• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Processes-Based Attributes of Four Major Surface Melting Events over the Antarctic Ross Ice Shelf

    2023-09-07 07:49:20WenyiLIYutingWUandXiaomingHU
    Advances in Atmospheric Sciences 2023年9期

    Wenyi LI, Yuting WU, and Xiaoming HU

    1School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China

    2Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    3Chongqing Research Institute of Big Data, Peking University, Chongqing 401333, China

    4Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies,Sun Yat-sen University, Zhuhai 519000, China

    ABSTRACT The Ross-Amundsen sector is experiencing an accelerating warming trend and a more intensive advective influx of marine air streams.As a result, massive surface melting events of the ice shelf are occurring more frequently, which puts the West Antarctica Ice Sheet at greater risk of degradation.This study shows the connection between surface melting and the prominent intrusion of warm and humid air flows from lower latitudes.By applying the Climate Feedback-Response Analysis Method (CFRAM), the temporal surge of the downward longwave (LW) fluxes over the surface of the Ross Ice Shelf (RIS) and adjacent regions are identified for four historically massive RIS surface melting events.The melting events are decomposed to identify which physical mechanisms are the main contributors.We found that intrusions of warm and humid airflow from lower latitudes are conducive to warm air temperature and water vapor anomalies, as well as cloud development.These changes exert a combined impact on the abnormal enhancement of the downward LW surface radiative fluxes, significantly contributing to surface warming and the resultant massive melting of ice.

    Key words: Ross Ice Shelf (RIS), surface melting, warm and humid air advection, downward longwave radiation, Climate Feedback-Response Analysis Method (CFRAM)

    1.Introduction

    Summer warming in West Antarctica has amplified over the last several decades, with more frequent extreme warming events of extended duration, which has resulted in the massive ice mass loss of the West Antarctic Ice Sheet(WAIS) and fringing ice shelves (Steig et al., 2013; Thomas et al., 2013; Kingslake et al., 2017; Wille et al., 2019; Feron et al., 2021).The Ross-Amundsen sector of the WAIS has warmed since the late 1990s (Steig et al., 2009; Bromwich et al., 2013; Scott et al., 2019), resulting in more surface melting.Surface melting is an important contributing factor for the WAIS mass loss, which not only directly affects the total mass balance of the Antarctic Ice Sheet through surface mass balance processes (Dietz and Koninx, 2022) but also significantly weakens ice shelf stability (The IMBIE Team,2018; Wille et al., 2022).As the second largest contributor to global sea level rise, the accelerating ice mass loss since the 1990s, especially in the West Antarctic Ice Sheet (Shepherd et al., 2012; Paolo et al., 2015), has accounted for a nearly 7 mm sea level rise since 1979 (Rignot et al., 2019).Increased meltwater from Antarctica traps more warm water below the sea surface, further accelerating the Antarctic ice loss, ultimately leading to enhanced global temperature variability and serious economic and climatic impacts (Bronselaer et al., 2018; Golledge et al., 2019; Schloesser et al., 2019;Dietz and Koninx, 2022).

    The climate of West Antarctica is controlled by largescale atmospheric circulation patterns (Clem et al., 2019;Zhang et al., 2021).The strong advection of warm, moist air into West Antarctica associated with Amundsen Sea blocking activities provides a favorable condition for summer warming events in West Antarctica, such as the January 2016 surface melting event in Ross Ice Shelf (RIS, Scott et al., 2019).Uotila et al.(2013) found that the southward movement of cyclones into the Ross Sea tends to be more frequent during the positive phase of the semiannual oscillation (SAO).Scott et al.(2019) found that weaker westerlies and frequent blocking activities during El Ni?o years enhance surface melting in the WAIS, which is also consistent with the findings of Nicolas et al.(2017).Wille et al.(2019) reported that about 40% of the summer meltwater generated across the RIS is associated with intense moisture advection from lowlatitude areas.In addition, foehn or downslope winds can further enhance surface warming (Elvidge and Renfrew, 2016;Bozkurt et al., 2018; Datta et al., 2019; Elvidge et al.,2020).

    Besides advective processes associated with atmospheric motions, local radiative and non-radiative processes that affect the surface energy balance (SEB) also contribute to surface melting events in RIS.It has been confirmed that cloud cover largely controls the spatial differences in the SEB.Optically thick cloud cover not only reduces the net shortwave radiation but also enhances the net longwave radiation (Van Den Broeke et al., 2006; Bennartz et al., 2013; Ghiz et al.,2021).Scott et al.(2017) found that low-level liquid water clouds occur frequently in December—January, particularly in the RIS region, while mixed-phase clouds are more common in the western RIS above the complex terrain.They further report that clouds could enhance the radiative forcing of the West Antarctic Ice Sheet by as much as 26 W m—2in summer.A temporal surge of downward longwave radiation flux is critical for the extreme and historical surface melting event over the RIS in January 2016 (Nicolas et al., 2017; Hu et al., 2019; Scott et al., 2019).In addition to the direct effects of clouds, clouds might also weaken the ice-albedo positive feedback by decreasing the radiation absorbed by the surface, thereby reducing the melting rate of the ice surface (Choi et al., 2020), while at the same time, also promoting the enhancement of melting in Antarctica, through their longwave radiative effects (Lenaerts et al., 2017).

    Here, we examine four prominent surface melting cases over the RIS (marked in Fig.1) in the past 40 years.These occurred during the austral summer in 1982/1983, 1991/1992, the early 2005, and 2015/2016, with their total melt days derived from passive microwave satellite observations(Nicolas et al., 2017; Zou et al., 2021).

    The remainder of this paper is organized as follows.Section 2 discusses the data and methods used in this study.In section 3, we present the main results, including the melting and SEB conditions of the four events and their contributions to changes in the surface LW radiative energy fluxes due to the atmospheric water vapor anomalies, cloud property anomalies, and atmospheric temperature anomalies.Section 4 provides a brief summary of the key findings of this study.

    2.Data and methods

    The daily averaged data of atmospheric variables, including specific humidity, cloud liquid water content, cloud ice content, atmospheric temperature, and wind velocity, are derived from the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis data from 1981 to 2016 (ERA5; Hersbach et al., 2020).The preprocessed data have a horizontal resolution of 1° × 1° and a vertical resolution consisting of 19 pressure levels.The surface data include surface latent heat flux, surface sensible heat flux, downward/upward longwave radiative energy fluxes(LW), and downward/upward shortwave radiative surface energy fluxes.The daily vertically-integrated water vapor transport (IVT) is calculated from the specific humidity and wind fields as follows:

    where q represents specific humidity, g is the acceleration of gravity (9.81 m s—2), and Iqu and Iqv represent the zonal and meridional vertically-integrated water vapor transport,respectively.

    Fig.1.Local topography (m) of Antarctica.The Ross Ice Shelf(RIS) and Marie Byrd Land (MBL) are marked.

    We mainly focus on daily data in the domain bounded by 120° to 180°W and 75° to 85°S covering the austral summer from 1 December to 31 January.Four large surface melting events over the RIS sector of the WAIS are chosen considering their prominent melt intensity and distinguishing duration according to previous findings (Nicolas et al., 2017;Zou et al., 2021).According to Nicolas et al.(2017), the four strongest surface events are selected for further discussion.The exact lengths of each event follow Zou et al.(2021).Surface melting events are detected from passive microwave radiometer data (SMMR and SMM/I, Picard et al., 2007) using the algorithm developed by Torinesi et al.(2003) and Picard and Fily (2006), with a spatial resolution of 25 km.The total melt days represent the cumulative days when melting is detected at the corresponding grids.The daily anomaly fields of all atmospheric and surface variables during these four RIS melting events are defined as their departures from the daily climatology of 1981—2010.The annual climatological cycle is obtained from the daily climatology without smoothing.

    where ?Taircorresponds to the daily anomaly field of the air temperature directly derived from the ERA5 data.

    3.Results

    The averaged integrated water vapor transport obtained from the ERA5 reanalysis (Figs.2a—d) indicates a general import of poleward moisture toward the RIS and adjacent areas during four events.The eastern RIS and western Marie Byrd Land (MBL, Fig.1) are affected by the intrusion of strong marine moist air streams from the Amundsen and Ross Seas.Except for the 2016 melting event, the years corresponding to the other three events were all associated with the negative SAM phase, typically associated with weaker circumpolar westerlies and one of the strongest El Ni?o events in history occurred in 2016 (Nicolas et al., 2017).It is seen from Figs.2i—l that the melting events of 1982/1983 and 1991/1992 were more prolonged than those of 2005 and 2016.From the daily IVT spatial distribution, we find that the melting events of 2005 and 2016 were characterized by a more intense but largely ephemeral moisture transport(Figs.2c, d), responsible for a significant surge of downward LW surface radiation fluxes (Figs.2g, h).In particular, the poleward movement of anomalously warm and moist air(with an IVT over coastal MBL up to 80 kg m—1s—1) from the Amundsen Sea toward the western MBL and farther inland across the RIS coincides with the temporal evolution of the 2005 melting event.The corresponding spatial distribution of positive downward LW radiation anomalies suggests that lower-latitude marine air advection plays an important role in the surface energy balance, further causing surface melting.

    Figure 3 shows the time series of regional average anomalies (180°—120°W and 75°—85°S) of surface temperature,downward LW radiation fluxes, and net LW/SW radiation fluxes during the four prominent RIS melting events.There is a prominent one-to-one correspondence for the amplitude and duration between the anomalies of both the downward LW radiation surface energy flux and the surface temperature, with the latter lagging the former by a few days.The synchronization between the temporal evolution of the net SW radiative energy fluxes and surface temperature anomalies can possibly be explained by the reduced upward shortwave radiation due to decreased surface albedo.The sum of the anomalies of the net SW and LW radiative energy fluxes is balanced by the anomalies of surface turbulent heat fluxes(figures not shown).Overall, the resultant surface energy budget during the four surface melting events is consistent with the results of Zou et al.(2021).Therefore, the temporal surge of downward LW radiative fluxes from the air to the surface results in the rapid increase of surface temperature,which, in turn, causes melting and a reduction in the surface albedo.

    Fig.2.(a)—(d) Spatial distribution of integrated water vapor transport (IVT) for the four melt cases from ERA reanalysis data.Colors indicate the intensity of the IVT, and arrows indicate the direction.(e)—(h) Spatial distribution of surface downward longwave radiation (SDLW) and (i)—(l) the total melt days during four melt cases from passive microwave radiometer data.The red box covering 180°—120°W and 75°—85°S indicates the region used for averaging.

    Figure 4 shows the decomposition of the total downward LW radiative surface energy flux perturbations into the three terms on the right-hand side of Eq.(2) for each of the four melting events.The sum of the three partial perturbation terms (solid blue lines in Figs.4a—d) is very close to the actual total downward LW radiative energy flux anomalies(red dashed lines) obtained directly from the ERA5 reanalysis, confirming the validity of our decomposition.According to Fig.4, all processes positively contribute to the undulant downward LW radiation changes.Among the three terms,the contributions of cloud-induced perturbations to the temporal evolution of the (total) downward LW radiative surface energy flux perturbations are dominant during the 1982/82 and 2016 events but are comparable to the contributions of water vapor and air temperature during the 1991/92 and 2005 events.In the 2016 melting event, cloud-induced surface radiative LW energy fluxes surged to 60 W m—2on 12 January, contributing about 60% to the total perturbations.The temporal evolution of both the cloud-induced and water vapor-induced surface radiative LW energy flux perturbations are nearly synchronous, although the impact of the water vapor feedback on increasing downward LW radiative flux is relatively weak (generally below 20 W m—2).It is significant that the temporal evolution of the air temperatureinduced surface radiative LW energy flux perturbations are relatively smoother than their counterparts of cloud and water vapor feedbacks.After accounting for the effects of clouds on downward SW flux, which always opposes their effects on LW flux, we conclude that the air temperature feedback is the primary contributor to the melting process.This inspires us to further decompose the total air temperature anomalies, as indicated in section 2.

    Next, the anomalous fields of cloud, water vapor, and air temperature during the melting events are shown in Fig.5.The corresponding partial air temperature changes(PTCs) due to clouds, water vapor, and atmospheric advective processes are shown in Fig.6, noting that the decomposition of the total air temperature perturbations into the three terms on the right-hand side of Eq.(3) are presented for each of the four melting events.The sum of three PTCs (contours of the right column in Fig.6) matches well with the (total) air temperature anomalies, confirming the validity of Eq.(3).It can be seen that the PTC associated with atmospheric advective processes is not only the largest term among the three PTCs, but also positively correlated with the total air temperature perturbations in each of the four melting events.Therefore, the air-temperature-induced surge of the downward LW radiative fluxes is mainly caused by warm advection associated with the poleward movement of warm air, as shown in Fig.2.A portion of the abundant moisture in conjunction with the poleward movement of warm air is condensed via adiabatic cooling, forming clouds, which, in turn, further enhances the downward LW radiative fluxes.

    4.Summary

    Fig.4.Time series of regionally averaged (180°—120°W, 75°—85°S) partial perturbations of the downward longwave radiative (LWD) surface energy flux (W m—2) due to air temperature anomalies alone (ta), cloud anomalies alone (cld),and water vapor anomalies alone (wv).The solid blue lines represent the total perturbation of these three forcings, and the dashed red lines represent the observations of downward longwave radiative flux at the surface.

    Fig.3.Time series of regionally averaged (180°—120°W, 75°—85°S) daily anomalies of skin temperature (TS), surface downward longwave radiation (SDLW), net shortwave radiation (SWNET), and net longwave radiation (LWNET)from ERA reanalysis data.The Y axis (left) denotes TS, and the Y axis (right) denotes SDLW, SWnet, and LWnet.The pink shadow represents the melting period.

    We examined the atmospheric contributions via the downward LW radiative fluxes to the four strong and prolonged ice melting events over the Ross Ice Shelf (RIS) and adjacent areas from December 1982 to January 1983, December 1991 to January 1992, January 2005, and January 2016.We first performed a comprehensive analysis of the enhancement of the poleward advection of atmospheric warm and humid into the RIS region during these melting events (Fig.2).We further quantified the individual contributions of clouds,water vapor, and atmospheric advective processes to the enhancement of surface LW radiative surface energy fluxes(Figs.4 and 6).The results confirm the role of anomalously strong warm and humid air advection from lower latitudes into the RIS sector of the WAIS to the subsequent enhancement of the surface LW radiative surface energy fluxes due to clouds, water vapor, and air temperature anomalies.Zou et al.(2021) demonstrated that warm air advection and the foehn effect were the main factors affecting cloud conditions via the cloud-forming effect of moisture transport and the cloud-clearing effect of foehn winds.In this study, we further prove that the surface melting events over the RIS are dominated by abnormal longwave radiation.The increase in SDLW is mainly induced by the dynamic atmospheric transport of warm air as opposed to moisture-related processes.The response to the SDLW surge is abnormally warmer surface temperatures, which, in turn, causes surface melting.The reduction of surface albedo due to the consequent loss of ice mass would lead to more solar energy being absorbed by the surface, further amplifying ice mass loss.

    Fig.5.Vertical-time cross-section diagrams of daily anomalies of regionally averaged (180°—120°W, 75°—85°S) cloud water content (cld), specific humidity (q), and air temperature (T) for the four melt cases.The dashed black straight lines mark the melting period.

    Fig.6.Vertical-time cross-section diagrams of daily partial air temperature anomalies (PTC, K) of clouds (cld), water vapor(wv), and atmospheric advective/convective processes (dys) for the four melt cases.The dashed black straight lines mark the melting period.The diagrams in the fourth column represent daily air temperature anomalies (shaded), and the contours represent the sum of PTC of clouds, water vapor, and dynamic processes.The area for the regional averaging is the same as in Figs.3—5.

    This study has not yet addressed the nature of the climate variability modes that cause the anomalously strong warm and humid air advection from lower latitudes to the RIS.The warm and humid air intrusions, namely the north wind intrusion, are regulated not only by the large-scale circulation, such as Rossby wave teleconnections (Li et al., 2021)but also by synoptic-scale storms (Turner et al., 2022).Previous work (Nicolas et al., 2017) indicates that strong surface melting events in austral summer are favored by concurrent El Ni?o-related atmospheric circulation, which promotes warm air advection to the RIS.However, strong surface melting events have also occurred during La Ni?a years.The interannual variability of surface melting over the RIS as it relates to ENSO is worthy of further investigation.We plan for our future work to investigate the dominant mode among climate factors or systems responsible for anomalous north wind intrusions over the RIS on interannual timescales.

    Acknowledgements.The authors are grateful for the insightful comments from the editor and two anonymous reviewers that helped to greatly improve the paper.This study was supported by the National Natural Science Foundation of China (Grant Nos.42075028 and 42222502) and the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant SML2021SP302).

    又黄又粗又硬又大视频| 女同久久另类99精品国产91| 国产精品99久久99久久久不卡| 亚洲人成网站在线播放欧美日韩| 久久精品亚洲熟妇少妇任你| 不卡av一区二区三区| 成人国产综合亚洲| 欧美性长视频在线观看| 国产精品国产高清国产av| 一边摸一边抽搐一进一出视频| 在线十欧美十亚洲十日本专区| 天天一区二区日本电影三级 | 亚洲视频免费观看视频| 日韩欧美一区视频在线观看| 成人三级黄色视频| 美女午夜性视频免费| avwww免费| 啦啦啦免费观看视频1| www国产在线视频色| 在线观看日韩欧美| 两性夫妻黄色片| 如日韩欧美国产精品一区二区三区| 欧美日韩福利视频一区二区| 99久久国产精品久久久| 美女 人体艺术 gogo| 女人被狂操c到高潮| 欧洲精品卡2卡3卡4卡5卡区| 国内久久婷婷六月综合欲色啪| 欧美大码av| 两个人免费观看高清视频| 国产精品,欧美在线| 欧美黑人精品巨大| 日本 av在线| 日本黄色视频三级网站网址| 免费在线观看黄色视频的| 亚洲一区高清亚洲精品| 搡老妇女老女人老熟妇| 精品人妻在线不人妻| 久久久久国产精品人妻aⅴ院| 色尼玛亚洲综合影院| 亚洲欧美精品综合久久99| 久久国产精品人妻蜜桃| 欧美另类亚洲清纯唯美| 亚洲第一电影网av| 国产极品粉嫩免费观看在线| 99精品久久久久人妻精品| 精品熟女少妇八av免费久了| 别揉我奶头~嗯~啊~动态视频| 别揉我奶头~嗯~啊~动态视频| 亚洲人成电影免费在线| 99riav亚洲国产免费| 国产精品 国内视频| 亚洲黑人精品在线| 国产欧美日韩一区二区三| 婷婷六月久久综合丁香| 他把我摸到了高潮在线观看| 日本欧美视频一区| 999久久久国产精品视频| 久久国产精品影院| www日本在线高清视频| 淫妇啪啪啪对白视频| 久久精品国产99精品国产亚洲性色 | 久久人妻福利社区极品人妻图片| av欧美777| 国产乱人伦免费视频| 亚洲精品国产一区二区精华液| 国产成人一区二区三区免费视频网站| 色av中文字幕| 女人被狂操c到高潮| svipshipincom国产片| 精品第一国产精品| 怎么达到女性高潮| 一级毛片精品| 在线十欧美十亚洲十日本专区| 国产精品亚洲一级av第二区| 国产精品影院久久| 欧美老熟妇乱子伦牲交| 国产精品九九99| 午夜亚洲福利在线播放| 中亚洲国语对白在线视频| 青草久久国产| 99久久国产精品久久久| 国产精品一区二区在线不卡| 在线观看舔阴道视频| 色老头精品视频在线观看| 身体一侧抽搐| 国产av精品麻豆| 国产成人欧美在线观看| 国产精品免费视频内射| 天堂√8在线中文| 亚洲人成电影免费在线| 不卡av一区二区三区| 国产精品香港三级国产av潘金莲| 亚洲精品久久国产高清桃花| 可以在线观看毛片的网站| 大型黄色视频在线免费观看| 精品免费久久久久久久清纯| 色av中文字幕| 黄色 视频免费看| 欧美激情极品国产一区二区三区| 首页视频小说图片口味搜索| 在线观看66精品国产| 亚洲第一青青草原| 好男人在线观看高清免费视频 | 精品一区二区三区视频在线观看免费| 国产一区二区三区在线臀色熟女| 午夜久久久在线观看| 亚洲欧美精品综合一区二区三区| 99在线人妻在线中文字幕| 男女做爰动态图高潮gif福利片 | 亚洲精品国产色婷婷电影| 久久午夜综合久久蜜桃| 精品卡一卡二卡四卡免费| 又紧又爽又黄一区二区| 日韩欧美国产一区二区入口| 欧美老熟妇乱子伦牲交| 午夜亚洲福利在线播放| 波多野结衣一区麻豆| 精品久久久久久成人av| 精品卡一卡二卡四卡免费| 亚洲五月色婷婷综合| 国产三级在线视频| 亚洲,欧美精品.| 一个人免费在线观看的高清视频| 亚洲精品一卡2卡三卡4卡5卡| 国产乱人伦免费视频| 精品国内亚洲2022精品成人| 亚洲最大成人中文| 老司机在亚洲福利影院| 久久婷婷成人综合色麻豆| 日韩欧美一区二区三区在线观看| av视频在线观看入口| 国产区一区二久久| 一级毛片精品| 高清在线国产一区| 久9热在线精品视频| 叶爱在线成人免费视频播放| 两人在一起打扑克的视频| 一区二区三区免费毛片| 三级毛片av免费| 99热这里只有是精品50| 婷婷精品国产亚洲av| 精品人妻1区二区| 久久精品影院6| 欧美xxxx黑人xx丫x性爽| 别揉我奶头 嗯啊视频| 在线a可以看的网站| 国产不卡一卡二| 色精品久久人妻99蜜桃| 99热精品在线国产| 少妇被粗大猛烈的视频| 久久国内精品自在自线图片| 天天一区二区日本电影三级| 国产av不卡久久| 桃色一区二区三区在线观看| 成年版毛片免费区| 国产精品三级大全| 久久精品国产鲁丝片午夜精品 | 日韩av在线大香蕉| 啦啦啦韩国在线观看视频| 亚洲专区中文字幕在线| 国产成人福利小说| 亚洲最大成人手机在线| 很黄的视频免费| 观看免费一级毛片| 国产单亲对白刺激| 日韩欧美精品免费久久| 欧美性猛交黑人性爽| 久久精品久久久久久噜噜老黄 | 91麻豆精品激情在线观看国产| 91久久精品国产一区二区三区| 18禁裸乳无遮挡免费网站照片| 精品久久久久久成人av| 搞女人的毛片| av中文乱码字幕在线| 色哟哟·www| 日本欧美国产在线视频| 国产在视频线在精品| 白带黄色成豆腐渣| 婷婷精品国产亚洲av在线| 国产精品日韩av在线免费观看| 久久久色成人| 国产综合懂色| 夜夜看夜夜爽夜夜摸| 久久中文看片网| 国内精品久久久久久久电影| 亚洲第一区二区三区不卡| 国产精品爽爽va在线观看网站| 欧美日韩亚洲国产一区二区在线观看| 国内少妇人妻偷人精品xxx网站| 一夜夜www| 国产 一区 欧美 日韩| 亚洲 国产 在线| 欧美在线一区亚洲| 国产精品不卡视频一区二区| 久久久成人免费电影| 禁无遮挡网站| 精品一区二区三区av网在线观看| 亚洲中文字幕日韩| 又爽又黄无遮挡网站| 日韩在线高清观看一区二区三区 | 国内揄拍国产精品人妻在线| 日韩av在线大香蕉| 老司机午夜福利在线观看视频| 伊人久久精品亚洲午夜| 又粗又爽又猛毛片免费看| 精品人妻1区二区| 午夜日韩欧美国产| 亚洲成人免费电影在线观看| 精华霜和精华液先用哪个| 一区福利在线观看| 欧美zozozo另类| 久久久久久久精品吃奶| 69人妻影院| 国产精品精品国产色婷婷| 欧美日韩中文字幕国产精品一区二区三区| 哪里可以看免费的av片| 中国美女看黄片| 久久草成人影院| 内射极品少妇av片p| 99国产极品粉嫩在线观看| 国产精品爽爽va在线观看网站| 免费在线观看成人毛片| 久久久久久久久中文| 国内少妇人妻偷人精品xxx网站| 琪琪午夜伦伦电影理论片6080| 18禁黄网站禁片午夜丰满| 麻豆一二三区av精品| av.在线天堂| 亚洲美女视频黄频| 3wmmmm亚洲av在线观看| 午夜免费成人在线视频| 两个人的视频大全免费| 亚洲精华国产精华精| 麻豆av噜噜一区二区三区| 麻豆一二三区av精品| 欧美+亚洲+日韩+国产| 丰满乱子伦码专区| 久久99热6这里只有精品| 色5月婷婷丁香| 日本色播在线视频| 两个人视频免费观看高清| 99热这里只有精品一区| 国产老妇女一区| 国产精品人妻久久久影院| 在现免费观看毛片| 国内精品久久久久精免费| 欧美一区二区精品小视频在线| a级毛片免费高清观看在线播放| 欧美成人免费av一区二区三区| 国产爱豆传媒在线观看| 99久久精品国产国产毛片| 亚洲欧美日韩东京热| АⅤ资源中文在线天堂| 国产 一区 欧美 日韩| 成人三级黄色视频| xxxwww97欧美| 亚洲精品亚洲一区二区| 午夜爱爱视频在线播放| 日本-黄色视频高清免费观看| 亚洲精品国产成人久久av| 91麻豆av在线| 韩国av一区二区三区四区| 亚洲第一区二区三区不卡| 精品一区二区三区视频在线观看免费| 亚洲人成网站在线播放欧美日韩| 欧美日韩瑟瑟在线播放| 亚洲精品一卡2卡三卡4卡5卡| 免费观看在线日韩| 欧美区成人在线视频| 3wmmmm亚洲av在线观看| 嫩草影院新地址| 成熟少妇高潮喷水视频| 亚洲av二区三区四区| 亚洲av免费在线观看| 熟女人妻精品中文字幕| 中文资源天堂在线| 久久精品久久久久久噜噜老黄 | www.www免费av| 亚洲在线观看片| 国产女主播在线喷水免费视频网站 | 精品国内亚洲2022精品成人| 自拍偷自拍亚洲精品老妇| 在现免费观看毛片| 欧美三级亚洲精品| 性色avwww在线观看| 伊人久久精品亚洲午夜| 欧美日韩乱码在线| 小蜜桃在线观看免费完整版高清| 精品久久国产蜜桃| 成人欧美大片| 哪里可以看免费的av片| 一本精品99久久精品77| 国产精品久久久久久亚洲av鲁大| 观看美女的网站| 97超级碰碰碰精品色视频在线观看| 极品教师在线视频| 欧美人与善性xxx| 国产精品久久久久久久电影| 日韩人妻高清精品专区| 国产av在哪里看| 18禁黄网站禁片免费观看直播| 亚洲综合色惰| 免费看美女性在线毛片视频| 99热这里只有是精品在线观看| 欧美+日韩+精品| 久久亚洲精品不卡| 给我免费播放毛片高清在线观看| 日日摸夜夜添夜夜添小说| 美女大奶头视频| 久久久久国内视频| av专区在线播放| 精品久久久久久,| 一区二区三区免费毛片| 日日摸夜夜添夜夜添小说| 亚洲成人中文字幕在线播放| 少妇猛男粗大的猛烈进出视频 | 国产男靠女视频免费网站| 69av精品久久久久久| 亚洲三级黄色毛片| 久久欧美精品欧美久久欧美| 欧美日韩中文字幕国产精品一区二区三区| 亚洲五月天丁香| 成年免费大片在线观看| 精品久久久久久久久久久久久| 91狼人影院| 精品不卡国产一区二区三区| 12—13女人毛片做爰片一| 尾随美女入室| 日本 av在线| 日韩亚洲欧美综合| 午夜免费男女啪啪视频观看 | 2021天堂中文幕一二区在线观| 最近在线观看免费完整版| 日韩中文字幕欧美一区二区| 桃红色精品国产亚洲av| 欧美三级亚洲精品| 国产精品嫩草影院av在线观看 | 亚洲av一区综合| netflix在线观看网站| 男女边吃奶边做爰视频| 国产激情偷乱视频一区二区| 色哟哟·www| 精品国内亚洲2022精品成人| 色哟哟·www| 99热精品在线国产| 国产精品三级大全| 在线国产一区二区在线| 99九九线精品视频在线观看视频| 伦精品一区二区三区| 美女xxoo啪啪120秒动态图| 国产在线男女| 噜噜噜噜噜久久久久久91| 日韩一区二区视频免费看| 国产精品,欧美在线| 极品教师在线视频| 一进一出抽搐gif免费好疼| 一级毛片久久久久久久久女| 亚洲美女搞黄在线观看 | 国产精品一区二区三区四区免费观看 | 国产精品永久免费网站| 国产精品99久久久久久久久| 老熟妇仑乱视频hdxx| 欧美性猛交黑人性爽| 久久天躁狠狠躁夜夜2o2o| 很黄的视频免费| 欧美最黄视频在线播放免费| 欧美+亚洲+日韩+国产| 在线观看美女被高潮喷水网站| 欧美国产日韩亚洲一区| 国产乱人视频| 午夜老司机福利剧场| 91在线观看av| 久久久久久伊人网av| 麻豆精品久久久久久蜜桃| 999久久久精品免费观看国产| 亚洲欧美日韩卡通动漫| 亚洲av二区三区四区| 中亚洲国语对白在线视频| 国产精品1区2区在线观看.| 亚洲精华国产精华精| av天堂中文字幕网| 毛片女人毛片| 国产一区二区三区视频了| 在现免费观看毛片| 日韩一本色道免费dvd| 亚洲人与动物交配视频| 国产精品福利在线免费观看| 特大巨黑吊av在线直播| 国产蜜桃级精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 91午夜精品亚洲一区二区三区 | 全区人妻精品视频| 观看美女的网站| 午夜精品久久久久久毛片777| 日韩欧美精品免费久久| 精品久久久久久久人妻蜜臀av| 九九久久精品国产亚洲av麻豆| 三级毛片av免费| 亚洲av二区三区四区| 国产精品免费一区二区三区在线| 少妇人妻精品综合一区二区 | 在线观看一区二区三区| 国产美女午夜福利| 国内精品美女久久久久久| 69av精品久久久久久| 亚洲精品乱码久久久v下载方式| 人妻少妇偷人精品九色| 亚洲国产精品合色在线| 亚洲18禁久久av| 无人区码免费观看不卡| 国产毛片a区久久久久| 日本与韩国留学比较| 国产精品自产拍在线观看55亚洲| 成人无遮挡网站| 国产精品伦人一区二区| 亚洲无线观看免费| 精品一区二区三区人妻视频| 久久精品国产亚洲av香蕉五月| 1024手机看黄色片| 亚洲精华国产精华液的使用体验 | 内地一区二区视频在线| 亚洲精品在线观看二区| 毛片女人毛片| 免费无遮挡裸体视频| 制服丝袜大香蕉在线| a级一级毛片免费在线观看| 美女高潮喷水抽搐中文字幕| 欧美另类亚洲清纯唯美| 波多野结衣高清无吗| 少妇人妻精品综合一区二区 | 亚洲欧美精品综合久久99| 日韩欧美精品v在线| 国产日本99.免费观看| 中文字幕av成人在线电影| 欧美色视频一区免费| 99久久久亚洲精品蜜臀av| 婷婷亚洲欧美| av视频在线观看入口| 亚洲va日本ⅴa欧美va伊人久久| 国产精品三级大全| 亚洲国产精品久久男人天堂| 久久精品人妻少妇| 好男人在线观看高清免费视频| 亚洲专区国产一区二区| 一区二区三区四区激情视频 | 亚洲人成伊人成综合网2020| 国产精品福利在线免费观看| 日本三级黄在线观看| 深夜精品福利| 国产亚洲精品av在线| 岛国在线免费视频观看| 亚洲中文字幕日韩| 少妇人妻精品综合一区二区 | 国产精品国产高清国产av| www.www免费av| 悠悠久久av| 国内精品久久久久久久电影| 五月伊人婷婷丁香| 久久人妻av系列| 丰满乱子伦码专区| 国产精品国产高清国产av| 亚洲欧美清纯卡通| 欧美+亚洲+日韩+国产| xxxwww97欧美| 亚洲精品在线观看二区| 无人区码免费观看不卡| 麻豆国产av国片精品| 欧美日韩瑟瑟在线播放| a级毛片免费高清观看在线播放| 天堂网av新在线| 黄色女人牲交| 性欧美人与动物交配| 欧美一区二区精品小视频在线| 亚洲四区av| 99视频精品全部免费 在线| 亚洲国产精品成人综合色| 欧美绝顶高潮抽搐喷水| 欧美性猛交╳xxx乱大交人| 亚洲av中文字字幕乱码综合| 精品久久久久久久久av| 大又大粗又爽又黄少妇毛片口| 哪里可以看免费的av片| 伊人久久精品亚洲午夜| 国产亚洲av嫩草精品影院| 久久久午夜欧美精品| 亚洲男人的天堂狠狠| 亚洲熟妇中文字幕五十中出| 国产精品99久久久久久久久| 桃红色精品国产亚洲av| 亚洲真实伦在线观看| 亚洲国产精品久久男人天堂| 国产一区二区激情短视频| 亚洲最大成人中文| 午夜精品在线福利| 国产真实伦视频高清在线观看 | 久久精品国产自在天天线| 国产高清三级在线| 美女xxoo啪啪120秒动态图| 变态另类成人亚洲欧美熟女| 51国产日韩欧美| 国产一区二区在线观看日韩| 中文字幕久久专区| 91在线精品国自产拍蜜月| 动漫黄色视频在线观看| 两人在一起打扑克的视频| 久久久成人免费电影| a级一级毛片免费在线观看| 成年女人永久免费观看视频| 亚洲国产日韩欧美精品在线观看| 性插视频无遮挡在线免费观看| 国产一区二区三区视频了| 欧美丝袜亚洲另类 | 中文字幕久久专区| 亚洲av第一区精品v没综合| 动漫黄色视频在线观看| 成人鲁丝片一二三区免费| 色吧在线观看| 亚洲性久久影院| 久久久久九九精品影院| av中文乱码字幕在线| 尤物成人国产欧美一区二区三区| 亚洲av日韩精品久久久久久密| 伦理电影大哥的女人| av女优亚洲男人天堂| 亚洲成人中文字幕在线播放| 中文字幕久久专区| 亚洲欧美日韩卡通动漫| 一进一出抽搐gif免费好疼| 老司机福利观看| АⅤ资源中文在线天堂| 国产毛片a区久久久久| 国产淫片久久久久久久久| 欧美日韩精品成人综合77777| 黄色欧美视频在线观看| 69人妻影院| 麻豆久久精品国产亚洲av| 精品午夜福利视频在线观看一区| 哪里可以看免费的av片| 99久久九九国产精品国产免费| 99在线视频只有这里精品首页| 日本色播在线视频| 99热精品在线国产| 啪啪无遮挡十八禁网站| 成人国产一区最新在线观看| 国产av一区在线观看免费| 国产一区二区三区在线臀色熟女| 国产精品亚洲一级av第二区| 色视频www国产| 亚洲av免费在线观看| 一个人看视频在线观看www免费| 一本一本综合久久| 午夜福利欧美成人| a级一级毛片免费在线观看| 天天躁日日操中文字幕| 91午夜精品亚洲一区二区三区 | 国产一区二区激情短视频| 白带黄色成豆腐渣| 很黄的视频免费| 国产私拍福利视频在线观看| 国产精品99久久久久久久久| 国产欧美日韩一区二区精品| 一区福利在线观看| 国产精品人妻久久久久久| 久久久久九九精品影院| 亚洲精品日韩av片在线观看| 啦啦啦韩国在线观看视频| 夜夜爽天天搞| 99国产极品粉嫩在线观看| 国产色爽女视频免费观看| 校园人妻丝袜中文字幕| 久久久久久九九精品二区国产| 久久精品国产亚洲av天美| 舔av片在线| 成人特级黄色片久久久久久久| 成年女人毛片免费观看观看9| 99在线人妻在线中文字幕| 又黄又爽又免费观看的视频| 无人区码免费观看不卡| 色吧在线观看| 亚洲欧美日韩东京热| 国产精品美女特级片免费视频播放器| 日韩欧美一区二区三区在线观看| 亚洲无线观看免费| 最近在线观看免费完整版| 搡女人真爽免费视频火全软件 | 伦理电影大哥的女人| 国产中年淑女户外野战色| 亚洲一级一片aⅴ在线观看| 亚洲最大成人中文| 亚洲人与动物交配视频| 美女黄网站色视频| 又黄又爽又免费观看的视频| 午夜激情福利司机影院| 99热只有精品国产| 婷婷亚洲欧美| 国产视频内射| 国产av不卡久久| .国产精品久久| 亚洲一区高清亚洲精品| 国产黄a三级三级三级人| 在线a可以看的网站| 一级av片app| 国产精品日韩av在线免费观看| 国产熟女欧美一区二区| 国产单亲对白刺激| 色综合站精品国产| 欧美三级亚洲精品| 99热这里只有精品一区| 极品教师在线免费播放| 亚洲成人久久性| 国产av一区在线观看免费| 男女之事视频高清在线观看| 亚洲 国产 在线| 亚洲人成网站高清观看|