• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Singular Effects in the Relativistic Landau Levels in Graphene with a Disclination?

    2018-12-13 06:33:40RosinildodoNascimentoDiegoCogolloEdilbertoSilvaMoisRojasandCleversonFilgueiras
    Communications in Theoretical Physics 2018年12期

    Rosinildo F.do Nascimento, Diego Cogollo, Edilberto O.Silva, Moisés Rojas,and Cleverson Filgueiras,?

    1Instituto de Física,Universidade Federal de Uberlandia,Uberlandia,MG,Brasil

    2Unidade Acadêmica de Física,Universidade Federal de Campina Grande,POB 10071,58109-970,Campina Grande-PB,Brazil

    3Departamento de Física,Universidade Federal do Maranh?o,65085-580,S?o Luís-MA,Brazil

    4Departamento de Física,Universidade Federal de Lavras,Caixa Postal 3037,37200-000,Lavras-MG,Brazil

    AbstractThe effect of a pseudo Aharonov-Bohm(AB)magnetic field generated by a disclination on a two-dimensional electron gas in graphene is addressed in the continuum limit within the geometric approach.The in fluence of the coupling between the spinor fields and the singular conical curvature is investigated,which shows that singularities have pronounced impact in the Hall conductivity.Moreover,the degeneracy related to the Dirac valleys is broken for negative values of the angular momentum quantum numbers,?,including ?≡ 0.In this case,a Hall plateau develops at the null filling factor.Obtaining the Hall conductivity by summing over the positive and the negative ?′s,the null Landau level is recovered and the plateau at the null filling factor disappears.In any case,the standard plateaus,which are seen in a lf at graphene are not obtained with these curvature and singular effects.

    Key words:Landau Levels,Hall conductivity,Graphene,Elastic deformations

    1 Introduction

    The carriers within Graphene behave as twodimensional massless Dirac fermions.[1?4]Its peculiar physical properties make it promising for nanoelectronic applications.[5?8]Graphene can be viewed as a zero-gap semiconductor,which in turns puts an obstacle towards the engineering of electronic devices based on it.It is worth to mention that there are possibilities to induce a gap by applying a perpendicular DC[9?10]and AC fields.[11?12]Another alternative to open a gap consists in inducing a strain field in a graphene sheet onto appropriate substrates.[13]In the continuum,these strain fields appear as effective gauge fields which yields pseudo magnetic fields.[14]One important difference from the actual magnetic fields is that they do not violate the time reversal symmetry.[15]A numerical study on the uniformity of the pseudomagnetic field in graphene as the relative orientation between the graphene lattice and straining directions was carried out in Ref.[16]and it was pointed out that observing them in Raman spectroscopy setup is feasible.In Ref.[17],two different mechanisms that could underlie nanometer-scale strain variations in graphene as a function of externally applied tensile strain is presented.A device to detect micro stresses in graphene able to measure AB interference at the nanometer scale was proposed in Ref.[18].It was shown on it that fictitious magnetic field associated with elastic deformations of the sample yields interference in the local density of states.A pseudo AB- field can also be induced by a topological defect called disclination.[19]The physical properties of graphene can be affected by topological defects in significant ways.Extensive studies on this manner have been carried out over the last years,[20?23]etc.Topological Defects could be viewed,at first,as imperfections which could affect the graphene performance. Therefore,research on defects and how they may in fluence the dynamics of carriers in graphene is important for the improvement of its technological applications.[24]This kind of defect appears as a result of removing(inserting)one or several carbon atoms from(into)the honeycomb lattice,not affecting the threefold coordination of other atoms,which leads to the warping of the graphene sheet. As a consequence,a positive(negative)curvature is induced at the location of a defect.Although the literature of topological defects in graphene is so vast,some important effects of them in its electronic properties still must be clarified.For example,the graphene sheet with a disclination takes shape of a cone with the value of the apex angle related to the num-ber of removed atoms.In the continuum approach,the geometric model for the elastic deformations introduced by topological defects in elastic solids is employed.[25]In this approach,the defects are represented by metrics with proper boundary conditions associated with them.So,the impact of the topology of a disclination together with the in fluence of a singular curvature represented by the Ricci scalar in the continuum limit are important aspects to be addressed.Assuming that the size of a defect is small as compared to the whole size of the graphene sample,we will investigate the in fluence of such a disclination on the relativistic Landau levels and,as consequence,in the Hall conductivity in a suspended graphene.It is important to point out that the problem addressed here can not be viewed as a clean non-interacting 2D electronic system with one localized impurity under the in fluence of a constant magnetic field.In such case,the Quantum Hall Effect(QHE)can not be modified,because this one impurity will produce one state between Landau levels that will not be visible in experiments.[26]However,a sample with such a elastic deformation caused by a disclination induces an extra gauge field,as discussed in Ref.[18].In this case,modifications in the QHE are going to be observed.

    The existence of a singular curvature make us to consider the existence of both the regular and the irregular wavefunctions as solutions of the problem.This fact depends either on the existence or not of the coupling between the spinor fields and the Ricci scalar(a deltalike curvature on a cone).So,the correct behavior of wavefuntions whenever we have singularities is investigated here,like in other quantum systems found in the literature.[27?31]Actually,conical singularities have significant impact in the QHE.[32]In our case,we will show that,if singular effects do not manifest,then a constraint in the orbital angular momentum eigenvalues shows up.The coupling of the wave functions with the delta-like curvature of the cone introduces the zero value of the angular momentum in the energy spectrum.This fact significantly in fluences the Hall conductivity.By considering the system prepared with only negative values of the angular momentum,the zero-energy,which exist when just a constant orthogonal magnetic field is present,does not develop around Dirac valleys,represented by K and K′.Then,a Hall plateau develop at the null filling factor(dimensionless ratio between the number of charge carries and the flux quanta).On the other hand,analyzing the QHE summing over all the orbital angular momentum eigenvalues allowed for the system(positive and negative),it is observed the standard plateaus at all integer n of 2e2/h,including n=0.This is due to the degeneracy related to the Dirac valleys,which is broken for negative values of the angular momentum.This contrasts with the usual QHE in graphene:for it,the quantum Hall conductivity exhibits the standard plateaus at all integer n of 4e2/h,for n=1,2,3,...,and 2e2/h for n=0.

    The plan of this work is the following.First,we briefly discuss the disclination in the context of the geometric approach.Next,we investigate how a pseudo AB field introduced by a disclination on a graphene sheet is going to affect the relativistic Landau levels.Then,we investigate the in fluence of it in the quantized Hall conductivity.At the end,we have the concluding remarks.

    2 A Disclination in the Geometric Approach

    In the Volterra process,a disclination is a topological defect associated to the removal of a wedge of threedimensional material with the subsequent identification of the loose ends.It introduces an angular deficit,which changes the boundary condition on the angular variable:? → ?+2π becomes ? → ?+2πα.[25]The case α <1 holds for the removed wedge angle of 2π(1?α).Conversely,if a wedge is added,α>1.This new boundary condition can be applied by working in a background space with the line element

    As it was shown in Ref.[25],the Frank vector which characterizes a disclination is the curvature flux associated to the defect.The above line element corresponds to a curvature scalar given by R=2((1 ? α)/α)(δ(ρ)/ρ)and its flux is I

    giving the Frank vector F(topological charge of the disclination).This result still holds for a two-dimensional surface with a disclination,which is a graphene sheet with a conical shape.This is the subject of this article.For graphene,α =1± λ/2π.In fact,to respect the symmetries of the carbon network,we must have λ = ±jπ/3,where j is an integer in the interval(0,6).[33]For j≡1,α =1 ? λ/2π =5/6(α =1+ λ/2π =7/6)stands for a graphene sheet where a single hexagon was substitute by a one-pentagon(one-heptagon)apex,creating a cone like(saddle-like)structure.In the continuum,both of them can be described by the metric(1).We consider only these two cases in what follows.

    3 Relativistic Landau Levels Around a Disclination

    In this section,we will investigate how a disclination on a graphene sheet is going to affect the relativistic Landau levels.The low energy excitation of graphene behave as massless Dirac fermions.[3,34]Their internal degrees of freedom are:sublattice index(pseudospin),valley index( flavor),and real spin,each one taking two values.The real spin will not be taken into account since it is irrelevant in our problem.Then,the low energy excitation around a valley is described by the(2+1)-dimensional Dirac equation as follows where σ =(σx,σy)are the Pauli matrices,Ψ =(φ1,φ2)Tis a two component spinor field,the speed of light c was replaced by the Fermi velocity(vF≈106m/s)andhas been fixed equal to one.The electronic states around the zero energy belong to the distinct sublattices,which is the reason of the existence of a two component wavefunction.Two indexes to indicate these sublattices,similar to spin indexes(up and down),must be considered.The inequivalent corners of the Brillouin zone,which are called Dirac points,are labeled as K and K′(valley index).[14]

    In this work,both the curvature and the topology of a graphene due to a disclination introduce two extra fields into the system:A1+A2,where A1is due to the correction introduced by the conical geometry of graphene and A2is due to the existence of a non-abelian gauge field,a term which breaks the degeneracy of the energy levels around the valleys.[14]This means that different signals must be considered for this gauge field at them since it does not break time reversal symmetry.[15]The relativistic Landau levels are achieved by coupling an azimuthal potential vector,given by

    from where we get B0=B0z,the constant orthogonal magnetic field.All these vector potentials are inserted into the Dirac equation via a minimal coupling,p→p?eA.The details of such calculations can be found in Ref.[19].They have found that each spinor field satisfy the following differential equation

    where ξ=eBρ2/2,

    The parameter s has a value of twice the spin value,characterizing the two pseudo spin states,with s=+1 for spin “up” and s= ?1 for “spin” down.Actually,they correspond to the different sub-lattices in the graphene.

    We investigate now some more details regardless the wave solutions as well as the energy spectrum.The general solution to this equation is given in terms of the confluent hypergeometric function of the first kind,[35]

    with

    where a?and b?are,respectively,the coefficients of the regular(non divergent as ξ→ 0)and irregular(divergent as ξ→ 0)solutions. The regular wave solution was investigated in Ref.[19]and it holds for b?≡ 0 and|Ms|>1.[30,36]As observed in Ref.[37],the spinor field couples with the Ricci scalar,which is obtained from the singular curvature in our case.So,the irregular solution should also be taken into account,which completes the analysis of the energy spectrum.[38]The two scenarios are possible since it can be introduced a physical mechanism so that the wave solutions become regular at the origin of the coordinate system,recovering the results found in Ref.[19].For a?≡ 0,we must have|Ms|<1 for the wave solution to be square integrable.Moreover,fs(r)must vanish at large values of r.So,from the asymptotic representation of the confluent hypergeometric function,this is achieved if

    with n being a non negative integer,n=0,1,2,...This way,we obtain

    In particular,it should be noted that for the case when|Ms| ≥ 1(the δ interaction is absent),only the regular solutions contribute for the bound state wave function(b?≡ 0),and the energy is given by Eq.(12)with plus sign.[19]On the other hand,if a singular interaction is present,then we have to add the energies with the minus signal,for which|Ms|<1.

    The energy spectrum above must be analyzed in terms of the values that the α parameter can assume,since the condition|Ms|≥1(|Ms|<1)for the regular(irregular)solution has to be fulfilled.Let us consider the regular wave functions at first.Then,the spectrum(12)in this case can be put in the following way

    for Ms≥ 1,with n′=n+(1?s)/2=0,1,2,3,...,and

    for Ms≤?1,with n=0,1,2,3,...Notice that the degeneracy regardless the sub-lattices,which are represented by the parameter s,is not broken.The degeneracy regardless the Dirac valleys K and K′is not broken in Eq.(13),but it is in Eq.(14).

    We now turn our attention to the case considering the irregular solution.We take into account the minus signal in Eq.(12).The energy spectrum is the same as showed in Eqs.(13)and(14),but the constraint|Ms|<1 allows only some values of ?,which depends on the values of α.For example,α =5/6(pentagon),we have ?= ?1,0 only,while that for α=7/6(heptagon),we may have?= ?2,?1,0.In contrast,for the regular wave solution,the energies(14)hold for ?= ?1,?2,?3,...for both cases.The presence of the disclination breaks the degeneracy of the relativistic Landau levels and new levels are introduced in the spectrum only for ?=0,?1,?2,?3,...

    In summary,in the absence of the coupling between the wavefunctions and the singular curvature,the constraint|Ms|≥1 must be imposed,restricting the allowed momentum eigenvalues ?,which guarantees that the wavefunctions are regular as ξ→ 0.If such coupling manifests,then the charge carriers are allowed to have other values of the angular momentum eigenvalues ? without such constraint.We will examine these two situations in order to show how singular effects are important if they manifest in the system.

    4 The Effect of a Disclination in the Hall Conductivity

    In this section,we investigate the in fluence of a disclination in the quantized Hall conductivity.We express the energy scale associated with the magnetic field in the units of temperature as follows,

    where vFand B are given in(m/s)and Tesla,respectively.

    We start by considering the expression for the Hall conductivity obtained in Ref.[39]in the clean limit.This way,we have

    where β0=1(for n=0), βn/β0=2(for n ≥ 1),T is the temperature andμis the chemical potential,which is considered to tune the graphene conductivity.[40]These values are related to the above-mentioned smaller degeneracy of the n=0 Landau level.Here,the degeneracy of energy levels related to these valleys is broken due to the disclination when ?=0,?1,?2,?3,...The consequence is that we have to consider a sum in the valley index.Therefore,we have the Hall conductivity as

    with

    where βn′,?(λ)=1,for any n′and ?.

    Fig.1 (Color online)Hall conductivity versus the chemical potential for α=5/6(one-pentagon apex)and α=7/6(one-heptagon apex). In(a),we have?=0,±1,±2,...while in(b)we have ?=0,?1,?2,...and a plateau develops at σxy=0.

    In Fig.1,we plot the Hall conductivity versus the chemical potential for different values of α.In the Quantum Hall effect in flat graphene(α≡1),the quantum Hall conductivity exhibits the standard plateaus at all integer n of 4e2/h,for n=1,2,3,...,and 2e2/h for n=0. For α≠1,intermediate plateaus are introduced between them.In Fig.1(a),the plot is built for?=0,±1,±2,±3,...and the quantum Hall conductivity exhibits the standard plateaus at all integer n of 2e2/h.In Fig.1(b)we analyze the case supposing that the system is prepared so that only the energies containing the parameter α are possible to be occupied by the charge carriers,that is,?=0,?1,?2,?3,...In this case,we have the condition Ms>1(regular solutions)and?1

    For α<1,the plateaus widths decrease and they decrease even more when α>1.For positive(negative)values of the chemical potentialμ,the steps shift to lower(higher)values of it.Nevertheless,due to the splitting of energy levels caused by the disclination,the number of states under the Fermi level increases,raising(lowering)the Hall conductivity forμ <0(μ >0)with respect to the flat sample case.The coupling of the wavefunctions with the curvature at the cone apex make these effects less pronounced,modifying the Hall conductivity in a significant way.

    5 Concluding Remarks

    In this work,we investigated how both the relativistic Landau levels and the quantum Hall conductivity are modified if fermions on graphene are held in the presence of a constant orthogonal magnetic field along with a pseudo AB- field induced by a disclination.We considered the continuum limit within the geometric approach.The squared Dirac equation yielded a differential equation whose solutions are well established in terms of Hypergeometric series,which contains both regular and irregular functions.We have observed that,for the existence of constraints on the orbital angular momentum eigenvalues allowed for the system(Ms≥1 for regular wavefunctions and?1

    As a final word,we have shown how a conical singularity can affect the relativistic Landau levels in graphene.It is important to have those questions in mind if one is interested to probe the effects of a singular curvature in these systems.The results found here may shade some light also in other graphene like materials with disclinations.

    老汉色av国产亚洲站长工具| 91九色精品人成在线观看| 国产探花在线观看一区二区| 少妇的逼水好多| 欧美乱码精品一区二区三区| 国产毛片a区久久久久| 熟女电影av网| 久久久久亚洲av毛片大全| 色在线成人网| 国产男靠女视频免费网站| 男人舔女人的私密视频| 99国产极品粉嫩在线观看| av欧美777| 婷婷六月久久综合丁香| 亚洲自拍偷在线| 搡老岳熟女国产| 免费av毛片视频| 十八禁网站免费在线| 久久久久久大精品| 国产精品自产拍在线观看55亚洲| 成人午夜高清在线视频| 成人无遮挡网站| 精品一区二区三区视频在线 | 99久久无色码亚洲精品果冻| 久久久色成人| 99久国产av精品| 久久国产精品人妻蜜桃| 国产高潮美女av| 97超视频在线观看视频| 国产欧美日韩一区二区精品| 日日夜夜操网爽| 国产一级毛片七仙女欲春2| 国产蜜桃级精品一区二区三区| 国产高清有码在线观看视频| 亚洲国产精品久久男人天堂| 成人特级黄色片久久久久久久| 日本 av在线| 日日干狠狠操夜夜爽| 欧美中文日本在线观看视频| 成人永久免费在线观看视频| 日本五十路高清| 综合色av麻豆| 免费在线观看成人毛片| 香蕉久久夜色| 午夜福利18| 国产精品久久久av美女十八| 黄频高清免费视频| 亚洲成av人片免费观看| 国产精品久久电影中文字幕| 亚洲人成网站在线播放欧美日韩| 免费高清视频大片| 欧美色视频一区免费| 亚洲人成网站高清观看| 老熟妇仑乱视频hdxx| 波多野结衣高清作品| 成年人黄色毛片网站| 欧美一级a爱片免费观看看| 国产午夜福利久久久久久| 久久婷婷人人爽人人干人人爱| 久久久久久国产a免费观看| 搡老妇女老女人老熟妇| 亚洲精品久久国产高清桃花| 久99久视频精品免费| 少妇的丰满在线观看| 窝窝影院91人妻| 亚洲av成人一区二区三| 一区二区三区国产精品乱码| 成人国产综合亚洲| 两个人的视频大全免费| 国产又色又爽无遮挡免费看| 久久精品国产清高在天天线| 舔av片在线| 国产伦人伦偷精品视频| 99riav亚洲国产免费| 麻豆成人午夜福利视频| 日韩有码中文字幕| 成人三级做爰电影| 日本在线视频免费播放| 日本一本二区三区精品| 亚洲自偷自拍图片 自拍| 夜夜看夜夜爽夜夜摸| 国产三级在线视频| 五月玫瑰六月丁香| 成人av在线播放网站| 国产激情欧美一区二区| 午夜福利18| 两个人视频免费观看高清| 色av中文字幕| 国产一区二区三区视频了| 久久久水蜜桃国产精品网| 熟女人妻精品中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲美女视频黄频| 久久久国产成人免费| 脱女人内裤的视频| 美女大奶头视频| 岛国在线免费视频观看| 淫妇啪啪啪对白视频| 欧美日韩黄片免| 国产一区二区激情短视频| 国内精品久久久久久久电影| 亚洲国产精品合色在线| 他把我摸到了高潮在线观看| 99精品久久久久人妻精品| 国产伦精品一区二区三区四那| 国产亚洲精品久久久久久毛片| 91麻豆精品激情在线观看国产| 欧美成人一区二区免费高清观看 | 国产精品一区二区三区四区久久| 国产美女午夜福利| 日韩精品中文字幕看吧| 亚洲av免费在线观看| 别揉我奶头~嗯~啊~动态视频| 真人做人爱边吃奶动态| 一级a爱片免费观看的视频| 一个人观看的视频www高清免费观看 | 久久热在线av| 手机成人av网站| 久久精品国产清高在天天线| 欧美色欧美亚洲另类二区| 超碰成人久久| 色噜噜av男人的天堂激情| 欧美成人一区二区免费高清观看 | 俄罗斯特黄特色一大片| 成人性生交大片免费视频hd| 熟女人妻精品中文字幕| 天堂动漫精品| 国产一区二区三区在线臀色熟女| 中亚洲国语对白在线视频| 在线看三级毛片| 99精品在免费线老司机午夜| 变态另类成人亚洲欧美熟女| 国产精品久久久av美女十八| 90打野战视频偷拍视频| 香蕉国产在线看| 亚洲一区高清亚洲精品| 日韩大尺度精品在线看网址| 亚洲欧美精品综合一区二区三区| 国产三级在线视频| 亚洲国产欧美人成| 青草久久国产| 九色国产91popny在线| 岛国在线观看网站| 波多野结衣高清无吗| 亚洲18禁久久av| 久久亚洲真实| 夜夜夜夜夜久久久久| 日日摸夜夜添夜夜添小说| 成人特级黄色片久久久久久久| 日本 av在线| 免费人成视频x8x8入口观看| 少妇的丰满在线观看| 91九色精品人成在线观看| 国产不卡一卡二| 免费观看的影片在线观看| 真人做人爱边吃奶动态| 国产欧美日韩一区二区三| 成人性生交大片免费视频hd| 婷婷精品国产亚洲av| 国产欧美日韩精品亚洲av| 老司机午夜十八禁免费视频| 国产精品亚洲一级av第二区| 在线观看美女被高潮喷水网站 | 琪琪午夜伦伦电影理论片6080| 亚洲第一欧美日韩一区二区三区| 999精品在线视频| 久久中文字幕一级| 国产激情久久老熟女| 亚洲一区二区三区不卡视频| 久久精品国产综合久久久| 国产极品精品免费视频能看的| 又紧又爽又黄一区二区| 亚洲国产精品sss在线观看| 视频区欧美日本亚洲| 久99久视频精品免费| 精品一区二区三区av网在线观看| 精品不卡国产一区二区三区| www日本黄色视频网| 免费大片18禁| 黄色片一级片一级黄色片| 级片在线观看| 成人高潮视频无遮挡免费网站| 亚洲欧美日韩无卡精品| 叶爱在线成人免费视频播放| 很黄的视频免费| 国产av麻豆久久久久久久| 欧美一区二区精品小视频在线| 色视频www国产| 色av中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av成人不卡在线观看播放网| 中文字幕人妻丝袜一区二区| 嫁个100分男人电影在线观看| 国产久久久一区二区三区| 国产亚洲av嫩草精品影院| 国产成人欧美在线观看| 真人做人爱边吃奶动态| av在线蜜桃| 欧美黑人欧美精品刺激| 亚洲国产欧美一区二区综合| 色av中文字幕| 婷婷亚洲欧美| 美女免费视频网站| 香蕉丝袜av| 在线看三级毛片| 在线观看舔阴道视频| 亚洲精品一区av在线观看| 精品久久久久久久毛片微露脸| 欧美日韩一级在线毛片| 脱女人内裤的视频| 日韩欧美 国产精品| 麻豆国产97在线/欧美| 亚洲欧美激情综合另类| 一本综合久久免费| 国产精品久久久av美女十八| 这个男人来自地球电影免费观看| 啦啦啦韩国在线观看视频| 国产爱豆传媒在线观看| 欧美黑人巨大hd| 看片在线看免费视频| 日本 av在线| 美女 人体艺术 gogo| 欧美日韩精品网址| 国内毛片毛片毛片毛片毛片| 一级毛片精品| 88av欧美| 国产精品 欧美亚洲| 午夜福利在线在线| 99在线视频只有这里精品首页| 欧美日韩瑟瑟在线播放| or卡值多少钱| 精品国产乱子伦一区二区三区| 亚洲精品粉嫩美女一区| 伦理电影免费视频| 国产不卡一卡二| 一进一出抽搐动态| 欧美日韩黄片免| 久久久久久久精品吃奶| 特级一级黄色大片| 天天添夜夜摸| 精品久久久久久久久久免费视频| 国产免费av片在线观看野外av| 精品无人区乱码1区二区| 国产亚洲av高清不卡| 制服丝袜大香蕉在线| 制服人妻中文乱码| 成人av一区二区三区在线看| 男女午夜视频在线观看| 国产野战对白在线观看| 国产一区二区在线观看日韩 | 亚洲成人精品中文字幕电影| 久久天堂一区二区三区四区| 国产欧美日韩一区二区精品| 欧美绝顶高潮抽搐喷水| 草草在线视频免费看| 欧美成人性av电影在线观看| 久久午夜综合久久蜜桃| 97碰自拍视频| 黄片小视频在线播放| 男人的好看免费观看在线视频| 成人鲁丝片一二三区免费| 亚洲午夜精品一区,二区,三区| 日韩成人在线观看一区二区三区| 天天添夜夜摸| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美日韩东京热| 男女做爰动态图高潮gif福利片| 午夜免费激情av| 亚洲av片天天在线观看| 在线永久观看黄色视频| 麻豆国产av国片精品| 99国产精品99久久久久| 亚洲乱码一区二区免费版| 亚洲精品中文字幕一二三四区| 精品午夜福利视频在线观看一区| 动漫黄色视频在线观看| 综合色av麻豆| 特大巨黑吊av在线直播| 三级男女做爰猛烈吃奶摸视频| 丰满人妻一区二区三区视频av | 午夜福利在线观看吧| 在线播放国产精品三级| 男人舔奶头视频| 18禁裸乳无遮挡免费网站照片| 国产成人精品久久二区二区免费| 男女下面进入的视频免费午夜| 91久久精品国产一区二区成人 | 一夜夜www| 欧美极品一区二区三区四区| 国产精品一区二区三区四区免费观看 | 成人三级黄色视频| 观看美女的网站| 欧美极品一区二区三区四区| 亚洲专区国产一区二区| 国产私拍福利视频在线观看| av女优亚洲男人天堂 | 琪琪午夜伦伦电影理论片6080| 最新在线观看一区二区三区| 激情在线观看视频在线高清| 99久久精品热视频| 久久久国产成人免费| 久久精品国产综合久久久| 最新中文字幕久久久久 | 可以在线观看毛片的网站| av天堂在线播放| 啪啪无遮挡十八禁网站| 久久久精品大字幕| 国产私拍福利视频在线观看| 伦理电影免费视频| 国产高清激情床上av| 成人鲁丝片一二三区免费| 日韩免费av在线播放| 欧美成狂野欧美在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久精品影院6| 欧美中文日本在线观看视频| 午夜激情福利司机影院| 淫妇啪啪啪对白视频| 日本黄色视频三级网站网址| 19禁男女啪啪无遮挡网站| 国产麻豆成人av免费视频| 国产免费男女视频| 在线永久观看黄色视频| 在线观看日韩欧美| 小蜜桃在线观看免费完整版高清| 日韩 欧美 亚洲 中文字幕| www.www免费av| 国产精品野战在线观看| 18禁黄网站禁片免费观看直播| 男人的好看免费观看在线视频| 中文字幕av在线有码专区| 国产又色又爽无遮挡免费看| 桃红色精品国产亚洲av| 亚洲国产欧美网| 草草在线视频免费看| 操出白浆在线播放| 老熟妇乱子伦视频在线观看| 欧美一区二区国产精品久久精品| www.精华液| 国产精品久久久久久亚洲av鲁大| 非洲黑人性xxxx精品又粗又长| ponron亚洲| 午夜精品在线福利| 成年女人看的毛片在线观看| 男人和女人高潮做爰伦理| 亚洲熟女毛片儿| 久久久久国内视频| 精品国产超薄肉色丝袜足j| 免费看十八禁软件| 午夜两性在线视频| 男人和女人高潮做爰伦理| 日本黄色视频三级网站网址| 男人和女人高潮做爰伦理| 动漫黄色视频在线观看| 久久性视频一级片| 悠悠久久av| 两性夫妻黄色片| 亚洲中文字幕日韩| 禁无遮挡网站| 亚洲成人久久性| 给我免费播放毛片高清在线观看| 亚洲电影在线观看av| 午夜福利视频1000在线观看| av在线蜜桃| 亚洲色图 男人天堂 中文字幕| 精品一区二区三区视频在线观看免费| 亚洲五月婷婷丁香| 国产一区二区三区视频了| 午夜免费激情av| 一区二区三区激情视频| 一本一本综合久久| 亚洲中文字幕一区二区三区有码在线看 | 精品久久久久久久末码| av福利片在线观看| 欧美成人一区二区免费高清观看 | 欧美成狂野欧美在线观看| 亚洲av第一区精品v没综合| 麻豆一二三区av精品| 19禁男女啪啪无遮挡网站| 美女被艹到高潮喷水动态| 99在线人妻在线中文字幕| 免费在线观看日本一区| 视频区欧美日本亚洲| 午夜日韩欧美国产| 成在线人永久免费视频| 免费在线观看视频国产中文字幕亚洲| 亚洲性夜色夜夜综合| 久久久久免费精品人妻一区二区| 狠狠狠狠99中文字幕| 成人高潮视频无遮挡免费网站| 两个人视频免费观看高清| 成人国产综合亚洲| 日韩高清综合在线| 1000部很黄的大片| 18禁黄网站禁片午夜丰满| 黄色 视频免费看| 老鸭窝网址在线观看| www.熟女人妻精品国产| 人妻久久中文字幕网| 精品不卡国产一区二区三区| 综合色av麻豆| 最近最新中文字幕大全电影3| 最好的美女福利视频网| 母亲3免费完整高清在线观看| 99国产精品99久久久久| 精品国产美女av久久久久小说| 亚洲人成伊人成综合网2020| 夜夜看夜夜爽夜夜摸| 国产伦人伦偷精品视频| 成人一区二区视频在线观看| 国产欧美日韩一区二区三| 国内精品久久久久久久电影| 精品一区二区三区视频在线观看免费| 欧美激情在线99| 99国产精品99久久久久| 色吧在线观看| 欧美极品一区二区三区四区| av天堂在线播放| 99在线视频只有这里精品首页| 黄色日韩在线| 性色av乱码一区二区三区2| 好看av亚洲va欧美ⅴa在| 91av网站免费观看| 亚洲色图av天堂| 久久精品91无色码中文字幕| 人妻夜夜爽99麻豆av| 亚洲人成电影免费在线| 亚洲精品在线观看二区| 校园春色视频在线观看| 欧美午夜高清在线| 美女被艹到高潮喷水动态| or卡值多少钱| 激情在线观看视频在线高清| 青草久久国产| 午夜福利在线在线| 99热这里只有精品一区 | tocl精华| 欧美+亚洲+日韩+国产| 欧美3d第一页| 国产精品影院久久| 亚洲欧美一区二区三区黑人| 一个人观看的视频www高清免费观看 | 天天躁狠狠躁夜夜躁狠狠躁| 色精品久久人妻99蜜桃| 搞女人的毛片| 国产成人福利小说| 日日夜夜操网爽| 欧美黄色片欧美黄色片| 国产亚洲精品综合一区在线观看| 日韩欧美 国产精品| 午夜免费激情av| 婷婷精品国产亚洲av| 国产精品av久久久久免费| 一卡2卡三卡四卡精品乱码亚洲| 国产一区二区三区视频了| 91久久精品国产一区二区成人 | 久久中文字幕一级| 亚洲中文日韩欧美视频| 19禁男女啪啪无遮挡网站| 最近最新中文字幕大全电影3| 精品国产美女av久久久久小说| 国内精品久久久久精免费| 亚洲av电影在线进入| www日本在线高清视频| 最近最新免费中文字幕在线| 国产一区二区三区视频了| 免费在线观看成人毛片| 一区福利在线观看| 99热精品在线国产| 免费大片18禁| 在线观看免费视频日本深夜| 精品熟女少妇八av免费久了| 麻豆久久精品国产亚洲av| 一本久久中文字幕| 久久草成人影院| 真人做人爱边吃奶动态| 国产精品免费一区二区三区在线| 最近视频中文字幕2019在线8| 国产在线精品亚洲第一网站| 国内揄拍国产精品人妻在线| 欧美丝袜亚洲另类 | 国产精品 欧美亚洲| 亚洲自拍偷在线| 欧美丝袜亚洲另类 | 婷婷六月久久综合丁香| 老司机福利观看| 搡老岳熟女国产| aaaaa片日本免费| 97碰自拍视频| 久久九九热精品免费| 成人特级黄色片久久久久久久| 丝袜人妻中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 欧美黑人巨大hd| av福利片在线观看| 桃红色精品国产亚洲av| 一区二区三区激情视频| 男人的好看免费观看在线视频| 日本黄色视频三级网站网址| 黄片小视频在线播放| 欧美色视频一区免费| 国产精品亚洲一级av第二区| 免费观看的影片在线观看| 久久久久国产精品人妻aⅴ院| 性色av乱码一区二区三区2| 国产精品国产高清国产av| 国产精品av久久久久免费| 91在线观看av| 综合色av麻豆| 欧美日韩国产亚洲二区| 精品国产乱码久久久久久男人| 亚洲av成人一区二区三| 久久精品综合一区二区三区| 国产激情欧美一区二区| 亚洲精品美女久久久久99蜜臀| 天堂影院成人在线观看| 久久精品国产亚洲av香蕉五月| 国产精品 欧美亚洲| 男女做爰动态图高潮gif福利片| 国产成人啪精品午夜网站| 一a级毛片在线观看| 欧美另类亚洲清纯唯美| av欧美777| 国内久久婷婷六月综合欲色啪| 黄色女人牲交| 久久久久精品国产欧美久久久| 国产精品一及| 久久国产精品人妻蜜桃| 日本精品一区二区三区蜜桃| 真实男女啪啪啪动态图| 色吧在线观看| 夜夜躁狠狠躁天天躁| 国产成人福利小说| netflix在线观看网站| 在线播放国产精品三级| 久久中文看片网| 国产97色在线日韩免费| 夜夜躁狠狠躁天天躁| 波多野结衣高清作品| 国产在线精品亚洲第一网站| 国产高清视频在线观看网站| 欧美丝袜亚洲另类 | 日韩精品中文字幕看吧| 麻豆国产av国片精品| 97人妻精品一区二区三区麻豆| 91麻豆av在线| av欧美777| 97超级碰碰碰精品色视频在线观看| 在线播放国产精品三级| 婷婷六月久久综合丁香| 丰满人妻熟妇乱又伦精品不卡| 九九久久精品国产亚洲av麻豆 | 看黄色毛片网站| 国内毛片毛片毛片毛片毛片| 搞女人的毛片| 男女视频在线观看网站免费| 黄色成人免费大全| 免费观看的影片在线观看| 日韩欧美 国产精品| 非洲黑人性xxxx精品又粗又长| 国产野战对白在线观看| 99久国产av精品| 最新中文字幕久久久久 | 精品国产亚洲在线| 国产欧美日韩一区二区精品| 成人国产一区最新在线观看| 欧美3d第一页| 久久精品aⅴ一区二区三区四区| 国产aⅴ精品一区二区三区波| 亚洲精品美女久久久久99蜜臀| 真人做人爱边吃奶动态| 偷拍熟女少妇极品色| 757午夜福利合集在线观看| 免费看十八禁软件| 亚洲精品在线美女| 久久精品国产99精品国产亚洲性色| 免费高清视频大片| 老司机在亚洲福利影院| 亚洲欧美激情综合另类| 美女高潮喷水抽搐中文字幕| 岛国在线观看网站| 午夜激情福利司机影院| 精品乱码久久久久久99久播| 免费在线观看视频国产中文字幕亚洲| 成人性生交大片免费视频hd| 国产精品久久久人人做人人爽| 亚洲一区二区三区不卡视频| 国产欧美日韩一区二区精品| 久久亚洲精品不卡| 亚洲成av人片在线播放无| 毛片女人毛片| 久久精品夜夜夜夜夜久久蜜豆| 欧美高清成人免费视频www| 国产精华一区二区三区| 国产一区在线观看成人免费| 小蜜桃在线观看免费完整版高清| 黄片大片在线免费观看| 日韩 欧美 亚洲 中文字幕| 久久久久久久久中文| 免费观看的影片在线观看| 男人舔女人下体高潮全视频| 9191精品国产免费久久| 国产精华一区二区三区| 最新中文字幕久久久久 | 日韩三级视频一区二区三区| 国产乱人伦免费视频| 最新在线观看一区二区三区| 床上黄色一级片| 日韩国内少妇激情av| 俺也久久电影网| 神马国产精品三级电影在线观看| 国产成人一区二区三区免费视频网站| 一区二区三区国产精品乱码| 色综合站精品国产| 亚洲va日本ⅴa欧美va伊人久久|