• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Super Typhoon Hinnamnor (2022) with a Record-Breaking Lifespan over the Western North Pacific

    2023-09-07 07:48:44QianWANGDajunZHAOYihongDUANShoudeGUANLinDONGHongxiongXUandHuiWANG
    Advances in Atmospheric Sciences 2023年9期

    Qian WANG, Dajun ZHAO, Yihong DUAN, Shoude GUAN, Lin DONG,Hongxiong XU, and Hui WANG

    1Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University,Shanghai 200433, China

    2State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China

    3National Meteorological Centre, Beijing 100081, China

    4Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266100, China

    5Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030, China

    ABSTRACT Super Typhoon Hinnamnor (2022) was a rare and unique western North Pacific typhoon, and throughout its lifespan, it exhibited all of the major features that pose current challenges in typhoon research.Specifically, during different stages of its lifespan, it experienced a sudden change of track, underwent rapid intensification, interacted and merged with another vortex, expanded in size, underwent rapid weakening, produced a strong cold wake, exhibited eyewall replacement, and underwent extratropical transition.Therefore, a timely identification and review of these features of Hinnamnor (2022), as reported in this article, will help update and enrich the case sets for each of these scientific issues and provide a background for more in-depth mechanistic studies of typhoon track, intensity, and structural changes in the future.We also believe that Hinnamnor (2022) can serve as an excellent benchmark to quickly evaluate the overall performance of different numerical models in predicting typhoon’s track, intensity, and structural changes.

    Key words: sudden track change, rapid intensification, rapid weakening, vortex merging, extratropical transition

    1.Introduction

    The western North Pacific is the most favorable region worldwide for the genesis of tropical cyclones (TCs) with more than one-third of TCs being born there each year (Gray, 1968; Chen and Ding, 1979).Although extraordinary progress has been made in TC research and forecasting (Wang and Wu, 2004; Emanuel, 2018; Lei, 2020; Tan et al., 2022), there are still many challenges.Among these challenges, sudden changes in TC track, rapid intensification (RI) and rapid weakening(RW), and quantitative precipitation forecasting associated with landfalling TCs are the top three (Chen et al., 2010; Duan et al., 2014, 2019; Zhao et al., 2022a, b).Although track and intensity forecasts of TCs have been improved over recent decades, the operational numerical modeling and subjective forecasting of abrupt changes in track and intensity (Elsberry et al., 2013; Roger et al., 2013; DeMaria et al., 2014), especially under both RI and RW (Fei et al., 2020; Wang et al., 2022),remain challenging.Many famous recorded TC cases are remembered for their unusual tracks, their rapidly changing intensities, the extreme precipitation they brought, or the unique structural features they possessed (Chen and Ding, 1979; Chen at al., 2012; Wang, 2018).Remarkably, the lifespan of Super Typhoon Hinnamnor (2022) was characterized by all these qualities.

    Super Typhoon Hinnamnor (2022) formed in the western North Pacific Ocean near Minamitorishima Island at 0600 UTC 28 August 2022 and reached typhoon status (General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of the People's Republic of China, 2006) one day later.As it moved westward, it underwent RI and turned into a super typhoon at 1800 UTC 29 August.During the RI process, subjective intensity forecasts underestimated the explosive intensification of Hinnamnor, which led to the maximum 24-h intensity forecast error reaching —20 m s—1from the China Meteorological Administration (CMA) and —60 kt from the Joint Typhoon Warning Center (JTWC).While moving southwestward, a tropical depression merged with Hinnamnor and expanded its size in terms of the azimuthally averaged radius of gale-force (17 m s—1) winds (R17).Hinnamnor gradually slowed down from 1800 UTC 31 August and wandered over the sea to the east of Taiwan and the Bashi Channel for about 60 h.During this period, Hinnamnor underwent RW to become a severe typhoon.During the RW process, the error resulting from the astonishing overestimation in the 24-h intensity forecast from CMA was up to 23 m s—1on 1 September.Hinnamnor entered the East China Sea and moved northward early in the morning on 4 September.It then re-intensified to a super typhoon by 0300 UTC 4 September, gradually turned to the northeast and passed through the East China Sea, and underwent extratropical transition.Hinnamnor made landfall in the southern part of the Korean peninsula and caused great damage to the Republic of Korea before entering the Japan Sea in the morning on 6 September and transforming into an extratropical cyclone that night.This short article provides a brief summary of super typhoon Hinnamnor’s features and the major scientific research opportunities presented by different stages of its lifespan.

    2.Data and methods

    The track and intensity (maximum wind speed) data analyzed here were collected from the official typhoon bulletins issued by the National Meteorological Center of the China Meteorological Administration (NMC/CMA), the Regional Specialized Meteorological Center (RSMC), Tokyo, and the Joint Typhoon Warning Center (JTWC), which provide this information at intervals of 3 h or 6 h.Daily microwave optimally interpolated sea surface temperature (SST) satellite data, which are used to reveal the SST and SST cooling caused by the TC, were taken from the Optimum Interpolation Sea Surface Temperature (OISST) dataset, which has a spatial resolution of 0.25° × 0.25° (https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html; Reynolds et al., 2007).Sea surface height anomaly and geostrophic current data were obtained from the Copernicus Marine Environment Monitoring Service and have a spatial resolution of 0.25° × 0.25° and a temporal resolution of 6 h (https://resources.marine.copernicus.eu/product-detail/).Gust and sea level pressure (SLP) data at four observation stations close to the TC center were acquired from the National Weather Information Center of the CMA.FY-4A visible imagery was downloaded from the National Satellite Meteorological Center (http://fy4.nsmc.org.cn/portal/cn/theme/FY4A.html).The atmospheric data used to calculate the extratropical transition parameters were taken from the daily reanalysis ERA5 product (Hersbach et al., 2020).

    3.Results

    3.1.Formation and RI

    Hinnamnor was the eleventh western North Pacific TC in 2022, forming over the vast warm ocean (where SSTs were greater than 29°C; Fig.1) at 0600 UTC 28 August.The tropical Pacific was experiencing a persistent La Ni?a event (Fang et al., 2023), which led to an abnormally warmer SST than the climatology (anomalies of about 1.0°C-1.5°C) around the TC genesis location.High SSTs are conducive to an increase in local buoyancy and thereby promote TC formation, development, and intensification (Montgomery and Smith, 2014; Jaimes et al., 2015).Hinnamnor formed at a latitude of 25.9°N and was one of six western North Pacific TCs that formed north of 25°N in 2022.The unusual more northward TC genesis locations might have been related to the strong equatorial cold tongue associated with the La Ni?a event over the equatorial Pacific.

    Fig.1.(a) Hinnamnor's full track plotted over the SST on 28 August 2022 (shaded; units: °C).The TC intensity categories are based on the Criteria of Tropical Cyclones [GB/T 19201-2006 in General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (2006)] and include tropical storm (TS), severe tropical storm (STS), typhoon(TY), severe typhoon (STY), and super typhoon (SuTY).The triangle indicates an extratropical cyclone.The numbers inside the circles indicate the date.The 200-hPa jet (shaded while greater than 30 m s—1, units: m s—1), 500-hPa geopotential height (contours, bold at 588 dagpm, units:dagpm), and 850-hPa wind (barb while greater than 12 m s—1, units: m s—1) at 0000 UTC on (b)30 August, (c) 1 September, (d) 3 September, and (e) 5 September.

    Hinnamnor moved westward on the south side of the subtropical high, roughly following the steering air flow (Fig.1b).As it moved westward, Hinnamnor intensified explosively from 23 m s—1to 62 m s—1(tropical storm to super typhoon)between 0900 UTC 28 August and 1200 UTC 30 August 2022 (Fig.2a).The maximum intensification rate was 27 m s—1within 24 h (identified by the operational data issued by the CMA).The continuous RI process lasted as long as 54 h; meanwhile, a secondary eyewall formation (SEF) occurred close to the time of Hinnamnor's maximum intensity.Hinnamnor completed the process of eyewall replacement in about 24 h and developed into a slightly smaller cyclone with an approximate 34-kt wind radius of 160 km (at 0000 UTC 31 August).During this eyewall replacement cycle, the issued bulletins from CMA, RSMC, and JTWC indicated a slight decrease in Hinnamnor’s intensity.

    3.2.Vortex merger and size expansion

    As Hinnamnor approached the Ryukyu Islands, a tropical depression formed just 700 km to the south (Figs.3a and b),and the subsequent vortex merger between it and Hinnamnor clearly involved the Fujiwara effect (Fujiwhara, 1921, 1923;Brand 1970).According to the revised model of this effect put forward by Lander and Holland (1993), binary TCs approach each other gradually within the first few hours, followed by a period of relatively stable cyclonic mutual-rotation, and then the last stage is a cyclonic merger or separation.In the present case, the two vortices began to rotate counterclockwise and gradually approached each other from 0600 UTC 30 August to 0000 UTC 1 September 2022; the visible satellite imagery shows an obvious vortex filamentation process happening to the tropical depression (Fig.3c).Meanwhile, the translation speed of Hinnamnor was about 30 km h—1, which is faster than the average speed of TCs at this latitude (Chen and Ding,1979; Shanghai Typhoon Institute, China Meteorological Administration, 2017).

    Subsequently, the diameter of Hinnamnor’s cloud cover expanded from 320 km to approximately 520 km, as seen in the satellite visible imagery (Figs.3b—d).Based on the TC bulletins issued by JTWC, Hinnamnor’s analyzed R34, which is the azimuthally averaged radius of gale-force (34-kt or approximately 17.5-m s—1) winds, increased in all four quadrants.In the northwest quadrant, R34 increased from 50 miles to 280 miles (approximately 80 km to 450 km); in the northeast, southwest, and southeast quadrants, R34 enlarged from 50 miles to 200 miles (approximately 80 km to 320 km) on average.Hinnamnor’s size increased in terms of both R34 and R50 (azimuthally averaged radius of 50-kt winds), i.e., both the inner core and outer core expanded in the process of the merger, as previously described by Wang and Wang (2013).

    Fig.2.(a) Hinnamnor (2022)’s intensity (maximum sustained wind speed; units: m s-1), where the black, red, and blue lines represent the data from the CMA, RSMC Tokyo, and JTWC, respectively.(b) Hinnamnor's track (plot) in the southern part of the East China Sea and the station positions (crosses and triangles).The two crosses denote stations K0805 and K0806, and the two triangles denote the Chunxiao (58696) and Pinghu (58599) oil platforms.The height of each station is indicated in bracket.(c—f) Gusts (black lines; units: m s-1) and SLP (blue lines; units:hPa) observed at stations (c) K0805, (d) K0806, (e) 58696, and (f) 58599 on 4 September.

    Fig.3.(a) Tracks of Hinnamnor (2022) and the tropical depression (13W) with which it merged.The numbers beside the circles indicate the date.(b—d) FY-4A visible imagery (0.65 μm) at (b) 0600 UTC 31 August, (c) 0000 UTC 31 August, and (d) 0000 UTC 1 September 2022.

    During the merger, the dry air of the subtropical high between the two cyclones intruded into Hinnamnor.Dragging a huge spiral cloud band, the cyclone moved southwestward and began to slow down on 1 September (Fig.3d).Settled inside the subtropical high, Hinnamnor (2022) wandered over the sea to the east of the Bashi Channel (Figs.1c and d).

    3.3.Cold wake and RW

    Hinnamnor’s long residence time caused marked SST cooling over the sea to the east of Taiwan, which in turn acted to weaken the typhoon.The Dvorak-T (DT) number based on the Dvorak technique (Velden et al., 2006) dropped from 7.0 to 5.0, Hinnamnor was downgraded to a severe typhoon, and the maximum sustained wind speed decreased from 65 m s—1to 42 m s—1(super typhoon to severe typhoon status) from 0600 UTC 1 September to 0300 UTC 2 September.The weakening rate of Hinnamnor was 23 m s—1within 18 h, making it an RW event.

    The long residence time of the typhoon in this particular area was conducive to upwelling and vertical mixing across the mixed layer base and resulted in obvious cooling (Fig.4).There was a hysteresis in the SST cooling after the typhoon passed; maximum cooling generally occurs 1—3 days after a typhoon passes, with 1 day being the most common (Dare and McBride, 2011).Consistently, the cooling on 4 September reached a maximum of -5.5°C (at 22.1°N, 126.0°E).

    Ocean feedback plays an important role in the RW process because it can suppress the development of TCs (Wada and Chan, 2008; Lin et al., 2013).Typhoons can cause upwelling in the ocean and divergence of surface seawater, which is consistent with the cyclonic structure of cold eddies in the ocean.Therefore, cold eddies will be generated or enhanced, and the effect of upwelling will be enhanced after a typhoon passes.

    3.4.Sudden change in track and re-intensification

    Fig.4.(a) Sea surface height anomaly (shaded; units: cm) and currents (vectors), and (b) SST (shaded; units: °C) on 4 September 2022.Hinnamnor’s track and intensity is the same as in Fig.1.

    Meanwhile, the eastward movement of the midlatitude trough helped the eastward retreat of the subtropical high,which led to the break of the belt-like subtropical high and resulted in a northward steering flow; therefore, Hinnamnor turned northward (Figs.1c and d).Abruptly recurving TC tracks are challenging to forecast (Rappaport et al., 2009), and poor forecasting of such abnormal cases has socioeconomic impacts (Galarneau and Davis, 2013).A TC with an abnormal track is always involved in complex interactions with its surrounding systems and thus has low predictability (Shi et al.,2014).The position of the curving point is difficult to forecast several days in advance (Chen et al., 2012).In the present case, during 0600 UTC 28 to 0000 UTC 29 August, the averaged 48- and 72-h track forecast errors were 221 km and 560 km, respectively.Both were significantly larger than the average from 2016 to 2020, which were 129 km and 196 km, respectively (Chen et al., 2022).Several days ahead of Hinnamnor recurving, the subjective track forecast errors were enormous.For example, the official track forecast released by CMA at 0000 UTC on 29 August led to the 72-, 96-, and 120-h track forecast errors reaching 636 km, 688 km, and 511 km, respectively, which illustrates the track forecast difficulties when the sudden track change happened.

    During 3—5 September, Hinnamnor crossed the Kuroshio and moved into the East China Sea with an increased translational speed (approximately 20 km h—1).The originally weakened eyewall had been strengthened again, and a secondary eyewall had formed.The re-intensified typhoon had a tiny eye; the diameter of the inner eyewall was only 30 km.The Hangzhou Bay area recorded a maximum 2-min average wind of 29.1 m s—1and gusts of up to 35.7 m s—1.The oil platform in the central East China Sea (station K0805) observed a maximum average wind of 35.0 m s—1and a maximum gust of 60.0 m s—1, along with a minimum SLP of 923.0 hPa captured at 1620 UTC 4 September (Fig.2c), just as the northeast-quarter eyewall passed by.Station K0806 recorded a maximum average wind of 46.6 m s—1and a maximum gust of 59.3 m s—1just 20 min later (Fig.2d).Pinghu oil platform (station 58599) recorded a maximum gust of 59.3 m s—1and a minimum SLP of 927.9 hPa at 2030 UTC 4 September (Fig.2f).These in situ observations clearly depict the passage of the typhoon eye.The concentric eyewall (CE) structure was maintained for a very long time.

    3.5.Extratropical transition

    In the northern part of the East China Sea, northward-moving Hinnamnor encountered an eastward-moving midlatitude low (Fig.1e), accelerated to move northeastward, and underwent ET afterward (Fig.5).The ET process determined by the CPS was from 1800 UTC 5 September to 0900 UTC 6 September (Fig.5a; Song et al., 2011; Wang et al., 2012).Hinnamnor passed to the east sea of Jeju Island and made landfall in Geoje, South Gyeongsang Province, South Korea as a severe typhoon (45 m s—1, 950 hPa) at around 1850 UTC 5 September.Interacting with the midlatitude low to its northwest(Fig.5b), Hinnamnor then turned into a frontal cyclone in the evening on 6 September (Kitabatake, 2011).The CMA,RSMC-Tokyo, and JTWC all issued an extratropical cyclone warning over the northern part of the Japan Sea on 1200 UTC 6 September.

    The cyclone during its ET process caused great damage to South Korea with its strong winds and heavy rainfall, becoming one of the typhoons with the greatest ever impact in South Korea’s history.

    4.Concluding remarks

    Fig.5.(a) CPS parameters B (units: m) and -VLT at 6-h intervals from 0000 UTC 4 to 1800 UTC 6 September 2022.The numbers inside the circles indicate the date.(b) FY-4A visible imagery (0.65 μm) and 500-hPa geopotential height (blue contours; units: dagpm) at 0000 UTC 6 September 2022.“L”denotes the midlatitude low, and the yellow dot represents the center of typhoon Hinnamnor (2022).

    Based on multiple sources of observational and reanalysis data, it was confirmed that Hinnamnor (2022) experienced RI, binary TC interaction and merging, size expansion, a sudden track change, RW, a strong cold wake, eyewall replacement cycles, and ET.These phenomena, and especially the scientific questions underpinning them, are all at the forefront of current typhoon research (Wang and Wu, 2004; Emanuel, 2018; Lei, 2020).More interestingly, we can see that these phenomena were interconnected, such as the sudden track change and RW; the binary TC interaction, merger, and size expansion; and the eyewall replacement cycles and re-intensification.This motivates us to conduct synthesized analyses of TC track, intensity, and structural changes in future studies because of their obvious interplays.Indeed, this has recently been highlighted as a new paradigm in TC research by Tan et al.(2022).The remarkable lifespan of Super Typhoon Hinnamnor (2022), existing for 222 h and travelling 5574.38 km, should promote a wealth of future research.

    Subjective forecast errors during periods of rapid TC intensity changes are astonishing, and these forecast errors greatly affect disaster risk reduction affairs and sometimes cause additional loss in maritime economic activities due to over-warning of TC intensity (Chen et al., 2012; Wang, 2018; DeMaria et al., 2021).Research on RI and RW, along with the ability to forecast and provide early warning for TC impacts under global warming, should be strengthened in the future (Wang et al., 2022;Wu et al., 2022).This paper suggests the importance of focusing more research on topics such as how air—sea interactions are reflected in the RW process and how the mesoscale and small-scale convection within the TC inner core affect the TC structure during the TC re-intensification process and ET process.

    Acknowledgements.This work was supported in part by the National Science Foundation of China (Grant Nos.42192554,41876011, 61827901, and 41775065), the National Key Research and Development Program of China (Grant Nos.2020YFE0201900 and 2022YFC3004200), Shanghai Typhoon Research Foundation (TFJJ202201), S&T Development Fund of CAMS 2022KJ012, and Basic Research Fund of CAMS 2022Y006.

    亚洲国产中文字幕在线视频| 美女 人体艺术 gogo| 狠狠狠狠99中文字幕| 久久中文看片网| 亚洲精品成人av观看孕妇| 不卡av一区二区三区| 女警被强在线播放| 亚洲性夜色夜夜综合| 国产av精品麻豆| 日韩 欧美 亚洲 中文字幕| 亚洲国产欧美日韩在线播放| 精品国产乱子伦一区二区三区| 亚洲精品国产色婷婷电影| 最新在线观看一区二区三区| 亚洲精品国产色婷婷电影| 中文字幕最新亚洲高清| 国产精品一区二区在线不卡| 9191精品国产免费久久| 一本综合久久免费| 精品一区二区三区视频在线观看免费 | 久久精品国产清高在天天线| 久久久久久大精品| 1024视频免费在线观看| 国产欧美日韩一区二区精品| 18禁裸乳无遮挡免费网站照片 | 热99国产精品久久久久久7| 在线观看免费视频日本深夜| 亚洲中文字幕日韩| 香蕉久久夜色| 又紧又爽又黄一区二区| 午夜视频精品福利| 黑人巨大精品欧美一区二区蜜桃| 国产在线观看jvid| 久久精品国产亚洲av香蕉五月| 1024香蕉在线观看| 国产有黄有色有爽视频| 麻豆国产av国片精品| 中文字幕色久视频| 亚洲在线自拍视频| 午夜91福利影院| 亚洲成人免费电影在线观看| 999久久久国产精品视频| 日韩 欧美 亚洲 中文字幕| 91精品三级在线观看| 日本a在线网址| x7x7x7水蜜桃| 久久影院123| 亚洲午夜理论影院| 久久久久国产精品人妻aⅴ院| 黄网站色视频无遮挡免费观看| 午夜精品国产一区二区电影| 午夜视频精品福利| 在线视频色国产色| 他把我摸到了高潮在线观看| 成年人免费黄色播放视频| 嫩草影院精品99| 久久天躁狠狠躁夜夜2o2o| 精品无人区乱码1区二区| 级片在线观看| 久久热在线av| 一二三四社区在线视频社区8| 80岁老熟妇乱子伦牲交| 国产精品av久久久久免费| 国产精品成人在线| 操美女的视频在线观看| 成人18禁高潮啪啪吃奶动态图| 久久久久久久久中文| 激情在线观看视频在线高清| 9热在线视频观看99| 激情视频va一区二区三区| 波多野结衣高清无吗| 精品一品国产午夜福利视频| 国产91精品成人一区二区三区| 在线观看午夜福利视频| 日日爽夜夜爽网站| 午夜免费成人在线视频| 69av精品久久久久久| 欧美日韩亚洲国产一区二区在线观看| 热re99久久精品国产66热6| 美女高潮喷水抽搐中文字幕| 一级作爱视频免费观看| 国产免费男女视频| avwww免费| 1024视频免费在线观看| 久久 成人 亚洲| 亚洲 国产 在线| 久久久精品欧美日韩精品| 日本撒尿小便嘘嘘汇集6| 搡老熟女国产l中国老女人| 久久人人精品亚洲av| 久久中文字幕一级| 夫妻午夜视频| 国产熟女xx| 亚洲精品在线美女| 免费看a级黄色片| 国产欧美日韩一区二区三| 另类亚洲欧美激情| 大陆偷拍与自拍| www.www免费av| 亚洲欧美激情综合另类| 国产成人啪精品午夜网站| 淫妇啪啪啪对白视频| 国产免费男女视频| av欧美777| 这个男人来自地球电影免费观看| 国产精品电影一区二区三区| 亚洲精品中文字幕在线视频| 久久狼人影院| a级片在线免费高清观看视频| 国产又色又爽无遮挡免费看| 亚洲av日韩精品久久久久久密| 亚洲av熟女| 后天国语完整版免费观看| 在线av久久热| 久久久久久久久免费视频了| 老熟妇乱子伦视频在线观看| 不卡一级毛片| av视频免费观看在线观看| 久热这里只有精品99| 国产欧美日韩精品亚洲av| 欧美激情高清一区二区三区| 国产精品久久视频播放| 女人精品久久久久毛片| 久久人人爽av亚洲精品天堂| 中文字幕精品免费在线观看视频| 夜夜看夜夜爽夜夜摸 | 日韩大码丰满熟妇| 在线观看舔阴道视频| 亚洲国产毛片av蜜桃av| 精品福利永久在线观看| 国产成人免费无遮挡视频| 91成人精品电影| 大型av网站在线播放| 国产高清videossex| 亚洲精品国产区一区二| 一夜夜www| 国产片内射在线| 悠悠久久av| 成人亚洲精品一区在线观看| 成熟少妇高潮喷水视频| 亚洲成人久久性| 亚洲狠狠婷婷综合久久图片| 婷婷丁香在线五月| 精品少妇一区二区三区视频日本电影| 淫秽高清视频在线观看| 亚洲欧洲精品一区二区精品久久久| 老熟妇乱子伦视频在线观看| 国产真人三级小视频在线观看| 麻豆av在线久日| 欧美中文日本在线观看视频| 欧美日韩精品网址| 成人免费观看视频高清| 精品欧美一区二区三区在线| 欧美一区二区精品小视频在线| 免费观看人在逋| 国产av一区在线观看免费| 亚洲国产欧美日韩在线播放| 一个人观看的视频www高清免费观看 | 两人在一起打扑克的视频| 国产乱人伦免费视频| 亚洲成av片中文字幕在线观看| aaaaa片日本免费| 岛国在线观看网站| 亚洲av美国av| 久久久国产一区二区| 日韩中文字幕欧美一区二区| 免费观看人在逋| 亚洲欧洲精品一区二区精品久久久| 国产欧美日韩一区二区三区在线| 18美女黄网站色大片免费观看| 亚洲色图综合在线观看| 久久精品aⅴ一区二区三区四区| 91国产中文字幕| 丝袜美足系列| 亚洲精品一二三| 人人妻人人澡人人看| 亚洲国产精品合色在线| 国产成人精品在线电影| 国产成人啪精品午夜网站| 成人av一区二区三区在线看| 免费搜索国产男女视频| 午夜日韩欧美国产| 男女床上黄色一级片免费看| 国产成人欧美在线观看| 纯流量卡能插随身wifi吗| 亚洲欧美一区二区三区黑人| 久久 成人 亚洲| 男人舔女人下体高潮全视频| av福利片在线| 欧美另类亚洲清纯唯美| 亚洲成人免费电影在线观看| 亚洲一码二码三码区别大吗| 亚洲精品久久午夜乱码| 一区二区日韩欧美中文字幕| 免费在线观看亚洲国产| 精品国产超薄肉色丝袜足j| 99国产综合亚洲精品| 色尼玛亚洲综合影院| 好男人电影高清在线观看| 日日干狠狠操夜夜爽| 精品国产乱子伦一区二区三区| 国产精品久久久av美女十八| 男人操女人黄网站| 97人妻天天添夜夜摸| 女生性感内裤真人,穿戴方法视频| 中出人妻视频一区二区| 日韩精品青青久久久久久| 母亲3免费完整高清在线观看| 怎么达到女性高潮| 婷婷六月久久综合丁香| 久久久久久亚洲精品国产蜜桃av| 12—13女人毛片做爰片一| 在线看a的网站| 50天的宝宝边吃奶边哭怎么回事| 男女下面进入的视频免费午夜 | 久久久久久久午夜电影 | 天堂√8在线中文| 精品日产1卡2卡| 少妇粗大呻吟视频| 一区二区三区精品91| 国产亚洲精品一区二区www| 亚洲,欧美精品.| 操美女的视频在线观看| 日本免费一区二区三区高清不卡 | 国产精品久久电影中文字幕| 亚洲成人精品中文字幕电影 | 九色亚洲精品在线播放| 免费女性裸体啪啪无遮挡网站| 久久人人爽av亚洲精品天堂| 国产精品久久久人人做人人爽| 热99re8久久精品国产| 女同久久另类99精品国产91| 免费人成视频x8x8入口观看| 欧美日韩国产mv在线观看视频| 免费在线观看完整版高清| 成年女人毛片免费观看观看9| 久久婷婷成人综合色麻豆| 欧美在线一区亚洲| 欧美乱码精品一区二区三区| 亚洲成av片中文字幕在线观看| 人妻久久中文字幕网| 91字幕亚洲| a在线观看视频网站| 欧美乱色亚洲激情| 午夜福利在线免费观看网站| 亚洲精品久久午夜乱码| 亚洲第一青青草原| 国产av一区在线观看免费| 男女午夜视频在线观看| 无人区码免费观看不卡| 欧美亚洲日本最大视频资源| 久久久久九九精品影院| 欧美不卡视频在线免费观看 | 欧美日韩精品网址| 亚洲欧美一区二区三区黑人| 美国免费a级毛片| 亚洲av成人av| 91大片在线观看| 免费少妇av软件| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美精品综合一区二区三区| 高清黄色对白视频在线免费看| 国产1区2区3区精品| 少妇被粗大的猛进出69影院| 人妻久久中文字幕网| 波多野结衣高清无吗| 高清毛片免费观看视频网站 | 国产精品自产拍在线观看55亚洲| 一级毛片女人18水好多| 国产精品二区激情视频| av天堂久久9| 成人三级黄色视频| 日韩一卡2卡3卡4卡2021年| 夜夜看夜夜爽夜夜摸 | 午夜福利影视在线免费观看| 午夜福利在线免费观看网站| 国产1区2区3区精品| 亚洲第一青青草原| 国产高清国产精品国产三级| 亚洲片人在线观看| 一级片'在线观看视频| 免费看a级黄色片| 99香蕉大伊视频| 久久香蕉精品热| 精品福利永久在线观看| 一边摸一边抽搐一进一出视频| 色综合站精品国产| 欧美最黄视频在线播放免费 | 亚洲avbb在线观看| 久久国产乱子伦精品免费另类| 欧美人与性动交α欧美精品济南到| 久久国产精品影院| 母亲3免费完整高清在线观看| 一本大道久久a久久精品| 国产午夜精品久久久久久| 制服人妻中文乱码| 久久天堂一区二区三区四区| 国产精品永久免费网站| 国产xxxxx性猛交| 久久久精品国产亚洲av高清涩受| 国产精品综合久久久久久久免费 | 两人在一起打扑克的视频| 欧美日韩亚洲高清精品| 欧美日韩视频精品一区| 亚洲 欧美 日韩 在线 免费| 国产黄色免费在线视频| 黑人巨大精品欧美一区二区mp4| 国产成人精品无人区| 亚洲欧美一区二区三区久久| 91精品三级在线观看| 国产精品一区二区在线不卡| 国产高清激情床上av| 99久久综合精品五月天人人| 欧美av亚洲av综合av国产av| 最新在线观看一区二区三区| 亚洲自拍偷在线| x7x7x7水蜜桃| av中文乱码字幕在线| 一进一出抽搐动态| 久久人人97超碰香蕉20202| 国产精品成人在线| 久久精品91蜜桃| 亚洲一区二区三区欧美精品| 老司机在亚洲福利影院| 母亲3免费完整高清在线观看| 不卡av一区二区三区| 99国产综合亚洲精品| 丝袜美足系列| 嫩草影院精品99| 成人精品一区二区免费| 国产精品爽爽va在线观看网站 | 国产精品秋霞免费鲁丝片| 欧美亚洲日本最大视频资源| 午夜精品久久久久久毛片777| 动漫黄色视频在线观看| 真人一进一出gif抽搐免费| 国产亚洲精品久久久久久毛片| 国产精品 国内视频| 美女国产高潮福利片在线看| 日本a在线网址| 欧美人与性动交α欧美软件| 国内毛片毛片毛片毛片毛片| 国产成+人综合+亚洲专区| 久久久精品欧美日韩精品| 热re99久久国产66热| 女生性感内裤真人,穿戴方法视频| 亚洲精品久久午夜乱码| 女生性感内裤真人,穿戴方法视频| 一级毛片女人18水好多| 国产一区二区在线av高清观看| 淫妇啪啪啪对白视频| 午夜福利,免费看| 久久热在线av| 国产一区二区三区综合在线观看| www国产在线视频色| 国产男靠女视频免费网站| 日韩一卡2卡3卡4卡2021年| 日韩欧美国产一区二区入口| e午夜精品久久久久久久| www.自偷自拍.com| 日本vs欧美在线观看视频| www.自偷自拍.com| 国产亚洲欧美98| 国产野战对白在线观看| 亚洲欧美精品综合久久99| 久久久国产欧美日韩av| 成年女人毛片免费观看观看9| 亚洲国产精品sss在线观看 | 国产高清视频在线播放一区| 在线观看免费午夜福利视频| 黑人巨大精品欧美一区二区蜜桃| 操美女的视频在线观看| 在线观看一区二区三区激情| 亚洲国产中文字幕在线视频| 1024香蕉在线观看| 日韩大尺度精品在线看网址 | 男人的好看免费观看在线视频 | aaaaa片日本免费| 午夜免费成人在线视频| 精品久久蜜臀av无| 日本 av在线| 多毛熟女@视频| 国产精品久久久人人做人人爽| 国内久久婷婷六月综合欲色啪| 在线永久观看黄色视频| 国产日韩一区二区三区精品不卡| 欧美日本中文国产一区发布| 在线国产一区二区在线| 99国产综合亚洲精品| 久久精品亚洲精品国产色婷小说| 亚洲av第一区精品v没综合| 国产免费男女视频| 夜夜爽天天搞| 天堂俺去俺来也www色官网| 大香蕉久久成人网| 纯流量卡能插随身wifi吗| 无人区码免费观看不卡| 久久人人精品亚洲av| 老司机午夜福利在线观看视频| 国产又爽黄色视频| 黑人猛操日本美女一级片| 国产xxxxx性猛交| 亚洲国产中文字幕在线视频| 日本 av在线| 法律面前人人平等表现在哪些方面| 在线观看一区二区三区| 国产aⅴ精品一区二区三区波| 99精品欧美一区二区三区四区| 免费在线观看日本一区| 天天添夜夜摸| 国产精品乱码一区二三区的特点 | 免费久久久久久久精品成人欧美视频| 精品国产美女av久久久久小说| 91大片在线观看| 十八禁网站免费在线| 夜夜躁狠狠躁天天躁| 久久久水蜜桃国产精品网| 国产99久久九九免费精品| 亚洲精品国产精品久久久不卡| 色播在线永久视频| 亚洲av第一区精品v没综合| 亚洲一区中文字幕在线| 99riav亚洲国产免费| 身体一侧抽搐| 国产成人一区二区三区免费视频网站| 天天躁狠狠躁夜夜躁狠狠躁| 99久久综合精品五月天人人| 国产在线观看jvid| 午夜成年电影在线免费观看| 欧美午夜高清在线| 国产99久久九九免费精品| 午夜福利在线免费观看网站| 又黄又爽又免费观看的视频| 亚洲五月婷婷丁香| 久久人人97超碰香蕉20202| 国产亚洲欧美98| 在线观看一区二区三区| 国产精品一区二区免费欧美| 国产成人精品在线电影| 欧美日韩乱码在线| 99久久99久久久精品蜜桃| av在线天堂中文字幕 | 成在线人永久免费视频| 老熟妇乱子伦视频在线观看| 中文欧美无线码| 成人国产一区最新在线观看| 精品午夜福利视频在线观看一区| 国产一卡二卡三卡精品| 一级毛片高清免费大全| 欧美成人性av电影在线观看| 中文亚洲av片在线观看爽| 欧美日韩一级在线毛片| 午夜影院日韩av| 成熟少妇高潮喷水视频| 99精品欧美一区二区三区四区| 成人精品一区二区免费| 男女下面插进去视频免费观看| 国产精品免费视频内射| av福利片在线| 日本欧美视频一区| 亚洲情色 制服丝袜| 色综合站精品国产| 国产精品国产高清国产av| 免费看十八禁软件| 91字幕亚洲| 大码成人一级视频| 美女高潮喷水抽搐中文字幕| 99久久99久久久精品蜜桃| 亚洲一码二码三码区别大吗| 超碰97精品在线观看| x7x7x7水蜜桃| 精品人妻在线不人妻| 人妻丰满熟妇av一区二区三区| 久久久国产精品麻豆| 亚洲va日本ⅴa欧美va伊人久久| 1024视频免费在线观看| 91字幕亚洲| 精品日产1卡2卡| 免费在线观看完整版高清| 久久久久久久久中文| 久久久久久久精品吃奶| 黄色 视频免费看| 桃色一区二区三区在线观看| 国产精品国产av在线观看| 日日爽夜夜爽网站| 久久久久久大精品| 亚洲av成人一区二区三| 国产av精品麻豆| 香蕉久久夜色| 少妇裸体淫交视频免费看高清 | 亚洲国产欧美网| 国产成人精品在线电影| 国产1区2区3区精品| 国产精品九九99| 国产精品野战在线观看 | 人妻丰满熟妇av一区二区三区| 精品乱码久久久久久99久播| 久久午夜综合久久蜜桃| 亚洲激情在线av| 亚洲精品国产色婷婷电影| 另类亚洲欧美激情| 91大片在线观看| 黄片小视频在线播放| 国产精品一区二区在线不卡| 午夜免费观看网址| 成人18禁高潮啪啪吃奶动态图| 99精品欧美一区二区三区四区| 精品久久久久久久久久免费视频 | 热99re8久久精品国产| 国产深夜福利视频在线观看| 免费在线观看亚洲国产| 久久人人97超碰香蕉20202| 人人妻人人澡人人看| 国产深夜福利视频在线观看| 免费不卡黄色视频| 欧美日本亚洲视频在线播放| 狂野欧美激情性xxxx| 巨乳人妻的诱惑在线观看| 日韩欧美在线二视频| 国产成年人精品一区二区 | 国产成人精品在线电影| 欧美日韩国产mv在线观看视频| 久久中文字幕人妻熟女| 韩国av一区二区三区四区| 久久精品影院6| 视频在线观看一区二区三区| 高清毛片免费观看视频网站 | 国产精品二区激情视频| 国产99久久九九免费精品| 99re在线观看精品视频| 国产单亲对白刺激| 午夜影院日韩av| 搡老岳熟女国产| 性欧美人与动物交配| 亚洲精品久久成人aⅴ小说| 久久国产精品人妻蜜桃| 国产黄a三级三级三级人| 欧美日韩国产mv在线观看视频| 91av网站免费观看| 色婷婷久久久亚洲欧美| 一级,二级,三级黄色视频| 精品国产亚洲在线| 操出白浆在线播放| 亚洲美女黄片视频| 久久伊人香网站| 午夜福利一区二区在线看| 亚洲aⅴ乱码一区二区在线播放 | 18禁国产床啪视频网站| 日日夜夜操网爽| 亚洲精品国产精品久久久不卡| 久久久久久久久中文| 日韩欧美免费精品| 国产精品国产高清国产av| 亚洲aⅴ乱码一区二区在线播放 | 国产成人系列免费观看| 校园春色视频在线观看| 欧美在线黄色| 黑人猛操日本美女一级片| 国产精品免费一区二区三区在线| 黄色丝袜av网址大全| 亚洲中文av在线| 99国产精品一区二区三区| 黄片大片在线免费观看| 老汉色∧v一级毛片| 一区在线观看完整版| 韩国精品一区二区三区| 色婷婷av一区二区三区视频| 亚洲自拍偷在线| 亚洲男人的天堂狠狠| 一进一出好大好爽视频| 国产精品一区二区免费欧美| 黄色视频不卡| 久久精品亚洲精品国产色婷小说| 51午夜福利影视在线观看| 精品少妇一区二区三区视频日本电影| 免费在线观看黄色视频的| 巨乳人妻的诱惑在线观看| 法律面前人人平等表现在哪些方面| 少妇被粗大的猛进出69影院| 两个人看的免费小视频| www.999成人在线观看| 午夜日韩欧美国产| 久久亚洲真实| 欧美日韩亚洲高清精品| 久久精品亚洲av国产电影网| 人人妻,人人澡人人爽秒播| 熟女少妇亚洲综合色aaa.| 成人三级黄色视频| 男女高潮啪啪啪动态图| 亚洲精品粉嫩美女一区| 午夜91福利影院| 亚洲av熟女| 999精品在线视频| 老司机午夜福利在线观看视频| 在线观看一区二区三区| 搡老乐熟女国产| av有码第一页| 中文字幕精品免费在线观看视频| a级毛片在线看网站| 每晚都被弄得嗷嗷叫到高潮| 一级作爱视频免费观看| 国产野战对白在线观看| 国产日韩一区二区三区精品不卡| 国产精品av久久久久免费| 曰老女人黄片| 久久九九热精品免费| 亚洲专区中文字幕在线| 人人妻人人澡人人看| 成人三级黄色视频| 一进一出抽搐动态| 国产蜜桃级精品一区二区三区| 真人做人爱边吃奶动态| 男女之事视频高清在线观看| 精品国产亚洲在线| 国产单亲对白刺激|