• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic Properties of XXZ Heisenberg Antiferromagnetic and Ferrimagnetic Nanotubes?

    2018-12-13 06:33:42ZhengNanXianYu鮮于正楠andAnDu杜安
    Communications in Theoretical Physics 2018年12期

    Zheng-Nan XianYu(鮮于正楠)and An Du(杜安)

    College of Sciences,Northeastern University,Shenyang 110819,China

    AbstractThe spin-1/2 antiferromagnetic and spin-(1/2,1)ferrimagnetic single-walled nanotubes are described by XXZ Heisenberg model.The sublattice magnetization and the critical temperature of the system are calculated by using the double-time spin Green’s function method.At zero temperature,with the increase of the exchange interaction in the circumferential direction,a maximum value appears in the sublattice magnetization curves of antiferromagnetic and ferrimagnetic systems.As the diameter of the tube increases,the spin quantum fluctuations and thermal fluctuations are suppressed.In addition,the spin quantum fluctuation of the spin-1/2 antiferromagnetic system is greater than that of the spin-(1/2,1)ferrimagnetic system.The critical temperature of the system increases firstly and then tends to a constant with the increase of the diameter of tube,and it decreases to zero as the exchange anisotropy of the system disappears.

    Key words:nanotube,XXZ Heisenberg model,quantum fluctuation,thermal fluctuation,critical temperature

    1 Introduction

    In recent years,magnetic nanomaterials have become a hotspot in experimental and theoretical research due to their outstanding contributions in magnetic recording,high-density data storage and sensors.[1?3]Since the single-walled carbon nanotube was discovered,[4]nanotubes as a kind of hollow tubular nanomaterial have exhibited many different characteristics from solid nanomaterials.For example,when used as a high-density storage material,the hollow structure of the nanotubes can effectively avoid the vortex core which appearing in the center vortex of nanowires and nanodisks,and have a more stable vortex state.[5]The head-to-head domain wall of the nanowire does not exist in the nanotube.Experimentally,many magnetic nanotubes have been synthesized,such as Ni,[6]Co,[7]FePt,and Fe3O4[8]nanotubes.

    In theoretical research,magnetic nanotubes are mainly described by the Ising model and the Heisenberg model.Under the Ising model,comparing the initial magnetic susceptibility and magnetization,which obtained by the effective field theory,nanowires and nanotubes show many similar magnetic properties.[9?10]The transition temperatures and compensation temperatures of ferrimagnetic nanotubes were found strongly affected by the surface dilution and two compensation points were observed in their phase diagrams.[11]In addition,the free energy was calculated and the first-order phase transition temperature was found.[12]Through Monte Carlo simulations,it was observed that tricyclic loops appear in the hysteresis loop,[13]and there are two distinct peaks in the magnetic susceptibility curve for the core-shell nanotube.[14]The range of existence of compensation temperature for mixed spin core-shell nanotubes under different exchange interactions was given.[15]The Gibbs free energy and magnetization of the mixed spin nanotube system were calculated based on the mean field approximation,and the phase transitions of the metastable and unstable branches of the order parameters were found.[16]Under the Heisenberg model,the ferromagnetic and antiferromagnetic single-walled nanotubes,which containing single anisotropy were studied by using the Green’s function method,the dependence of the initial magnetic susceptibility of ferromagnetic nanotubes on temperature and diameter was given[17]and spin quantum fluctuations were observed in the spontaneous magnetization curves of antiferromagnetic nanotubes.[18]The form of the rolling up(armchair or zigzag)of nanotubes was found strongly in fluence the magnetic properties.[19]

    As mentioned above,some magnetic and thermal phenomena of nanotubes have been explained by using the Ising model and the Heisenberg model successfully.However,the nanotubes themselves have spatial anisotropy and seem to also have anisotropy in the exchange interaction between spins.So,it is more reasonable to use anisotropic Heisenberg model(XXZ model)to describe magnetic nanotubes.Several works have been done to explore the magnetic properties of nanotubes using the XXZ model.For example,the quantum phase transitions of a three-leg frustrated spin nanotube was studied by using a numerical diagonalization method,[20]and a new quantum phase transition between the 1/3 magnetized plateau and the non-magnetized plateau was found.The critical temperature dependence of the exchange anisotropy was investigated by the effective field theory.[21]Besides,some theoretical interests have also been focused on the mixed spins ferrimagnetic nanomaterials,[22?24]such as Ising nanowire[22]with mixed spins-(1/2,1),Ising nanotubes[23?24]with mixed spins-(1,3/2)and mixed spins-(2,3/2),etc. Compared with the antiferromagnetic system,ferrimagnetic system can exhibit some more abundant magnetization and critical behaviors.Therefore,in this paper,using the Green’s function method,we calculate the zero-temperature magnetization,spontaneous magnetization and the critical temperature of the antiferromagnetic-1/2 and ferrimagnetic-(1/2,1)nanotubes described by the XXZ model,discuss the effect of the exchange anisotropy,diameter of the tube to the sublattice magnetizations and the critical temperature of the system.The article is arranged as follows.In Sec.2,we present the model and formulation.In Sec.3,the numerical results and discussions are presented.Finally,we summarize our main conclusions.

    2 Model and Method

    We consider a magnetic single-walled nanotube with antiferromagnetic exchange interaction between each two spins,as depicted in Fig.1.

    Fig.1 (Color online)Schematic representation of the antiferromagnetic nanotube.

    The Hamiltonian of the system is given by

    the index 〈ij〉denotes the summation of pair of nearestneighbor spins,Jijand α denote the nearest-neighbor exchange interaction and the exchange anisotropy between the spin Siand Sj.Jij=Jswhen both spins are in circumference direction.Jij=Jlwhen both spins are along the axis of nanotube.For α=0 and 1,the system becomes the Ising models and isotropic Heisenberg models,respectively.

    In order to investigate the magnetic properties of the system,we divide the lattice into two interpenetrating sublattice A and B,denoted by red and yellow dots(arrows)in Fig.1.Introducing the retarded Green’s function according to Callen[25]

    where Bj=,u is a Callen’s parameter.[25]Using equation motion for Green’s functions

    and decoupling the higher order Green’s function on the right hand side of the equations with random phase approximation(RPA),[26?28]

    When α=0,RPA is similar to the mean field approximation,the resulting transition temperature of the 2D Ising square lattice(m→∞)could slightly be larger than that of the rigorous calculation.[29?30]When α≠0,this approximation agrees well with other theoretical results.

    Because of the spatial symmetry of spins,we can obtain the Fourier component of time transform for Green’s function in Eq.(2).We introduce spatial Fourier transforms[26]of the Green’s function:

    where kzis the wave vector along the axial direction within the first Brillouin zone,kc(n)=2πn/ma(n=0,1,2,...,m?1)is the wave vector along the circumferential direction and a is the lattice constant.N is the number of spins in the axial direction,and m is the number of spins along the circumferential direction.For simplicity,here we only take m as an even number.When m is odd number,the frustrated effect of spins in the circumferential direction appears.[20]Then we obtain a group of equations about the Fourier component of the Green’s function:

    where p=A,B and p≠p′.By means of the spectral theorem and Callen’s technique,[25]we obtain the expression of sublattice magnetization:

    where

    When the temperature is close to critical temperature T→Tc,the sublattice magnetization tends to zero,and Φ approaches in finity.Equation(7)could be approximated as

    Because ω(kz,kc)is proportional to 〈Sz〉,taking eω/kBTc? 1 ≈ ω/kBTc,then the critical temperature is given approximately by

    When calculating the critical temperature,we must getsimultaneously.The specific expression of the critical temperature can refer to the previous study on the layered Heisenberg ferrimagnets.[31]

    In calculation,all parameters are taken as dimensionless quantities.We take|Jl|as the unit of energy,all the exchange interactions and temperature are reduced by|Jl|=1.0.For the sake of brevity,we also take}=1.0 and kB=1.0.

    3 Numerical Results and Discussion

    Using the above equations,we study magnetization and critical temperature of spin-1/2 antiferromagnetic and spin-(1/2,1)ferrimagnetic nanotubes by adjusting the exchange interaction,diameter and exchange anisotropy.

    3.1 Zero-Temperature Magnetization

    In this subsection,we focus on the effects of exchange interaction strength in circumferential direction and diameter of nanotube on the magnetization at zero temperature.The sublattice magnetization can be obtained based on Eqs.(7),(8),and the numerical results are shown in Figs.2–3.In order to show the variation of the quantum fluctuations with the exchange interaction and the diameter of nanotubes more clearly,we take the exchange anisotropy α=0.8.

    Fig.2(Color online)The sublattice magnetization as a function of the antiferromagnetic exchange interaction Jsat zero temperature with m=6,α=0.8.(a)spin-1/2 antiferromagnetic nanotube(b)spin-1/2 and 1 ferrimagnetic nanotube.

    In Fig.2,we can see that the sublattice magnetizations are less than their classic values at zero temperature due to the quantum fluctuation effect of spins.As Jsincreases,the sublattice magnetizations increases firstly and then decreases slowly,gets a maximum value near Js=Jl.When Jsis very small,nanotube can be regarded as a number of nearly independent antiferromagnetic spin chains and the quantum fluctuations are large,the long range order is hard to be maintained.When Jsis much larger than Jl,the system can be regard approximately as an in finite number of antiferromagnetic nanorings with a limited number of spins,quantum fluctuation of spins are also bigger,so a maximum of sublattice magnetization appears in Fig.2.Under the same antiferromagnetic exchange interaction and exchange anisotropy,the quantum fluctuation of spin-1/2 antiferromagnetic system is larger than that of spin-(1/2,1)ferrimagnetic system.

    Since m is proportional to the diameter of tube(m=πd/a),in the following,we use m as the measure of the diameter of nanotubes.Figure 3 shows the sublattice magnetization change with the diameter of nanotube at zero temperature.It is found that the sublattice magnetization increases monotonically with the increase of the diameter of the tube,and approaches a definite value when the diameter of the tube exceeds 50,indicating the increase of the diameter suppresses the quantum fluctuations of the spins.In addition,in the inset of Fig.3(a),when the anisotropy approaches zero(α=1),the sublattice magnetization of the system equals approximately 0.358,which conforms to the result of 2D spin-1/2 antiferromagnets with square lattice[33?34]and is slightly higher than the result of the spin wave method(0.303)and the method considered the perturbation series(0.313).[32]The quantum fluctuation behaviors of the spin-1/2 and 1 ferrimagnetic system with diameter of the tube(Fig.3(b))are similar to the spin-1/2 antiferromanetic system,but the quantum fluctuations are smaller than that of the antiferromagnetic system for same exchange anisotropy.

    Fig.3 (Color online)The sublattice magnetization as a function of parameter m at zero temperature with Js=1.0,α=0.8.(a)spin-1/2 antiferromagnetic nanotube(b)spin-1/2 and 1 ferrimagnetic nanotube.

    3.2 Spontaneous Magnetization

    Figure 4 shows the temperature dependence of the sublattice magnetization with some diameters of nanotube.We can see that the sublattice magnetizations decrease with the increase of temperature,but increasing of the diameter of nanotube,the sublattice magnetization increases,indicating the increase of the diameter of nanotube suppresses the thermal fluctuation of the spins.Besides,when the diameter of nanotubes exceeds 20,the difference of spontaneous magnetizations is getting smaller and smaller.

    Fig.4 The sublattice magnetization as a function of parameter m at zero temperature with Js=1.0,α=0.8.(a)spin-1/2 antiferromagnetic nanotube(b)spin-1/2 and 1 ferrimagnetic nanotube.

    3.3 Critical Temperature

    The critical temperature of system can be obtained based on Eqs.(9)and(10).We mainly discuss the effect of nanotube diameter and exchange anisotropy on the critical temperature of the system.

    Fig.5(Color online)The critical temperature as a function of diameter for spin-1/2 antiferromagnetic and spin-1/2 and 1 ferrimagnetic nanotubes with α=0.8.

    In Fig.5,as the nanotube diameter increases,the critical temperature first increases and then tends to constant,and this is also re flected in Fig.4.When m is small,the system which with small exchange anisotropy is difficult to keep magnetic order,the critical temperature is low.As the diameter increases,the system changes from one-dimensional to two-dimensional system gradually,and the critical temperature of the system tends to be stable.In the above discussion,we have made the exchange anisotropy of the system very small for the sake of clarity.Figure 6 shows the changes in the critical temperature of the system when the system is transformed from the Ising model to the Heisenberg model.When the anisotropy parameter is equal to 0,the Hamiltonian becomes Ising model and its critical temperature has been discussed deeply.[35?36]

    As the anisotropy parameter increases,the critical temperature decreases and when the anisotropy parameter approaches 1,the critical temperature drops to zero,this is conform to the Mermin and Wagner’s theory,[37]but different from the results of double-walled nanotube,[21]when the exchange anisotropy disappears,its critical temperature is not equal to zero.In addition,the effect of exchange anisotropy on the critical temperature of the ferrimagnetic system is greater than that of the antiferromagnetic system when α is close to 1.

    Fig.6 (Color online)The critical temperature Tcas a function of exchange anisotropy parameter α for spin-1/2 antiferromagnetic and spin-1/2 and 1 ferrimagnetic nanotubes with m=6.

    4 Summary

    In this work,we have studied the magnetization and critical temperature of the spin-1/2 antiferromagnetic and spin-(1/2,1)ferrimagnetic single-walled nanotubes,which are described by the XXZ model.At zero temperature,with the increase of the exchange interaction in the circumferential direction,a maximum value appears in the sublattice magnetization curves of antiferromagnetic and ferrimagnetic systems near the point where the exchange interaction in circumferential and the axial directions are equal.With the increase of the diameter of nanotubes,both spin quantum fluctuations and thermal fluctuations are suppressed.Besides,the spin quantum fluctuations of the spin-1/2 antiferromagnetic system are larger than that of the spin-(1/2,1)ferrimagnetic system.As the diameter of nanotubes increases,the system changes from one-dimensional to two-dimensional systems and the variation of the critical temperature of the system is getting smaller and smaller.When the anisotropy parameter increases from 0 to 1,the system transforms from the Ising model to the Heisenberg model,and the critical temperature of the system reduces to zero.

    久久精品人人爽人人爽视色| 男的添女的下面高潮视频| 国产精品一区二区三区四区免费观看| 在线观看免费日韩欧美大片 | tube8黄色片| 中国美白少妇内射xxxbb| 亚洲第一区二区三区不卡| 国产一区二区在线观看日韩| 久久99热这里只频精品6学生| 午夜激情福利司机影院| 亚洲欧美色中文字幕在线| 伦理电影大哥的女人| 黄片无遮挡物在线观看| av天堂久久9| 亚洲欧美中文字幕日韩二区| 成人午夜精彩视频在线观看| 这个男人来自地球电影免费观看 | 午夜福利,免费看| 亚洲第一区二区三区不卡| 国产成人91sexporn| 在线观看免费高清a一片| 伦理电影免费视频| 成人国语在线视频| 在线 av 中文字幕| 国产成人精品一,二区| 欧美丝袜亚洲另类| 伊人久久精品亚洲午夜| 亚洲天堂av无毛| 久久人人爽av亚洲精品天堂| 国产69精品久久久久777片| 日韩在线高清观看一区二区三区| 成人手机av| 成人影院久久| 99久国产av精品国产电影| 国产亚洲av片在线观看秒播厂| 成人亚洲精品一区在线观看| av免费在线看不卡| 国产片特级美女逼逼视频| av线在线观看网站| 欧美三级亚洲精品| 一级片'在线观看视频| 亚洲av免费高清在线观看| 乱码一卡2卡4卡精品| 亚洲经典国产精华液单| 十分钟在线观看高清视频www| av电影中文网址| 乱人伦中国视频| 欧美激情极品国产一区二区三区 | 久久97久久精品| 国产一级毛片在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲三级黄色毛片| 国产精品 国内视频| 大片电影免费在线观看免费| 亚洲精品第二区| 欧美变态另类bdsm刘玥| 如日韩欧美国产精品一区二区三区 | 美女福利国产在线| 久久久久久人妻| 性高湖久久久久久久久免费观看| 又大又黄又爽视频免费| 亚洲高清免费不卡视频| 丝袜喷水一区| 寂寞人妻少妇视频99o| 国产精品人妻久久久影院| 99久久精品国产国产毛片| 国产亚洲av片在线观看秒播厂| 全区人妻精品视频| 97超视频在线观看视频| 狂野欧美白嫩少妇大欣赏| 80岁老熟妇乱子伦牲交| 成人黄色视频免费在线看| 日本av手机在线免费观看| 亚洲精品中文字幕在线视频| 国产成人精品在线电影| 中文精品一卡2卡3卡4更新| 一本一本综合久久| kizo精华| 视频区图区小说| 在线观看免费高清a一片| 99久久人妻综合| 国产有黄有色有爽视频| 国产精品欧美亚洲77777| 狂野欧美激情性bbbbbb| 99国产精品免费福利视频| 国产精品无大码| 国产高清有码在线观看视频| 内地一区二区视频在线| 99视频精品全部免费 在线| 女人精品久久久久毛片| 51国产日韩欧美| 久久毛片免费看一区二区三区| 亚洲精品自拍成人| 日本av手机在线免费观看| 亚洲精品国产av蜜桃| 性高湖久久久久久久久免费观看| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产亚洲网站| 国产精品一区二区三区四区免费观看| 菩萨蛮人人尽说江南好唐韦庄| 日韩欧美精品免费久久| 午夜视频国产福利| av福利片在线| 欧美 亚洲 国产 日韩一| 黄色欧美视频在线观看| 国产精品成人在线| 午夜免费鲁丝| 一个人免费看片子| 亚洲精品,欧美精品| 午夜免费鲁丝| 免费少妇av软件| 久久久久久久久久久久大奶| 久久久久久久精品精品| 午夜福利视频在线观看免费| 欧美精品人与动牲交sv欧美| 一区二区三区四区激情视频| 乱码一卡2卡4卡精品| 满18在线观看网站| 黄色怎么调成土黄色| 狠狠精品人妻久久久久久综合| 亚洲成色77777| 国产精品国产三级国产av玫瑰| 热99国产精品久久久久久7| 一区二区日韩欧美中文字幕 | 免费观看a级毛片全部| 美女福利国产在线| 久热这里只有精品99| 超色免费av| 国产av国产精品国产| 亚洲图色成人| 天天躁夜夜躁狠狠久久av| 99九九线精品视频在线观看视频| 97在线人人人人妻| 亚洲国产精品一区二区三区在线| 久久综合国产亚洲精品| 99久久人妻综合| 欧美三级亚洲精品| 国产成人av激情在线播放 | 成人手机av| 亚洲色图综合在线观看| 国产色婷婷99| 日韩一本色道免费dvd| 9色porny在线观看| av线在线观看网站| 婷婷色麻豆天堂久久| 天美传媒精品一区二区| 老女人水多毛片| 91久久精品电影网| 国产av国产精品国产| 免费黄频网站在线观看国产| 亚洲精品,欧美精品| 久久韩国三级中文字幕| 成年女人在线观看亚洲视频| 国产国语露脸激情在线看| 午夜福利影视在线免费观看| 国产精品99久久久久久久久| 各种免费的搞黄视频| 最近的中文字幕免费完整| 欧美激情国产日韩精品一区| 日韩制服骚丝袜av| 人妻少妇偷人精品九色| 成人免费观看视频高清| 亚洲av福利一区| 日韩熟女老妇一区二区性免费视频| 日韩三级伦理在线观看| 亚洲成人一二三区av| 久久女婷五月综合色啪小说| 中文精品一卡2卡3卡4更新| 青春草国产在线视频| 女性生殖器流出的白浆| 成人影院久久| 久久久久久久亚洲中文字幕| 国产熟女午夜一区二区三区 | 天天躁夜夜躁狠狠久久av| 久久精品久久精品一区二区三区| videos熟女内射| 伊人亚洲综合成人网| 国产成人av激情在线播放 | 少妇丰满av| 一区二区三区四区激情视频| 国产免费视频播放在线视频| 久久人人爽人人片av| www.av在线官网国产| 国产欧美另类精品又又久久亚洲欧美| 久久久精品区二区三区| 日本免费在线观看一区| av在线播放精品| 天天影视国产精品| 视频区图区小说| 人妻少妇偷人精品九色| 九九在线视频观看精品| 人人澡人人妻人| 精品亚洲成a人片在线观看| 久久免费观看电影| 人妻人人澡人人爽人人| 91精品三级在线观看| 黑人高潮一二区| 欧美3d第一页| 三级国产精品欧美在线观看| 亚洲高清免费不卡视频| 亚洲在久久综合| 成人国语在线视频| 99热这里只有精品一区| 美女大奶头黄色视频| 国产av国产精品国产| 青春草视频在线免费观看| 免费人妻精品一区二区三区视频| 亚洲av免费高清在线观看| 亚洲久久久国产精品| 中国三级夫妇交换| 成年av动漫网址| av网站免费在线观看视频| 亚洲色图综合在线观看| 亚洲欧美成人精品一区二区| 97超视频在线观看视频| 自线自在国产av| 边亲边吃奶的免费视频| 丰满少妇做爰视频| 日韩,欧美,国产一区二区三区| 99久久中文字幕三级久久日本| 韩国av在线不卡| 99精国产麻豆久久婷婷| 一区二区三区四区激情视频| a级片在线免费高清观看视频| 日日撸夜夜添| 啦啦啦啦在线视频资源| 亚洲av欧美aⅴ国产| 最近中文字幕高清免费大全6| 日韩视频在线欧美| 女人精品久久久久毛片| 嘟嘟电影网在线观看| 欧美xxⅹ黑人| 精品少妇内射三级| 日本黄色日本黄色录像| 中国国产av一级| 又黄又爽又刺激的免费视频.| 男女啪啪激烈高潮av片| 中文字幕精品免费在线观看视频 | 黄片无遮挡物在线观看| 久久精品夜色国产| 日本黄大片高清| 久久综合国产亚洲精品| 日韩一区二区视频免费看| 免费播放大片免费观看视频在线观看| 青春草国产在线视频| 在线天堂最新版资源| 亚洲精品久久午夜乱码| 国产不卡av网站在线观看| 少妇人妻久久综合中文| a级毛色黄片| 国产精品久久久久久久电影| 天堂8中文在线网| 欧美一级a爱片免费观看看| 精品国产乱码久久久久久小说| 人妻少妇偷人精品九色| 插逼视频在线观看| 18禁在线无遮挡免费观看视频| 秋霞伦理黄片| 最近最新中文字幕免费大全7| 青春草国产在线视频| 男女免费视频国产| 国产在视频线精品| 看免费成人av毛片| 亚洲av电影在线观看一区二区三区| av在线app专区| 蜜臀久久99精品久久宅男| 欧美 亚洲 国产 日韩一| 少妇高潮的动态图| 日本av手机在线免费观看| 人妻 亚洲 视频| 美女国产视频在线观看| 亚洲精品乱码久久久v下载方式| 久久久午夜欧美精品| 我要看黄色一级片免费的| 亚洲精品美女久久av网站| 国产片内射在线| 伊人久久国产一区二区| 日本午夜av视频| 51国产日韩欧美| 午夜福利在线观看免费完整高清在| 少妇猛男粗大的猛烈进出视频| 日韩成人伦理影院| 国产高清国产精品国产三级| 国产淫语在线视频| 在线观看三级黄色| 涩涩av久久男人的天堂| 亚洲伊人久久精品综合| 少妇熟女欧美另类| 日本欧美视频一区| 美女大奶头黄色视频| av电影中文网址| 女人久久www免费人成看片| 国产精品女同一区二区软件| 少妇的逼水好多| 免费不卡的大黄色大毛片视频在线观看| 久热久热在线精品观看| 成人手机av| 免费黄色在线免费观看| 22中文网久久字幕| 婷婷色综合www| 久久女婷五月综合色啪小说| 国产精品久久久久久av不卡| 久久精品人人爽人人爽视色| 久久韩国三级中文字幕| av有码第一页| 啦啦啦视频在线资源免费观看| 午夜免费男女啪啪视频观看| 亚洲精品国产色婷婷电影| 男人添女人高潮全过程视频| 大片电影免费在线观看免费| 久久狼人影院| 七月丁香在线播放| 国产亚洲精品第一综合不卡 | 精品少妇久久久久久888优播| 日韩一区二区视频免费看| 精品久久蜜臀av无| 一个人免费看片子| 亚州av有码| 精品亚洲成a人片在线观看| 人人妻人人澡人人看| 在线观看www视频免费| 亚洲精品日韩在线中文字幕| 下体分泌物呈黄色| 纵有疾风起免费观看全集完整版| 热99国产精品久久久久久7| 亚洲成人av在线免费| av国产精品久久久久影院| 熟女av电影| 精品一区在线观看国产| 久久久欧美国产精品| 大又大粗又爽又黄少妇毛片口| 99热网站在线观看| videos熟女内射| 亚洲国产av新网站| 精品亚洲乱码少妇综合久久| 日韩制服骚丝袜av| av在线app专区| 亚洲国产av影院在线观看| 18禁动态无遮挡网站| 欧美日韩视频精品一区| 99热全是精品| 日本-黄色视频高清免费观看| 插阴视频在线观看视频| 天堂中文最新版在线下载| 一区二区三区乱码不卡18| 国产免费现黄频在线看| 精品国产国语对白av| 久久久久久久久久久免费av| 卡戴珊不雅视频在线播放| 黄色一级大片看看| 亚洲高清免费不卡视频| 国产av码专区亚洲av| 美女内射精品一级片tv| 伦精品一区二区三区| 日韩强制内射视频| 熟女av电影| 成人18禁高潮啪啪吃奶动态图 | 自拍欧美九色日韩亚洲蝌蚪91| 丁香六月天网| 一本—道久久a久久精品蜜桃钙片| 乱人伦中国视频| 亚洲国产av影院在线观看| 欧美成人午夜免费资源| 99热网站在线观看| 午夜影院在线不卡| 一级片'在线观看视频| 精品一区二区三卡| 一级毛片电影观看| 亚洲欧美成人精品一区二区| 视频中文字幕在线观看| 国产精品一区二区三区四区免费观看| 嫩草影院入口| 日本免费在线观看一区| av女优亚洲男人天堂| 午夜福利网站1000一区二区三区| 最近2019中文字幕mv第一页| 亚洲av国产av综合av卡| 久久久久网色| 亚洲性久久影院| 九色成人免费人妻av| 国产高清三级在线| 有码 亚洲区| 成人午夜精彩视频在线观看| 美女xxoo啪啪120秒动态图| 欧美人与善性xxx| 久久人人爽av亚洲精品天堂| 岛国毛片在线播放| 久久午夜福利片| 插逼视频在线观看| 美女国产高潮福利片在线看| 国产黄色免费在线视频| 国产一级毛片在线| 亚洲国产av影院在线观看| 新久久久久国产一级毛片| 99热网站在线观看| 欧美97在线视频| 大片电影免费在线观看免费| 国产成人午夜福利电影在线观看| 黄色怎么调成土黄色| 大香蕉久久网| 一区二区三区乱码不卡18| 亚洲精品,欧美精品| a 毛片基地| 亚洲精品aⅴ在线观看| 曰老女人黄片| 蜜臀久久99精品久久宅男| 亚洲av综合色区一区| 亚洲精品,欧美精品| 欧美亚洲日本最大视频资源| 草草在线视频免费看| 欧美成人午夜免费资源| 日韩三级伦理在线观看| 国产av一区二区精品久久| 中文字幕最新亚洲高清| 91精品三级在线观看| 啦啦啦视频在线资源免费观看| 亚洲成色77777| av电影中文网址| 亚洲av日韩在线播放| 国产成人aa在线观看| 婷婷色麻豆天堂久久| 超碰97精品在线观看| 欧美人与性动交α欧美精品济南到 | 久久精品国产自在天天线| 精品99又大又爽又粗少妇毛片| 精品久久久久久电影网| 中文字幕久久专区| 一级二级三级毛片免费看| 久久久久国产网址| 一级毛片我不卡| 成年美女黄网站色视频大全免费 | 哪个播放器可以免费观看大片| 精品99又大又爽又粗少妇毛片| 色婷婷av一区二区三区视频| 中文字幕久久专区| 99九九线精品视频在线观看视频| 久久久久久久久久久免费av| 一本一本综合久久| 免费高清在线观看视频在线观看| 午夜精品国产一区二区电影| 国产成人免费观看mmmm| av专区在线播放| 黑人欧美特级aaaaaa片| 亚洲成色77777| 美女cb高潮喷水在线观看| 91久久精品电影网| 婷婷色av中文字幕| 精品国产一区二区久久| 中文字幕久久专区| 免费大片18禁| 色网站视频免费| 一本一本综合久久| 国产精品偷伦视频观看了| 亚洲精品国产av蜜桃| 十分钟在线观看高清视频www| 在线观看免费视频网站a站| 欧美性感艳星| 成人亚洲精品一区在线观看| 在现免费观看毛片| 国产精品成人在线| 精品人妻一区二区三区麻豆| 日韩av免费高清视频| 国产精品人妻久久久久久| 亚洲色图综合在线观看| 日本-黄色视频高清免费观看| 久久久久国产精品人妻一区二区| 午夜av观看不卡| 亚洲美女搞黄在线观看| 亚洲国产欧美在线一区| 久久久久国产网址| 欧美日韩视频高清一区二区三区二| 看十八女毛片水多多多| 国产精品久久久久久精品电影小说| 日韩av不卡免费在线播放| 少妇熟女欧美另类| 亚洲怡红院男人天堂| 欧美97在线视频| 成人漫画全彩无遮挡| 日韩熟女老妇一区二区性免费视频| 大香蕉97超碰在线| 日产精品乱码卡一卡2卡三| 国产爽快片一区二区三区| 亚洲一级一片aⅴ在线观看| 亚洲三级黄色毛片| 亚洲精品久久午夜乱码| 精品国产露脸久久av麻豆| 黄色视频在线播放观看不卡| 亚洲熟女精品中文字幕| 国产一区有黄有色的免费视频| 日韩强制内射视频| .国产精品久久| 国产 精品1| 91aial.com中文字幕在线观看| 亚洲不卡免费看| 午夜激情久久久久久久| 精品人妻熟女毛片av久久网站| 一区二区三区免费毛片| 亚洲精品视频女| 午夜精品国产一区二区电影| 国产国拍精品亚洲av在线观看| 在线精品无人区一区二区三| 插阴视频在线观看视频| av在线观看视频网站免费| 久久久久久人妻| 少妇的逼好多水| 欧美+日韩+精品| 一本久久精品| 一区二区三区精品91| 高清在线视频一区二区三区| 狂野欧美激情性xxxx在线观看| videosex国产| a 毛片基地| 日韩伦理黄色片| 久久国产精品男人的天堂亚洲 | 如何舔出高潮| 啦啦啦在线观看免费高清www| 亚洲无线观看免费| 一本大道久久a久久精品| 欧美日韩成人在线一区二区| 久久精品国产a三级三级三级| 国国产精品蜜臀av免费| 成人亚洲精品一区在线观看| 久久精品夜色国产| 精品久久久久久电影网| 97超碰精品成人国产| 美女内射精品一级片tv| 国产黄色免费在线视频| 极品少妇高潮喷水抽搐| 国产日韩欧美视频二区| 99热网站在线观看| 尾随美女入室| 国产精品久久久久成人av| 成人手机av| 又黄又爽又刺激的免费视频.| 免费大片18禁| 亚洲欧美一区二区三区黑人 | 水蜜桃什么品种好| 少妇人妻 视频| 美女中出高潮动态图| 精品少妇久久久久久888优播| 亚洲欧美一区二区三区黑人 | 一级黄片播放器| av福利片在线| 人妻 亚洲 视频| 大片免费播放器 马上看| 视频在线观看一区二区三区| 亚洲精品一区蜜桃| 国产视频首页在线观看| 99视频精品全部免费 在线| 99热这里只有是精品在线观看| 七月丁香在线播放| 欧美+日韩+精品| 色婷婷久久久亚洲欧美| 亚洲美女黄色视频免费看| 国产亚洲精品第一综合不卡 | 午夜激情av网站| 久久精品久久久久久噜噜老黄| av专区在线播放| 丝袜美足系列| 久久99精品国语久久久| 一级爰片在线观看| 黄色怎么调成土黄色| 纵有疾风起免费观看全集完整版| 性色av一级| 国产精品人妻久久久影院| 99re6热这里在线精品视频| 老司机影院成人| 久久精品国产自在天天线| 久久久精品免费免费高清| 国精品久久久久久国模美| 国产免费一级a男人的天堂| 香蕉精品网在线| 国国产精品蜜臀av免费| 精品国产一区二区三区久久久樱花| 欧美丝袜亚洲另类| 2018国产大陆天天弄谢| 日韩,欧美,国产一区二区三区| 国产 精品1| 日韩中字成人| 另类亚洲欧美激情| 成人无遮挡网站| 国产一区二区三区av在线| 精品一区二区三卡| 毛片一级片免费看久久久久| 久久99精品国语久久久| 成人综合一区亚洲| 大片免费播放器 马上看| 国产精品偷伦视频观看了| av在线老鸭窝| 久久青草综合色| 男的添女的下面高潮视频| 国产欧美日韩一区二区三区在线 | 黄色配什么色好看| 51国产日韩欧美| 中国三级夫妇交换| 精品人妻熟女毛片av久久网站| 熟女人妻精品中文字幕| 美女国产视频在线观看| 在线播放无遮挡| 91精品伊人久久大香线蕉| 大香蕉久久成人网| 在线观看一区二区三区激情| 久久 成人 亚洲| 免费人妻精品一区二区三区视频| 中文字幕久久专区| 一区二区三区免费毛片| 男人操女人黄网站| 成年女人在线观看亚洲视频| 18禁在线无遮挡免费观看视频| 日本av免费视频播放| 亚洲av成人精品一区久久| av卡一久久| 国产精品国产三级专区第一集| 精品一区二区三卡| 欧美日韩国产mv在线观看视频|