and H atoms,respectively.

    3.3.Electronic properties and bonding features

    The electronic band structures and density of states(DOS)are calculated to investigate the electronic properties ofI4/mmmat 1 atm,Cmmaat 300 GPa andP-3m1 at 400 GPa of HfH2(see Fig.3).In the meantime, considering that the spin–orbit coupling (SOC) effect of the heavy Hf atoms can induce band splitting on the metallic band structure in the conventional superconductor, we compare the electron band structures with and without the SOC effect in Fig.S2.It is found that the SOC effect has little influence on electronic band dispersion near the Fermi level.Thus, the subsequent calculations are conducted without considering SOC.As displayed in Figs.3(a), 3(c), and 3(e), these three structures exhibit metallic characteristics because of the overlap between the conduction band and the valence band.This conclusion can also be confirmed by Figs.3(b), 3(d), and 3(f), for there is large total density of states at the Fermi level (EF).The region between two the peaks on both sides of the Fermi level is known as pseudogap and the narrow pseudogap system is corresponding to ionic bonding characteristic.It can be clearly found from Figs.3(b),3(d),and 3(f)that the pseudoenergy gaps of these three structures are very narrow,which reveals that HfH2is a typical ionic bonding material.In these three stable phases of HfH2crystal, the density of states at the Fermi level is mainly contributed by the Hf d state,which is similar to some early transition metal dihydrides(CrH2,[13]ZrH2,[47]VH2,[51]and TiH2[53]).Furthermore, theP-3m1 phase at 400 GPa possesses a largest Hf-d electronic density of states(0.963(state/eV)/f.u.) at Fermi level,which is much higher than that ofI4/mmm(0.323 (state/eV)/f.u.) at 1 atm andCmma(0.880(state/eV)/f.u.) at 300 GPa,which indicates that the phase transition significantly improves the Hf-d electronic density of states at Fermi level.Meanwhile, as exhibited in Fig.S3,the calculated Hf-d electronic DOSs ofP-3m1 structure at Fermi level under 360 GPa, 400 GPa, 450 GPa,and 500 GPa all present an increasing trend.

    Fig.3.Electronic band structures for(a)I4/mmm phase at 1 atm,(c)Cmma phase at 300 GPa and(e)P-3m1 phase at 400 GPa,and total and partial density of states for(b)I4/mmm phase at 1 atm,(d)Cmma phase at 300 GPa,and(f)P-3m1 phase at 400 GPa,of three stable HfH2 phases.

    Fig.4.The electron localization functions(ELF)of three stable HfH2 phases: (a)(001)plane for the I4/mmm phase at 1 atm,(b)(100)plane for the Cmma phase at 300 GPa,and(c)(010)plane for the P-3m1 phase at 400 GPa.

    Table 1.Calculated Bader charges of Hf and H atoms in three stable HfH2 phases,with δ representing the quantity of electric charge transferred from Hf atom to H atom.

    To further uncover the bonding nature in three HfH2configurations, the electron localization functions (ELFs) which can accurately describe the bond type are computed, and the results are depicted in Fig.4.Low ELF value (less than 0.5) corresponds to ionic bond or metal bond while higher ELF value(larger than 0.5)corresponds to covalent bond.As shown in Fig.4, the ELF values around the H atom in three HfH2phases are close to 1,while those of the Hf sites are quite low.Moreover,the ELF values between Hf and the nearest H atom are smaller than 0.5,demonstrating that no electrons are localized toward the neighboring Hf–H connection.Both aspects above illustrate that the Hf–H bonds in three HfH2crystals should be ionic.In addition, the ELF value toward the neighboring H–H connection displays no electron localization,thus stating that no covalent interaction exists for neighboring H–H.This conclusion is in excellent accordance with the H–H bond length analysis.To further disclose the bonding characteristics between Hf and H atoms for three HfH2phases, the Bader maded charge analysis,[43]and the results are shown in Table 1.For three stable HfH2phases,there are large amounts of charge transferring from Hf to H atoms,which further verifies the ionic characteristic of the Hf–H bond.This prediction of the charge transferring from Hf to H atoms can be demonstrated by the element electronegativity.Based on the periodic law,[64]the electronegativity value of the Hf element (1.3) is much smaller than that of the H element(2.2),demonstrating that the charge should transfer from Hf to H atoms.This ionic bonding characteristic can also be seen in VH2,[51]TaH4,[65]FeH6[66]YH6,[67]and CaH6.[9]However,the ionic characteristic for the H atom is contrary to that of many hydrogenrich compounds, such as InH3,[57]GeH4,[58]OsH6,[60]and RuH6,[68]where the H atoms are either bonded to the nearest H atoms to form an H2or H3unit,and/or covalently bonded toM(M=In,Ge,Os,and Ru)atoms to formM–H bonds.Overall,the analysis results of DOS,ELF,and Bader all reveal the ionic characteristic between Hf and H atoms.

    3.4.Mechanical properties and hardness

    The elastic constants of theI4/mmm,Cmma,andP-3m1 structures for HfH2under corresponding pressure are calculated with the identical strain–stress means.[69]The computed consequences above are listed in Table S3.At the same time,the values of shear modulusG, bulk elastic modulusB,B/G,Young’s modulusE,and Poisson’s ratioνof three stable HfH2structures can be derived from the calculated elastic constants on the basis of the Voigt–Reuss–Hill (VRH) method.[70]According to the mechanical stability criteria,[70]all three crystals satisfy mechanical stability under the corresponding pressure.Poisson’s ratio is a key physical quantity to describe the internal bonding property of the material.For the metallic material,the valueνis usually 0.33.[71]From Table S3,the values of Poisson’s ratioνfor the three structures are slightly larger than 0.33,which indicates that three stable HfH2phases should be metallic.In addition, to assess the values of Vickers hardness for three stable HfH2configurations, we compute their hardness values by using the empirical formula for material hardness prediction proposed by Tianet al.:[72]Hν=0.92K1.137G0.708,whereK=G/B.The calculation results are also summarized in Table S3.The hardness values ofI4/mmm,Cmma, andP-3m1 structures under corresponding pressures are 1.90 GPa,1.01 GPa,and 2.07 GPa,respectively.It should be noteworthy that the low hardness for HfH2may be related to the ionic properties between transition-metal and hydrogen atoms.[73]

    3.5.Dynamical properties and electron–phonon coupling

    To explore the dynamical stability ofI4/mmm,Cmma,andP-3m1,we have calculated their phonon dispersion curves and the projected phonon density of states (see Fig.5).As plotted in Fig.5 (left and middle), the phonon dispersion curves confirm the dynamical stabilities of these three structures,as evidenced by the absence of any imaginary frequency in the whole Brillouin zone.From Fig.5 (left and middle),the low-frequency bands come from the vibration of the Hf atoms while the high-frequency bands are mainly correlated with the vibration of the H atoms.This phenomenon should be ascribed to the much heavier atom mass of hafnium atom than hydrogen atom.

    Table 2.Calculated values of electron–phonon coupling parameters λ,electronic density of states at the Fermi level N(EF)(states/spin/Ry/unit cell), logarithmic average phonon frequency ωlog, and superconducting critical temperatures Tc of I4/mmm,Cmma, and P-3m1 at different pressures.

    Fig.5.Phonon dispersion curves (left), projected phonon density of states(middle), and Eliashberg spectral function α2F(ω)together with electron–phonon integral λ(ω)(right)of three stable HfH2 phases,for(a)I4/mmm at 1 atm,(b)Cmma at 300 GPa,and(c)P-3m1 at 500 GPa.

    Considering the metal behavior of three stable HfH2phases under high pressure, we calculate the values of their electron–phonon coupling(EPC)parameterλ,the logarithmic average phonon frequencyωlog,and electron density of states at Fermi levelN(EF) to predict their potential superconductivity.The superconducting temperature is estimated by using the Allen–Dynes modified McMillan equation to be

    Among them, the values of empirical constantμ*describing the Coulomb shielding effect are 0.10 and 0.13, respectively,as shown in Table 2.It can be found that theTcvalue always decreases as the value ofμ*increases.Although the predictedTcofI4/mmmis only 21 mK under ambient pressure,the estimatedTcvalue of theCmmaphase at 300 GPa is 3.931 K and the estimatedTcof theP-3m1 structure can reach 19.737 K under 500 GPa.Subsequently,we probe into the relationships between the pressure and the superconducting critical temperatureTcfor three stable HfH2phases, in order to reveal the internal reasons for the change of the superconducting critical temperatureTcof HfH2.Based on Table 2, it can be clearly seen that theTcvalues ofI4/mmmandCmmaare negatively correlated with the pressure.On the contrary,theTcofP-3m1 presents a positive correlation with the pressure,which is relatively rare in transition metal hydrides.The trends of electron–phonon coupling parameterλwith the pressure intuitively lead to the trends ofTcfor the three stable phases under pressure.ForP-3m1 phase with increasedTc,the calculated value of EPC parameterλis 0.744 at 360 GPa, 0.775 at 400 GPa,0.872 at 450 GPa, and 0.947 at 500 GPa, respectively, which emphasizes that the electron–phonon coupling strength ofP-3m1 is improved with the pressure increasing.To understand this coupling mechanism, the Eliashberg EPC spectral functionα2F(ω)and its integralλofI4/mmmat 1 atm,Cmmaat 300 GPa,andP-3m1 at 500 GPa are analyzed in Fig.5(right).The calculation shows that the low-frequency vibrations below 5 THz from the heavy Hf atoms contribute 86% of the totalλ,while the high-frequency vibrations(30 THz–40 THz)related to H atoms merely account for 14% of the totalλinI4/mmmphase.For theCmmaphase, low-frequency vibrations(below 10 THz)contribute 80%,and high-frequency vibrations(40 THz–80 THz)only contribute 20%of the totalλ.TheP-3m1 phase exhibits a similar trend,where the projected phonon density of states at frequency less than 12 THz is contributed by Hf atom vibrations, which makes contribution to the most (85%) of the electron–phonon coupling coefficientλ, as shown in Fig.5(right).These results highlight that the electron–phonon coupling in three stable HfH2structures are dominated by the low-frequency Hf atom vibrations, which can also be demonstrated by the obvious Hf-d electronic density of states at Fermi level.Therefore, the significantly improvedTcvalue of the high-pressure novelP-3m1 structure is probably due to the enhanced d-state of Hf atoms at Fermi level.Meanwhile, the increase of Hf-d electronic DOS with pressure growing can improve the electron–phonon coupling,which further leads theTcvalue ofP-3m1 phase to increase.

    4.Conclusions

    In summary,the stable phases of HfH2crystal within the pressure range of 0 GPa–500 GPa are determined by combining CALYPSO crystal structure prediction with first-principles calculations.The HfH2crystal transforms a structural phase transition sequence ofI4/mmm →Cmma →P-3m1 under 220.21 GPa and 359.18 GPa,respectively.Besides two known phases, namely,I4/mmmandCmma, an unexpected trigonalP-3m1 structure with 10-fold coordinated under high pressure is uncovered for the first time.Phonon dispersion curves and elastic constant calculations suggest that these three configurations are dynamically and mechanically stable.The consequences of electronic band structure and density of states show that three HfH2polymorphs have metallic properties.Further analysis on the electron localization function and Bader charge demonstrates that the HfH bond in three HfH2crystals should be ionic.In addition, the calculated superconducting critical temperatureTcofI4/mmmat 1 atm,Cmmaat 300 GPa, andP-3m1 at 500 GPa are 21 mK,3.931 K,and 19.737 K, respectively.Meanwhile, the pressure dependence of the superconducting critical temperature forP-3m1 phase exhibits a positive correlation trend,whileI4/mmmandCmmastructures show negative correlation trends.This exceptional phenomenon ofP-3m1 structure is mainly responsible for the stronger electron–phonon coupling which is dominated by Hfd orbits.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.11804031 and 11904297), the Scientific Research Project of Education Department of Hubei Province, China (Grant No.Q20191301), the Fundamental Research Funds for the Central Universities(Grant No.SWUKT22049), and the Chongqing Talent Plan for Young Top Notch Talents,China(Grant No.202005007).

    猜你喜歡
    李松
    Pressure-induced novel structure with graphene-like boron-layer in titanium monoboride
    美國(guó)GOES系列衛(wèi)星的發(fā)展
    將色狼送進(jìn)班房:職場(chǎng)“貢品”破釜沉舟
    老實(shí)得有點(diǎn)木訥的他,這次居然拿刀傷人,為什么?
    浩聲樂(lè)享家李松:體驗(yàn)感,是實(shí)體店最有價(jià)值的東西
    網(wǎng)絡(luò)作家成功秘訣:最?lèi)?ài)嬌妻橫刀立馬的威脅
    22年“小三”兩個(gè)娃:從“地下租客”到掃地出門(mén)
    幸福賭局
    李松、趙關(guān)云、梁化山、陳文角色設(shè)計(jì)作品
    有種親人叫前夫前妻
    分憂(yōu)(2017年2期)2017-01-07 14:03:12
    身体一侧抽搐| 免费一级毛片在线播放高清视频 | 捣出白浆h1v1| www.自偷自拍.com| 亚洲午夜精品一区,二区,三区| 久久国产亚洲av麻豆专区| 99热网站在线观看| 国产精华一区二区三区| 久久久久久久久久久久大奶| 天天添夜夜摸| 亚洲中文av在线| 亚洲精品粉嫩美女一区| 亚洲国产毛片av蜜桃av| 亚洲 国产 在线| 成人特级黄色片久久久久久久| 色老头精品视频在线观看| 高清欧美精品videossex| 成年人午夜在线观看视频| 超碰成人久久| 精品久久久精品久久久| 久久热在线av| 午夜成年电影在线免费观看| 欧美日韩亚洲国产一区二区在线观看 | 一区二区三区激情视频| 欧美性长视频在线观看| 亚洲午夜理论影院| 黄色a级毛片大全视频| 久久久久视频综合| 大香蕉久久成人网| 黄频高清免费视频| www.999成人在线观看| 亚洲第一av免费看| 亚洲 国产 在线| 一边摸一边做爽爽视频免费| 在线国产一区二区在线| av一本久久久久| 国产精品秋霞免费鲁丝片| 亚洲精华国产精华精| 亚洲精品粉嫩美女一区| 午夜影院日韩av| 亚洲中文字幕日韩| 天天躁日日躁夜夜躁夜夜| 最近最新中文字幕大全电影3 | 老汉色av国产亚洲站长工具| 国产xxxxx性猛交| 18禁观看日本| 亚洲专区国产一区二区| 亚洲va日本ⅴa欧美va伊人久久| 国产精品免费视频内射| 精品国产乱子伦一区二区三区| 久久久久久亚洲精品国产蜜桃av| 国产色视频综合| 国产有黄有色有爽视频| 久久久久精品人妻al黑| 80岁老熟妇乱子伦牲交| 中文字幕制服av| 女同久久另类99精品国产91| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕高清在线视频| 欧美久久黑人一区二区| 亚洲avbb在线观看| 久久精品国产99精品国产亚洲性色 | 男女免费视频国产| 成人免费观看视频高清| 国产深夜福利视频在线观看| 欧美 日韩 精品 国产| 国产精品1区2区在线观看. | 亚洲专区中文字幕在线| 麻豆乱淫一区二区| 欧美日韩av久久| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕高清在线视频| 怎么达到女性高潮| 精品国产乱子伦一区二区三区| 啦啦啦视频在线资源免费观看| 午夜久久久在线观看| 久久亚洲真实| 丝袜美腿诱惑在线| 国产一区二区激情短视频| 久久天堂一区二区三区四区| 人人妻,人人澡人人爽秒播| 麻豆乱淫一区二区| 日本黄色视频三级网站网址 | 久久久国产精品麻豆| 久久久水蜜桃国产精品网| 久久精品国产清高在天天线| 欧美在线黄色| 欧美av亚洲av综合av国产av| 18禁观看日本| 美女视频免费永久观看网站| 在线观看免费视频日本深夜| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲中文字幕日韩| 侵犯人妻中文字幕一二三四区| 又黄又粗又硬又大视频| 亚洲成人手机| 精品国产乱子伦一区二区三区| 人妻丰满熟妇av一区二区三区 | 亚洲午夜精品一区,二区,三区| 亚洲自偷自拍图片 自拍| av电影中文网址| 亚洲av成人一区二区三| 精品高清国产在线一区| 在线观看免费高清a一片| 人人妻人人添人人爽欧美一区卜| 欧美久久黑人一区二区| 丁香六月欧美| 中文字幕av电影在线播放| 免费观看精品视频网站| xxxhd国产人妻xxx| 久久国产精品人妻蜜桃| 久久热在线av| 久久热在线av| 制服人妻中文乱码| 国产精品永久免费网站| 正在播放国产对白刺激| 国产精品一区二区在线不卡| 高清av免费在线| 亚洲avbb在线观看| 法律面前人人平等表现在哪些方面| 美女 人体艺术 gogo| 午夜精品久久久久久毛片777| 国产av又大| 久久午夜亚洲精品久久| 青草久久国产| 亚洲五月天丁香| 最近最新免费中文字幕在线| 中亚洲国语对白在线视频| 免费看十八禁软件| 成人18禁在线播放| 国产精品一区二区在线不卡| 人人妻人人添人人爽欧美一区卜| 日日爽夜夜爽网站| 日日摸夜夜添夜夜添小说| 精品少妇久久久久久888优播| 午夜免费鲁丝| 啦啦啦在线免费观看视频4| av免费在线观看网站| 成人国产一区最新在线观看| 精品人妻在线不人妻| 亚洲国产毛片av蜜桃av| 国产不卡一卡二| 欧美黑人精品巨大| 一进一出好大好爽视频| 欧美黄色片欧美黄色片| 99精品欧美一区二区三区四区| 人人妻人人爽人人添夜夜欢视频| 国内毛片毛片毛片毛片毛片| 美女高潮喷水抽搐中文字幕| 欧美精品高潮呻吟av久久| 精品国产超薄肉色丝袜足j| 下体分泌物呈黄色| 天天躁日日躁夜夜躁夜夜| 国产激情欧美一区二区| 最近最新中文字幕大全电影3 | 1024香蕉在线观看| 十八禁高潮呻吟视频| 亚洲精品国产区一区二| 精品福利观看| 99国产精品一区二区三区| 午夜日韩欧美国产| 91老司机精品| 国产在线精品亚洲第一网站| 免费久久久久久久精品成人欧美视频| 老司机午夜十八禁免费视频| 亚洲人成电影免费在线| 免费观看a级毛片全部| 大香蕉久久成人网| 亚洲五月天丁香| 国产精品久久久久久人妻精品电影| 99精国产麻豆久久婷婷| 日韩三级视频一区二区三区| 人妻一区二区av| 精品乱码久久久久久99久播| 一进一出好大好爽视频| 精品一区二区三卡| 村上凉子中文字幕在线| 日韩制服丝袜自拍偷拍| 中文字幕制服av| 国产精品综合久久久久久久免费 | 亚洲国产毛片av蜜桃av| 自线自在国产av| 成人av一区二区三区在线看| 免费在线观看影片大全网站| 欧美黄色片欧美黄色片| 这个男人来自地球电影免费观看| 首页视频小说图片口味搜索| 人人妻人人添人人爽欧美一区卜| 亚洲精品国产区一区二| 巨乳人妻的诱惑在线观看| 国产欧美日韩精品亚洲av| 免费女性裸体啪啪无遮挡网站| 国产精华一区二区三区| 亚洲成a人片在线一区二区| 国产精品久久电影中文字幕 | 欧美精品亚洲一区二区| 欧美日韩亚洲高清精品| 精品国产一区二区三区四区第35| 国产免费av片在线观看野外av| 啦啦啦 在线观看视频| 久久国产精品大桥未久av| 丰满的人妻完整版| 午夜福利在线免费观看网站| 69av精品久久久久久| 精品国产乱码久久久久久男人| 性色av乱码一区二区三区2| 久久久国产精品麻豆| 免费观看人在逋| 亚洲人成电影观看| 国产精品秋霞免费鲁丝片| 国产片内射在线| 免费一级毛片在线播放高清视频 | 久久久国产精品麻豆| 电影成人av| 很黄的视频免费| 国产精品一区二区免费欧美| 高清欧美精品videossex| 丝袜在线中文字幕| 日韩欧美三级三区| 国产精品久久久久久人妻精品电影| 18禁裸乳无遮挡动漫免费视频| 亚洲欧洲精品一区二区精品久久久| 一级毛片精品| 国产一区二区三区视频了| 国产精品久久久人人做人人爽| 亚洲国产看品久久| 大型av网站在线播放| 麻豆av在线久日| 国产欧美日韩综合在线一区二区| 成熟少妇高潮喷水视频| 免费在线观看日本一区| 久久久久国产精品人妻aⅴ院 | 天天操日日干夜夜撸| 国产av又大| 窝窝影院91人妻| 在线观看免费视频日本深夜| 久久香蕉精品热| 久久人人97超碰香蕉20202| 日韩精品免费视频一区二区三区| 日本黄色日本黄色录像| 亚洲av熟女| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲一区高清亚洲精品| 成人影院久久| 男男h啪啪无遮挡| 在线十欧美十亚洲十日本专区| 国产亚洲精品久久久久久毛片 | 嫁个100分男人电影在线观看| e午夜精品久久久久久久| 久久影院123| 超碰成人久久| 欧美 日韩 精品 国产| 精品一区二区三卡| av有码第一页| 久久久久久久久久久久大奶| 国产麻豆69| 国产日韩一区二区三区精品不卡| 又黄又粗又硬又大视频| 国产成人欧美| 免费在线观看完整版高清| 久久性视频一级片| 最新美女视频免费是黄的| 好看av亚洲va欧美ⅴa在| 午夜两性在线视频| 乱人伦中国视频| 亚洲精品一二三| 亚洲欧美一区二区三区黑人| 别揉我奶头~嗯~啊~动态视频| 亚洲国产中文字幕在线视频| 人人妻人人添人人爽欧美一区卜| 亚洲午夜精品一区,二区,三区| www.自偷自拍.com| 亚洲,欧美精品.| 丝袜美腿诱惑在线| 麻豆国产av国片精品| svipshipincom国产片| 91在线观看av| 黄色 视频免费看| 国产免费av片在线观看野外av| 国产有黄有色有爽视频| 亚洲一卡2卡3卡4卡5卡精品中文| 正在播放国产对白刺激| 久久精品亚洲熟妇少妇任你| 伊人久久大香线蕉亚洲五| 精品乱码久久久久久99久播| 99国产精品一区二区蜜桃av | 国产亚洲精品久久久久久毛片 | 精品无人区乱码1区二区| 久久午夜综合久久蜜桃| 欧美激情久久久久久爽电影 | 在线观看日韩欧美| 亚洲一区高清亚洲精品| 岛国在线观看网站| 建设人人有责人人尽责人人享有的| 亚洲精品在线观看二区| 国产欧美日韩一区二区三| 日韩视频一区二区在线观看| 在线观看午夜福利视频| 99热国产这里只有精品6| 日韩欧美在线二视频 | 一a级毛片在线观看| 在线免费观看的www视频| 国产真人三级小视频在线观看| 成年人免费黄色播放视频| 男女免费视频国产| 亚洲熟女精品中文字幕| 在线av久久热| 国产99久久九九免费精品| 老司机深夜福利视频在线观看| 亚洲精品中文字幕在线视频| 99re在线观看精品视频| 视频区欧美日本亚洲| a在线观看视频网站| 操美女的视频在线观看| 亚洲国产欧美网| 国产精品影院久久| 俄罗斯特黄特色一大片| 色婷婷av一区二区三区视频| av国产精品久久久久影院| 激情视频va一区二区三区| 在线永久观看黄色视频| 日韩人妻精品一区2区三区| 老司机福利观看| 欧美精品啪啪一区二区三区| 亚洲国产精品sss在线观看 | 在线观看免费视频日本深夜| 午夜福利一区二区在线看| 欧美日韩成人在线一区二区| 国产aⅴ精品一区二区三区波| 国产99白浆流出| 99在线人妻在线中文字幕 | 午夜两性在线视频| 黄色女人牲交| 成年人黄色毛片网站| 日日爽夜夜爽网站| 亚洲av成人不卡在线观看播放网| 精品久久久久久久毛片微露脸| 亚洲成人国产一区在线观看| 亚洲国产精品一区二区三区在线| 美女扒开内裤让男人捅视频| 侵犯人妻中文字幕一二三四区| 欧美老熟妇乱子伦牲交| 制服诱惑二区| 中文字幕高清在线视频| 免费黄频网站在线观看国产| 日本a在线网址| 大片电影免费在线观看免费| 建设人人有责人人尽责人人享有的| 天堂√8在线中文| av片东京热男人的天堂| netflix在线观看网站| 日韩欧美国产一区二区入口| 国产有黄有色有爽视频| 欧美一级毛片孕妇| 曰老女人黄片| 少妇被粗大的猛进出69影院| 中文欧美无线码| 欧美最黄视频在线播放免费 | av一本久久久久| 亚洲全国av大片| 老鸭窝网址在线观看| 国精品久久久久久国模美| 波多野结衣av一区二区av| 超色免费av| xxx96com| 动漫黄色视频在线观看| videosex国产| 99热网站在线观看| 久久 成人 亚洲| 婷婷成人精品国产| 99在线人妻在线中文字幕 | 少妇 在线观看| 亚洲av美国av| av福利片在线| 精品卡一卡二卡四卡免费| 男女午夜视频在线观看| 久久人妻熟女aⅴ| 欧美日韩亚洲国产一区二区在线观看 | 日本wwww免费看| netflix在线观看网站| 在线视频色国产色| 精品福利永久在线观看| 国产片内射在线| 欧美日韩黄片免| 亚洲精品美女久久久久99蜜臀| tocl精华| 精品国产国语对白av| 在线观看一区二区三区激情| 日本a在线网址| 男女高潮啪啪啪动态图| 国产无遮挡羞羞视频在线观看| 99精品欧美一区二区三区四区| 成人手机av| 美女福利国产在线| 久久久国产欧美日韩av| 国产精品av久久久久免费| 日本撒尿小便嘘嘘汇集6| 欧美精品啪啪一区二区三区| 日韩欧美一区二区三区在线观看 | 多毛熟女@视频| 久久久久久免费高清国产稀缺| 中文字幕人妻丝袜一区二区| 男人操女人黄网站| 黄片播放在线免费| 天天躁夜夜躁狠狠躁躁| 国产一区二区三区在线臀色熟女 | 桃红色精品国产亚洲av| 国精品久久久久久国模美| 涩涩av久久男人的天堂| 欧美精品人与动牲交sv欧美| 9色porny在线观看| 欧美+亚洲+日韩+国产| 免费高清在线观看日韩| 高清av免费在线| 精品一区二区三区视频在线观看免费 | 777米奇影视久久| 亚洲专区国产一区二区| 亚洲熟妇熟女久久| 少妇的丰满在线观看| 黑人巨大精品欧美一区二区mp4| 日韩三级视频一区二区三区| 在线av久久热| 欧美成人午夜精品| 女人久久www免费人成看片| 久久久久国产一级毛片高清牌| 国产精品99久久99久久久不卡| 亚洲av美国av| 色婷婷av一区二区三区视频| 国产精品1区2区在线观看. | 欧美亚洲 丝袜 人妻 在线| av国产精品久久久久影院| 国产男靠女视频免费网站| 色精品久久人妻99蜜桃| 一级毛片精品| 久久久国产欧美日韩av| 国产黄色免费在线视频| 一级毛片高清免费大全| 亚洲国产看品久久| 亚洲熟女精品中文字幕| 亚洲欧美日韩另类电影网站| 少妇被粗大的猛进出69影院| 99riav亚洲国产免费| 啦啦啦在线免费观看视频4| 午夜影院日韩av| 久久久久久久久久久久大奶| 丰满迷人的少妇在线观看| 亚洲国产欧美日韩在线播放| 女性生殖器流出的白浆| 成人国语在线视频| 九色亚洲精品在线播放| 男女床上黄色一级片免费看| 三级毛片av免费| 建设人人有责人人尽责人人享有的| 久久精品亚洲熟妇少妇任你| 久久精品国产亚洲av香蕉五月 | 9热在线视频观看99| 两个人免费观看高清视频| 女警被强在线播放| 欧美 亚洲 国产 日韩一| 99精品欧美一区二区三区四区| 国产成人欧美在线观看 | 免费人成视频x8x8入口观看| 50天的宝宝边吃奶边哭怎么回事| 国产日韩欧美亚洲二区| 久久精品91无色码中文字幕| 色综合婷婷激情| 国产欧美日韩一区二区三| 性少妇av在线| 亚洲欧美精品综合一区二区三区| 国产免费现黄频在线看| www.精华液| 人人妻,人人澡人人爽秒播| 亚洲五月婷婷丁香| 91九色精品人成在线观看| 99re6热这里在线精品视频| 一进一出抽搐动态| 亚洲专区国产一区二区| 日韩视频一区二区在线观看| 免费一级毛片在线播放高清视频 | 91九色精品人成在线观看| 91麻豆精品激情在线观看国产 | 亚洲精品国产一区二区精华液| 国产在线一区二区三区精| tocl精华| 麻豆乱淫一区二区| 69av精品久久久久久| 亚洲一区二区三区不卡视频| 深夜精品福利| 欧美成人免费av一区二区三区 | 男女床上黄色一级片免费看| 大码成人一级视频| 18禁观看日本| 久久精品91无色码中文字幕| 一本综合久久免费| 亚洲精品美女久久av网站| √禁漫天堂资源中文www| 韩国精品一区二区三区| 亚洲精品自拍成人| 美国免费a级毛片| 国产欧美亚洲国产| 色尼玛亚洲综合影院| 黑人巨大精品欧美一区二区mp4| 国产伦人伦偷精品视频| 免费在线观看日本一区| 在线永久观看黄色视频| 久久精品国产99精品国产亚洲性色 | 老熟妇乱子伦视频在线观看| 亚洲性夜色夜夜综合| 怎么达到女性高潮| 国产精品久久久av美女十八| 18禁黄网站禁片午夜丰满| 久久久精品区二区三区| 欧美精品人与动牲交sv欧美| 香蕉久久夜色| 国产精品一区二区在线观看99| 怎么达到女性高潮| 精品国产美女av久久久久小说| 十分钟在线观看高清视频www| 每晚都被弄得嗷嗷叫到高潮| 在线观看午夜福利视频| 岛国在线观看网站| 俄罗斯特黄特色一大片| 免费一级毛片在线播放高清视频 | 久久影院123| 日本欧美视频一区| x7x7x7水蜜桃| 黄网站色视频无遮挡免费观看| 少妇裸体淫交视频免费看高清 | 欧美日韩黄片免| 日韩大码丰满熟妇| 黄色成人免费大全| 性色av乱码一区二区三区2| 丝袜美足系列| 19禁男女啪啪无遮挡网站| xxx96com| 午夜福利一区二区在线看| 777米奇影视久久| 国产野战对白在线观看| 99香蕉大伊视频| 妹子高潮喷水视频| 高清毛片免费观看视频网站 | 在线观看免费午夜福利视频| 日韩中文字幕欧美一区二区| 母亲3免费完整高清在线观看| 午夜福利影视在线免费观看| 一个人免费在线观看的高清视频| 午夜免费鲁丝| 高清视频免费观看一区二区| 欧美大码av| 午夜免费观看网址| 高清在线国产一区| 久久久精品免费免费高清| 亚洲第一欧美日韩一区二区三区| 国产日韩欧美亚洲二区| 国产精品秋霞免费鲁丝片| ponron亚洲| 精品熟女少妇八av免费久了| 老司机亚洲免费影院| 中文字幕人妻丝袜制服| 亚洲欧美一区二区三区久久| 19禁男女啪啪无遮挡网站| 高潮久久久久久久久久久不卡| 国产91精品成人一区二区三区| www.熟女人妻精品国产| 国产av一区二区精品久久| 欧美中文综合在线视频| 久久狼人影院| 国产精品免费大片| 国产主播在线观看一区二区| 校园春色视频在线观看| 国产精品香港三级国产av潘金莲| 老司机福利观看| 国产不卡一卡二| 校园春色视频在线观看| 一a级毛片在线观看| 免费久久久久久久精品成人欧美视频| 国产一区在线观看成人免费| 色综合欧美亚洲国产小说| 巨乳人妻的诱惑在线观看| 亚洲第一欧美日韩一区二区三区| 国产精品久久久av美女十八| 亚洲第一欧美日韩一区二区三区| 国产主播在线观看一区二区| 淫妇啪啪啪对白视频| 国产精品国产av在线观看| 午夜成年电影在线免费观看| 国产精品 欧美亚洲| 久久久国产欧美日韩av| 免费不卡黄色视频| 伊人久久大香线蕉亚洲五| 欧美人与性动交α欧美精品济南到| 一边摸一边做爽爽视频免费| 国产黄色免费在线视频| 又紧又爽又黄一区二区| 欧美激情高清一区二区三区| 国产高清国产精品国产三级| 热99久久久久精品小说推荐| 欧美国产精品一级二级三级| 精品一区二区三卡| 人妻久久中文字幕网| 日韩 欧美 亚洲 中文字幕| 最新美女视频免费是黄的| 五月开心婷婷网| 在线国产一区二区在线| 国产av精品麻豆| 黑人操中国人逼视频| 丰满的人妻完整版| av天堂久久9| 99热只有精品国产| 精品一区二区三区av网在线观看| 亚洲男人天堂网一区| 黄色a级毛片大全视频| 99在线人妻在线中文字幕 | 免费少妇av软件| 国产精品免费大片|