• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polypyrrole-Coated Zein/Epoxy Ultrafine Fiber Mats for Electromagnetic Interference Shielding

    2023-09-22 14:28:56DINGRunlong丁潤龍QIRuirui戚瑞瑞LIUFeiLIUWanshuang劉萬雙ZHANGLiying張禮穎JIANGQiuran蔣秋冉

    DING Runlong(丁潤龍), QI Ruirui(戚瑞瑞), LIU Fei(劉 飛), LIU Wanshuang(劉萬雙), 4, ZHANG Liying(張禮穎), 4*, JIANG Qiuran(蔣秋冉)*

    1 Key Laboratory of Textile Science &Technology, Ministry of Education, Donghua University, Shanghai 201620, China 2 College of Textiles, Donghua University, Shanghai 201620, China 3 Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China 4 Shanghai Collaborative Innovation Center of High Performance Fibers and Composites (Province-Ministry Joint), Donghua University, Shanghai 201620, China

    Abstract:To reduce the environmental pollution and meet the needs for wearable electronic devices, new requirements for electromagnetic interference (EMI) shielding materials include flexibility, biodegradability, and biocompatibility. Herein, we reported a polypyrrole-coated zein/epoxy (PPy/ZE) ultrafine fiber mat which was inherently biodegradable and skin-friendly. In addition, it could maintain its ultrafine fibrous structure after coating, which could provide the mat with mechanical compliance, high porosity, and a large specific area for high EMI shielding. With the assistance of the epoxide cross-linking, the breaking stresses of the PPy/ZE fiber mats could achieve 3.3 MPa and 1.4 MPa and the strains were 40.1% and 83.0% in dry and wet states, respectively, which met the needs of various wearable electronic devices. Along with the extension in the PPy treatment duration, more PPy was loaded on the fiber surfaces, which formed more integrated and conductive paths to generate increasing conductivities up to 401.76 S·m-1. Moreover, the EMI shielding performance was raised to 26.84 dB. The biobased mats provide a green and efficient choice for EMI shielding materials, which may be a promising strategy to address EMI problems in multiple fields.

    Key words:polypyrrole(PPy); zein; ultrafine fiber mat; electromagnetic interference (EMI) shielding; electrical conductivity

    0 Introduction

    Nowadays, there has been a significant increase in the demand for wearable electronic devices and 5G facilities for numerous uplifting applications[1-2]. However, the ensuing electromagnetic interference (EMI) pollution is detrimental to the functionality and integrity of electronic and communication devices and may threaten human health[3-4]. Therefore, effective strategies for the EMI alleviation are in urgent demand. In the last decade, EMI shielding materials are emerging for EMI control[5]. The popular EMI shielding materials are mainly metallic or carbon-based, such as gold, silver, aluminum, copper, carbon fibers, carbon nanotubes, graphenes, and MXenes[6-11]. However, these materials suffer from bulkiness, easiness of corrosion, complicated processing, and a high percentage of reflection of electromagnetic waves (EMW) other than absorption[12-14]. The ideal EMI shielding materials should possess properties including lightweight, high shielding effectiveness, wide absorption frequency range, low EMI reflection, good flexibility, simple processing, and sufficient mechanical strength. Nowadays, more important needs include biodegradability to eliminate pollution after discarding and wearable-electronic-device-related applications with high skin suitability. Whereas, most EMI shielding materials lack biodegradability or biocompatibility.

    In this work, the corn protein, zein, is used as the raw material of the base, which can endow inherent biodegradability and biocompatibility to the obtained EMI shielding materials. This method has the potential for large-scale production since zein is the byproduct of the ethanol industry. Electrospinning can easily produce porous ultrafine fibers with sufficient mechanical strength and has been applied to the manufacture of zein ultrafine fibers[15]. As a result, the ultrafine fibrous base is constructed via electrospinning to establish a flexible and highly porous structure with a low density and a large specific surface area for the EMW absorption and reflection. The drawback of the zein ultrafine fibers is their poor mechanical properties, especially when they are wetted. The epoxide with high reactivity to active hydrogen structure in protein was employed as the cross-linker for modification, which was reported to be effective for the mechanical strength elevation[15]. Instead of inorganic conductive materials, polypyrrole (PPy) is coated on the zein/epoxy (ZE) ultrafine fibers to form the organic conductive layer due to its sufficient conductivity, EMW absorbing dominant nature, mechanical compliance, biocompatibility, and simple processing[16]. This work investigates the relationship between the EMI shielding efficiency of the PPy-coated zein/epoxy (PPy/ZE) ultrafine fiber mats and their morphological properties, mechanical properties, and electrical conductivity.

    1 Experiments

    1.1 Materials

    Zein powders were purchased from Hefei Bomei Biotechnology Co., Ltd., Hefei, China. Glycerol triglycidyl ether (GTE) was obtained from Weng Jiang Reagent Co., Ltd., Shaoguan, China. Polyvinyl pyrrolidone (PVP) and iron(III) chloride hexahydrate (FeCl3·6H2O) were supplied by Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China. Pyrrole (with a purity of 98% by weight) was purchased from Sigma-Aldrich, USA, and ρ-toluene sulfonate (ρ-TSA) with a purity of 97% by weight was obtained from Acmec Biochemical Co., Ltd., Shanghai, China.

    1.2 Sample preparation

    The PVP/ethanol solution was prepared by dissolving PVP into the ethanol-water solution at a weight ratio of 5∶100. The mass fracfion of ethanol in the ethnol-water solution is 75%. The spinning solution was obtained by mixing zein powders, GTE, the ethanol-water solution and the PVP/ethanol solution at 17.0%, 3.0%, 62.1% and 17.9% by weight, respectively. After stirring and aging for 24 h, the spinning solution was electrospun at a spinning speed of 2.0 mL/h with a voltage of 15 kV and a collection distance of 16 cm. The environment was maintained at a temperature of 25 ℃ and a relative humidity of 35%. The obtained fiber mats were crosslinked at 120 ℃ for 1 h and noted as the sample ZE. Then, the fiber mats were immersed in the aqueous treatment bath composed of FeCl3·6H2O (0.2 mol/L) and ρ-TSA (0.2 mol/L) and modified at 4 ℃ for 1 h. The pyrrole was slowly added to the treatment bath to a concentration of 0.2 mol/L at 4 ℃ for 2-10 h. After treatment, the fiber mats were rinsed, dried at 50 ℃ for 12 h, and noted as the sample PPy/ZE-treatment duration, such as PPy/ZE-2 h.

    1.3 Measurements

    The macroscopic morphologies of PPy/ZE fiber mats were recorded by a digital camera (D7200, Nikon, Japan) and their microscopic morphologies were analyzed using a scanning electron microscope (SEM, FlexSEM1000, Hitachi, Japan) with an acceleration voltage of 10 kV. For the test of mechanical properties, the specimens of PPy/ZE fiber mats were prepared with the size of 60.0 mm×5.0 mm×0.3 mm, soaked in water for 1 h, and tested on an electromechanical universal testing machine (CMT5204, MTS, USA). The conductivities of PPy/ZE fiber mats were measured by using a four-probe resistivity tester (HPS2662, Helpass, China). The EMI shielding performances of the PPy/ZE fiber mats (22.86 mm × 10.14 mm) at X-band (8.5-12.0 GHz) were tested using a vector network analyzer (ZNB20, Rohde &Schwarz, Germany) by a waveguide approach.

    2 Results and Discussion

    2.1 Morphological properties

    Figure 1 shows the appearances of the ZE fiber mat and PPy/ZE fiber mats. The color of the ZE fiber mat turned from pale yellow to black after modification indicating that PPy had been successfully loaded onto the fibers. By varying the treatment duration, the color did not show an obvious difference. It proved that a small amount of loaded PPy was sufficient to shift the color of fibers. After modification, the fibrous structure was maintained with permeable interconnected pores, but modified fiber mats became more compact and some fibers fused together as shown in Fig.2. Spherical nanoparticles were unevenly distributed on the surface of PPy/ZE fiber mats. These nanoparticles could be the agglomerated homopolymers of PPy[17]. With the increase of treatment duration, the number of spherical nanoparticles increased rapidly during the first six hours and remained constant thereafter, which indicated the equilibrium of the reaction.

    Fig.1 Digital photos of ZE fiber mat and PPy/ZE fiber mats with different treatment durations:(a) ZE; (b) PPy/ZE-2 h; (c) PPy/ZE-4 h; (d) PPy/ZE-6 h; (e) PPy/ZE-8 h; (f) PPy/ZE-10 h

    Fig.2 SEM images of ZE fiber mat and PPy/ZE fiber mats with different treatment durations:(a) ZE; (b) PPy/ZE-2 h; (c) PPy/ZE-4 h; (d) PPy/ZE-6 h; (e) PPy/ZE-8 h; (f) PPy/ZE-10 h

    2.2 Mechanical properties

    As shown in Fig.3, the breaking stress of the ZE fiber mat in dry state (ZE-dry) was 0.91 MPa and the yield point was achieved at a low strain of only 4.43%. The breaking process of the mat displayed an obvious fracture heterogeneity. This was probably due to the loose fibrous structure. The maximum strain was about 116%. Once wetted, the ZE fiber mat in wet state (ZE-wet) showed a dramatically elevated stretchability with a maximum strain of 202%. The invaded water molecules served as the plasticizer which broke the hydrogen bonds and van der Waals force to allow the movement among polymers and generated a substantial increase in elongation[18]. However, the breaking stress did not change much (0.80 MPa), which proved the effective cross-linking between the zein proteins and the epoxy GTE. The fracture of the mat was sharp with no heterogeneity. This was probably due to the cross-linked structure at the polymer level and the enhanced interaction among the wetted fibers.

    After eight hours of PPy modification, the breaking stress of PPy/ZE fiber mat in the dry state (PPy/ZE-8 h-dry) increased by 263% to 3.3 MPa, and a sharp break was observed at a low strain of 40.1%. The PPy/ZE-8 h fiber mat became stronger but more rigid in the dry state. Since the tensile strength of PPy film could reach 8 MPa or higher while the elongation is 2%-8%[19], this result implied that the fibers had a core-shell structure in which the PPy coating with limited stretchability restricted the extension of zein fibers but increased the breaking stress. In addition, the fibers fused by water might elevate rigidity and the more compacted structure of the fiber mat elicited a reduction in elongation and a rise in stress. In the wet state, the strain of the PPy/ZE-8 h fiber mat (PPy/ZE-8 h-wet) could be raised to 83.0% and the stress was weakened to 1.40 MPa. Moderate elongation and stress allow the PPy/ZE-8 h fiber mat to be used in a variety of applications[20-21].

    Fig.3 Stress-strain curves of ZE fiber mat and PPy/ZE-8 h fiber mat in dry and wet states

    2.3 Conductivity

    During the polymerization of pyrrole, the oligomers containing initiators were first generated in water, and these oligomers were physically adsorbed onto the surface of the microfiber by hydrogen bonding. Since the oxidation potential of these oligomers adsorbed on the fiber surfaces was lower than that of the pyrrole in the solution, reactions occurred mainly on the surface rather than in the aqueous solution[22]. By prolonging the reaction duration from 2 h to 8 h, more pyrrole molecules were polymerized on the surface of fibers,which formed more integrated and thicker PPy layers. The thicker PPy layers provided a more efficient conductive network and elevated the conductivityσof PPy/ZE fiber mats from 175.07 S·m-1to 398.17 S·m-1as shown in Table 1. The further reaction did not elicit a substantial increment in conductivity, which showed a similar trend like morphological properties.

    Table 1 Conductivities of PPy/ZE fiber mats with different treatment durations

    2.4 EMI shielding performance

    The EMI shielding performances of PPy/ZE fiber mats at X-band (8.5-12.0 GHz) are shown in Table 2. For each sample modified for a treatment duration, the total EMI shielding efficiency at frequenciesfin X-band was close, and thus an average value of total EMI shielding efficiencyE(dB) was given for each sample. With the increase in the reaction time from 2 h to 8 h,Eelevated gradually from 12.41 dB to 26.67 dB. Further extension in treatment time to 10 h did not shift it much. This trend was similar to the changes in conductivity shown in Table 1.

    Table 2 EMI shielding performances at X-band (8.5-12.0 GHz) of PPy/ZE fiber mats with different treatment durations

    The relationship between the conductivity of PPy/ZE fiber mats andEis displayed in Fig.4. It showed a non-linear correlation with a reducing slope.

    Fig.4 Effect of conductivity of PPy/ZE fiber mats on E

    According to the above results, the fiber mats of PPy/ZE-2 h and PPy/ZE-4 h could shield at least 94.2% of the EMW, while the samples PPy/ZE-6 h and PPy/ZE-8 h were able to block 99.4% and 99.8% of the EMW, respectively. The requirement for the commercial EMI shielding materials is at least 20 dB,i.e., 99% of the EMW[23-24], and thus the PPy/ZE fiber mats with treatment duration above 6 h in this work can meet the requirement for applications.

    To compare the EMI shielding performance with other works, the average total EMI shielding efficiency per thickness of the PPy/ZE fiber mats was calculated and exhibited in Table 3. The calculation formula is

    (1)

    whereIis the average total EMI shielding efficiency per thickness (dB·mm-1), anddis the thickness of samples (mm).

    Table 3 Comparison of the I of PPy/ZE fiber mats and the PPy modified EMI shielding materials reported by other works

    TheIof the PPy/ZE-10 h fiber mat was about 1.5-4.5 times of the EMI shielding materials composed with PPy reported in Refs.[25-27]. There were mainly three possible reasons. Firstly, the PPy conductive layer was constructed on the top layer of fibers with a strong affinity to the protein base. The integrated conductive network provided the PPy/ZE fiber mats with a high conductivity which was important to generate the reflective shielding effect. Secondly, the fibers were composed of the outer layer PPy and the inner core ZE fiber and formed a core-shell heterostructure. The interface of the core and the shell could serve as a “capacitor” due to the dielectric polarization and accumulate charges to induce weakening of the EMW. Finally, the ultrafine fibrous structure of the PPy/ZE fiber mats and PPy nanoparticles constructed a complicated porous architecture with a large surface area for the EMW multi-reflection inside the mat and the EMW absorption.

    Considering flexibility, lightness, biocompatibility, and effective shielding performance, the PPy/ZE fiber mats can be used in various applications as shown in Fig.5, such as wearable electronic devices, aviation, space flight, military, electronics and in vivo and in vitro medical devices. After use, the products can be degraded in water, soil, or in the body because of the inherent biodegradability of the protein-based fiber mats.

    Fig.5 Possible applications of PPy/ZE fiber mats

    3 Conclusions

    In summary, this work provided a series of biobased PPy/ZE fiber mats for the EMI shielding via simple cross-linking andin-situpolymerization approaches. The porous and fibrous structure was maintained after the PPy coating. In addition, the stress of the PPy/ZE fiber mats was substantially enhanced, while the strain was dramatically reduced compared with that of the ZE fiber mat. By prolonging the treatment duration, the conductivity of the PPy/ZE fiber mats was improved up to 401.76 S·m-1and the average total EMI shielding efficiency per thickness was elevated up to 89 dB·mm-1, which met the requirement, for instance, aircraft and space suits. This work demonstrates a green and simple fabrication method for the production of thin and lightweight biobased EMI shielding mats, which may be a promising strategy for the mass production of EMI shielding materials to address EMI problems in multiple fields.

    午夜福利视频精品| 永久网站在线| 在线精品无人区一区二区三| 久久这里有精品视频免费| 国产欧美另类精品又又久久亚洲欧美| 新久久久久国产一级毛片| 精品久久久噜噜| 免费大片黄手机在线观看| 中文天堂在线官网| 免费不卡的大黄色大毛片视频在线观看| a级毛片免费高清观看在线播放| 插阴视频在线观看视频| 亚洲国产成人一精品久久久| 午夜精品国产一区二区电影| 免费看av在线观看网站| 在现免费观看毛片| 一区二区三区四区激情视频| 久久久久人妻精品一区果冻| 国产一区亚洲一区在线观看| 欧美区成人在线视频| 国产精品一区二区三区四区免费观看| 在线播放无遮挡| 美女中出高潮动态图| 亚洲精品一区蜜桃| 内地一区二区视频在线| 男人狂女人下面高潮的视频| 99热6这里只有精品| 欧美精品亚洲一区二区| 国产淫片久久久久久久久| 亚洲国产色片| 亚洲欧美一区二区三区国产| 亚洲四区av| 久热久热在线精品观看| 岛国毛片在线播放| 日韩精品有码人妻一区| 少妇人妻一区二区三区视频| 免费高清在线观看视频在线观看| 寂寞人妻少妇视频99o| 免费av不卡在线播放| 99国产精品免费福利视频| 欧美日韩亚洲高清精品| 免费黄色在线免费观看| 午夜视频国产福利| 80岁老熟妇乱子伦牲交| 久久久欧美国产精品| 久久毛片免费看一区二区三区| 人妻 亚洲 视频| 日本91视频免费播放| 男人爽女人下面视频在线观看| 亚洲三级黄色毛片| 少妇人妻 视频| 国产男女超爽视频在线观看| 免费看光身美女| 国产高清不卡午夜福利| 在线看a的网站| 亚洲精品视频女| 91aial.com中文字幕在线观看| 成人国产麻豆网| 777米奇影视久久| 国产日韩一区二区三区精品不卡 | 久久久久国产网址| 国产精品久久久久久久电影| 国产黄色免费在线视频| 免费播放大片免费观看视频在线观看| 又粗又硬又长又爽又黄的视频| av在线播放精品| 久久99热6这里只有精品| 国产精品国产av在线观看| 交换朋友夫妻互换小说| 偷拍熟女少妇极品色| 免费在线观看成人毛片| 日韩,欧美,国产一区二区三区| 如日韩欧美国产精品一区二区三区 | 欧美日韩一区二区视频在线观看视频在线| 久久人人爽人人爽人人片va| 欧美xxxx性猛交bbbb| 欧美变态另类bdsm刘玥| 国产一区二区三区av在线| 9色porny在线观看| 欧美成人精品欧美一级黄| 岛国毛片在线播放| 一本—道久久a久久精品蜜桃钙片| 好男人视频免费观看在线| av线在线观看网站| 在线看a的网站| 国产精品免费大片| 国产精品久久久久久精品古装| 色5月婷婷丁香| 在线观看免费日韩欧美大片 | 婷婷色av中文字幕| 色94色欧美一区二区| 亚洲伊人久久精品综合| 热99国产精品久久久久久7| 国产成人精品一,二区| 国产精品一区二区性色av| 中文精品一卡2卡3卡4更新| 国产精品久久久久久精品电影小说| 久久狼人影院| 婷婷色麻豆天堂久久| 青春草亚洲视频在线观看| 国产乱来视频区| 日韩成人伦理影院| 国内揄拍国产精品人妻在线| 热99国产精品久久久久久7| 久久婷婷青草| 哪个播放器可以免费观看大片| 91在线精品国自产拍蜜月| 中文字幕免费在线视频6| 精品酒店卫生间| 国产一区二区在线观看av| 插阴视频在线观看视频| 另类亚洲欧美激情| 免费观看a级毛片全部| 国产成人免费无遮挡视频| 久久久久久人妻| 免费av不卡在线播放| 最近最新中文字幕免费大全7| 免费观看的影片在线观看| 久久婷婷青草| 一区在线观看完整版| 黄色毛片三级朝国网站 | 五月玫瑰六月丁香| 一级毛片久久久久久久久女| av在线播放精品| 国产黄片视频在线免费观看| 国产亚洲精品久久久com| 成人二区视频| 精品一区二区三卡| 成年人免费黄色播放视频 | 亚洲怡红院男人天堂| 精品久久国产蜜桃| 卡戴珊不雅视频在线播放| 亚洲精品日本国产第一区| 91精品国产九色| 免费人成在线观看视频色| 亚洲中文av在线| 婷婷色麻豆天堂久久| 国产精品国产三级国产av玫瑰| 18禁在线播放成人免费| 简卡轻食公司| 日本91视频免费播放| 国产精品一区二区三区四区免费观看| 男的添女的下面高潮视频| 精品熟女少妇av免费看| 3wmmmm亚洲av在线观看| 在线观看三级黄色| 久久97久久精品| 插逼视频在线观看| 亚洲美女黄色视频免费看| 一级片'在线观看视频| 热re99久久国产66热| 青春草国产在线视频| 成人综合一区亚洲| 三级经典国产精品| 只有这里有精品99| 国产男人的电影天堂91| 在线观看免费高清a一片| 三级国产精品片| 精品亚洲成a人片在线观看| 国产成人一区二区在线| 午夜福利在线观看免费完整高清在| 久久99蜜桃精品久久| 高清av免费在线| 一区二区三区四区激情视频| 亚洲精品成人av观看孕妇| 久久久国产欧美日韩av| 国产一区二区三区综合在线观看 | 欧美丝袜亚洲另类| 大又大粗又爽又黄少妇毛片口| 日韩熟女老妇一区二区性免费视频| 亚洲av国产av综合av卡| 一边亲一边摸免费视频| 另类精品久久| 亚洲电影在线观看av| 国国产精品蜜臀av免费| 欧美 日韩 精品 国产| 熟女电影av网| 综合色丁香网| 男人添女人高潮全过程视频| 免费播放大片免费观看视频在线观看| 最近的中文字幕免费完整| 免费看光身美女| 成人国产av品久久久| 国产精品蜜桃在线观看| 久久久久久久久久久久大奶| 一二三四中文在线观看免费高清| 久久精品熟女亚洲av麻豆精品| 最新的欧美精品一区二区| 美女福利国产在线| 蜜桃在线观看..| 最新中文字幕久久久久| 欧美精品亚洲一区二区| 欧美日韩综合久久久久久| 欧美另类一区| 丁香六月天网| 日韩中字成人| 亚洲精品第二区| 人人妻人人澡人人爽人人夜夜| 中文精品一卡2卡3卡4更新| 国产视频内射| 我的老师免费观看完整版| 视频中文字幕在线观看| 日韩精品免费视频一区二区三区 | 五月开心婷婷网| 国产精品人妻久久久影院| 国产精品熟女久久久久浪| 亚洲图色成人| 国产一区二区三区综合在线观看 | 少妇人妻一区二区三区视频| 久久久久精品性色| 黄色日韩在线| 18禁在线播放成人免费| 久久婷婷青草| 七月丁香在线播放| 婷婷色av中文字幕| 在线观看av片永久免费下载| 国产成人a∨麻豆精品| 亚洲三级黄色毛片| 久久久久久久久大av| 乱系列少妇在线播放| 九草在线视频观看| 成人影院久久| 精品久久久噜噜| 免费观看a级毛片全部| 2021少妇久久久久久久久久久| 亚洲丝袜综合中文字幕| 我的女老师完整版在线观看| 国产精品99久久99久久久不卡 | 中文字幕久久专区| 日韩制服骚丝袜av| 一级av片app| 大话2 男鬼变身卡| 精品午夜福利在线看| 一区二区三区乱码不卡18| 国产 精品1| 午夜影院在线不卡| 夫妻性生交免费视频一级片| 色婷婷av一区二区三区视频| 欧美成人精品欧美一级黄| 亚洲精品aⅴ在线观看| 久久韩国三级中文字幕| 在线精品无人区一区二区三| 一级毛片电影观看| 午夜影院在线不卡| 99热网站在线观看| 在线亚洲精品国产二区图片欧美 | 国国产精品蜜臀av免费| 成人美女网站在线观看视频| 菩萨蛮人人尽说江南好唐韦庄| 国产精品国产三级国产专区5o| 人体艺术视频欧美日本| 黄色毛片三级朝国网站 | 91精品伊人久久大香线蕉| 国产午夜精品一二区理论片| 日韩三级伦理在线观看| 亚洲国产成人一精品久久久| 91午夜精品亚洲一区二区三区| 一本久久精品| 国产精品一区二区在线观看99| 国产精品人妻久久久影院| 一区二区三区乱码不卡18| 内地一区二区视频在线| 肉色欧美久久久久久久蜜桃| 综合色丁香网| 国产在线男女| 日韩av免费高清视频| 亚洲图色成人| 少妇丰满av| 免费在线观看成人毛片| 22中文网久久字幕| 我要看黄色一级片免费的| 伊人久久精品亚洲午夜| 9色porny在线观看| 蜜桃在线观看..| av又黄又爽大尺度在线免费看| 成年av动漫网址| 2022亚洲国产成人精品| av不卡在线播放| 看十八女毛片水多多多| 久久6这里有精品| 另类亚洲欧美激情| 亚洲欧洲日产国产| 国产淫语在线视频| 亚洲精品乱久久久久久| 99热这里只有精品一区| 国产熟女午夜一区二区三区 | 中文字幕精品免费在线观看视频 | 国产精品不卡视频一区二区| 多毛熟女@视频| 国产精品麻豆人妻色哟哟久久| 99热国产这里只有精品6| 日韩一区二区三区影片| 精品熟女少妇av免费看| 一本大道久久a久久精品| 五月开心婷婷网| 9色porny在线观看| 久久亚洲国产成人精品v| 国产男人的电影天堂91| av黄色大香蕉| 精品久久久久久电影网| 九九爱精品视频在线观看| 国产精品福利在线免费观看| 建设人人有责人人尽责人人享有的| 我的老师免费观看完整版| 91久久精品国产一区二区成人| av视频免费观看在线观看| 久久久久视频综合| 欧美精品高潮呻吟av久久| 国内揄拍国产精品人妻在线| 精品99又大又爽又粗少妇毛片| 国产黄频视频在线观看| 韩国av在线不卡| 成人毛片a级毛片在线播放| 国产在视频线精品| 老司机影院毛片| 亚洲色图综合在线观看| 成年人免费黄色播放视频 | 一级毛片aaaaaa免费看小| 我的女老师完整版在线观看| 91成人精品电影| 少妇被粗大猛烈的视频| 中文字幕制服av| 男女啪啪激烈高潮av片| 51国产日韩欧美| 三级国产精品欧美在线观看| 高清欧美精品videossex| av福利片在线观看| 国模一区二区三区四区视频| 欧美日韩综合久久久久久| 卡戴珊不雅视频在线播放| 欧美日本中文国产一区发布| 亚洲色图综合在线观看| 少妇高潮的动态图| 亚洲成人手机| 亚洲成人av在线免费| 久久6这里有精品| 亚洲在久久综合| 偷拍熟女少妇极品色| 久久久欧美国产精品| 九色成人免费人妻av| 亚洲第一av免费看| 在线观看三级黄色| 美女中出高潮动态图| 亚洲一级一片aⅴ在线观看| 亚洲国产精品国产精品| 女人精品久久久久毛片| 久久久国产欧美日韩av| 国产精品人妻久久久影院| 丝袜喷水一区| 日韩中文字幕视频在线看片| 久久国产精品男人的天堂亚洲 | 国产欧美日韩综合在线一区二区 | 汤姆久久久久久久影院中文字幕| a级毛色黄片| freevideosex欧美| 国产亚洲一区二区精品| 国产精品无大码| 免费看av在线观看网站| 日本午夜av视频| 国产无遮挡羞羞视频在线观看| 国产亚洲5aaaaa淫片| 久久久久国产精品人妻一区二区| freevideosex欧美| 久久精品久久久久久久性| av播播在线观看一区| 午夜激情福利司机影院| 亚洲精品视频女| 国产黄色视频一区二区在线观看| 亚洲av中文av极速乱| 欧美xxxx性猛交bbbb| 日韩av不卡免费在线播放| 国产精品一区www在线观看| 午夜福利网站1000一区二区三区| 国产亚洲精品久久久com| 久久人妻熟女aⅴ| 高清欧美精品videossex| 国产精品久久久久久久电影| 国产精品嫩草影院av在线观看| 久久99一区二区三区| 一本一本综合久久| 久久热精品热| 天堂俺去俺来也www色官网| 国产极品天堂在线| 久久精品国产亚洲网站| 这个男人来自地球电影免费观看 | 麻豆成人av视频| 在线观看美女被高潮喷水网站| 伦精品一区二区三区| 视频中文字幕在线观看| 少妇高潮的动态图| av卡一久久| 免费av不卡在线播放| 精品久久久精品久久久| 亚洲av日韩在线播放| 亚洲精品日本国产第一区| 国产女主播在线喷水免费视频网站| 中文乱码字字幕精品一区二区三区| 纵有疾风起免费观看全集完整版| 少妇 在线观看| 只有这里有精品99| 久久久久久久大尺度免费视频| 日韩伦理黄色片| 欧美成人午夜免费资源| 久久久久视频综合| 国产伦精品一区二区三区四那| a级毛片免费高清观看在线播放| 亚洲欧美成人精品一区二区| 日本av手机在线免费观看| 日本黄色日本黄色录像| 精品少妇内射三级| 制服丝袜香蕉在线| 久久久久国产精品人妻一区二区| 黄片无遮挡物在线观看| 亚洲精品乱码久久久v下载方式| 日本vs欧美在线观看视频 | 亚洲国产精品一区三区| 日本黄色日本黄色录像| 国产免费一区二区三区四区乱码| 亚洲av日韩在线播放| 水蜜桃什么品种好| 中文欧美无线码| 国产69精品久久久久777片| 国产 一区精品| 晚上一个人看的免费电影| 最新中文字幕久久久久| 少妇精品久久久久久久| 国产男女内射视频| 欧美老熟妇乱子伦牲交| 免费观看无遮挡的男女| 你懂的网址亚洲精品在线观看| 亚洲av免费高清在线观看| 成人毛片a级毛片在线播放| 韩国av在线不卡| 国产 一区精品| 久久久久久久国产电影| 一本—道久久a久久精品蜜桃钙片| 欧美97在线视频| 精品一区在线观看国产| 欧美日本中文国产一区发布| 一级毛片我不卡| 人妻夜夜爽99麻豆av| 欧美xxxx性猛交bbbb| 蜜臀久久99精品久久宅男| 美女视频免费永久观看网站| 亚洲综合色惰| 国产伦精品一区二区三区四那| 青春草亚洲视频在线观看| 在线精品无人区一区二区三| 久久国产亚洲av麻豆专区| 99视频精品全部免费 在线| 最近最新中文字幕免费大全7| av在线app专区| 97超视频在线观看视频| 久久久精品免费免费高清| 久久久久人妻精品一区果冻| av有码第一页| 日本欧美国产在线视频| 亚洲精品久久久久久婷婷小说| 亚洲精品456在线播放app| 亚洲伊人久久精品综合| 日韩精品免费视频一区二区三区 | 免费观看在线日韩| 免费黄色在线免费观看| 国产黄频视频在线观看| av线在线观看网站| 有码 亚洲区| 亚洲国产精品999| 日日爽夜夜爽网站| 午夜福利在线观看免费完整高清在| 国产美女午夜福利| 少妇人妻一区二区三区视频| 国产亚洲av片在线观看秒播厂| 日本猛色少妇xxxxx猛交久久| a级片在线免费高清观看视频| 亚洲,一卡二卡三卡| 久久久久久久久久久免费av| 国产老妇伦熟女老妇高清| 一级,二级,三级黄色视频| 啦啦啦啦在线视频资源| 日本vs欧美在线观看视频 | 91在线精品国自产拍蜜月| 国产av精品麻豆| 人妻少妇偷人精品九色| 亚洲熟女精品中文字幕| 老女人水多毛片| 黑人猛操日本美女一级片| 精品人妻熟女毛片av久久网站| 日韩成人av中文字幕在线观看| 国产成人一区二区在线| 美女xxoo啪啪120秒动态图| av视频免费观看在线观看| 精品久久国产蜜桃| 日本欧美视频一区| 99久久中文字幕三级久久日本| 国产爽快片一区二区三区| av免费观看日本| 免费看av在线观看网站| 午夜日本视频在线| 下体分泌物呈黄色| 精品熟女少妇av免费看| 亚洲综合精品二区| 亚洲成色77777| 日日摸夜夜添夜夜爱| 亚洲,欧美,日韩| 久久久久人妻精品一区果冻| 国产在线男女| 多毛熟女@视频| 日韩一区二区视频免费看| 日韩大片免费观看网站| 新久久久久国产一级毛片| 极品人妻少妇av视频| 纯流量卡能插随身wifi吗| 国产欧美日韩综合在线一区二区 | 免费高清在线观看视频在线观看| 国产91av在线免费观看| 国产男女内射视频| 大香蕉久久网| 五月天丁香电影| 深夜a级毛片| tube8黄色片| 久久人人爽av亚洲精品天堂| 大陆偷拍与自拍| 国产中年淑女户外野战色| 久久精品国产自在天天线| 国产色婷婷99| 嫩草影院新地址| 亚洲欧美一区二区三区黑人 | 成人国产av品久久久| 欧美变态另类bdsm刘玥| 一边亲一边摸免费视频| 日韩欧美一区视频在线观看 | 久久久a久久爽久久v久久| 亚洲国产欧美在线一区| 免费人成在线观看视频色| 日韩av免费高清视频| 亚洲丝袜综合中文字幕| 一级a做视频免费观看| 99久久精品一区二区三区| 伦理电影免费视频| 99国产精品免费福利视频| 一本大道久久a久久精品| 最新的欧美精品一区二区| av黄色大香蕉| 国产日韩一区二区三区精品不卡 | 精品人妻偷拍中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 久久久久视频综合| 内射极品少妇av片p| 国内精品宾馆在线| 成人黄色视频免费在线看| 99热这里只有是精品50| 亚洲精品久久午夜乱码| 交换朋友夫妻互换小说| 内地一区二区视频在线| 男女国产视频网站| 人体艺术视频欧美日本| 在线观看www视频免费| 成人国产av品久久久| 亚洲精品视频女| 久久精品国产鲁丝片午夜精品| 伦理电影免费视频| 在线天堂最新版资源| 在线观看www视频免费| 日韩三级伦理在线观看| 不卡视频在线观看欧美| 久久久久精品性色| 亚洲欧美成人综合另类久久久| 成人午夜精彩视频在线观看| av国产久精品久网站免费入址| 蜜臀久久99精品久久宅男| 观看免费一级毛片| 啦啦啦中文免费视频观看日本| 边亲边吃奶的免费视频| 亚洲美女搞黄在线观看| 伦理电影免费视频| 免费观看av网站的网址| 丝袜在线中文字幕| 色哟哟·www| 免费av不卡在线播放| 韩国高清视频一区二区三区| 黑人高潮一二区| 亚洲久久久国产精品| 国产片特级美女逼逼视频| 又大又黄又爽视频免费| 国产日韩欧美在线精品| 精品久久国产蜜桃| 国产伦在线观看视频一区| 日韩成人av中文字幕在线观看| 熟女av电影| 亚洲欧美日韩卡通动漫| 色94色欧美一区二区| 免费在线观看成人毛片| 亚洲国产欧美在线一区| 女性生殖器流出的白浆| 久久精品国产亚洲网站| 国产男人的电影天堂91| 国产黄片美女视频| 99热这里只有是精品在线观看| 爱豆传媒免费全集在线观看| 国产在线视频一区二区| 少妇 在线观看| 日韩三级伦理在线观看| 国产精品一区二区三区四区免费观看| 国产中年淑女户外野战色| 七月丁香在线播放| 成年人免费黄色播放视频 | 在线天堂最新版资源| 中文字幕制服av| 久久影院123| 国产免费福利视频在线观看| 亚洲美女搞黄在线观看| 久久人人爽av亚洲精品天堂| 成人毛片a级毛片在线播放| 精品人妻一区二区三区麻豆| 色视频在线一区二区三区|