蔣儂輝 向旭 鐘云 朱慧莉 劉偉 肖志丹
摘? ? 要:【目的】探究特早熟與早熟荔枝果實揮發(fā)性成分特征及差異,為荔枝栽培、育種、加工等提供參考依據(jù)?!痉椒ā炕陧斂展滔辔⑤腿。℉S-SPEM)與氣相色譜質(zhì)譜(GC-MS)聯(lián)用技術(shù),系統(tǒng)地分析了6個特早熟與早熟荔枝種質(zhì)成熟果實的揮發(fā)性化合物,并運用多元統(tǒng)計方法比較了這兩類種質(zhì)揮發(fā)性組分的差異?!窘Y(jié)果】共鑒定出103種揮發(fā)性組分,10種為共有的化合物、34種為各種質(zhì)的特有化合物,以單萜類、醇類、醛酮類、酯類及倍半萜為主要成分,其中特早熟種質(zhì)的揮發(fā)性物質(zhì)種類以醇類、醛酮類及酯類為主,早熟種質(zhì)揮發(fā)性物質(zhì)則以萜類(單萜及倍半萜)及醇類為主。運用OPLS-DA方法獲得上述特早熟-早熟組間的差異代謝物39個,其中下調(diào)的化合物包括異戊醇、正辛醇、異戊醛、反-2-辛烯醛、乙酸乙酯、3-甲基-3-丁烯醇乙酸酯、乙酸芐酯、戊酸芐酯、苯甲酸異戊酯、α-篳澄茄油烯、α-古巴烯、異戊酸、十四烷,上調(diào)的化合物包括α-蒎烯、月桂烯、α-松油烯、鄰傘花烴、(+)-檸檬烯、羅勒烯、(E)-Β-羅勒烯、γ-萜品烯、萜品油烯、別羅勒烯、對-薄荷-1,5,8-三烯、芳樟醇、β-香茅醇甲醚、對傘花烴-8-醇、蒎烯-10-醇、α-松油醇、橙花醇甲醚、香茅醇、異香葉醇、β-檸檬醛、香葉醇、乙酸香葉酯、(E)-β-金合歡烯、1,3-環(huán)己二烯、α-姜黃烯、α-姜烯,這些差異代謝產(chǎn)物結(jié)合各種質(zhì)特有的化合物可作為區(qū)分上述特早熟-早熟種質(zhì)的特征性揮發(fā)性化合物。結(jié)合香氣活度值(OAV)篩選出對6個特早熟和早熟荔枝種質(zhì)香氣具有貢獻的化合物35種,以香葉醇的OAV值最高;發(fā)現(xiàn)1-辛烯-3-醇、乙醛、正己醛、壬醛、左旋玫瑰醚、香葉醇、青葉醛為6個特早熟、早熟荔枝種質(zhì)所共有的香氣化合物,其中左旋玫瑰醚、異戊醇、乙酸乙酯、壬醛及1-辛烯-3-醇是特早熟種質(zhì)三月紅、香蜜早和大新荔共有的特征香氣成分,而月桂烯、香葉醇、壬醛、鄰傘花烴及1-辛烯-3-醇是早熟種質(zhì)水東、妃子笑、白糖罌共有的特征香氣成分。通過香氣特征分析發(fā)現(xiàn)特早熟種質(zhì)香型以果香為主,花香、青植香為輔,早熟種質(zhì)香型以花香為主,果香、青植香為輔?!窘Y(jié)論】綜上所述,特早熟及早熟荔枝種質(zhì)揮發(fā)性代謝物具有豐富的多樣性,不同熟性及不同種質(zhì)荔枝果實間的揮發(fā)性成分及香氣成分存在顯著差異,揮發(fā)性化合物可作為鑒定不同荔枝種質(zhì)的指標之一。
關(guān)鍵詞:荔枝;特早熟;早熟;揮發(fā)性物質(zhì);香氣特征
中圖分類號:S667.1 文獻標志碼:A 文章編號:1009-9980(2023)09-1915-17
收稿日期:2023-04-07 接受日期:2023-05-29
基金項目:荔枝產(chǎn)業(yè)技術(shù)體系創(chuàng)新團隊建設(shè)項目(2023KJ107);廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究基金項目(2020A1515010356);廣東省農(nóng)村科技特派員駐鎮(zhèn)幫鎮(zhèn)扶村項目(KTP20210307);廣州市農(nóng)村科技特派員項目(20212100044)
作者簡介:蔣儂輝,女,副研究員,研究方向:果樹栽培育種與功能成分評價研究。Tel:18620630848,E-mail:jiangnonghui2002@163.com
Identification of volatile compounds and analysis of aroma characteristics in litchi fruits of 6 special-early maturing and early maturing germplasms
JIANG Nonghui, XIANG Xu, ZHONG Yun, ZHU Huili, LIU Wei, XIAO Zhidan
(Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture Rural Affairs/Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, Guangdong, China)
Abstract: 【Objective】 Litchi germplasm resources are very important for litchi breeding, scientific research, and production. Compared with mid and late maturing germplasms, special-early maturing and early maturing lychee germplasm have smaller proportion of planting area and as maller less number of varieties due to their sour and astringent taste. However, due to the early maturity trait, they still have a significant place in the market. Volatile substances affect the flavor quality of fruits. Terpenes are extremely important volatile substances, among them monoterpenes and sesquiterpene have special smell and widely exist in plants. The volatile components are important sources of litchi flavor and resistance. However, there have been a few reports on special-early maturing, early maturing germplasm and wild germplasm of litchi. The purpose of this experiment was to explore the characteristics and differences of volatile components in the fruits of special-early maturing and early maturing litchi, and to provide a reference basis for litchi cultivation, breeding, and processing. 【Methods】 6 accessions of litchi germplasm were selected and divided into special-early maturing group and early maturing group, namely Xiangmizao, Sanyuehong and Daxinli were in the special-early maturing group, and Feizixiao, Shuidong and Baitangyin in the early maturing group. The volatile compounds in mature fruits were systematically analyzed using headspace solid-phase microextraction (HS-SPEM) combined with gas chromatography-mass spectrometry (GC-MS). Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to predict the stability and reliability of the model. The multivariate statistical analysis was used to screen differential metabolites; Hierarchical clustering analysis was used to analyze the metabolites of each group, and the difference of volatile components between the special-early maturing and early maturing germplasm was compared. 【Results】 A total of 103 volatile components were identified, of them the monoterpenes, alcohols, aldehyde ketones and sesquiterpene were the main components. The alcohols, aldehyde ketones and lipids were the main volatile components of the special-early germplasm, while the terpenoids (monoterpenes and sesquiterpene) and alcohols were the main volatile components of the early germplasm; Feizixiao and Shuidong had the highest cumulative content of volatile compounds, while Baitangyin, Sanyuehong, Xiangmizao, and Daxinlihad had lower content. It was discovered that 10 volatile components were common compounds (ethanol, 1-octen-3-ol, acetaldehyde, hexanal, ethanol, 1-octen-3-ol, acetaldehyde, hexanal, trans-2-Hexen, 1-nonanal, linalool, citronellol, geraniol, (-)-rose oxide) for all the germplasms and 34 compounds were unique compounds to each of the germplasms. Using the OPLS-DA method, 39 differential metabolites were obtained between the special-early maturing group and the early maturing group, among them the downregulated compounds included 3-Methyl-1-butanol, 1-Octanol, Isovaleraldehyde, (E)-2-Octenal, Ethyl Acetate, 3-methylbut-3-enyl acetate, Benzyl acetate, Benzyl valerate, Isoamyl benzoate, α-Cubebene, α-Copaene, Isovaleric acid, Tetradecane, the upregulated compounds included α-Pinene, Myrcene, α-Terpinene, o-Cymene, (+)-Dipentene, Ocimene, β-trans-Ocimene, γ-Terpinen, Terpinolene, Allocimene B, p-Mentha-1, 5, 8-triene, Linalool, β-Citronellol methyl ether, 2-(4-Methylphenyl) propan-2-ol, Pinane-10-ol, α-Terpineol, Nerol methyl ether, Citronellol, iso-Geraniol, β-Citral, Geraniol, Geranyl acetate, (E)-beta-Farnesene, ar-Curcumen, α-curcumene, α-Zingiberene. These differential metabolites combined with specific compounds of different germplasms could be employed as characteristic volatile compounds to distinguish the special-early maturing and early maturing germplasm. Based on the aroma activity value (OAV), 35 compounds contributing to the aroma of 6 litchi germplasm were screened, including 5 alcohols, 9 aldehydes, 3 lipids, 6 monoterpenes, 10 monoterpene oxides, and 2 sulfides. The main compounds were monoterpenes and aldehydes with geraniol having the highest OAV value; 18 key aroma components also obtained: geraniol, dimethyl trisulfide, myrcene, 3-methyl-1-butanol, iso-Geraniol, 1-octen-3-ol, (-)-rose oxide, ethyl acetate, hexanal, 1-hexanol, citronellol, 1-nonanal, isovaleraldehyde, o-cymene, acetaldehyde, phenethyl alcohol, dimethyl disulfide, and linalool, but there were significant differences among different germplasms. 1-octen-3-ol, acetaldehyde, hexanal, 1-Nonanal, (-)-rose oxide, iso-Geraniol and trans-2-hexen were the common aroma compounds in the 6 lychee germplasms, while (-)-rose oxid, 3-Methyl-1-butanol, ethyl acetate, 1-nonanal, and 1-octen-3-ol were key aroma components common in the 3 special-early maturing lychee germplasms, and myrcene, geraniol, 1-nonanal, o-cymene and 1-octen-3-ol were key aroma components common in the 3 early maturing lychee germplasms. Through analysis of aroma characteristics, it was found that six litchi germplasms mainly contained 10 aroma types: floral, fruity, green plant, citrus, woody, and green fruit. In addition, some germplasms also had a small amount of vanilla, cream, nut, and sulfur-containing vegetable flavors; The aroma of the special-early maturing germplasm was mainly fruity, supplemented by floral and green plant aromas. The aroma of the early maturing germplasms was mainly floral type, supplemented by fruity and green plant aromas. 【Conclusion】 In summary, the volatile metabolites of the special-early maturing and early maturing litchi germplasms had rich diversity. There were significant differences in the volatile and aroma components in litchi fruits with different maturity, and volatile compounds could be used as indicators for identifying different litchi germplasms.
Key words: Litchi; Special-early maturing; Early maturing; Volatile compounds; Aroma characteristics
荔枝(Litchi chinensis Sonn.)屬典型的亞熱帶常綠果樹,果色鮮艷、香味濃郁,富含揮發(fā)性物質(zhì)。中國是荔枝原產(chǎn)地,栽培歷史可追溯到2300多年前,目前產(chǎn)量和面積均居世界之首,且種質(zhì)資源極為豐富[1];荔枝種質(zhì)資源是進行荔枝育種、科研和生產(chǎn)的重要物質(zhì)基礎(chǔ)。相對于中晚熟種質(zhì)而言,特早熟及早熟荔枝種質(zhì)由于口感偏酸澀而種植面積占比偏小,品種數(shù)量也較少,但因成熟期早(特早熟種質(zhì)一般在4月下旬到5月中旬,早熟種質(zhì)一般在5月中旬至6月上旬),能夠搶占市場先機,早熟、特早熟種質(zhì)仍擁有相當重要的市場地位[2]。妃子笑、水東和白糖罌是早熟栽培種的典型代表,三月紅、香蜜早是特早熟栽培種的典型代表。香蜜早與三月紅成熟期接近,食用品質(zhì)優(yōu)于三月紅,但一直以來未被發(fā)掘利用。
在植物生長發(fā)育過程中,揮發(fā)性物質(zhì)扮演著極為重要的角色,因具有揮發(fā)性和芳香味而賦予植物特殊的香氣,影響果實香味品質(zhì);同時在傳粉、植物防御、調(diào)節(jié)植物生長發(fā)育等方面產(chǎn)生重要影響[3-4],對植物進化有著重要的意義。隨著我國果樹產(chǎn)業(yè)迅猛發(fā)展,消費者更加關(guān)注果品的風(fēng)味品質(zhì)。萜類化合物是極為重要的揮發(fā)性物質(zhì),其中的單萜類和倍半萜類物質(zhì)多有特殊氣味,廣泛存在于植物體內(nèi),是天然來源的揮發(fā)性化合物。研究者已就荔枝品種[5]、不同組織部位中的果皮[6]、果核與內(nèi)膜[7]、葉片和果肉[8-10]進行了揮發(fā)性物質(zhì)組成分析,發(fā)現(xiàn)荔枝富含萜烯類揮發(fā)性代謝物,具有較高的營養(yǎng)價值,但研究材料多集中于中晚熟品種,迄今對荔枝不同種質(zhì)特別是早熟、特早熟及野生荔枝果實中揮發(fā)性物質(zhì)種類、含量及構(gòu)成尚缺乏系統(tǒng)的比較研究。故開展特早熟、早熟荔枝果實香氣品質(zhì)的研究,有利于更全面了解荔枝種質(zhì)果實特點并促進香氣品質(zhì)的開發(fā)。
筆者在本研究中采用頂空固相微萃取(HS-SPEM)、氣相色譜質(zhì)譜(GC-MS)聯(lián)用技術(shù),對6種早熟、特早熟荔枝種質(zhì)的成熟果肉的揮發(fā)性物質(zhì)進行比較分析與鑒定,以期為荔枝種質(zhì)輔助鑒定、育種、栽培及生產(chǎn)加工提供依據(jù)。
1 材料和方法
1.1 材料
供試驗材料的6個荔枝種質(zhì)分別為特早熟的香蜜早、三月紅和大新荔,早熟的妃子笑、水東和白糖罌。每個種質(zhì)選3株,從每株樹冠邊緣的東、南、西、北方向各選取20個成熟(成熟度為八九成)的無損傷且大小相近的果實。樣品收集后即刻運到實驗室進行分析測定。表1為采集的荔枝種質(zhì)樣品信息。
1.2 主要儀器與試劑
7890B/7697A氣相色譜-質(zhì)譜(GC-MS)聯(lián)用儀(Agilent公司,USA),固相微萃取手動進樣器、50/30 μm DVB/CAR/PDMS固相纖維萃取頭(Supelco公司,USA),ME204分析天平(METTLER公司,瑞士)。正構(gòu)烷烴混標(C7-C30),上海Sigma-Aldrich公司。
1.3 方法
樣品制備:游離揮發(fā)性化合物的提取和測定參照王志群等[11]的方法并加以改動。每個樣品分別取大小均勻的20 個果實,去皮后稱取果肉50 g,勻漿后取2 g左右果肉漿液置于15 mL頂空微萃取瓶,加入內(nèi)標物5 μL(正戊醇,質(zhì)量濃度為162.2 mg·L-1),飽和NaCl溶液2 mL,密封后平衡15 min。固相微萃?。⊿PME):將裝有50/30 μm DVB/CAR/PDMS萃取頭(實驗前老化5 min)的SPME手持器透過瓶蓋的橡皮塞插入頂空微萃取瓶,于液面上空吸附40 min,萃取溫度60 ℃。萃取完成后迅速將萃取頭放入GC-MS前端進樣口,推出萃取頭進行熱脫附3 min,同時啟動儀器采集數(shù)據(jù)。
GC條件:采用HP-5MS毛細管色譜柱(30.00 m×0.25 mm,0.25 μm),載氣為高純氦氣(純度>99.999%),進樣口溫度250 ℃,柱流速0.8 mL·min-1,不分流進樣。程序升溫:初始溫度50 ℃保持1 min,以3 ℃·min-1升至120 ℃,保持1 min,再以10 ℃·min-1升至190 ℃,保持1 min,最后以20 ℃·min-1升至260 ℃,保持1 min。MS條件:電子電離源,離子源溫度230 ℃,電子能量70 eV,四極桿溫度150 ℃,掃描質(zhì)量范圍(m/z)35~400。
1.4 數(shù)據(jù)處理
定性和半定量分析:根據(jù)GC-MS 分析得到總離子流色譜圖,采用NIST 17數(shù)據(jù)庫檢索(匹配度≥80%)結(jié)合保留指數(shù)(RI),分別對各峰所代表的揮發(fā)性物質(zhì)的化學(xué)結(jié)構(gòu)和名稱加以確認?;衔锖扛爬▋?nèi)標法計算,含量(w)(?g·kg-1)=(單峰面積/內(nèi)標峰面積)×內(nèi)標物含量。每樣品3次重復(fù)。將正構(gòu)烷烴C7-C30在同樣的頂空和氣相色譜質(zhì)譜條件下進樣,根據(jù)C7-C30正構(gòu)烷烴混標物的保留時間,計算未知化合物的保留指數(shù)(RI)。
1.4.1? ? 香氣強度(odor-activity values,OAVs)與香氣類型? ? OAV是揮發(fā)性組分的濃度與其香氣閾值的比值[12],香氣類型與揮發(fā)性成分類型劃分參照Zhang等[13]的方法。
1.4.2? ? 多元統(tǒng)計分析方法? ? 采用主成分分析(principal component analysis,PCA)、正交偏最小二乘判別分析(orthogonal partial least squares discriminant analysis,OPLS-DA)預(yù)測模型的穩(wěn)定性和可靠性[14]。采用多元統(tǒng)計分析(VIP值)、一維統(tǒng)計分析(p值)和差異倍數(shù)(FC值)等方法進行差異代謝物篩選,以VIP>1、p<0.05、log2FC≥2或log2FC≤0.5的代謝物作為差異代謝物;采用層次聚類法對各組代謝產(chǎn)物進行聚類分析。
結(jié)果采用(平均值±標準差)表示,在MetaboAnalyst、邁維云網(wǎng)絡(luò)平臺進行PCA、聚類分析和OPLS-DA多元統(tǒng)計分析和繪圖,采用IBM SPSS Statistics 25進行顯著性差異分析(Duncan檢驗)。
2 結(jié)果與分析
2.1 揮發(fā)性物質(zhì)的定性、定量分析
通過對揮發(fā)性成分的總離子流圖(圖1-A)的分析以及各峰經(jīng)譜庫檢索定性與歸類,共檢測到103種化合物,各化合物的保留指數(shù)、香氣閾值[15]以及在不同種質(zhì)中的含量等信息見表2。以單萜類數(shù)量最多,達40種,包含13種單萜烯和27種單帖氧化物,占檢出總數(shù)的38.8%;其次是倍半萜類,為21種,占檢出總數(shù)的20.4%;醇類、醛酮類和酯類分別為12種、13種和10種,分別占檢出總數(shù)的11.65%、12.62%及9.70%;其他化合物檢測出數(shù)較少,如硫化物4種、酸類1種、烷烴2種(圖1-B)。
從不同類型揮發(fā)物總含量(圖1-C)可知,單萜類化合物總含量最高,為20.54 mg·kg-1,占總揮發(fā)物含量的48.74%;其中單萜氧化物達40.43%、單萜烯為8.3%;其次是醇類,含量為12.09 mg·kg-1,占總揮發(fā)物含量的28.70%;然后是醛類,含量為5.68 mg·kg-1,占總揮發(fā)物含量的13.48%;另外,倍半萜的數(shù)量較多,不過含量僅占2.05%??梢妴屋祁悺⒋碱?、醛酮類及倍半萜是特早熟-早熟系列荔枝種質(zhì)的主要揮發(fā)性組分。
分析各種質(zhì)的揮發(fā)性化合物的構(gòu)成,發(fā)現(xiàn)妃子笑與水東揮發(fā)性化合物累計含量最高,分別是12.51 mg·kg-1、12.32 mg·kg-1;而白糖罌、三月紅、香蜜早和大新荔處于較低水平,分別為4.75 mg·kg-1、4.69 mg·kg-1 、3.94 mg·kg-1、3.82 mg·kg-1。特早熟的三月紅、香蜜早、大新荔以醇類含量最高,分別占總含量的57.31%,42.74%、32.54%;其次是醛酮類和酯類,其中三月紅和香蜜早的醛酮類含量分別達到總含量的23.59%和37.19%;大新荔的酯類含量最高,達29.82%,還發(fā)現(xiàn)4個硫化物,其酯類、硫化物的含量高于上述栽培種。單萜氧化物和單萜烯在早熟種水東、妃子笑及白糖罌中表現(xiàn)突出,單萜氧化物平均含量分別為8.50 mg·kg-1(68.92%)、6.48 mg·kg-1(49.30%)及1.28 mg·kg-1(26.99%),單萜烯平均含量分別為1.03 mg·kg-1(8.37%)、1.45 mg·kg-1(11.53%)及0.93 mg·kg-1(19.49%);而倍半萜以妃子笑、白糖罌含量高,平均含量分別為0.52 mg·kg-1、0.17 mg·kg-1。因此醇類、醛酮類及酯類是特早熟種三月紅、香蜜早與大新荔的主要揮發(fā)性化合物;單萜烯、單帖氧化物、倍半萜及醇類是早熟種水東、妃子笑與白糖罌的主要揮發(fā)性化合物。
2.2 揮發(fā)性代謝組多元統(tǒng)計分析
2.2.1? ? 共有與特有的化合物篩選? 通過花瓣韋恩圖(圖2-A)分析發(fā)現(xiàn)10種化合物為6個荔枝種質(zhì)所共有,分別是:乙醇、1-辛烯-3-醇、乙醛、己醛、青葉醛、壬醛、芳樟醇、香茅醇、香葉醇、左旋玫瑰醚。不同種質(zhì)所特有的揮發(fā)性物質(zhì)有34種(表3):其中香蜜早1種,十二醛;三月紅1種,苯甲酸-3-甲基-2-丁烯酯;大新荔7種,苯甲基-3-甲基-2-丁烯酸酯、卡達烯、二甲基三硫、2,3,5-三硫雜己烷、2,4,5,7-四硫雜辛烷、(E)-氧化芳樟醇、芳樟醇氧化物Ⅳ;水東6種,2,3-丁二醇、香茅醛、香茅酸、乙酸香茅酯、ɑ-金合歡烯、2,3-二氫金合歡醇;妃子笑12種,3-甲基-3-丁烯-1-醇、紫蘇醇、橙花醚、(-)-蒔蘿醚、γ-欖香烯、β-紅沒藥烯、順-依蘭油-4(15)-5-二烯、γ-依蘭油烯、γ-杜松烯、ɑ-杜松烯、ɑ-去二氫菖蒲烯、依蘭烯;白糖罌7種,對-薄荷-1,3,8-三烯、別羅勒烯、4-萜烯醇、D(+)-香芹酮、ɑ-律草烯、二氫姜黃烯、β-倍半水芹烯。
2.2.2? ? 揮發(fā)性化合物主成分分析(PCA)與聚類分析? ? 對6個不同荔枝種質(zhì)的103種揮發(fā)性代謝物進行主成分分析,PCA圖顯示PC1:40.7%,PC2:19.09%(圖2-B),PCA圖清晰地將各種質(zhì)分開,這表明種質(zhì)間的代謝譜存在明顯差異。特早熟的香蜜早、三月紅和大新荔分布在PC1的負半軸上,早熟的妃子笑、白糖罌和水東分布在PC1的正半軸上和0軸附近;而香蜜早與三月紅位置較近,說明這兩個種質(zhì)的揮發(fā)性物質(zhì)相近。
聚類熱圖能顯示不同種質(zhì)揮發(fā)性成分更細微的差異,將103種揮發(fā)性化合物含量繪制聚類熱圖,顯示不同種質(zhì)間存在明顯的組間差異(圖2-C),樣品被分為兩組類別:香蜜早、三月紅與大新荔聚合為一組,白糖罌、水東與妃子笑聚合為另一組。熱圖中從深紅褐色到深藍色,可清楚地看出各個樣品揮發(fā)性物質(zhì)的含量高低。
2.2.3? 特早熟與早熟荔枝種質(zhì)果實揮發(fā)性化合物差異比較? 以香蜜早、三月紅與大新荔為特早熟組,妃子笑、白糖罌與水東為早熟組,進行OPLS-DA多元統(tǒng)計分析。OPLS-DA模型驗證顯示R2X=0.391,R2Y=0.983,Q2>0.9(圖3-B),說明模型具有重要意義。OPLS-DA得分圖(圖3-A)的橫坐標方向顯示組間差異明顯;選取VIP≥1、p<0.05的差異代謝物繪制火山圖(圖3-C),發(fā)現(xiàn)特早熟vs早熟共有39個差異代謝物(表3)。VIP得分圖(圖3-D)展示了VIP≥1的化合物及其上調(diào)、下調(diào)情況。其中26個化合物顯著上調(diào)[α-蒎烯、月桂烯、α-松油烯、鄰傘花烴、(+)-檸檬烯、羅勒烯、(E)-Β-羅勒烯、γ-萜品烯、萜品油烯、別羅勒烯、對-薄荷-1,5,8-三烯、芳樟醇、β-香茅醇甲醚、對傘花烴-8-醇、蒎烯-10-醇、α-松油醇、橙花醇甲醚、香茅醇、異香葉醇、β-檸檬醛、香葉醇、乙酸香葉酯、(E)-β-金合歡烯、1,3-環(huán)己二烯、α-姜黃烯、α-姜烯],包含單萜類化合物占22種,倍半萜4種,說明這類化合物在早熟荔枝種質(zhì)中的含量是顯著高于特早熟的;13個化合物顯著下調(diào)(異戊醇、正辛醇、異戊醛、反-2-辛烯醛、乙酸乙酯、3-甲基-3-丁烯醇乙酸酯、乙酸芐酯、戊酸芐酯、苯甲酸異戊酯、α-篳澄茄油烯、α-古巴烯、異戊酸、十四烷),包含醇類化合物2種,醛類化合物2種,酯類化合物5種,倍半萜2種,表明該類化合物在早熟荔枝種質(zhì)中的含量是顯著低于特早熟的。從差異代謝物聚類熱圖中可以清晰地分辨出各種質(zhì)中豐度較高的差異揮發(fā)性代謝物(圖3-E、表3),這些特有的化合物與高豐度的差異代謝物可以作為各種質(zhì)特征性揮發(fā)性化合物。
2.3 不同荔枝種質(zhì)果實的香氣特征分析
香氣成分對食品香氣體系的貢獻不僅僅取決于濃度,更是與其自身閾值密切相關(guān)[16],利用香氣活度值OVA可以分析揮發(fā)性物質(zhì)對荔枝果實香氣的貢獻程度。為明確不同熟性及不同荔枝種質(zhì)果實香型特征,依照各種香氣物質(zhì)在感官特征方面所表現(xiàn)出的芳香系列進行分類,并以同類香型的香氣成分OAV總和代表每個香型的總強度,分別構(gòu)建了不同荔枝種質(zhì)香氣特征圖和早熟-特早熟荔枝香氣特征雷達圖(圖4)。從圖4-A中可以看出,6個荔枝種質(zhì)主要包含10種香型:花香(占總OVA值的50.98%)、果香(22.43%)、青植香(10.46)、柑橘香(3.01%)、木香(4.81%)、青果香(3.57%),此外個別種質(zhì)還有少量的香草香、奶油香、堅果香及含硫蔬菜味?;ㄏ愫凸銓υ缡?特早熟荔枝香氣的貢獻最大。其中特早熟種香蜜早、三月紅、大新荔的香氣類型以果香為主,花香為輔,平均花香/果香比值分別為0.83、0.26、0.22;早熟種水東、妃子笑、白糖罌的香氣類型以花香為主,平均花香/果香比值分別為1.43、5.83、5.01。早熟種的花香/果香比值顯著高于特早熟種(p<0.01),妃子笑中除了含有最豐富的花香和果香以外,還有較豐富的青植香、青果香和木香,香氣種類和含量最豐富;大新荔盡管果香、花香極淡,但卻具有較濃的含硫蔬菜味、奶油香。特早熟組的總OVA值僅為早熟組的40.7%,這表明早熟種質(zhì)的香氣活度更高。從圖4-B中可以看出,特早熟組荔枝種質(zhì)以果香為主,花香、青植香為輔,兼具少量橘香、青果香、木香、堅果香、蒜香及奶油香的一類香型,而早熟組荔枝種質(zhì)則以花香為主,果香、青植香為輔,兼具少量木香、青果香、橘香、香草香的一類香型。
OVA≥1的揮發(fā)性組分通常對整體風(fēng)味具有貢獻,且數(shù)值越大其香氣的貢獻越大[12],結(jié)合文獻報道的香氣成分的閾值和屬性描述[15,17-19],計算6個不同種質(zhì)荔枝香氣成分的OAV值。結(jié)果顯示有35種化合物的OVA≥1(表4),這些化合物被認為是6個特早熟-早熟種質(zhì)的香氣化合物,包括5種醇類、9種醛類、3種酯類、6種單萜烯、10種單萜氧化物、2種硫化物,以單萜和醛類為主,其中香葉醇的香氣活度值最高(平均OVA為431.5)。以O(shè)AV≥10的揮發(fā)性成分為關(guān)鍵香氣成分[19],獲得關(guān)鍵香氣成分18種:香葉醇、二甲基三硫、月桂烯、異戊醇、異香葉醇、1-辛烯-3-醇、左旋玫瑰醚、乙酸乙酯、正己醛、正己醇、香茅醇、壬醛、異戊醛、鄰傘花烴、乙醛、苯乙醇、二甲基二硫、芳樟醇,但不同種質(zhì)間存在較大差異(表5)。1-辛烯-3-醇、乙醛、正己醛、壬醛、左旋玫瑰醚、香葉醇、青葉醛為6個特早熟-早熟荔枝種質(zhì)所共有的香氣化合物,其中左旋玫瑰醚、異戊醇、乙酸乙酯、壬醛、1-辛烯-3-醇是3個特早熟種質(zhì)共有的關(guān)鍵香氣成分,月桂烯、香葉醇、壬醛、鄰傘花烴、1-辛烯-3-醇是3個早熟種質(zhì)共有的關(guān)鍵香氣成分。
3 討 論
3.1 不同荔枝種質(zhì)果肉揮發(fā)性代謝產(chǎn)物特征
不同種屬的荔枝揮發(fā)性物質(zhì)在種類和含量方面有很大的差異[5],Johnston等[20]最早利用GC-MS在荔枝果肉中檢測出48種揮發(fā)性風(fēng)味化合物,Toulemonde等[21]從荔枝果肉中鑒定出89種揮發(fā)性化合物,多數(shù)研究者認為荔枝果肉的揮發(fā)性組分以萜烯類、醇類、酯類、醛類為主并影響果實的風(fēng)味[20-22]。筆者在本研究中同樣發(fā)現(xiàn)特早熟-早熟系列荔枝果肉中含有大量的單萜類、倍半萜類、醇類及醛類,其數(shù)量極為豐富,為荔枝果肉中主要的揮發(fā)性成分,以單萜氧化物占據(jù)多數(shù),倍半萜的數(shù)量雖然豐富,但含量并不高。值得一提的是,野生種質(zhì)大新荔的含硫化合物遠高于其他幾個栽培種,而這在以往的文獻中未見報道。硫化物通常具有殺菌驅(qū)蟲作用,在蔥蒜等高抗病蟲的植物中大量存在[23],這可能與野生荔枝種質(zhì)具有較強的抗病蟲性有直接關(guān)系,其在荔枝種質(zhì)中的作用機制有待進一步研究。
3.2 早熟與特早熟荔枝種質(zhì)揮發(fā)性代謝物差異
以往的研究主要集中于中晚熟栽培種質(zhì)的揮發(fā)性組分[24-25],而對特早熟、早熟荔枝種質(zhì)的揮發(fā)性組分特點未見報道。筆者在本研究中發(fā)現(xiàn),醇類、醛酮類及酯類是特早熟種質(zhì)三月紅、香蜜早與大新荔的主要揮發(fā)性組分;單萜烯、單帖氧化物、倍半萜及醇類是早熟種質(zhì)水東、妃子笑與白糖罌的主要揮發(fā)性組分。早熟組的累計揮發(fā)性化合物含量與數(shù)量總體高于特早熟組,這與早熟荔枝果實香氣的表現(xiàn)更濃郁相一致。
通過揮發(fā)性代謝產(chǎn)物PCA圖及聚類熱圖,可將不同荔枝種質(zhì)明顯地區(qū)分出來,并依據(jù)熟性聚成兩大類,這說明熟性相同種質(zhì)的揮發(fā)性代謝產(chǎn)物具較高相似性但不盡相同。另外,差異代謝物聚類熱圖可清楚地顯示出各個種質(zhì)樣品中豐度較高的揮發(fā)性差異代謝物,說明這些差異代謝物可作為區(qū)分6個特早熟、早熟荔枝種質(zhì)的特征指標。
3.3 不同荔枝種質(zhì)揮發(fā)性物質(zhì)的香氣特征
香氣活度值概念的提出為解決揮發(fā)性成分對體系香氣貢獻度問題提供了重要的科學(xué)依據(jù)和技術(shù)手段[12]。筆者通過每個芳香類型的累計OAV值構(gòu)建的香氣特征圖,發(fā)現(xiàn)特早熟早熟荔枝種質(zhì)主要包含以花香、果香、青植香、柑橘香、木香、青果香為主的10種香型,花香和果香對特早熟-早熟荔枝香氣的貢獻最大,但特早熟與早熟種質(zhì)的花香/果香比值存在較大的差異。
Wu等[26]認為,玫瑰醚、1-辛烯-3-醇、芳樟醇、香葉醛和香葉醇是晚熟荔枝懷枝果實的主要香氣成分,唐忠盛[27]等分析篩選出荔枝汁的10種特征香氣物質(zhì):順式-玫瑰醚、香茅醇、香葉醇、苯乙醇、芳樟醇、檸檬烯、1-辛烯-3醇、辛酸、辛酸乙酯、乙酸異戊酯。本研究表明,35種化合物對早熟系列荔枝果實的香氣貢獻較大,1-辛烯-3-醇、乙醛、正己醛、青葉醛、壬醛、左旋玫瑰醚、香葉醇是6個特早熟-早熟荔枝種質(zhì)共有的香氣化合物,也是這類荔枝的主體香氣成分,其中香葉醇的香氣活度最大。
筆者研究發(fā)現(xiàn),香氣強度較高的萜類化合物以單萜為主,盡管倍半萜數(shù)量眾多,但由于倍半萜的閾值能被檢索到的極少,少數(shù)能檢索到的卻香氣閾值較高,使得倍半萜香氣活度值缺失或較低,這說明倍半萜類并非是荔枝果實的主要香氣來源。不過,部分倍半萜具有特殊的氣味使得其發(fā)揮著某些獨特的作用,比如可通過吸引和趨避起到植物信息素的作用[28-29]。本試驗中早熟的水東、妃子笑與白糖罌是易受蒂蛀蟲危害的種質(zhì),均含較多的倍半萜類化合物,其中水東特有的ɑ-金合歡烯、2,3-二氫金合歡醇及含量較高的1,3-環(huán)己二烯、(E)-β-金合歡烯,妃子笑特有的β-紅沒藥烯、γ-杜松烯、α-杜松烯,以及白糖罌特有的二氫姜黃烯、β-倍半水芹烯,在特早熟的三月紅、香蜜早中卻未檢出,這些倍半萜類物質(zhì)可能對蒂蛀蟲具有吸引作用。倍半萜類的獨特作用有待后續(xù)驗證。
4 結(jié) 論
筆者在本試驗中系統(tǒng)地研究了6個特早熟-早熟荔枝種質(zhì)揮發(fā)性代謝物組成和含量的全面信息,共鑒定出103種揮發(fā)性組分,10種為共有的化合物、34種為各種質(zhì)的特有化合物,以單萜類、醇類、醛酮類、酯類及倍半萜為主要成分,其中的特早熟種質(zhì)揮發(fā)性物質(zhì)種類以醇類、醛酮類及酯類為主,早熟種質(zhì)揮發(fā)性物質(zhì)則以萜類(單萜及倍半萜)及醇類為主。運用OPLS-DA方法獲得上述特早熟-早熟組間的差異代謝物39個,并結(jié)合各種質(zhì)特有的化合物獲得區(qū)分上述特早熟-早熟種質(zhì)的特征性揮發(fā)性化合物。結(jié)合香氣活度值篩選出對6個特早熟-早熟荔枝種質(zhì)香氣具有貢獻的化合物35種,以香葉醇最高;發(fā)現(xiàn)1-辛烯-3-醇、乙醛、正己醛、壬醛、左旋玫瑰醚、香葉醇、青葉醛為6個特早熟-早熟荔枝種質(zhì)所共有的香氣化合物,其中左旋玫瑰醚、異戊醇、乙酸乙酯、壬醛及1-辛烯-3-醇是特早熟種質(zhì)三月紅、香蜜早和大新荔共有的關(guān)鍵香氣成分,而月桂烯、香葉醇、壬醛、鄰傘花烴及1-辛烯-3-醇是早熟種質(zhì)水東、妃子笑與白糖罌共有的關(guān)鍵香氣成分。通過香氣特征分析,發(fā)現(xiàn)特早熟種質(zhì)香型以果香為主,花香、青植香為輔;早熟種質(zhì)香型以花香為主,果香、青植香為輔。結(jié)果表明早熟、特早熟荔枝種質(zhì)揮發(fā)性代謝物具有豐富的多樣性,且后者的揮發(fā)性物質(zhì)及香氣物質(zhì)更為豐富;不同熟性及不同荔枝種質(zhì)果實間的揮發(fā)性成分存在顯著差異,鑒于試驗種質(zhì)為特早熟、早熟荔枝種質(zhì)的典型代表,部分揮發(fā)性化合物應(yīng)可作為鑒定該類荔枝種質(zhì)的指標。本試驗結(jié)果可為荔枝栽培、育種、加工等提供參考依據(jù)。
參考文獻 References:
[1] 吳淑嫻. 中國果樹志·荔枝卷[M]. 北京:中國林業(yè)出版社,1998.
WU Shuxian. Chinese fruit tree annals·Litchi volume[M]. Beijing:China Forestry Publishing House,1998.
[2] 向旭. 廣東荔枝產(chǎn)業(yè)發(fā)展瓶頸與產(chǎn)業(yè)技術(shù)研發(fā)進展[J]. 廣東農(nóng)業(yè)科學(xué),2020,47(12):32-41.
XIANG Xu. Bottleneck of Litchi industry development in Guangdong and progress of technology research and development[J]. Guangdong Agricultural Sciences,2020,47(12):32-41.
[3] BONCAN D A T,TSANG S S K,LI C D,LEE I H T,LAM H M,CHAN T F,HUI J H L. Terpenes and terpenoids in plants:Interactions with environment and insects[J]. International Journal of Molecular Sciences,2020,21(19):7382.
[4] HUANG X Z,XIAO Y T,K?LLNER T G,JING W X,KOU J F,CHEN J Y,LIU D F,GU S H,WU J X,ZHANG Y J,GUO Y Y. The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores[J]. Plant,Cell & Environment,2018,41(1):261-274.
[5] 孟祥春,黃澤鵬,肖志丹,凡超,向旭. 5個荔枝品種的品質(zhì)及揮發(fā)性風(fēng)味比較分析[J]. 果樹學(xué)報,2022,39(1):68-77.
MENG Xiangchun,HUANG Zepeng,XIAO Zhidan,F(xiàn)AN Chao,XIANG Xu. Comparative analysis of fruit quality of five litchi cultivars[J]. Journal of Fruit Science,2022,39(1):68-77.
[6] CHEN X,WU Q X,CHEN Z,LI T T,ZHANG Z K,GAO H J,YUN Z,JIANG Y M. Changes in pericarp metabolite profiling of four litchi cultivars during browning[J]. Food Research International,2019,120:339-351.
[7] 陳玲,劉志鵬,施文兵,劉嵐,鄧芹英. 荔枝核與荔枝膜揮發(fā)油的GC/MS分析[J]. 中山大學(xué)學(xué)報(自然科學(xué)版),2005,44(2):53-56.
CHEN Ling,LIU Zhipeng,SHI Wenbing,LIU Lan,DENG Qinying. GC/MS identification of essential oils from the seed and the membrane of Litchi chinesis Sonn.[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2005,44(2):53-56.
[8] 郭育暉,葉慧娟,谷文祥. 4種荔枝嫩梢揮發(fā)物的HS-SDME/AMDIS分析[J]. 廣東農(nóng)業(yè)科學(xué),2012,39(15):112-115.
GUO Yuhui,YE Huijuan,GU Wenxiang. Analysis of volatiles of sprouts in 4 varieties of litchi by HS-SDME/AMDIS[J]. Guangdong Agricultural Sciences,2012,39(15):112-115.
[9] FENG S,HUANG M Y,CRANE J H,WANG Y. Characterization of key aroma-active compounds in lychee (Litchi chinensis Sonn.)[J]. Journal of Food and Drug Analysis,2018,26(2):497-503.
[10] 蔣儂輝,劉偉,袁沛元,邱燕萍,凡超,向旭. ‘御金球荔枝果肉揮發(fā)性成分的頂空固相微萃取GC-MS分析[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報,2016,38(5):829-835.
JIANG Nonghui,LIU Wei,YUAN Peiyuan,QIU Yanping,F(xiàn)AN Chao,XIANG Xu. Analysis of volatile components of the ‘Yujinqiu litchi pulp by means of solid-phase microextraction coupled with GC-MS[J]. Acta Agriculturae Universitatis Jiangxiensis,2016,38(5):829-835.
[11] 王志群,段長青,朱保慶,吳玉文,涂崔,潘秋紅.葡萄果實中(-)-α-萜品醇的積累與其合成酶基因Vvter表達的關(guān)系[J].園藝學(xué)報,2011,38(11):2187-2192.
WANG Zhiqun,DUAN Changqing,ZHU Baoqing,WU Yuwen,TU Cui,PAN Qiuhong. Relationship between (-)-α-terpineol accumulation and Vvter expression in grape berries[J]. Acta Horticulturae Sinica,2011,38(11):2187-2192.
[12] GOU M,BI J F,CHEN Q Q,WU X Y,F(xiàn)AUCONNIER M L,QIAO Y N. Advances and perspectives in fruits and vegetables flavor based on molecular sensory science[J]. Food Reviews International,2023,39(6):3066-3079.
[13] ZHANG H P,XIE Y X,LIU C H,CHEN S L,HU S S,XIE Z Z,DENG X X,XU J. Comprehensive comparative analysis of volatile compounds in citrus fruits of different species[J]. Food Chemistry,2017,230:316-326.
[14] ERIKSSON L,JOHANSSON E,KETTANEH-WOLD,N,TRYGG J,WIKSTR?M C,WOLD S. Multi- and megavariate data analysis. Part I Basic principles and applications[M]. 2 ed. Ume Sweden:MKS Umetrics AB,2006.
[15] 里奧·范海默特. 化合物香味閾值匯編(原書第二版)[M]. 劉強,冒德壽,湯峨,譯. 北京:科學(xué)出版社,2015.
VAN GEMERT L J. Compilations of flavour threshold values in water and other media (Second Enlarged and Revised Edition)[M]. LIU Qiang,MAO Deshou,TANG E,Translate. Beijing:Science Press,2015.
[16] ACREE T E,BARNARD J,CUNNINGHAM D G. A procedure for the sensory analysis of gas chromatographic effluents[J]. Food Chemistry,1984,14(4):273-286.
[17] 郝艷,李曉潁,葉茂,劉亞婷,王天宇,王海靜,張立彬,肖嘯,武軍凱. ‘21世紀桃與‘久脆桃及其雜交后代果實揮發(fā)性成分特征分析[J]. 中國農(nóng)業(yè)科學(xué),2022,55(22):4487-4499.
HAO Yan,LI Xiaoying,YE Mao,LIU Yating,WANG Tianyu,WANG Haijing,ZHANG Libin,XIAO Xiao,WU Junkai. Characteristics of volatile components in peach fruits of 21shiji and Jiucui and their hybrid progenies[J]. Scientia Agricultura Sinica,2022,55(22):4487-4499.
[18] 吳林,張強,臧慧明,徐振彪,徐德冰. 氣味活度值法評價藍莓果皮、果肉、果汁揮發(fā)性香氣成分[J]. 食品工業(yè)科技,2020,41(1):195-200.
WU Lin,ZHANG Qiang,ZANG Huiming,XU Zhenbiao,XU Debing. Evaluation of volatile aroma components in blueberry peel,pulp and juice by odor activity value[J]. Science and Technology of Food Industry,2020,41(1):195-200.
[19] 陳芝飛,蔡莉莉,郝輝,趙志偉,孫志濤,馬宇平,劉前進,楊靖,董艷娟,侯佩. 香氣活力值在食品關(guān)鍵香氣成分表征中的應(yīng)用研究進展[J]. 食品科學(xué),2018,39(19):329-335.
CHEN Zhifei,CAI Lili,HAO Hui,ZHAO Zhiwei,SUN Zhitao,MA Yuping,LIU Qianjin,YANG Jing,DONG Yanjuan,HOU Pei. Progress in the application of odor activity values in the characterization of key aroma components in foods[J]. Food Science,2018,39(19):329-335.
[20] JOHNSTON J C,WELCH R C,HUNTER G L K. Volatile constituents of Litchi (Litchi chinesis Sonn.)[J]. Journal of Agricultural and Food Chemistry,1980,28(4):859-861.
[21] TOULEMONDE B,BEAUVERD D. Headspace analysis: Trap desorption by microwave energy application to the volatile components of some tropical fruits[J]. Developments in Food Science,1985,48(10):533-548.
[22] 冼繼東,劉少蘭,陳越,梁廣文. 妃子笑荔枝果實不同組織揮發(fā)性物質(zhì)的成分分析[J]. 廣東農(nóng)業(yè)科學(xué),2014,41(9):39-43.
XIAN Jidong,LIU Shaolan,CHEN Yue,LIANG Guangwen. Analysis on volatile components of different tissues of Feizixiao litchi fruit[J]. Guangdong Agricultural Sciences,2014,41(9):39-43.
[23] MAHATTANATAWEE K,PEREZ-CACHO P R,DAVENPORT T,ROUSEFF R. Comparison of three lychee cultivar odor profiles using gas chromatography-olfactometry and gas chromatography-sulfur detection[J]. Journal of Agricultural and Food Chemistry,2007,55(5):1939-1944.
[24] 郭亞娟,鄧媛元,張瑞芬,張名位,魏振承,唐小俊,張雁. 不同荔枝品種果干揮發(fā)性物質(zhì)種類及其含量比較[J]. 中國農(nóng)業(yè)科學(xué),2013,46(13):2751-2768.
GUO Yajuan,DENG Yuanyuan,ZHANG Ruifen,ZHANG Mingwei,WEI Zhencheng,TANG Xiaojun,ZHANG Yan. Comparison of volatile components from different varieties of dried Litchi (Litchi chinensis Sonn.)[J]. Scientia Agricultura Sinica,2013,46(13):2751-2768.
[25] 徐禾禮,余小林,胡卓炎,陳厚彬. 七個荔枝品種果實香氣成分的提取與分析研究[J]. 食品與機械,2010,26(2):23-26.
XU Heli,YU Xiaolin,HU Zhuoyan,CHEN Houbin. Study on extraction and analyzing of aroma compounds in seven cultivars of litchi fruits[J]. Food & Machinery,2010,26(2):23-26.
[26] WU Y W,PAN Q H,QU W J,DUAN C Q. Comparison of volatile profiles of nine Litchi (Litchi chinensis Sonn.) cultivars from southern China[J]. Journal of Agricultural and Food Chemistry,2009,57(20):9676-9681.
[27] 唐忠盛. 荔枝酒加工過程中香氣成分變化規(guī)律及特征香氣研究[D]. 廣州:華南理工大學(xué),2019.
TANG Zhongsheng. The evolution of aroma compounds during the process and characteristic aroma compound of Litchi wine[D]. Guangzhou:South China University of Technology,2019.
[28] 樊慧,金幼菊,李繼泉,陳華君. 引誘植食性昆蟲的植物揮發(fā)性信息化合物的研究進展[J]. 北京林業(yè)大學(xué)學(xué)報,2004,26(3):76-81.
FAN Hui,JIN Youju,LI Jiquan,CHEN Huajun. Advances on plant volatile semiochemicals attracting herbivorous insects[J]. Journal of Beijing Forestry University,2004,26(3):76-81.
[29] 郭育暉,葉慧娟,方煒,谷文祥. 不同品種荔枝對荔枝蒂蛀蟲引誘活性成分的研究[J]. 天然產(chǎn)物研究與開發(fā),2013,25(9):1218-1221.
GUO Yuhui,YE Huijuan,F(xiàn)ANG Wei,GU Wenxiang. Study on volatile constituents of 4 cultivars of Litchi with different resistant ability to Conopomorpha sinensis Bradley[J]. Natural Product Research and Development,2013,25(9):1218-1221.