• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-Efficiency Rectifier for Wireless Energy Harvesting Based on Double Branch Structure

    2023-09-22 14:29:10CUIHengrong崔恒榮JIAOJinhua焦勁華YANGWeiJINGYuxiang荊玉香

    CUI Hengrong(崔恒榮), JIAO Jinhua(焦勁華), YANG Wei(楊 威), JING Yuxiang(荊玉香)

    College of Information Science and Technology, Donghua University, Shanghai 201620, China

    Abstract:A rectifier circuit for wireless energy harvesting (WEH) with a wide input power range is proposed in this paper. We build up accurate models of the diodes to improve the accuracy of the design of the rectifier. Due to the nonlinear characteristics of the diodes, a new band-stop structure is introduced to reduce the imaginary part impedance and suppress harmonics. A novel structure with double branches and an optimized λ/4 microstrip line is proposed to realize the power division ratio adjustment by the input power automatically. The proposed two branches can satisfy the two cases with input power of -20 dBm to 0 dBm and 0 dBm to 15 dBm, respectively. Here, dBm = 10 log(P mW), and P represents power. An impedance compression network (ICN) is correspondingly designed to maintain the input impedance stability over the wide input power range. A rectifier that works at 2.45 GHz is implemented. The measured results show that the highest efficiency can reach 51.5% at the output power of 0 dBm and higher than 40% at the input power of -5 dBm to 12 dBm.

    Key words:diode modeling; rectifier circuit; impedance compression network; power division strategy

    Introduction

    As an attractive energy supply method for micro-power Internet of things modules, wireless energy harvesting collects wireless energy signals in the environment and can realize a long-term maintenance-free energy supply[1-3]. The level of wireless energy harvesting mainly depends on the power conversion efficiency (PCE) of the radio-frequency to direct current (RF-DC) rectifier. However, in practical application scenarios, the RF energy density could vary substantially in different locations and environments[4]. Therefore, the input microwave power is typically dynamic for a rectifier[5]. For example, when powering an unmanned aerial vehicle (UAV), the RF energy received by the UAV varies with location[6]. The nonlinear characteristic of the diode[7-8]makes the input impedance of the diodes in a rectifier vary with the input power, resulting in an impedance mismatch and a severe drop in PCE[9].

    In recent years, several attempts have been made to improve the performance of their rectifiers over wide input power ranges[10-12]. A resistance compression network (RCN)[13-15]was introduced to create a resistance-compressed rectifying circuit over 10 dB power range, but failed to compensate for the change in the input impedance based on the change of the input power; a rectifier with a self-tuning impedance matching (STIM) was designed to cope with the fluctuation of input power[16], which achieved 10% improvement of PCE at a low input power; a nonlinear power division strategy was applied to the input power level without any power dividers or couplers[17], showing an input power range exceeding 50% over 23 dB (6.5 - 29.5 dBm). All these solutions mainly focused on the input power range over 0 dBm, which led to the low conversion efficiency of micro-power, since the RF energy in the living environment is often below 0 dBm.

    Therefore, an efficient rectifier circuit structure based on the nonlinear impedance characteristics of diodes is proposed, which is applicable to medium and low input power (from -5 dBm to 12 dBm). A new band-stop structure[18]was introduced to realize harmonic suppression and impedance tuning of the imaginary part of the diodes; the power division strategy was implemented by optimizing theλ/4 microstrip line, so that the low input power rectifier operated from -20 dBm to 0 dBm and the high input power rectifier could operate from 0 dBm to 15 dBm. A novel impedance compression network was adopted to broaden the input power range of the rectifier, and further to obtain impedance matching over a wider input power range (over 20 dB). For validation, 2.45 GHz rectifier was implemented. The rectification efficiency was higher than 40% at the input power of -5 dBm to 12 dBm, and the maximum conversion efficiency reached 51.5% at the output power of 0 dBm.

    1 Basic Principle of Rectifier Circuit

    The rectifier consists of a matching network, two rectifier diodes, a direct current (DC) pass filter, and two impedance loads. And the basic schematic diagram is shown in Fig.1. The receiving antenna transforms the microwave power in the free space into the high-frequency current in the local circuits, and the rectifier converts alternating current (AC) to DC using the unidirectional conductivity of the diode. The circuit topology consists mainly of half-wave, full-wave, bridge, and voltage doubling rectifiers. The rectifier circuit in this study is based on the half-wave rectifier structure of a single diode in parallel.

    Fig.1 Basic schematic diagram of rectifier circuit

    1.1 Analysis of diode principle

    The analysis is based on the equivalent spice model, as shown in Fig. 2, whereRSdenotes series resistance introduced by the package, whileRjandCjrepresent junction resistance and junction capacitance of the diode, respectively. Due to the nonlinear characteristics of the diode, its junction resistance and junction capacitance fluctuate with frequency and input power, making it possible for the nonlinear characteristics of Schottky diodes to be adopted for designing the rectifier.VinandV0represent the input voltage and load voltage, respectively.RLis the load resistance. Based on the nonlinear model of the Schottky diode, the input impedance of the Schottky diode at a fixed load is

    (1)

    whereθONis the turn-on angle of the diode.

    Fig.2 Equivalent spice model of Schottky diode

    The diode capacitance can be balanced by series inductance, and then, the impedance of the diode can be tuned to an almost pure resistance.

    (2)

    The SMS7630 and the HSMS286B are different rectifier diodes. The SMS7630 is suitable for low power levels because of its low forward conduction voltage, while the HSMS286B is suitable for high power levels because of its high reverse breakdown voltage.

    1.2 Accurate modeling of diodes under small-signal conditions

    The above analysis of the diode fails to take into account the actual package parameters of the diode. The spice model of the diode used in the advanced design system (ADS) simulation is still subject to some errors compared with the actual diode model, which makes it necessary to model the diode accurately. And the model can be used to design the rectifier circuit to improve the rectification efficiency.

    1.2.1Diodemodelingprinciples

    The equivalent circuit model of the diode is shown in Fig. 3, whereLPandCPrepresent package inductance and capacitance of the diode, respectively, andLP,CP, andRSare voltage-independent parameters;CjandRjare voltage-dependent parameters. In order to extract the diode model parameters, voltage-independent component parameters should be first extracted. Then, the measured Scattering parameters (S-parameters) of the diode are imported into ADS to generate S2P components, where S2P file is Sonnet S-device Parameter Data File.LP,CPandRSnegative components are added at the periphery of the circuit, and an optimizer in ADS is used to optimize the negative component parameters. When the real part of the admittance parameters (Y-parameters) at different voltages is a straight line, the imaginary line can be diagonal. Finally, the expressions ofRjandCjcan be obtained by data fitting.

    Ijis the junction current andVdis the junction voltage. The diode junction current equation is

    Ij=I0eVd/(nVt)-1,

    (3)

    whereVtis the thermal voltage with a value of 25.69 mV at room temperature;I0is the saturation current;nis the ideality factor. Fitting a series of (Vd,Ij) values can yield the parametersI0andn.

    The expression of diode junction capacitance is

    (4)

    The parametersFc,VjandC0can be obtained by fitting a series of (Vd,Cj) values, and the expression of diode junction capacitance can also be determined.

    Fig.3 Diagram of parameter extraction of voltage-independent components

    1.2.2Modulescene

    The process of diode modeling mainly includes the following steps,i.e., calibrating the vector network analyzer, measuring S-parameters of the diode, and extracting equivalent circuit parameters of the diode.

    We calibrated the vector network analyzer using the short-open-load-thru (SOLT) calibration method. The total length of the test fixture is 30 mm, leaving 3 mm diode welding position in the middle. A circle of metal vias around the microstrip line atλ/20 hole spacing is made to reduce the edge radiation of printed circuit board (PCB). The physical drawing of the test fixture and its corresponding straight-through fixture calibrator are shown in Fig. 4(a). Measurement of diode S-parameters requires a vector network analyzer, DC voltage regulator, bias tee, test fixture, and its straight-through fixture. The rectifier operates within the vector network analyzer measurement range of 0-10 GHz and the actual measurement circuit is shown in Fig. 4(b).

    Fig.4 Test scenarios:(a) test fixture and straight-through fixture; (b) actual measurement diagram of diode

    As shown in Fig.5,S11is the return loss andS21is the inset loss. The measured S-parameters of the HSM286B match the simulated S-parameters of the model in ADS, making it not necessarily important to model the HSM286B accurately. As shown in Fig. 5(b), the measured S-parameters of the SMS7630 differ significantly from those of the spice model, which requires the actual model of SMS7630 to be built based on the equivalent diode circuit.

    Fig. 5 Comparison between measured S-parameters and simulated S-parameters:(a) HSMS286B and model provided by ADS; (b) SMS7630 and spice model based on datasheet

    1.2.3Parametersobtainedbyfinalmodeling

    ADS simulation optimization showsLPof 2.4 nH,CPof 0.11 pF, andRSof 20 Ω. Then, according to formulas (3) and (4), by using the least square method fitting theI-Vcurve andC-Vcurve can be yielded, respectively. The fitting curves are shown in Fig. 6(a), and the fitting parameters are shown in Table 1. The equivalent circuit model of diode SMS7630 is established as shown in Fig. 6(b), which is consistent with the established model.

    Fig. 6 Results of diode modeling:(a) I-V and C-V curve fitting diagram; (b) comparison of measured S-parameters and simulated model S-parameters

    Table 1 Diode actual model parameters

    2 Design of Rectifier Circuit

    2.1 New impedance compression network

    The junction capacitance and junction resistance of the diode change with the voltage across the diode according to the above analysis on the Schottky diode. The input impedance of the rectifier can change accordingly with the change of the input power, making it difficult to keep matching the rectifier impedance with the receiving antenna impedance in a wide input power range and resulting in a lower efficiency of the rectifier. Therefore, a novel impedance compression network is introduced to reduce the sensitivity of the rectifier impedance to the change of input power, where a parallel open microstrip line and a parallel shorted microstrip line are added between the rectifier circuit and the receiver antenna. The two microstrip lines have the same characteristic impedance, the sum of the electrical length isλ/2, and the electrical lengths of the microstrip lines are not 0,λ/4 andλ/2. Figure 7(a) is a schematic diagram of the new impedance compression network structure.

    Fig. 7 Impedance compression network:(a) schematic diagram of new impedance compression network structure; (b) comparison between Zinbefore and after compression

    The input impedance of the rectifier is expressed as

    ZL=RL+jXL.

    (5)

    The electric length of TL1 isθ1, the electrical length of TL1 isθ2, and

    θ1+θ2=π.

    (6)

    The characteristic impedances of TL1 and TL2 are bothZ0, and then the total conduction of these two branches is expressed as

    (7)

    The input impedance can be derived as

    (8)

    Based on the above expression, the input impedance expression of the circuit contains real and imaginary parts after the impedance transformation. WhenZLis higher than or close toZ0, the denominator is much higher than 1; when the original valueZLis greatly compressed, and the range of input impedance variation is narrowed to achieve the purpose of impedance compression. From the structural perspective, the new impedance compression network adopted in this paper is simple and practical.PinandVoutrepresent input power and output voltages, respectively; real(Zin) and imag (Zin) represent real and imaginary parts ofZin, respectively.

    The electrical lengths of TL1 and TL2 in this paper areλ/6 andλ/3, respectively, and their characteristic impedances are both 50 Ω. Before impedance compression, the real impedance of the rectifier fluctuates from 40 Ω to 70 Ω, while the imaginary impedance of the rectifier fluctuates from -90 Ω to 20 Ω. The comparison results after introducing the novel impedance compression network are shown in Fig. 7(b). After impedance compression, the real impedance fluctuates from 4 Ω to 6 Ω while the imaginary fluctuates from -12 Ω to -6 Ω, indicating that the impedance compression network achieves the effect of impedance compression, and ensures the stability of the input impedance in a wide dynamic input power range.

    2.2 Design of rectifier circuit

    Based on the simple principle of power division, an efficient rectifier with a working frequency of 2.45 GHz was designed by changing the resistance of different sub-rectifiers. SMS7630 diode and HSMS286B diode were applied at low-input power levels and high-input power levels, respectively. Two capacitors were used to isolate DC and avoid the reverse breakdown of the SMS7630 diode during high-power rectification. The proposed rectifier structure is shown in Fig. 8, whereZSis the source impedance.

    Fig.8 Wide input power rectifier circuit design

    The real part of the diode impedance increases correspondingly with the increase of the input power, and its input impedance nonlinear characteristic can be used to realize a power division strategy. The input microwave signal can always be rectified by an appropriate rectifier through carefully designing and optimizing the characteristic impedance and length of the three microstrip lines. In this way, the high RF-DC conversion efficiency can be maintained within the extended input power range.

    1) Short-circuit microstrip lines

    TL1 and TL4 were introduced as a band-stop structure into rectifier A and rectifier B, respectively. The input impedanceZinofλ/8 short-circuit microstrip line can be expressed as

    (9)

    whereZ1represents the characteristic impedance of the short-circuit microstrip line; ω represents the harmonic component; ω0represents the fundamental component. Whenω=ω0,Zin=jZ1, and the capacitive impedance generated by the diode can be compensated; whenω=2ω0,Zin=∞.

    2) Impedance transformation microstrip line TL3

    TL4 does not change the real part of the input impedance of the diode. The impedance transformation technology can be adopted to transform real(Zin, 2) withλ/4 transmission line intoZ0to reduce the power flowing to secondary rectifier B by carefully selecting TL3 under the low power condition.

    3) DC pass filter

    The DC Pass filter consisting ofλ/4 microstrip line and a 100 pF capacitor to the ground can suppress the fundamental wave and higher harmonics, with only the DC component generated in the rectification process allowed to flow to the load.

    Indeed, the novel impedance network was combined with the designed rectifier circuit, and the impedance of the receiving antenna was designed as the conjugate of the input impedance of the rectifier circuit. The structure diagram of the designed rectifier circuit is shown in Fig. 9. The dimensions of microstrip lines are shown in Table 2.

    Fig.9 Rectification circuit design

    Table 2 Dimensions of microstrip lines

    3 Simulation and Measurement of Rectifier Circuit

    3.1 ADS simulation of rectifier circuit

    EFF represents rectification efficiency. The rectifier electromagnetic (EM) simulation results are shown in Fig. 10, where EM simulation was proven more relevant to the real components:the rectification efficiency in the EM simulation of the input power -7 dBm to 12 dBm range was higher than 40%, and the highest efficiency in 2 dBm reached 56.5%, proving the excellent performance of the rectifier circuit rectification. The output voltages of the low-power rectifier and high-power rectifier wereVout, 1andVout, 2, respectively. When the input power efficiency was lower than 0 dBm, the low-power rectifier circuit would be mainly responsible for the rectification; when the input power was higher than 0 dBm, the low-power rectifier circuit continued to rectify, but at this time,Vout,1no longer increased whileVout,2increased gradually and played a leading role in the rectification. The simulation results verified the strategy of the rectifier circuit power division, showing that the rectifier circuit realized the proposed design concept. Sub-rectifiers A and B worked at different input power levels, indicating that the combination of rectifiers A and B greatly expanded the operating power range.

    3.2 Measured rectifier circuit

    According to the above-designed rectifier, Rogers4350B was selected as the dielectric plate with a dielectric constant of 3.66, and SMS7630 and HSMS286B with S0T-23 package were selected as the diodes. The final physical dimensions were 60 mm×70 mm. The fabricated rectifier is shown in Fig. 11(a). Given that the maximum output power of the experimental equipment could only reach -10 dBm, the measurement of the rectifier circuit was rather limited, making the power amplifier necessary for power amplification. Considering the losses of coaxial cable, power amplifier, and other factors, the receiving antenna was not conjugately matched with the rectifier circuit. The measured rectifier efficiency should be compared with the rectifier efficiency when the source impedance was 50 Ω in ADS simulation. A comparison of the measured results of the rectifier circuit with the EM simulation results is shown in Fig. 11(b).

    Fig.10 EM simulation results of rectifier circuit

    In the actual measurement process, the best frequency band of the rectifier circuit was shifted, and the best working frequency was 2.25 GHz, 0.20 GHz lower than the designed 2.45 GHz. Possible reasons for the error included the parasitic effects of the capacitors operating at high frequencies and the inevitable difference between the actual diode and the self-built diode model. Therefore, a certain frequency deviation belonged to the normal range. The rectification efficiency of the actual rectification circuit was not much different from that in EM simulation, indicating that under the condition of conjugate matching between the receiving antenna and the input impedance of the rectifier circuit, the efficiency of the rectifier circuit was higher than 40% in face of input power from -5 dBm to 12 dBm, and the highest efficiency could reach 51.5%.

    Fig. 11 Fabricated rectifier and test results:(a) physical diagram of rectifier circuit; (b) comparison between actual rectifier circuit efficiency and EM simulation results

    4 Conclusions

    A rectifier circuit with a wide input power range operating at 2.45 GHz frequency has been designed. The input power range was widened to a low power range below 0 dBm, and its main input power range was from -5 dBm to 12 dBm. At the same time, the input impedance of the rectifier circuit was controlled within a stable range by combining it with the impedance compression network. The future impedance of the receiving antenna can be set as the conjugate of the input impedance of the rectifier circuit to eliminate the impedance matching network and improve the rectifier efficiency.

    超色免费av| 亚洲成人免费av在线播放| 熟女少妇亚洲综合色aaa.| 夜夜爽天天搞| 亚洲av电影在线进入| 欧美午夜高清在线| 嫩草影视91久久| 欧美日韩国产mv在线观看视频| 国产在线精品亚洲第一网站| 校园春色视频在线观看| 国产成人一区二区三区免费视频网站| 亚洲九九香蕉| 国产精品国产av在线观看| 在线观看www视频免费| 国产伦一二天堂av在线观看| 国产精品一区二区在线不卡| 中出人妻视频一区二区| 99热国产这里只有精品6| 精品免费久久久久久久清纯| 中文字幕人妻丝袜一区二区| 午夜福利一区二区在线看| 国产xxxxx性猛交| 在线观看66精品国产| 亚洲午夜精品一区,二区,三区| 欧美大码av| 美女 人体艺术 gogo| 18美女黄网站色大片免费观看| 琪琪午夜伦伦电影理论片6080| 亚洲成人精品中文字幕电影 | svipshipincom国产片| 免费看十八禁软件| 久久精品影院6| 国产野战对白在线观看| 精品少妇一区二区三区视频日本电影| 午夜免费鲁丝| 国产区一区二久久| 久久亚洲真实| 国产有黄有色有爽视频| 国产蜜桃级精品一区二区三区| 欧美日韩瑟瑟在线播放| 夜夜夜夜夜久久久久| 免费观看人在逋| 亚洲男人天堂网一区| 国产一卡二卡三卡精品| 大型黄色视频在线免费观看| 女性被躁到高潮视频| 精品一区二区三区av网在线观看| 亚洲免费av在线视频| 69精品国产乱码久久久| 99国产综合亚洲精品| 国产主播在线观看一区二区| 国产无遮挡羞羞视频在线观看| 99国产精品99久久久久| 欧美色视频一区免费| 香蕉丝袜av| 久久香蕉国产精品| 99国产极品粉嫩在线观看| 午夜激情av网站| 真人做人爱边吃奶动态| 波多野结衣一区麻豆| 国产亚洲欧美在线一区二区| 日本免费一区二区三区高清不卡 | 一区二区三区精品91| 日本免费a在线| 老汉色av国产亚洲站长工具| 欧美一区二区精品小视频在线| 美女国产高潮福利片在线看| 成人三级做爰电影| 欧美日韩视频精品一区| av网站免费在线观看视频| 99re在线观看精品视频| 精品国产超薄肉色丝袜足j| 757午夜福利合集在线观看| 看免费av毛片| 伦理电影免费视频| 在线av久久热| 亚洲五月天丁香| 亚洲男人天堂网一区| 国产精品一区二区免费欧美| 久久亚洲真实| 99国产精品免费福利视频| 亚洲第一av免费看| 亚洲中文字幕日韩| 黄色成人免费大全| 亚洲精品一卡2卡三卡4卡5卡| 麻豆一二三区av精品| 97超级碰碰碰精品色视频在线观看| 久久久久久久久久久久大奶| 91成年电影在线观看| 十八禁网站免费在线| 国产又色又爽无遮挡免费看| 男女做爰动态图高潮gif福利片 | 三级毛片av免费| 人成视频在线观看免费观看| 最近最新中文字幕大全免费视频| 淫秽高清视频在线观看| 中文字幕人妻丝袜一区二区| 91成人精品电影| 超碰97精品在线观看| 午夜激情av网站| av天堂久久9| 黄色片一级片一级黄色片| 久久久久久久久久久久大奶| 久久人人精品亚洲av| 女同久久另类99精品国产91| 一本综合久久免费| 久久久国产一区二区| 一区二区三区精品91| 高清黄色对白视频在线免费看| 精品久久久久久久毛片微露脸| 另类亚洲欧美激情| 新久久久久国产一级毛片| 99久久人妻综合| 亚洲 欧美 日韩 在线 免费| 亚洲精品一卡2卡三卡4卡5卡| 欧美性长视频在线观看| 欧美日韩国产mv在线观看视频| 精品第一国产精品| xxx96com| 国产精品永久免费网站| 成人三级做爰电影| 精品久久蜜臀av无| 免费不卡黄色视频| 欧美日韩一级在线毛片| 午夜精品在线福利| 国产色视频综合| 真人一进一出gif抽搐免费| 免费在线观看亚洲国产| 久久久国产成人精品二区 | 免费观看精品视频网站| 国产精品 欧美亚洲| 50天的宝宝边吃奶边哭怎么回事| 一区二区三区精品91| 黄片大片在线免费观看| 99精品久久久久人妻精品| 色精品久久人妻99蜜桃| 国产成人精品久久二区二区91| 一个人观看的视频www高清免费观看 | 久久这里只有精品19| 久久久久久久精品吃奶| 长腿黑丝高跟| 国产欧美日韩一区二区三| 人妻丰满熟妇av一区二区三区| 久久人妻熟女aⅴ| 国产蜜桃级精品一区二区三区| 精品电影一区二区在线| 国产99白浆流出| 亚洲一区中文字幕在线| av在线天堂中文字幕 | 免费在线观看亚洲国产| 成人18禁在线播放| 一本综合久久免费| 免费在线观看视频国产中文字幕亚洲| 精品国产亚洲在线| 80岁老熟妇乱子伦牲交| 日韩视频一区二区在线观看| 久久久国产成人免费| 亚洲精品久久午夜乱码| 超碰97精品在线观看| 免费在线观看完整版高清| 18禁裸乳无遮挡免费网站照片 | 波多野结衣高清无吗| 亚洲熟妇中文字幕五十中出 | 久久精品国产综合久久久| 亚洲欧美日韩另类电影网站| 亚洲全国av大片| 亚洲第一av免费看| 91麻豆精品激情在线观看国产 | 伦理电影免费视频| 日日爽夜夜爽网站| 国产亚洲精品久久久久久毛片| 精品国产亚洲在线| 丝袜在线中文字幕| 涩涩av久久男人的天堂| 他把我摸到了高潮在线观看| 午夜免费观看网址| 国产成人精品在线电影| 人成视频在线观看免费观看| 波多野结衣一区麻豆| 别揉我奶头~嗯~啊~动态视频| 亚洲国产欧美一区二区综合| 又大又爽又粗| 天堂中文最新版在线下载| 亚洲av成人av| 欧美日韩乱码在线| 在线观看免费日韩欧美大片| aaaaa片日本免费| 国产人伦9x9x在线观看| 91精品国产国语对白视频| 91在线观看av| 久久 成人 亚洲| 亚洲一区二区三区不卡视频| 亚洲色图av天堂| 三上悠亚av全集在线观看| 9热在线视频观看99| 亚洲三区欧美一区| 亚洲精品一卡2卡三卡4卡5卡| 99久久久亚洲精品蜜臀av| 亚洲人成网站在线播放欧美日韩| 超碰97精品在线观看| 午夜免费成人在线视频| 午夜福利一区二区在线看| 国产91精品成人一区二区三区| 1024香蕉在线观看| 亚洲av美国av| 1024香蕉在线观看| 久久天堂一区二区三区四区| 欧美日韩中文字幕国产精品一区二区三区 | 国产三级在线视频| 九色亚洲精品在线播放| 国产精品1区2区在线观看.| 久久草成人影院| 国产色视频综合| 美女 人体艺术 gogo| xxxhd国产人妻xxx| 中文字幕精品免费在线观看视频| 国产成+人综合+亚洲专区| 免费一级毛片在线播放高清视频 | 国产97色在线日韩免费| 国产亚洲欧美98| 欧美另类亚洲清纯唯美| 亚洲一区高清亚洲精品| 国产单亲对白刺激| 可以免费在线观看a视频的电影网站| 在线av久久热| 亚洲中文av在线| 久久久久久久午夜电影 | 亚洲成a人片在线一区二区| 99在线视频只有这里精品首页| 色精品久久人妻99蜜桃| www.999成人在线观看| www.999成人在线观看| 久久中文字幕人妻熟女| 亚洲一区二区三区欧美精品| 亚洲成a人片在线一区二区| 日韩欧美在线二视频| 久久久久久久久免费视频了| 免费一级毛片在线播放高清视频 | 大型av网站在线播放| 黑人巨大精品欧美一区二区蜜桃| 欧美黑人精品巨大| 亚洲五月天丁香| 精品午夜福利视频在线观看一区| 老司机亚洲免费影院| 亚洲国产精品sss在线观看 | 人人妻人人澡人人看| 9色porny在线观看| 一二三四在线观看免费中文在| 好男人电影高清在线观看| 亚洲精品粉嫩美女一区| 久久精品成人免费网站| 欧洲精品卡2卡3卡4卡5卡区| 又黄又爽又免费观看的视频| 日韩成人在线观看一区二区三区| 99精国产麻豆久久婷婷| 男人操女人黄网站| 欧美黄色淫秽网站| 在线播放国产精品三级| 亚洲中文日韩欧美视频| 又紧又爽又黄一区二区| 免费在线观看完整版高清| 成人手机av| 怎么达到女性高潮| 亚洲成人免费电影在线观看| 免费少妇av软件| 宅男免费午夜| av网站免费在线观看视频| 美女 人体艺术 gogo| 好看av亚洲va欧美ⅴa在| 亚洲精品一区av在线观看| 色综合站精品国产| 久久天躁狠狠躁夜夜2o2o| 亚洲五月天丁香| 久久精品91无色码中文字幕| 两性夫妻黄色片| 国产精品偷伦视频观看了| 欧美色视频一区免费| 在线观看午夜福利视频| 久久精品亚洲av国产电影网| 成人18禁在线播放| 色老头精品视频在线观看| 日韩精品青青久久久久久| 亚洲成人国产一区在线观看| 久久精品aⅴ一区二区三区四区| 极品教师在线免费播放| 国产精品秋霞免费鲁丝片| 美女福利国产在线| 不卡一级毛片| 久久国产精品男人的天堂亚洲| videosex国产| 一个人观看的视频www高清免费观看 | 日韩欧美国产一区二区入口| 91成年电影在线观看| 精品一区二区三区四区五区乱码| 99久久99久久久精品蜜桃| 亚洲成人免费av在线播放| 久久久久久久久久久久大奶| 久久人人爽av亚洲精品天堂| 国产高清视频在线播放一区| 叶爱在线成人免费视频播放| 老司机午夜福利在线观看视频| 看黄色毛片网站| 午夜免费成人在线视频| 91av网站免费观看| 国产麻豆69| 看免费av毛片| 999久久久精品免费观看国产| 成年人免费黄色播放视频| 桃红色精品国产亚洲av| 国产成人啪精品午夜网站| 手机成人av网站| 国产在线观看jvid| 露出奶头的视频| 69精品国产乱码久久久| 91大片在线观看| 国产99白浆流出| 欧美在线黄色| 满18在线观看网站| 成人三级做爰电影| 亚洲专区字幕在线| 亚洲精品一区av在线观看| 国产成人精品无人区| 日本vs欧美在线观看视频| 黄色怎么调成土黄色| 不卡一级毛片| 黄片小视频在线播放| 久久久久九九精品影院| www.精华液| 色综合婷婷激情| 久久久久亚洲av毛片大全| 婷婷精品国产亚洲av在线| 国产精品自产拍在线观看55亚洲| 无人区码免费观看不卡| 丝袜美足系列| 天天躁夜夜躁狠狠躁躁| 99精国产麻豆久久婷婷| 日本撒尿小便嘘嘘汇集6| 韩国av一区二区三区四区| 国产不卡一卡二| 大香蕉久久成人网| 多毛熟女@视频| 精品国产超薄肉色丝袜足j| 视频区欧美日本亚洲| 夫妻午夜视频| 欧美日韩黄片免| 国产av精品麻豆| 欧美成人免费av一区二区三区| 成人永久免费在线观看视频| 精品人妻在线不人妻| 这个男人来自地球电影免费观看| 人妻丰满熟妇av一区二区三区| 亚洲精品成人av观看孕妇| 免费少妇av软件| 午夜福利在线观看吧| 黄色a级毛片大全视频| 黄色 视频免费看| 国产成人精品在线电影| 99久久精品国产亚洲精品| 搡老熟女国产l中国老女人| 久久人人精品亚洲av| 黄色视频,在线免费观看| 欧美黄色淫秽网站| 欧美日韩av久久| 亚洲成av片中文字幕在线观看| 在线观看免费午夜福利视频| 欧美乱色亚洲激情| 欧美在线黄色| 视频在线观看一区二区三区| 国产在线精品亚洲第一网站| 欧美日韩亚洲高清精品| 国产精品爽爽va在线观看网站 | 人人澡人人妻人| 老熟妇乱子伦视频在线观看| 国产av一区二区精品久久| 两性夫妻黄色片| 亚洲av成人一区二区三| 亚洲第一av免费看| 精品福利永久在线观看| 国产精品一区二区在线不卡| 丰满饥渴人妻一区二区三| www.999成人在线观看| 性少妇av在线| www日本在线高清视频| 婷婷六月久久综合丁香| 夜夜爽天天搞| 50天的宝宝边吃奶边哭怎么回事| 久久国产乱子伦精品免费另类| 青草久久国产| 国产伦一二天堂av在线观看| 男女床上黄色一级片免费看| 两人在一起打扑克的视频| 热re99久久精品国产66热6| 成年版毛片免费区| a级片在线免费高清观看视频| 18禁黄网站禁片午夜丰满| 手机成人av网站| 极品教师在线免费播放| 国产aⅴ精品一区二区三区波| 日韩成人在线观看一区二区三区| 69精品国产乱码久久久| 国产精品久久久久成人av| 一二三四社区在线视频社区8| 亚洲人成伊人成综合网2020| 国产精品野战在线观看 | 久久精品91无色码中文字幕| 91九色精品人成在线观看| 亚洲第一青青草原| 在线av久久热| 久久精品91蜜桃| 高清黄色对白视频在线免费看| 我的亚洲天堂| 日韩欧美一区视频在线观看| 97超级碰碰碰精品色视频在线观看| 激情视频va一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 一级a爱视频在线免费观看| 国产黄a三级三级三级人| 老司机福利观看| 精品电影一区二区在线| 久久久国产精品麻豆| 黄色视频,在线免费观看| 久久伊人香网站| 在线观看www视频免费| 亚洲av日韩精品久久久久久密| 18禁黄网站禁片午夜丰满| 国产亚洲精品综合一区在线观看 | 又黄又爽又免费观看的视频| 欧美老熟妇乱子伦牲交| 欧美日韩福利视频一区二区| 女人爽到高潮嗷嗷叫在线视频| 精品国产美女av久久久久小说| 国产精品成人在线| netflix在线观看网站| 亚洲国产看品久久| 免费人成视频x8x8入口观看| 精品第一国产精品| 自线自在国产av| 久久中文字幕一级| 免费久久久久久久精品成人欧美视频| 乱人伦中国视频| 真人一进一出gif抽搐免费| 手机成人av网站| 久久香蕉国产精品| 欧美久久黑人一区二区| 久久精品91蜜桃| 国产成人精品无人区| 国产精品电影一区二区三区| 国产又爽黄色视频| 极品人妻少妇av视频| 9191精品国产免费久久| 亚洲熟妇中文字幕五十中出 | 一个人免费在线观看的高清视频| 黑人欧美特级aaaaaa片| 在线视频色国产色| 久久九九热精品免费| 久久精品亚洲精品国产色婷小说| 精品乱码久久久久久99久播| 制服人妻中文乱码| 午夜福利影视在线免费观看| 国产精品一区二区三区四区久久 | 色老头精品视频在线观看| 90打野战视频偷拍视频| 少妇的丰满在线观看| 少妇粗大呻吟视频| 视频区欧美日本亚洲| 91麻豆av在线| 午夜免费成人在线视频| 日韩人妻精品一区2区三区| 久久 成人 亚洲| 日韩欧美一区二区三区在线观看| 亚洲人成伊人成综合网2020| 亚洲成人免费电影在线观看| 大陆偷拍与自拍| 校园春色视频在线观看| 涩涩av久久男人的天堂| 制服诱惑二区| 国产免费男女视频| 亚洲久久久国产精品| 桃色一区二区三区在线观看| 黄网站色视频无遮挡免费观看| 少妇裸体淫交视频免费看高清 | 老司机午夜福利在线观看视频| 亚洲 国产 在线| av网站免费在线观看视频| 亚洲国产欧美网| 中文字幕人妻丝袜一区二区| 国产精品一区二区在线不卡| 男人舔女人下体高潮全视频| 很黄的视频免费| 老熟妇仑乱视频hdxx| 狠狠狠狠99中文字幕| 在线观看免费高清a一片| 18禁国产床啪视频网站| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产毛片av蜜桃av| 操出白浆在线播放| 国产亚洲av高清不卡| 久久中文字幕人妻熟女| 在线播放国产精品三级| 日韩 欧美 亚洲 中文字幕| 免费在线观看亚洲国产| 神马国产精品三级电影在线观看 | 两人在一起打扑克的视频| 三上悠亚av全集在线观看| 真人一进一出gif抽搐免费| 丰满饥渴人妻一区二区三| 嫁个100分男人电影在线观看| 亚洲五月色婷婷综合| 99国产精品一区二区蜜桃av| 欧美日韩国产mv在线观看视频| 在线天堂中文资源库| 最新美女视频免费是黄的| 黄色女人牲交| 久久伊人香网站| 欧美黑人精品巨大| 久久精品国产99精品国产亚洲性色 | 午夜亚洲福利在线播放| 真人做人爱边吃奶动态| 99在线人妻在线中文字幕| 制服人妻中文乱码| 亚洲精品一二三| www.精华液| 日本欧美视频一区| 大码成人一级视频| 精品一品国产午夜福利视频| 99久久综合精品五月天人人| 韩国精品一区二区三区| 欧美人与性动交α欧美精品济南到| 妹子高潮喷水视频| 亚洲色图 男人天堂 中文字幕| 亚洲三区欧美一区| 久久亚洲真实| 久久精品亚洲精品国产色婷小说| 日韩三级视频一区二区三区| 国产av一区在线观看免费| 日韩成人在线观看一区二区三区| 真人一进一出gif抽搐免费| 亚洲色图av天堂| 久久精品人人爽人人爽视色| 欧美大码av| 亚洲国产精品999在线| 高清黄色对白视频在线免费看| 精品高清国产在线一区| 亚洲成人免费av在线播放| 日韩高清综合在线| 久久久久国产精品人妻aⅴ院| 丝袜美腿诱惑在线| 亚洲av片天天在线观看| 成年人免费黄色播放视频| 麻豆一二三区av精品| 久久香蕉国产精品| 日日夜夜操网爽| 亚洲自拍偷在线| 久久久久久亚洲精品国产蜜桃av| 国产av在哪里看| 99久久综合精品五月天人人| 欧美在线黄色| 久久久国产一区二区| 久久精品国产亚洲av香蕉五月| 丰满人妻熟妇乱又伦精品不卡| 国产av一区二区精品久久| 免费久久久久久久精品成人欧美视频| 久久人人精品亚洲av| 精品久久蜜臀av无| 搡老岳熟女国产| 高清av免费在线| 人人妻,人人澡人人爽秒播| 免费在线观看黄色视频的| 国产99白浆流出| 欧美日韩一级在线毛片| 黄网站色视频无遮挡免费观看| 一级,二级,三级黄色视频| 亚洲av五月六月丁香网| 在线看a的网站| 韩国av一区二区三区四区| 香蕉丝袜av| 美女国产高潮福利片在线看| 69av精品久久久久久| 麻豆成人av在线观看| 母亲3免费完整高清在线观看| 91精品国产国语对白视频| 长腿黑丝高跟| 国产激情欧美一区二区| 国产精品一区二区三区四区久久 | 国产欧美日韩一区二区三区在线| 国产成人一区二区三区免费视频网站| 女人高潮潮喷娇喘18禁视频| 国产成人欧美在线观看| 99re在线观看精品视频| 国产高清国产精品国产三级| 深夜精品福利| 日日摸夜夜添夜夜添小说| 亚洲精品国产精品久久久不卡| 女人精品久久久久毛片| 国产野战对白在线观看| 97超级碰碰碰精品色视频在线观看| 日韩精品青青久久久久久| 成人国语在线视频| 成人三级黄色视频| 男女高潮啪啪啪动态图| 亚洲男人天堂网一区| 最近最新中文字幕大全电影3 | 91国产中文字幕| 亚洲专区中文字幕在线| 精品久久蜜臀av无| 亚洲第一青青草原| 91老司机精品| 久久精品影院6| 国产精品电影一区二区三区| 琪琪午夜伦伦电影理论片6080| 看片在线看免费视频| 欧美激情高清一区二区三区| 手机成人av网站| 欧美精品一区二区免费开放| 嫩草影视91久久|