畢景歆 吳夢嘉 張躍武 張春梅
摘? ? 要:【目的】分析棗和酸棗的抗壞血酸(ascorbic acid,AsA)積累差異特點。【方法】以金絲4號和泰山酸棗分別作為棗和酸棗的代表,研究不同發(fā)育階段的AsA積累差異;以26個棗品種和42個不同酸棗類型為試材,測定棗和酸棗群體AsA含量,分析其中5個棗和5個酸棗不同類型果實的轉(zhuǎn)錄組數(shù)據(jù),解析影響棗和酸棗抗壞血酸積累的關(guān)鍵基因;參考前期完成的白熟期和半紅期棗果實在中度干旱脅迫和重度脅迫后果實轉(zhuǎn)錄組數(shù)據(jù),研究果實干旱脅迫后,響應(yīng)干旱逆境脅迫的AsA代謝關(guān)鍵基因?!窘Y(jié)果】棗和酸棗各時期AsA含量積累曲線一致,均表現(xiàn)為白熟期達到最高,成熟期逐漸下降,且酸棗除幼果期外各時期AsA含量均高于栽培棗;棗和酸棗群體AsA含量測定表明,酸棗AsA平均含量顯著高于栽培棗,且酸棗群體AsA含量變異豐富,而栽培棗AsA含量分布相對集中。熱圖聚類表明,基因LGalDH、MIOX4、GME-2、VTC2在酸棗中表達比在棗中豐富,為影響棗和酸棗AsA積累差異的重要候選基因;而AsA氧化基因APX1、APX2、APXT在栽培棗果實中更豐富。加權(quán)基因共表達網(wǎng)絡(luò)分析(WGCNA)表明,AsA積累趨勢和有機酸積累趨勢一致,推測酸性環(huán)境影響AsA的穩(wěn)定性。干旱脅迫后轉(zhuǎn)錄組數(shù)據(jù)表明,白熟期和半紅期的棗果實在受到逆境脅迫后,均表現(xiàn)為MDAR5、MIOX4、MIOX1表達水平顯著上調(diào),推測肌醇代謝通路及再循環(huán)通路對干旱脅迫發(fā)揮重要作用?!窘Y(jié)論】明確了棗和酸棗AsA積累特點,解析了影響棗和酸棗AsA積累差異的候選關(guān)鍵基因,提出酸性環(huán)境影響AsA積累的假設(shè),明確了響應(yīng)干旱脅迫的關(guān)鍵代謝通路;該研究為棗抗性品質(zhì)育種、酸棗資源的挖掘利用提供分子基礎(chǔ)。
關(guān)鍵詞:棗;酸棗;抗壞血酸;干旱脅迫
中圖分類號:S665.1 文獻標志碼:A 文章編號:1009-9980(2023)09-1823-09
收稿日期:2023-04-03 接受日期:2023-05-17
基金項目:山東省自然科學基金(ZR2019BC029);中國博士后科學基金(2019M662416)
作者簡介:畢景歆,女,在讀碩士研究生,研究方向:林學。Tel:15564801652,E-mail:2211272439@qq.com
*通信作者Author for correspondence. Tel:15053810855,E-mail:zhangcm2017@sdau.edu.cn
Analysis of ascorbic acid in jujube/sour jujube and identification of key function genes
BI Jingxin1, WU Mengjia1, ZHANG Yuewu2, ZHANG Chunmei1*
(1College of Forestry, Shandong Agricultural University/State Forestry and Grasslan Administration Key Laboratory of Silvicultre in Downstream Areas of the Yellow River, Taian 271018, Shandong, China; 2Weishan County Liangcheng Comprehensive Agricultural Service Center, Weishan 272100, Shandong, China)
Abstract: 【Objective】 Ascorbic acid (AsA) plays a positive role in cell activity and antioxidant function, and is also necessary for human body. Jujube and sour jujube fruits are rich in AsA, but they differ in AsA content. In this paper, we measured and compared ascorbic acid content in jujube and sour jujube, clarified AsA accumulation pattern in jujube and sour jujube, analyzed the transcriptome data of different varieties of jujube and sour jujube fruits and drought-treated jujube fruits, and identified the key functional genes affecting AsA accumulation. 【Methods】 The AsA content at young fruit stage, white ripening stage, half red stage and full red stage was measured in Jinsi No. 4 and Taishan Sour Jujube as the representative variety of jujube and sour jujube respectively, and their AsA accumulation patterns at different developmental stages were compared. The AsA content in 26 jujube and 42 sour jujube varieties was determined, and the differences in AsA content among the genotypes were compared. AsA was determined with a high performance liquid chromatography (HPLC) equipped with an Agilnet C18 column and an UV DetectorL-2400. With the transcriptome data of fruits of 5 jujube and 5 sour jujube varieties obtained previously as reference, the key genes affecting the accumulation of AsA in jujube and sour jujube fruits were analyzed. The contents of organic acids, ascorbic acid and soluble sugars determined previously were used as quality traits, and the weighted gene co-expression network analysis (WGCNA) was performed on 30 transcriptome data of the 10 different samples, so as to investigate the relationship between AsA accumulation and organic acid content. Based on the transcriptome data previously obtained from jujube fruit at white ripening stage and half red stage exposed to moderate drought stress and severe stress, the key genes involving response of AsA metabolism to drought stress were studied. 【Results】 The accumulation trend of AsA in jujube and sour jujube fruits was the same. AsA was lowest at the young fruit stage, gradually increased during the development process and reached the highest at the white ripening stage, and then decreased slightly as the fruit matured. AsA content in sour jujube was higher than in jujube in all periods except for the young fruit stage. The average AsA content of cultivated jujube was significantly lower than that of sour jujube, and the range of AsA content in cultivated jujubes was relatively narrow, while that in sour jujubes population was relatively large. Cluster analysis of transcriptome data of fruits of the 10 jujube and sour jujube varieties showed that the expression levels of LGalDH, MIOX4, GME-2 and VTC2 were higher in sour jujubes than in cultivated jujubes, while the expression levels of genes GME-1 and MDAR5 and AsA oxidation genes APX1, APX2 and APXT were higher in cultivated jujubes. WGCNA showed that the ascorbic acid content and organic acid content were positively correlated with the gene expression in the bright green module. Further analysis of the genes in the module showed that they included calcium-transporting ATPase 1, calcium-transporting ATPase 3, one vacuole membrane proton pump called ATPase 10, and one NADP-dependent malolase. It was speculated that acidity influenced the stability of AsA. Transcriptome data from drought stress experiment showed that in the control fruits the expression levels of l-galactose pathway genes LGalDH, GME-2 and LGalLDH and recycle genes MDAR4 and DHAR1 were higher in the white ripening stage than in the half red stage. Although the key genes that affect AsA accumulation in the white ripening stage and the half red stages were not exactly the same, the expression levels of MDAR5, MIOX4 and MIOX1 were significantly increased after drought stress. It was speculated that the myo-inositol pathway and recycling pathway played an important role in drought stress. 【Conclusion】 AsA was the lowest in the young fruit stage, reached the highest level in the white ripening stage, and gradually declined in the ripening stage. The average AsA content in sour jujubes was significantly higher than in cultivated jujubes. The key genes associated with the difference in AsA accumulation between jujubes and sour jujubes included LGalDH, MIOX4, GME-2 and VTC2. It was hypothesized that acidic environment affects AsA accumulation, and the key metabolic pathways in response to drought stress might be myo-inositol pathway and recycling pathway.
Key words: Jujube; Sour jujube; Ascorbic acid; Drought stress
棗(Ziziphus jujuba Mill.)是鼠李科(Rhamnaceae)棗屬(Ziziphus)中栽培規(guī)模最大、經(jīng)濟和生態(tài)價值最高的樹種,也是原產(chǎn)我國的重要果樹之一[1]。我國是棗的原產(chǎn)地,也是最大的干、鮮棗生產(chǎn)國和消費國。中國棗種植面積約200萬hm2,產(chǎn)量900萬t以上,年產(chǎn)值約1000億元,產(chǎn)業(yè)從事人員約有2000萬人[2-3]。棗富含礦物質(zhì)包括鈣、鋅、鐵等[4],而且含有多種維生素包括維生素A(Va)、維生素B(Vb)、維生素C(Vc)、維生素E(Ve)等,其中Vc,學名抗壞血酸(ascorbate acid,AsA),含量(w,后同)最高,可達800 mg·100 g-1,僅次于刺梨,高于蘋果、梨、桃等水果[5],是人類AsA的重要來源[6]。
棗由酸棗(Ziziphus jujuba Mill. var. spinose)演化而來,馴化過程中糖含量急劇增高(含糖量>干質(zhì)量的70%,鮮質(zhì)量的25%)[7-8],酸味逐漸降低。酸棗作為棗的野生類型,其味極酸而甜度低。研究證明,野生酸棗中AsA含量較高,每100 g鮮果中含量一般為135~1400 mg,約為紅棗的2~3倍、柑橘的20~30倍,而且86.3%可被人體利用,是所有水果中利用率最高的[9]。因此,研究棗和酸棗AsA積累特點,解析影響二者抗壞血酸含量的分子機制,將對棗和酸棗中抗壞血酸資源的開發(fā)具有很高應(yīng)用價值。
AsA的積累由合成和再循環(huán)共同決定,合成有4條途徑,包括半乳糖途徑(L-galactose pathway)[10]、肌醇途徑(myo-inositol pathway)[11]、古洛糖途徑(L-gulose pathway)[12]及半乳糖醛酸途徑(D-galacturonate pathway)[13]。其中,L-半乳糖途徑是多種植物組織或器官中AsA生物合成最主要的一條途徑,也是高等植物中發(fā)現(xiàn)的第一條合成AsA的途徑,該途徑中所涉及的所有相關(guān)酶的基因全部被鑒定[14]。除AsA生物合成之外,AsA再循環(huán)也有助于植物中AsA的積累[15-16]。在AsA的氧化再循環(huán)途徑中,抗壞血酸氧化酶(ascorbate oxidase,AO)和抗壞血酸過氧化物酶(ascorbate peroxidase,APX)將還原型抗壞血酸氧化為脫氫抗壞血酸,單脫氫抗壞血酸還原酶(monodehydroascorbate reductase,MDAR)和脫氫抗壞血酸還原酶(dehydroascorbate reductase,DHAR)又將氧化型抗壞血酸還原為L-抗壞血酸,即還原型。
關(guān)于棗樹抗壞血酸積累的研究,Liu等[5]通過對冬棗全基因組組裝、測序及注釋分析,鑒定了2種AsA的合成途徑,L-半乳糖途徑和肌醇途徑,L-半乳糖途徑是AsA生物合成的主要途徑,MDAR有助于棗中AsA的再生。前期筆者通過對棗不同發(fā)育階段的AsA積累特點進行研究,闡釋了影響棗果實AsA積累的關(guān)鍵基因[17]。然而關(guān)于AsA在棗和酸棗群體果實的積累差異特點仍是未知;關(guān)于AsA合成、降解和再循環(huán)基因在棗和酸棗果實積累的貢獻也不清楚。本研究中,通過分析棗和酸棗群體抗壞血酸積累特點,并進行轉(zhuǎn)錄組測序篩選差異基因,從酸棗中選擇高抗壞血酸種質(zhì),為棗的遺傳改良提供了寶貴的基因資源,也為AsA代謝基因的抗性機制提供參考。
1 材料和方法
1.1 植物材料
本研究所用研究材料為26個棗品種和42個酸棗類型,其中棗樣品采自山東省果樹研究棗資源圃,每個品種選取3株長勢一致且生長健壯的植株為樣樹。酸棗分別采自泰安泰山、金牛山和濟南南部山區(qū)。以金絲4號和泰山酸棗分別作為棗和酸棗的代表,采集幼果、白熟、半紅、全紅4個時期的果實,研究不同發(fā)育階段的AsA差異。樣品采集要求為每組樣品包含3份生物學重復(fù),采集后立即用液氮冰凍處理,帶回實驗室放于-80 ℃冰箱備用。
1.2 棗和酸棗果實中抗壞血酸含量的測定
抗壞血酸的提取參照張春梅[18]的方法,采用超高效液相色譜法,略有改動。在液氮環(huán)境下將3~5個酸棗破碎混勻,取混樣,剩余樣品放-80 ℃冰箱保存。酸棗和棗混樣果實樣品各稱取1 g左右,用液氮研磨成粉狀,加入2 mL KH2PO4研磨提取液,放置于冰上,冰浴研磨至勻漿,倒入提前準備好的10 mL離心管中,洗3次研缽,每次加入2 mL KH2PO4研磨提取液。低溫超聲20 min(功率:250 W),轉(zhuǎn)至4 ℃ 6000 r·min-1離心20 min取上清液,果肉殘渣振蕩懸浮后,加入3 mL KH2PO4,2次超聲、離心、合并2次上清液,定容至10 mL,上清液用0.22 μm濾膜過濾后待測。
抗壞血酸檢測條件:色譜柱Agilnet C18(4.6 mm×250 mm)及保護柱;柱溫30 ℃;檢測器UV DetectorL-2400檢測器;檢測波長230 nm;檢測溫度30 ℃;流動相0.01 mol·L-1 KH2PO4溶液,用磷酸調(diào)pH到2.08,經(jīng)0.22 μm濾膜過濾后超聲脫氣30 min;流速1 mL·min-1;進樣體積10 μL。對每個樣本進行3次技術(shù)重復(fù),酸濃度通過與標準曲線的值進行比較來計算。
1.3 棗果實干旱處理
選取健康且生長一致(約1.2 m高)的2年生由同一棵樹無性繁殖而來的金絲4號盆栽棗樹,在中國山東省果樹研究所棗樹種質(zhì)資源苗圃(36.15°N,117.07°E)的避雨棚內(nèi)生長。當對照的土壤含水量接近田間持水量的60%時,所有灌溉處理同時開始。中度干旱組的樹木用對照組一半的水灌溉。重度干旱組的樹木灌溉的水量是中度干旱組的一半。所有試驗地塊均隨機分布,采用相同的耕作、施肥和蟲害防治措施。在2組棗樹上分別摘取白熟期和半紅期果實,每個試驗設(shè)置3次生物學重復(fù)。采集混樣后立即用液氮處理,于-80 ℃冰箱冷凍備用。
1.4 轉(zhuǎn)錄組數(shù)據(jù)分析
參考前期完成的5個棗和5個酸棗不同類型成熟果實的轉(zhuǎn)錄組數(shù)據(jù)(https://dataview.ncbi.nlm.nih.gov/?archive=bioproject,PRJNA822549),分析影響棗和酸棗抗壞血酸積累的關(guān)鍵基因。以上數(shù)據(jù)以駿棗二代基因組數(shù)據(jù)基因序列以及注釋文件作為數(shù)據(jù)庫,使用Htseq-count軟件獲取每個樣本中比對到蛋白編碼基因上的reads數(shù),cufflinks軟件來計算蛋白編碼基因的表達量FPKM值。利用DESeq軟件對各個樣本基因的counts數(shù)目進行標準化處理(采用basemean值來估算表達量),計算差異倍數(shù),并采用負二項分布檢驗的方式(negative binomial distribution,NB)對reads數(shù)進行差異顯著性檢驗,最終根據(jù)差異倍數(shù)及差異顯著性檢驗結(jié)果來篩選差異蛋白編碼基因。使用矩陣數(shù)據(jù)文件進行熱圖繪制,對矩陣數(shù)據(jù)進行篩選、歸一化和聚類處理[19]。從表達數(shù)據(jù)中挖掘基因模塊(module)信息的算法,進行加權(quán)基因共表達網(wǎng)絡(luò)分析(WGCNA)[20]。對于果實響應(yīng)干旱脅迫后,AsA代謝關(guān)鍵基因的響應(yīng)研究,參考了筆者課題組前期完成的對白熟期和半紅期棗果實中度干旱脅迫和重度脅迫后果實轉(zhuǎn)錄組測序數(shù)據(jù)(PRJNA730384,https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA730384)[21]。
2 結(jié)果與分析
2.1 棗和酸棗不同成熟階段抗壞血酸含量分析
分別測定金絲4號和泰山酸棗的幼果期、白熟期、半紅期和全紅期果實的抗壞血酸含量。如圖1所示,AsA含量在幼果期最低,其中棗為215 mg·100 g-1,酸棗為110 mg·100 g-1,隨著果實的發(fā)育,AsA含量在白熟期急劇升高并達到最高,酸棗達到1049 mg·100 g-1,棗果實達到611 mg·100 g-1。在果實成熟階段,AsA積累量有下降趨勢,推測與果實的成熟氧化有關(guān),不過在成熟階段仍保持了酸棗AsA積累量高于棗的趨勢。在全紅期,泰山酸棗AsA積累量為765 mg·100 g-1,約為金絲4號AsA積累量(313 mg·100 g-1)的2.5倍。
2.2 棗和酸棗群體抗壞血酸含量差異分析
如圖2、圖3所示,26個棗品種AsA含量的分布范圍為29~328 mg·100 g-1,平均含量為145 mg·100 g-1,42個酸棗的AsA含量的分布范圍為55~1029 mg·100 g-1,平均含量為359 mg·100 g-1。酸棗AsA平均含量為栽培棗的2倍以上。由圖2可知,棗的四分位數(shù)差值為0.955,酸棗的四分位數(shù)差值為3.238,該結(jié)果表明,棗群體的AsA含量分布相對集中;酸棗群體的AsA含量相對分散,其多樣性更高,變異范圍更廣。棗和酸棗群體抗壞血酸的研究可為酸棗在棗馴化過程中的AsA積累及品種選育提供理論依據(jù)。
2.3 轉(zhuǎn)錄組分析篩選棗果實抗壞血酸積累代謝相關(guān)差異表達基因
為探索棗和酸棗的AsA含量差異的遺傳基礎(chǔ),筆者對完成AsA測定的5個酸棗和5個棗成熟期果實轉(zhuǎn)錄組數(shù)據(jù)進行分析。結(jié)合AsA的合成和代謝通路,篩選到24個AsA合成和代謝相關(guān)基因,包括與L-半乳糖途徑有關(guān)的1個GDP-甘露糖焦磷酸化酶(GMP)、2個GDP-甘露糖-3,5-差向異構(gòu)酶(GME)、2個GDP-L-半乳糖-1-磷酸磷酸酶(VTC)、1個L-半乳糖-1磷酸磷酸酶(GPP)、1個L-半乳糖脫氫酶(LGalDH)、1個L-半乳糖酸-1,4-內(nèi)酯脫氫酶(GLDH),與AsA降解有關(guān)的7個過氧化物酶(APX)、1個AO、2個MDAR、2個DHAR,與肌醇途徑有關(guān)的4個肌醇加氧酶(MIOX)。其中一些基因的相對表達量FPKM<5.0,認為該基因基本不表達,不在圖中呈現(xiàn)。熱圖聚類結(jié)果(圖4)表明,基因LGalDH、MIOX4、GME-2、VTC2在酸棗中表達比在棗中豐富,盡管基因GME-1、MDAR5在栽培棗中表達水平較高,其AsA氧化基因APX1、APX2、APXT在栽培棗果實中也更豐富。
另外,為了探明影響AsA積累的液泡環(huán)境,筆者以前期完成測定的有機酸、抗壞血酸及可溶性糖含量為性狀,對10個不同樣本的30個轉(zhuǎn)錄組數(shù)據(jù)進行加權(quán)基因共表達網(wǎng)絡(luò)分析,共獲得13個不同表達趨勢的基因模塊。如圖5顯示,在亮綠色模塊(lightgreen)中,抗壞血酸含量及有機酸含量均與該模塊的基因表達趨勢呈現(xiàn)正相關(guān)(p<0.001)。進一步分析該模塊的基因類型,結(jié)果表明該模塊共包括104個基因。其中與有機酸積累相關(guān)的包含2個鈣轉(zhuǎn)運質(zhì)子泵(Calcum-transporting ATPase 1和3)、1個液泡膜質(zhì)子泵ATPase 10及1個NADP依賴的蘋果酸酶。
2.4 抗壞血酸代謝通路對干旱脅迫的響應(yīng)
為了探明AsA與抗逆性的關(guān)系,分別對前期白熟期和半紅期的盆栽棗進行中度和重度干旱處理,對棗果實進行轉(zhuǎn)錄組分析,篩選到20個具有較高表達水平(FPKM>5.0)的AsA合成和代謝相關(guān)基因(圖6)。由于棗白熟期抗壞血酸含量高于半紅期(圖1),其半乳糖合成途徑相關(guān)基因 LGalDH、GME-2、LGalLDH及再合成基因MDAR4、DHAR1表達水平都高于半紅期。
在棗白熟期果實中,隨著干旱程度的增加,基因GME-1、GPP2、LGalLDH、MDAR5、DHAR1、MIOX1、MIOX4的表達量逐漸升高,以促進AsA的合成,基因AAO和APX2上調(diào)可通過氧化抗壞血酸清除活性氧自由基等增強抗旱性;基因LGalDH、APX1、APX6、VTC2受脅迫后表達量逐漸下降。在棗半紅期果實中,基因MDAR5、MIOX4、VTC2、MIOX1表達量干旱處理時均比對照高;而DHAR1、GME-1對干旱脅迫敏感,表達水平急劇下降。盡管白熟期和半紅期影響AsA積累的關(guān)鍵基因不同,響應(yīng)干旱的基因也不完全相同,但受到逆境脅迫后,均表現(xiàn)為MDAR5、MIOX4、MIOX1表達水平顯著上調(diào),推測肌醇代謝通路及再循環(huán)通路對干旱的脅迫發(fā)揮重要作用。此外,受干旱脅迫后,白熟期果實響應(yīng)干旱脅迫的基因數(shù)目明顯多于半紅期,說明該時期的抗性強于半紅期。
3 討 論
3.1 棗和酸棗AsA積累差異特點
棗和酸棗不同成熟階段ASA積累趨勢表明,棗和酸棗各時期AsA含量積累曲線一致,均表現(xiàn)為白熟期達到最高,成熟期逐漸下降,與Zhang等[17]結(jié)果一致,且酸棗各時期AsA含量均高于栽培棗。棗和酸棗群體AsA含量測定表明,酸棗AsA平均含量顯著高于棗,且酸棗群體AsA含量變異豐富,而栽培棗AsA含量分布相對集中,進一步說明酸棗遺傳多樣性高于栽培類型。AsA在植物抗逆性方面發(fā)揮重要作用,筆者推測在栽培化過程中,抗性降低,其相關(guān)代謝產(chǎn)物含量也降低。Zhang等[22]研究表明栽培棗在馴化過程中與抗性相關(guān)的代謝產(chǎn)物含量有降低趨勢。
AsA在酸性條件下更穩(wěn)定,筆者前期研究表明,酸棗群體果實pH顯著低于栽培棗群體[23]。WGCNA分析也表明不同樣品中的AsA含量和有機酸含量及有機酸積累相關(guān)基因的表達具有顯著相關(guān)性。為此筆者推測其酸性環(huán)境增強了酸棗還原型AsA的穩(wěn)定性。此外,野生種比栽培種抗性強,在馴化過程中,可能出現(xiàn)抗性相關(guān)基因代謝減弱。
3.2 影響棗和酸棗抗壞血酸積累差異的關(guān)鍵基因
不同水果AsA的合成途徑相差迥異。如葡萄、西紅柿、辣椒等具有3條AsA的合成途徑[24-26]。在棗果實AsA積累過程中,L-半乳糖和肌醇途徑均發(fā)揮重要作用。本研究結(jié)果表明,L-半乳糖的LGalDH、GME-2、VTC2基因,以及肌醇途徑的MIOX4基因在酸棗中表達比在棗中更為豐富,推測上述2條代謝途徑均對棗和酸棗的有機酸積累差異做出貢獻。
不同水果同一代謝途徑對AsA積累發(fā)揮作用的關(guān)鍵基因不同。Imai等[27]通過Northern印跡雜交分析研究桃果實發(fā)育過程中生物合成基因的表達與AsA濃度之間的關(guān)系,發(fā)現(xiàn)L-半乳糖途徑中的基因GMP、GME、GGP、GPP、LGalDH和LGalLDH的表達水平在果實發(fā)育的前期都很高,并且與總AsA濃度呈正相關(guān),證明這6個L-半乳糖途徑相關(guān)基因在桃果實發(fā)育過程中對AsA形成起到作用。對刺梨和獼猴桃AsA的研究發(fā)現(xiàn),L-半乳糖途徑中關(guān)鍵酶L-半乳糖脫氫酶(GalDH)基因的酶活性與果實中AsA的積累速率呈極顯著正相關(guān)[28]。Fenech等[29]發(fā)現(xiàn)只有在含有GGP的情況下,單獨或組合的L-半乳糖途徑的酶在煙草中的瞬時表達才會增加抗壞血酸濃度,證明了GGP是關(guān)鍵基因。本研究表明L-半乳糖合成途徑相關(guān)基因LGalDH、GME-2、LGalLDH、GPP2,以及再合成基因MDHAR4、DHAR1均對AsA的積累發(fā)揮重要作用。
3.3 抗壞血酸響應(yīng)逆境脅迫
土壤干旱是最有害的非生物脅迫之一,限制植物生長。干旱脅迫會誘發(fā)離子脅迫、滲透脅迫和次生脅迫(尤其是活性氧ROS)。ROS是對植物最有害的次生脅迫,它會破壞細胞結(jié)構(gòu),AsA作為一種重要的抗氧化劑,可以對ROS起到清除作用,從而增強植物抗逆性[30]。同時,AsA合成途徑的基因和還原途徑的基因表達量增加,以抵抗干旱對植物體造成的不利影響。在大豆抗旱性研究中,GalDH受逆境脅迫后,表達速率升高,而VTC1則受干旱脅迫抑制[31],上述基因與棗白熟期受逆境后結(jié)果一致。在轉(zhuǎn)基因擬南芥中,干旱脅迫后,VTC1、GalDH和MIOX4表達水平顯著上調(diào)[32]。而在棗果實半紅期也表現(xiàn)為VTC和MIOX4表達上調(diào)。前期研究表明棗果實成熟期肌醇代謝途徑對AsA的積累發(fā)揮重要作用,在本研究中MIOX1和MDAR5于半紅期表達量較高。說明不同物種或植物不同發(fā)育階段,受逆境脅迫后響應(yīng)AsA調(diào)控的關(guān)鍵基因并不完全一致。在本研究中,干旱脅迫后,白熟期的棗果實比半紅期擁有更多的差異代謝基因,與植物衰老后抗逆性下降或生物代謝活動下降有關(guān)。此外,在白熟期和半紅期果實中,棗果實受到逆境脅迫后,均表現(xiàn)為MDAR5、MIOX4、MIOX1表達顯著上調(diào),說明醇途徑及再還原途徑在棗果實干旱脅迫后發(fā)揮重要作用。
4 結(jié) 論
棗和酸棗各時期AsA含量均表現(xiàn)為白熟期達到最高,成熟期逐漸下降,且酸棗AsA含量除幼果期外各時期均高于栽培棗,酸棗AsA平均含量顯著高于栽培棗,且酸棗群體AsA含量變異豐富,基因LGalDH、MIOX4、GME-2、VTC2為影響棗和酸棗AsA積累差異的重要候選基因,說明肌醇代謝通路及再循環(huán)通路對干旱的脅迫發(fā)揮重要作用。
參考文獻References:
[1] 曲澤洲,王永蕙. 中國果樹志:棗卷[M]. 北京:中國林業(yè)出版社,1993.
QU Zezhou,WANG Yonghui. Fruit trees record of China:Chinese jujube[M]. Beijing:China Forestry Publishing House,1993.
[2] 李新崗. 中國棗產(chǎn)業(yè)[M]. 北京:中國林業(yè)出版社,2015.
LI Xingang. Chinese jujube industry[M]. Beijing:China Forestry Publishing House,2015.
[3] 國家林業(yè)局. 中國林業(yè)統(tǒng)計年鑒-2016[M]. 北京:中國林業(yè)出版社,2017.
The State Forestry Administration of the Peoples Republic of China. China forestry statistical yearbook-2016[M]. Beijing:China Forestry Publishing House,2017.
[4] 趙愛玲,薛曉芳,任海燕,王永康,李登科,李毅. 棗種質(zhì)資源有機酸組分及含量特征分析[J]. 西北農(nóng)業(yè)學報,2021,30(8):1185-1198.
ZHAO Ailing,XUE Xiaofang,REN Haiyan,WANG Yongkang,LI Dengke,LI Yi. Analysis of composition and content characteristics of organic acids in jujube germplasm[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2021,30(8):1185-1198.
[5] LIU M J,ZHAO J,CAI Q L,LIU G C,WANG J R,ZHAO Z H,LIU P,DAI L,YAN G J,WANG W J,LI X S,CHEN Y,SUN Y D,LIU Z G,LIN M J,XIAO J,CHEN Y Y,LI X F,WU B,MA Y,JIAN J B,YANG W,YUAN Z,SUN X C,WEI Y L,YU L L,ZHANG C,LIAO S G,HE R J,GUANG X M,WANG Z,ZHANG Y Y,LUO L H. The complex jujube genome provides insights into fruit tree biology[J]. Nature Communications,2014,5:5315.
[6] 王麗燕,高宏,薄存嬌. 棗發(fā)育過程中抗壞血酸合成機制研究[J]. 德州學院學報,2019,35(2):98-102.
WANG Liyan,GAO Hong,BO Cunjiao. Study on the synthesis mechanism of ascorbic acid during the development of jujube[J]. Journal of Dezhou University,2019,35(2):98-102.
[7] GUO S,DUAN J A,QIAN D W,TANG Y P,WU D W,SU S L,WANG H Q,ZHAO Y A. Content variations of triterpenic acid,nucleoside,nucleobase,and sugar in jujube (Ziziphus jujuba) fruit during ripening[J]. Food Chemistry,2015,167:468-474.
[8] 趙愛玲,薛曉芳,王永康,隋串玲,任海燕,李登科. 棗果實糖酸組分特點及不同發(fā)育階段含量的變化[J]. 園藝學報,2016,43(6):1175-1185.
ZHAO Ailing,XUE Xiaofang,WANG Yongkang,SUI Chuanling,REN Haiyan,LI Dengke. The sugars and organic acids composition in fruits of different Chinese jujube cultivars of different development stages[J]. Acta Horticulturae Sinica,2016,43(6):1175-1185.
[9] 劉孟軍,汪民. 中國棗種質(zhì)資源[M]. 北京:中國林業(yè)出版社,2009.
LIU Mengjun,WANG Min. Germplasm resources of Chinese jujube[M]. Beijing:China Forestry Publishing House,2009.
[10] WHEELER G L,JONES M A,SMIRNOFF N. The biosynthetic pathway of vitamin C in higher plants[J]. Nature,1998,393(6683):365-369.
[11] LORENCE A,CHEVONE B I,MENDES P,NESSLER C L. Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis[J]. Plant Physiology,2004,134(3):1200-1205.
[12] WOLUCKA B A,VAN MONTAGU M. GDP-mannose 3,5-epimerase forms GDP-L-gulose,a putative intermediate for the de novo biosynthesis of vitamin C in plants[J]. The Journal of Biological Chemistry,2003,278(48):47483-47490.
[13] AGIUS F,GONZ?LEZ-LAMOTHE R,CABALLERO J L,MU?OZ-BLANCO J,BOTELLA M A,VALPUESTA V. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase[J]. Nature Biotechnology,2003,21(2):177-181.
[14] 安華明,陳力耕,樊衛(wèi)國,胡西琴. 高等植物中維生素C的功能、合成及代謝研究進展[J]. 植物學通報,2004,39(5):608-617.
AN Huaming,CHEN Ligeng,F(xiàn)AN Weiguo,HU Xiqin. Advances in research on function,biosynthesis and metabolism of ascorbic acid in higher plants[J]. Chinese Bulletin of Botany,2004,39(5):608-617.
[15] CHEN Z,YOUNG T E,LING J,CHANG S C,GALLIE D R. Increasing vitamin C content of plants through enhanced ascorbate recycling[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(6):3525-3530.
[16] WANG Z N,XIAO Y,CHEN W S,TANG K X,ZHANG L. Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis[J]. Journal of Integrative Plant Biology,2010,52(4):400-409.
[17] ZHANG C M,HUANG J,LI X G. Transcriptomic analysis reveals the metabolic mechanism of L-ascorbic acid in Ziziphus jujuba Mill.[J]. Frontiers in Plant Science,2016,7:122.
[18] 張春梅. 棗糖酸代謝及其馴化的分子機制研究[D]. 楊凌:西北農(nóng)林科技大學,2016.
ZHANG Chunmei. Molecular mechanism related to the metabolism of sugar,acid and domestication for Ziziphus Jujuba Mill.[D]. Yangling:Northwest A & F University,2016.
[19] BECKER R,RICHARD A. The new S language[M]. New York:Wadsworth & Brooks/Cole Advanced Books & Software,1988.
[20] LANGFELDER P,HORVATH S. WGCNA:An R package for weighted correlation network analysis[J]. BMC Bioinformatics,2008,9:559.
[21] DONG X C,TANG H X,ZHANG Q,ZHANG C M,WANG Z T. Transcriptomic analyses provide new insights into jujube fruit quality affected by water deficit stress[J]. Scientia Horticulturae,2022,291:110558.
[22] ZHANG Z,SHI Q Q,WANG B,MA A M,WANG Y K,XUE Q T,SHEN B Q,HAMAILA H,TANG T,QI X Q,F(xiàn)ERNIE A R,LUO J,LI X G. Jujube metabolome selection determined the edible properties acquired during domestication[J]. The Plant Journal,2022,109(5):1116-1133.
[23] ZHANG C M,GENG Y Q,LIU H X,WU M J,BI J X,WANG Z T,DONG X C,LI X G. Low-acidity ALUMINUM-DEPENDENT MALATE TRANSPORTER4 genotype determines malate content in cultivated jujube[J]. Plant Physiology,2023,191(1):414-427.
[24] MELINO V J,SOOLE K L,F(xiàn)ORD C M. Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries[J]. BMC Plant Biology,2009,9(1):145.
[25] BADEJO A A,WADA K,GAO Y S,MARUTA T,SAWA Y,SHIGEOKA S,ISHIKAWA T. Translocation and the alternative D-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the D-mannose/L-galactose pathway[J]. Journal of Experimental Botany,2012,63(1):229-239.
[26] AL?S E,RODRIGO M J,ZACAR?AS L. Transcriptomic analysis of genes involved in the biosynthesis,recycling and degradation of L-ascorbic acid in pepper fruits (Capsicum annuum L.)[J]. Plant Science,2013,207:2-11.
[27] IMAI T,BAN Y,TERAKAMI S,YAMAMOTO T,MORIGUCHI T. L-Ascorbate biosynthesis in peach:Cloning of six L-galactose pathway-related genes and their expression during peach fruit development[J]. Physiologia Plantarum,2009,136(2):139-149.
[28] 張慶田,范書田,艾軍,秦紅艷. 軟棗獼猴桃L-半乳糖內(nèi)酯脫氫酶基因的克隆及原核表達分析[J]. 山東農(nóng)業(yè)科學,2019,51(11):1-7.
ZHANG Qingtian,F(xiàn)AN Shutian,AI Jun,QIN Hongyan. Cloning and prokaryotic expression analysis of L-galactono-1,4-lactone dehydrogenase in Actinidia arguta[J]. Shandong Agricultural Sciences,2019,51(11):1-7.
[29] FENECH M,AMORIM-SILVA V,DEL VALLE A E,ARNAUD D,RUIZ-LOPEZ N,CASTILLO A G,SMIRNOFF N,BOTELLA M A. The role of GDP-L-galactose phosphorylase in the control of ascorbate biosynthesis[J]. Plant Physiology,2021,185(4):1574-1594.
[30] BROAD R C,BONNEAU J P,HELLENS R P,JOHNSON A A T. Manipulation of ascorbate biosynthetic,recycling,and regulatory pathways for improved abiotic stress tolerance in plants[J]. International Journal of Molecular Sciences,2020,21(5):1790.
[31] SEMINARIO A,SONG L,ZULET A,NGUYEN H T,GONZ?LEZ E M,LARRAINZAR E. Drought stress causes a reduction in the biosynthesis of ascorbic acid in soybean plants[J]. Frontiers in Plant Science,2017,8:1042.
[32] ZHU L,GUO J S,ZHU J,ZHOU C. Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis[J]. Plant Physiology and Biochemistry,2014,75:24-35.