• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Class of Rumor Spreading Models with Population Dynamics?

    2018-12-13 06:33:36SuyalatuDong董蘇雅拉圖andYongChangHuang黃永暢
    Communications in Theoretical Physics 2018年12期
    關(guān)鍵詞:雅拉

    Suyalatu Dong(董蘇雅拉圖)and Yong-Chang Huang(黃永暢)

    College of Applied Sciences,Beijing University of Technology,Beijing 100124,China

    AbstractBased on the characteristics of rumor spreading in online social networks,this paper proposes a new rumor spreading model.This is an improved SIS rumor spreading model in online social networks that combines the transmission dynamics and population dynamics with consideration of the impact of both of the changing number of online social network users and different levels of user activity.We numerically simulate the rumor spreading process.The results of numerical simulation show that the improved SIS model can successfully characterize the rumor spreading behavior in online social networks.We also give the effective strategies of curbing the rumor spreading in online social networks.

    Key words:online social networks,rumor spreading model,population dynamics,stability of equilibrium point

    1 Introduction

    In recent years,the rapid and continuing growth of global online social media pushes the number of their active users climbing to about 29%of the global human population.[1]Online social networking has become the most important platform for the exchange of information outside the traditional media.[2?3]However,the information in online social networks is also mixed with many rumors,whose spreading can make damage to individuals,or harm social stability.To explore the mechanism and establish models for rumor spreading in online social networks,to put forward the strategies of online rumor inhibition,and to assist the solution of the urgent issues of rumor hunted online information propagation,this paper propeses an improved SIS model with elaborated analytic and numerical analysis.[4?11]

    Most models of rumor spreading in online social networks evolved from epidemic model. At present,the SIR[12]and the SIS epidemic model[13]are the most widely and most thoroughly studied.Many scholars have improved the traditional infectious disease models and put forward new models to suit different properties of the rumor spreading processes in online social networks.For example,based on the average field theory,Gong et al.[14]proposed the mathematical model for the network virus transmission in mobile environment.Wang et al.[15]proposed a CSR(Credulous-Spreader-Rationals,or equivalently SIR)rumor spreading model,and introduced memory effect and acceptance thresholds into the model.Zhao et al.[16]set up a rumor temporal spreading model,combining the impact of temporal lag,spatial diffusion,media coverage and other factors on the spreading of rumor in social networks.Wan et al.[17]proposed the SIERsEs rumor spreading model,analysing the steady state of the theory,and solved the threshold for the spreading of infection and the threshold for rumor clearance.He et al.[18]proposed a heterogeneous network based epidemic model that incorporates the two kinds of methods to describe rumor spreading in MSNs,with the design of two costefficient strategies to restrain the rumors.In Ref.[19],a novel susceptible-infected-removed(SIR)model is proposed,based on the mean- field theory,to investigate the dynamical behaviours of such model on homogeneous networks and inhomogeneous networks,respectively.Considering that the exposed nodes may become the removed nodes at a rate,Liu et al.[20]proposed a novel rumor propagation SEIR model on heterogeneous network,provided formula of the rumor spreading threshold for the model and analysed the globally dynamical behaviours of the rumor free equilibrium set.Tan et al.[21]proposed a novel rumor propagation model,inspired by a model of elastically collision balls,namely the elastic collisionbased rumor-propagation model(ECR Model),and investigated the dynamics of rumor propagation between network nodes,similar to the dynamics of collisions between elastic balls.Aldila et al.[22]proposed a mathematical model to explain the spreading of rumors in a closed human population,implementing in the model the government interventions to educate people about the danger of rumor along with apprehensions of fanatical people.Based on the reaction-diffusion equations,Zhu et al.[23]proposed a novel epidemic-like model with both discrete and nonlocal delays for investigating the spatial-temporal dynamics of rumor propagation.

    All previous rumor spreading models were based on the compartment model of infectious diseases,which assume that the epidemic disease occurs in a closed system and lasts a relatively short period of time.It ignores population dynamic factors such as birth and death.Therefore,rumor spreading models based on the compartment model of infectious diseases can only simulate the rumor spreading processes in a closed environment for which the time of rumor spreading is relatively short.The limit of the compartment model is obvious.First of all,the cycles of some of the online information dissemination processes may be very brief,but the periods of some information transmission processes may be relatively longer,in the human society in an era of information explosion,with all information in human society being constantly updated.It is the relatively longer period dissemination processes of information that may give the public order and social stability the greater harm.As we know that,some of the rumors about politics,because of their difficulty to be effectively suppressed,would extend considerably longer time of propagation.For example,in 2016,the United States established the Information Analysis and Response Center,focusing on collecting,analysing and counterattacking foreign propaganda and fabrications that can harm US interests and undermine the relationship between the United States and its allies.Secondly,the actual online social network is an open system,not a closed system;the number of users in the online social network is dynamically changing.Therefore,we must consider the impact of changes in the total number of network users on the spreading and evolution of rumors.Finally,the real online social networks have different levels of user activity.Not all users are on line all the time.Frequently some users may go hibernation and miss the rumor propagation processes happening in the hibernating duration.Therefore,it is also necessary to consider the in fluence of user activity on rumor propagation processes.

    The outline of the article is as follows.In Sec.2,an improved SIS rumor spreading model is proposed,based on the characteristics of rumor spreading in online social networks,with consideration of the population dynamically impacted rumor transmission dynamics parametrically controlled by changing number of online social network users and different levels of user activities.In Sec.3,an elaborated mathematical analysis of the equilibrium points and the stability of equilibrium solutions of the system is performed,followed by the numerical analysis of the behaviour of the system.We have simulated the rumors spreading process based on data sets in real online social network in Sec.4.An effective rumor suppression strategy is proposed and numerically analyzed in Sec.5.Section 6 is a brief summary and conclusion.

    2 Rumor Propagation Mechanism and Model Building

    Because the network population grows but definitely has the global human population as its upper ceiling,we have the reason to assume that the changing total user number N(t)in the online social network satisfies the logistic model

    where b=(the registration rate of new users)–(deactivation rate of users)=(the net growth rate of users).By parameter b,the combined impact of the changing number of online social network users and different levels of user activity are considered.K is the environmental capacity of online social networks,referring to the maximum number of users the online social network can carry,usually a pretty large integer,say a million,10 million or 100 million,and the actual network user population should not exceed K,such that 0≤N(t)≤K.The restricting factors on the environmental capacity of online social networks should include the full population size of internet users,the popularization rate of the internet,the popularization rate of the online social network etc.We set K=1,the logistic model changes into

    Thus the network population gets rescaled,

    Online social network is an online realization of social structure composed of many nodes,and links between the nodes.The nodes can be individuals or organizations,and the links between nodes correspond to a variety of social relations,such as friendships.In the analysis of the problem of rumor spreading in online social network,we classify the network users,or network nodes into two categories:health node S are(the number of)those network users who are not in the in fluence of some rumor message at some time,and the transmission node I are(the number of)those network users who are in the in fluence of some rumor message at some time so that they involve in the propagation of the message.These two types of network users make up the total population of the network users in the online social network,N(t)=S(t)+I(t).We see that we also have 0≤S(t),I(t)≤1.

    In our age when the total population of the social networks are rapidly growing,we assume that the new registered users are all health nodes.Model(2)can be written as

    If S and I are not directly interacting with each other,except through N,the equations for S and I can be separately obtained from the above equation,

    Because the transmission nodes would pass on rumor message to the healthy nodes during their interaction at some probability,and the transmission nodes also may recover from the in fluence of rumor message at some time rate,we have the following propagation rule for our SIS rumorspreading model,

    These two conversion rules between two different types of nodes being taken into account,Eq.(5)of the SIS rumor spreading model with consideration of population dynamics and different levels of user activity in online social networks transforms into the following form

    where β is the infection rate,at which the transmission nodes pass on the rumor message to the healthy nodes to transform them into transmission nodes;σ the cure rate,at which the transmission nodes recover from the in fluence of the rumor;and b the net growth rate of population,by which the combined impact of the changing number of online social network users and different levels of user activity are considered.These parameters are assumed to be all constants.N(t)is not an independent variable as it depends on S(t)and I(t)by N(t)=S(t)+I(t).This relation being taken into account,Eq.(6)becomes,

    3 Stability of Equilibrium Solutions and Numerical Analysis

    3.1 Analysis of System Equilibrium Points and Stability

    To find the equilibrium points of the system,letting Eq.(7)equal to zero,we get the equilibrium equation of the system,

    Solving these equations,we get two solutions for one of the unknown variables,

    or

    Therefore,the system has two equilibrium points.Substituting I0=0 into the system,we can get S0=1.So the first equilibrium point of the system is

    This equilibrium point corresponds to the situations when the population of the network users reaches to the maximal environmental capacity and the online social networks are completely free of rumors.And it is called the rumor elimination point.Substituting I1back into Eq.(8),we get

    or

    Among them,S2= σ/β,if being substituted into Eq.(10)would cause I1= ?σ/β and produce negative value for population variable,thus should be ignored.So we just take S1=(b+σ)/β as the meaningful solution.Substituting S1=(b+σ)/β into I1in Eq.(10),we get

    Therefore,the second equilibrium point of the system is

    which is a non-zero equilibrium point.

    Thus,we have found the two equilibrium points of the system.Now we want to check the stability of these two equilibrium points.First of all,we remind that the condition for population variables S1,I1to be positive,and the positivity of all the parameters requires,

    To check the stability of the equilibrium point,we first shift the original differential equations to that for the variables that are defined as the variations from the equilibrium solutions,

    such that

    for the first equilibrium point.Substituting the new variables in Eq.(18)into the original differential equations Eq.(7),

    To check the stability of the rumor elimination equilibrium point,substitutinginto Eqs.(19)and(20),

    For the coefficient matrix of the linear part of the above differential equations,

    solving its eigenvalue equation

    we can find the eigenvalues as,

    We see that one of the eigenvalues is positive valued,and another one negative

    Since the real parts of the eigenvalues are not all negative,we know that this rumor elimination equilibrium point is not stable.It means that it is unrealistic for us to hope for the online social networks to be completely free of any rumors.

    To check the stability of the second equilibrium point,substituting

    into Eqs.(19)and(20),we get

    Then,we can solve the eigenvalue equation for the coefficient matrix of the linear part of these differential equations,

    and the following two roots

    According to Eq.(12),β≥b+σ≥0,about the positivity of population,and of all parameters,we can define a fourth positive parameter

    Then,on the one hand,we have the determinant

    On the other hand,because all parameters are all nonnegative,we have

    Using Eqs.(33)and(34),we conclude that both of the roots of the eigenvalue equation Eq.(30),are real,and negative,

    We thus show that the second equilibrium point given in Eq.(15)is stable.Also we remind that the first equilibrium point,namely the rumor elimination equilibrium point given is Eq.(11),has been shown to be unstable so that unrealistic in engineering.

    3.2 Numerical Analysis

    Figure 1 shows the curves of health node density and transmission node density changing with time.The parameters used in numerical simulation are:b=0.4,β=0.35,σ=0.38.Figure 1 shows that,in the initial stage,the health node density is increasing rapidly with the incoming of new registered users.At t=30,the health node density tends to be saturated.In the beginning,the transmission node density increases rapidly,reaching to the maximum value at about t=25,but gradually decreasing but gradually decreasing to 0 near t=100,with the transmission node density changing into health node.

    Fig.1(Color online)Health node and transmission node curves.

    When the total number of users increasing towards the environmental capacity,online social networks no longer can accommodate any more new registered users,in the meanwhile,the health node density reaches the saturation.This situation is more in line with rumor spreading characteristics in online social network.

    Figure 2 shows different transmission node density curves for different infection rate β values,for example,β=0.15,0.25,and 0.35.It can be seen that,with increased β value,the peak value of the curve of transmission node density becomes larger.This shows that the greater the infection rate β,the spread of rumors in social networks is more extensive,the greater the risk of rumors,consistent with the rumor spreading characteristics in online social network.

    Fig.2 (Color online)Di ff erent transmission node density curves for different infection rate β values.

    Figure 3 shows different transmission node density curves for different cure rate σ values,for example,σ =0.38,0.48 and 0.58.It can be seen that,with increased cure rate σ value,the peak value of the curve of transmission node density becomes small.It shows that the higher the cure rate,the spread of rumor in the online social network is inhibited more effectively.

    Fig.3 (Color online)Di ff erent transmission node density curves for different cure rate σ values.

    4 Model Simulation

    4.1 Data Set Description

    The Facebook user data set is selected as the experimental simulation data.We select fifteen registered Facebook users and their buddy list as the initial online social network nodes,to generate a simple Facebook network containing 4039 nodes.Figure 4 shows a simple Facebook network visualization.

    Fig.4 (Color online)Visualization of the simple facebook network.

    As shown in Fig.5,a simple Facebook network degree distribution is obtained by using Gephi software.The average degree of the simple Facebook network nodes is 43.691.From the degree distribution map of Facebook network,we can see that the degree distribution of the network satisfies power law distribution,which shows that the simple Facebook network has scale-free feature.

    Fig.5 (Color online)Degree distribution of the Simple Facebook Network.

    As shown in Fig.6 that,the clustering coefficient distribution of simple Facebook network is obtained by using Gephi software.The average clustering coefficient of the simple Facebook network nodes is 0.617.From this we can see that the simple Facebook network has a high clustering coefficient,which shows that users are very likely to get to know each other through mutual friends in simple Facebook network.

    Fig.6 Clustering coefficient distribution of the Simple Facebook Network.

    Fig.7 Eigenvector centrality distribution of the Simple Facebook Network.

    As shown in Fig.7 that,the eigenvector centrality distribution of simple Facebook network node is obtained by using Gephi software.The eigenvector centrality score of node 1 is the highest,which is 0.4279.Eigenvector centrality theory believes that the importance of a node is closely related to the importance of other nodes to which it is connected,namely for a node,if the node is connected to a number of nodes with high degree of centrality,then the node has a high degree of importance.[24]

    Based on the above analysis,we can see the topological characteristics of the simple Facebook network.Here we use the Facebook data set to construct the network as a rumor evolution map,to analyze the propagation and evolution of rumors in the real online social network.

    4.2 Simulation Result

    In order to verify the correctness of the new model(3),based on the proposed rules of rumor spreading,we simulate the rumor spreading process in the real online social network for a long time.We refer to the methods proposed by Albert and Barabdsi in Ref.[27].According to the degree distribution,clustering coefficient and other statistical properties of the simple Facebook network with 4039 nodes,we get a suitable Facebook network generating algorithm.Based on this algorithm,we add new nodes and edges to a simple Facebook network with 4039 nodes by Networkx software,and construct an online social network with changing number of nodes.We select the network as the map of rumor dissemination and evolution.The average degree of node in the Facebook network is 43.691,so the initial state selects one node with degree 44 in the network as the transmission node;and the total number of initial nodes in the network is N0=4039.Considering the real online social network topology structure,whether or not the healthy node is connected with the transmission node is knowable,so β=1,[28]but the other parameters are chosen to be consistent with the numerical simulation of the model in Sec.3.

    Figure 8 shows the time varying curves of the node densities for the rumor spreading in the Facebook network.From Fig.8 we can see that,in Facebook network,the change of each node density with time is consistent with the numerical simulation results in Fig.1.The first peak of the curve of the transmission node density appears at t=22,with its peak appears in advance in time,compared with that of Fig.1.The health node density in online social networks reaches to the environment capacity of online social network at around t=27,so the saturation for the state of the system is achieved.

    In the following,we give an effective strategy to control the spread of rumor according to the topology structure of the simple Facebook network.

    Fig.8 (Color online)The change of each node density with time in Facebook networks.

    5 Inhibition Strategies for Rumor Spreading in Online Social Networks

    The previous theoretical analysis provides some useful strategies for controlling the spreading and diffusion of rumors in online social networks.Firstly,from the perspective of restricting the infectious source,we should push the costs for the rumor spreading to be higher,and this kind of rumor control strategy can be called the passive immunization.For example,to punish the users who spread malicious rumors by account close-down,to hold them criminally responsible for resultant bad impacts,etc.,so that in the process of information dissemination the majority of users will become more cautious in forwarding unexamined information.It is equivalent to the decrease in the number of infectious nodes or the enhancement of the recovery rate.Secondly,from the perspective of strengthening the user immunity to rumors,we should establish the mechanism of refuting the rumor in the online social network,and this kind of rumor control strategy can be called active immunization.For example,Guokr and Songshuhui who enjoy very strong in fluence in Sina Weibo,have built great in fluence in the dissemination of science and the restriction of science related rumors on the internet.To refute rumor and spread popular science,online social networks(like Sina Weibo)can recommend the public broadcasting organizations with certain credit and in fluence in the network(like Guokr and Songshuhui)to current network users or set these scientific dissemination accounts as the default followings for the new users register at the network.And it is equivalent to the decrease in the infection rate.

    Next,following the method of Refs.[25–26]on rumor inhibition strategy for mathematical quantitative analysis,we propose two inhibition strategies to curb the rumor spreading in online social networks:

    (i) Network supervision department to punish the users who spread malicious rumors by account close-down,to hold them criminally responsible for resultant bad impacts,equivalent to the manipulation of the subtraction of f1t=νI(t)in the second equation of rumor spreading Eq.(3).

    (ii)Online social networks can recommend the public broadcasting organizations with certain credit and in fluence in the network to current network users,thus implementing the immunization by the addition of f2t=ωS(t)I(t)in the first equation of Eq.(3).

    In the above,the constants ν and ω represent the effect of two inhibition strategies on infected individuals and the impact on healthy individuals.The mean field equations of the control framework are listed as follows:

    We call the system described by Eq.(37)the SIS model of rumor spreading with suppression.For simplicity,we do not consider the optimal strategy of restraining strategy,but only carry out a simple quantitative analysis of the inhibition strategy.

    Shown in Fig.9,are the curves of I(t),the population proportionality of the infectious nodes,when no inhibition strategy is applied,or when strategy(i)or strategy(ii)is applied alone,or when both strategy(i)and(ii)are applied simultaneously,respectively.While the two restraining strategies are particularly prominent in the control of the spreading of rumor as shown in the figure,we can see that,the two restraining strategies have a clear control effect on the spreading of rumors.

    Fig.9(Color online)Curve I(t)vs.time showing the effects of different inhibition strategies on suppressing the amount of infected individuals.

    6 Conclusion and Discussion

    This paper has studied the rumor spreading model in online social networks.According to the dynamic model of infectious diseases and population dynamics model,we set up an SIS rumor spreading model that it is in line with the rumor spreading characteristics of online social networks.By numerical simulations,the effect of different infection rate and cure rate on the behavior of the new rumor spreading model is studied.Finally,based on the results of numerical analysis and model simulation,some useful inhibition strategies on rumor spreading are proposed.

    It must be pointed out that,the discussions about rumor spreading in online social networks will continue.For example,we can further consider the topological structure characteristics of the networks.In fact,the community character and self-similarity are typical characteristics of the topological structures of real online social networks.In the future work,it can be further discussed.

    Acknowledgments

    The authors thank Dr.Yanbin Deng for very useful discussions.

    猜你喜歡
    雅拉
    過甘孜(組詩)
    貢嘎山(2023年5期)2023-11-17 13:35:42
    雅拉谷:一個產(chǎn)區(qū)兩個故事
    葡萄酒(2020年7期)2020-07-24 16:28:38
    “求食”
    新加坡首家“雅拉生鮮”入駐我國成都
    論納·賽西雅拉圖教授的史詩研究
    雅拉公園游記
    農(nóng)牧民的好“安答”
    桂林資源5萬畝紅提用雅拉套餐施肥
    新方向“雅拉”復(fù)合肥效果出眾
    2018国产大陆天天弄谢| 久久久久久久久久久免费av| 日本免费在线观看一区| 伊人久久精品亚洲午夜| 日韩在线高清观看一区二区三区| 国产伦在线观看视频一区| 91精品一卡2卡3卡4卡| 成人一区二区视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 美女内射精品一级片tv| 国产人妻一区二区三区在| 久久精品国产亚洲网站| 九九爱精品视频在线观看| 日韩视频在线欧美| 亚洲久久久国产精品| 久久人妻熟女aⅴ| 亚洲av日韩在线播放| 国产成人一区二区在线| 蜜桃在线观看..| 日韩在线高清观看一区二区三区| 久久av网站| 大香蕉久久网| 欧美区成人在线视频| 美女主播在线视频| 国产真实伦视频高清在线观看| 尾随美女入室| 亚洲精品日本国产第一区| 91精品国产国语对白视频| 舔av片在线| 国产免费视频播放在线视频| 免费观看无遮挡的男女| 最后的刺客免费高清国语| 人妻系列 视频| 极品少妇高潮喷水抽搐| 国产精品国产av在线观看| 国产亚洲5aaaaa淫片| 肉色欧美久久久久久久蜜桃| 精品酒店卫生间| 黑丝袜美女国产一区| 国产精品一区二区性色av| 午夜福利在线在线| 成人漫画全彩无遮挡| 少妇 在线观看| 在线观看免费视频网站a站| 插逼视频在线观看| 99久久精品热视频| 婷婷色综合www| 乱码一卡2卡4卡精品| h日本视频在线播放| 看非洲黑人一级黄片| 视频中文字幕在线观看| 精品99又大又爽又粗少妇毛片| 亚洲欧美日韩东京热| 欧美日韩在线观看h| 亚洲av电影在线观看一区二区三区| 亚洲欧美一区二区三区国产| 亚洲国产精品999| 蜜臀久久99精品久久宅男| 激情 狠狠 欧美| 国产中年淑女户外野战色| 成人午夜精彩视频在线观看| 国产极品天堂在线| 青青草视频在线视频观看| 国产69精品久久久久777片| 日韩在线高清观看一区二区三区| 久久精品国产自在天天线| 嫩草影院新地址| 极品教师在线视频| 少妇高潮的动态图| 99热网站在线观看| av女优亚洲男人天堂| 青春草视频在线免费观看| 亚洲欧美精品自产自拍| 激情五月婷婷亚洲| 美女视频免费永久观看网站| 黑丝袜美女国产一区| 亚洲av.av天堂| 亚洲精品国产av成人精品| 涩涩av久久男人的天堂| 亚洲电影在线观看av| 亚洲精品乱久久久久久| 亚洲精品成人av观看孕妇| 欧美高清成人免费视频www| 免费高清在线观看视频在线观看| 天堂8中文在线网| 亚洲精品456在线播放app| 伊人久久精品亚洲午夜| 十分钟在线观看高清视频www | 丰满人妻一区二区三区视频av| 亚洲欧美清纯卡通| 国产在线男女| 久久国产乱子免费精品| 在线观看免费高清a一片| 国产精品嫩草影院av在线观看| 久久精品国产亚洲av天美| 欧美最新免费一区二区三区| 亚洲精品色激情综合| 王馨瑶露胸无遮挡在线观看| 夜夜爽夜夜爽视频| 在线观看免费日韩欧美大片 | 麻豆国产97在线/欧美| 国产精品一区www在线观看| 少妇的逼水好多| 日产精品乱码卡一卡2卡三| 欧美一区二区亚洲| 久久久久久久久久久丰满| 人体艺术视频欧美日本| a级毛片免费高清观看在线播放| 在线免费观看不下载黄p国产| 欧美高清成人免费视频www| 欧美精品一区二区免费开放| 精品久久久久久久末码| 免费人成在线观看视频色| 久久精品人妻少妇| 天天躁日日操中文字幕| 久久精品熟女亚洲av麻豆精品| 亚洲一区二区三区欧美精品| 久久韩国三级中文字幕| 成人一区二区视频在线观看| 五月伊人婷婷丁香| av女优亚洲男人天堂| 国产成人午夜福利电影在线观看| 欧美日韩视频精品一区| 99久久综合免费| 国产深夜福利视频在线观看| 午夜福利网站1000一区二区三区| 午夜免费鲁丝| 欧美一级a爱片免费观看看| 永久免费av网站大全| 亚洲精品国产成人久久av| 免费看av在线观看网站| 国产黄片美女视频| 九色成人免费人妻av| 久久精品国产亚洲网站| 女性生殖器流出的白浆| 又粗又硬又长又爽又黄的视频| a 毛片基地| 日韩在线高清观看一区二区三区| 七月丁香在线播放| 天堂俺去俺来也www色官网| 少妇高潮的动态图| 亚洲国产欧美人成| 蜜桃亚洲精品一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 欧美少妇被猛烈插入视频| 欧美丝袜亚洲另类| 少妇高潮的动态图| 男女边吃奶边做爰视频| 国产深夜福利视频在线观看| 日韩人妻高清精品专区| 美女福利国产在线 | 99热国产这里只有精品6| 一级二级三级毛片免费看| 色视频在线一区二区三区| 人人妻人人澡人人爽人人夜夜| 1000部很黄的大片| 色吧在线观看| 国产精品久久久久久av不卡| 韩国av在线不卡| 精品久久久噜噜| 一级爰片在线观看| 日韩,欧美,国产一区二区三区| 汤姆久久久久久久影院中文字幕| 色吧在线观看| 亚洲成人手机| 国产亚洲一区二区精品| 大又大粗又爽又黄少妇毛片口| 亚洲在久久综合| 2022亚洲国产成人精品| 久久久久久伊人网av| av在线播放精品| 久久精品国产亚洲网站| 男女无遮挡免费网站观看| 欧美最新免费一区二区三区| 交换朋友夫妻互换小说| 少妇猛男粗大的猛烈进出视频| av在线老鸭窝| 欧美精品一区二区免费开放| 国内精品宾馆在线| 亚洲在久久综合| 日韩大片免费观看网站| 欧美精品亚洲一区二区| 久久毛片免费看一区二区三区| 免费观看a级毛片全部| 日本一二三区视频观看| 国产成人freesex在线| 亚洲综合色惰| 亚洲精品中文字幕在线视频 | 免费大片黄手机在线观看| 各种免费的搞黄视频| 麻豆精品久久久久久蜜桃| 国产成人精品福利久久| 欧美精品国产亚洲| 亚洲av综合色区一区| 人体艺术视频欧美日本| 一级二级三级毛片免费看| 又爽又黄a免费视频| 高清黄色对白视频在线免费看 | 男人狂女人下面高潮的视频| 国产女主播在线喷水免费视频网站| 超碰av人人做人人爽久久| 精品亚洲成a人片在线观看 | 丝袜喷水一区| 日本午夜av视频| 在现免费观看毛片| 老司机影院毛片| 久久ye,这里只有精品| 亚洲美女搞黄在线观看| 亚洲欧美精品专区久久| 亚洲综合精品二区| 伦理电影大哥的女人| 免费久久久久久久精品成人欧美视频 | 亚洲国产最新在线播放| 欧美+日韩+精品| 高清黄色对白视频在线免费看 | 亚洲精品国产av蜜桃| 午夜福利在线观看免费完整高清在| 偷拍熟女少妇极品色| av在线老鸭窝| 久久久成人免费电影| 少妇人妻精品综合一区二区| 久久人妻熟女aⅴ| 久久久久久久精品精品| 国产欧美日韩精品一区二区| 国产伦精品一区二区三区视频9| 亚洲精品第二区| 国产精品一区二区在线观看99| 日本vs欧美在线观看视频 | 国产日韩欧美在线精品| 亚洲国产av新网站| 美女视频免费永久观看网站| 国产极品天堂在线| 精品人妻熟女av久视频| 一级毛片黄色毛片免费观看视频| 久久国产亚洲av麻豆专区| 丝瓜视频免费看黄片| 日韩av不卡免费在线播放| 18禁在线无遮挡免费观看视频| 久久久欧美国产精品| 日韩大片免费观看网站| 99久久人妻综合| 欧美亚洲 丝袜 人妻 在线| 一本久久精品| 女性生殖器流出的白浆| 丰满迷人的少妇在线观看| 免费黄频网站在线观看国产| 欧美bdsm另类| 亚洲精品中文字幕在线视频 | 久久精品国产自在天天线| 51国产日韩欧美| 夫妻性生交免费视频一级片| 日本爱情动作片www.在线观看| 亚洲av中文字字幕乱码综合| 午夜激情久久久久久久| 中文字幕亚洲精品专区| 久久人妻熟女aⅴ| 国产亚洲最大av| 免费黄频网站在线观看国产| 九九久久精品国产亚洲av麻豆| 国产精品一区www在线观看| 国产欧美日韩精品一区二区| 亚洲av成人精品一二三区| 在线 av 中文字幕| 色5月婷婷丁香| 日韩不卡一区二区三区视频在线| 建设人人有责人人尽责人人享有的 | 在线天堂最新版资源| 美女国产视频在线观看| 免费久久久久久久精品成人欧美视频 | 欧美激情极品国产一区二区三区 | 91久久精品国产一区二区三区| 久久久久性生活片| 国产成人一区二区在线| 亚洲欧美成人综合另类久久久| 成人无遮挡网站| 国产亚洲av片在线观看秒播厂| 欧美日韩一区二区视频在线观看视频在线| 国产成人精品婷婷| 一级黄片播放器| 不卡视频在线观看欧美| 精品国产三级普通话版| 日本一二三区视频观看| av视频免费观看在线观看| 自拍偷自拍亚洲精品老妇| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产鲁丝片午夜精品| 欧美三级亚洲精品| 男女边吃奶边做爰视频| 国产乱来视频区| 黄色一级大片看看| 爱豆传媒免费全集在线观看| 韩国高清视频一区二区三区| 看免费成人av毛片| 国内揄拍国产精品人妻在线| 2018国产大陆天天弄谢| 一级黄片播放器| 亚洲中文av在线| 成人国产麻豆网| 国产伦精品一区二区三区视频9| 嫩草影院新地址| 精品一区二区三卡| 亚洲精品亚洲一区二区| 18禁裸乳无遮挡免费网站照片| 久久久久国产精品人妻一区二区| 亚洲久久久国产精品| 久久久久久久久大av| 水蜜桃什么品种好| 久久女婷五月综合色啪小说| 久久久国产一区二区| 性色av一级| 人妻一区二区av| 亚洲av欧美aⅴ国产| 毛片一级片免费看久久久久| 人人妻人人看人人澡| 亚洲av男天堂| 99热全是精品| 亚洲欧美精品自产自拍| 校园人妻丝袜中文字幕| 国产日韩欧美亚洲二区| 黄色日韩在线| 一边亲一边摸免费视频| 99热这里只有精品一区| 欧美精品一区二区大全| 青青草视频在线视频观看| 亚洲国产精品国产精品| 日韩av不卡免费在线播放| 国产av国产精品国产| 国产高清三级在线| 欧美亚洲 丝袜 人妻 在线| 欧美成人a在线观看| 日韩电影二区| 精品久久久久久久久亚洲| 一本久久精品| 91狼人影院| 99热网站在线观看| 韩国av在线不卡| 亚洲经典国产精华液单| 大片电影免费在线观看免费| 亚洲精品中文字幕在线视频 | 亚洲美女搞黄在线观看| 1000部很黄的大片| 亚洲精品久久午夜乱码| 国产成人精品一,二区| 欧美精品一区二区免费开放| 亚洲精品国产av成人精品| 99国产精品免费福利视频| 亚洲av.av天堂| 狂野欧美白嫩少妇大欣赏| 亚洲经典国产精华液单| 男女国产视频网站| 亚洲精品一区蜜桃| 2022亚洲国产成人精品| 精品久久久精品久久久| 91精品一卡2卡3卡4卡| 日韩伦理黄色片| 亚洲国产色片| 免费大片黄手机在线观看| 2018国产大陆天天弄谢| 久久久久久人妻| 亚洲精品乱码久久久久久按摩| 91精品国产国语对白视频| 日韩欧美一区视频在线观看 | 日本vs欧美在线观看视频 | 欧美3d第一页| 国产成人精品久久久久久| 精品国产乱码久久久久久小说| 我的女老师完整版在线观看| 亚洲欧美日韩另类电影网站 | 九色成人免费人妻av| 欧美高清性xxxxhd video| 久久热精品热| 国产在视频线精品| 中国美白少妇内射xxxbb| 自拍欧美九色日韩亚洲蝌蚪91 | 国产成人a区在线观看| 五月伊人婷婷丁香| 亚洲国产色片| 一个人看的www免费观看视频| 黑人高潮一二区| 亚洲精品国产av蜜桃| 亚洲精品日韩在线中文字幕| 插阴视频在线观看视频| 欧美激情极品国产一区二区三区 | 久久精品国产亚洲网站| 一级毛片黄色毛片免费观看视频| 免费观看无遮挡的男女| 一级爰片在线观看| 精品国产乱码久久久久久小说| 美女xxoo啪啪120秒动态图| 欧美日韩国产mv在线观看视频 | 亚洲精品日韩在线中文字幕| 国产精品久久久久久精品电影小说 | 少妇人妻 视频| 国产精品一二三区在线看| 在线观看av片永久免费下载| 一区二区三区免费毛片| 亚洲国产日韩一区二区| 美女xxoo啪啪120秒动态图| 国产欧美日韩精品一区二区| 97超视频在线观看视频| 国产深夜福利视频在线观看| 日本午夜av视频| 亚洲av综合色区一区| 日本与韩国留学比较| 精品人妻熟女av久视频| 日本黄大片高清| 亚洲va在线va天堂va国产| 亚洲中文av在线| 免费观看无遮挡的男女| 高清视频免费观看一区二区| xxx大片免费视频| 老女人水多毛片| 亚洲伊人久久精品综合| 免费看av在线观看网站| 亚洲激情五月婷婷啪啪| 麻豆成人午夜福利视频| 三级国产精品欧美在线观看| 最后的刺客免费高清国语| av天堂中文字幕网| 精品少妇久久久久久888优播| 久久国产精品男人的天堂亚洲 | 亚洲av福利一区| 亚洲不卡免费看| 3wmmmm亚洲av在线观看| 少妇人妻精品综合一区二区| 91久久精品电影网| 亚洲aⅴ乱码一区二区在线播放| 久久av网站| 一边亲一边摸免费视频| 中文字幕人妻熟人妻熟丝袜美| 九九久久精品国产亚洲av麻豆| 蜜桃亚洲精品一区二区三区| 亚洲精品自拍成人| 亚洲色图综合在线观看| 麻豆成人av视频| 中国国产av一级| 免费看不卡的av| 精品午夜福利在线看| 国产日韩欧美亚洲二区| 哪个播放器可以免费观看大片| 狂野欧美激情性bbbbbb| 久久国产精品大桥未久av | 最近手机中文字幕大全| 男女无遮挡免费网站观看| 国产毛片在线视频| 国产欧美日韩精品一区二区| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久久国产电影| 深夜a级毛片| 美女高潮的动态| 国产精品成人在线| 久久久久国产精品人妻一区二区| 欧美精品人与动牲交sv欧美| 2021少妇久久久久久久久久久| 亚洲经典国产精华液单| 亚洲,一卡二卡三卡| 亚洲无线观看免费| 一级毛片电影观看| 人妻 亚洲 视频| 国产亚洲午夜精品一区二区久久| 国产日韩欧美在线精品| 日韩三级伦理在线观看| 欧美高清性xxxxhd video| 欧美bdsm另类| 久热久热在线精品观看| 深夜a级毛片| 少妇人妻精品综合一区二区| 国产免费福利视频在线观看| 最近手机中文字幕大全| .国产精品久久| 免费大片18禁| 久久毛片免费看一区二区三区| 欧美精品国产亚洲| 国产大屁股一区二区在线视频| 国产精品av视频在线免费观看| 亚洲成人一二三区av| 蜜臀久久99精品久久宅男| 狂野欧美激情性bbbbbb| 国产女主播在线喷水免费视频网站| 免费观看的影片在线观看| 老司机影院毛片| 毛片一级片免费看久久久久| 亚洲国产日韩一区二区| 少妇裸体淫交视频免费看高清| 97超碰精品成人国产| 97在线视频观看| 成人美女网站在线观看视频| 一级毛片 在线播放| 亚洲图色成人| 一级二级三级毛片免费看| 免费少妇av软件| 午夜激情久久久久久久| 免费少妇av软件| 国产成人精品婷婷| 免费人成在线观看视频色| 有码 亚洲区| 午夜视频国产福利| 狂野欧美激情性xxxx在线观看| 亚洲美女搞黄在线观看| av视频免费观看在线观看| 欧美精品国产亚洲| 最近最新中文字幕大全电影3| 一区二区av电影网| 99热这里只有精品一区| 久久国产乱子免费精品| 超碰97精品在线观看| 汤姆久久久久久久影院中文字幕| 少妇 在线观看| 男女边摸边吃奶| 欧美xxxx性猛交bbbb| av网站免费在线观看视频| 国产片特级美女逼逼视频| 1000部很黄的大片| a 毛片基地| 亚洲av欧美aⅴ国产| 精品一区二区三区视频在线| 男的添女的下面高潮视频| 水蜜桃什么品种好| 亚洲av国产av综合av卡| 三级国产精品片| 精品人妻视频免费看| 久久久久久久国产电影| 国产精品av视频在线免费观看| 99久久人妻综合| 久久久久久久久大av| 丝袜喷水一区| 久久久国产一区二区| 99久久精品一区二区三区| 多毛熟女@视频| 在线播放无遮挡| 欧美日韩视频高清一区二区三区二| 亚洲,欧美,日韩| 午夜免费鲁丝| 亚洲欧美一区二区三区黑人 | 联通29元200g的流量卡| 国产黄片视频在线免费观看| 人妻夜夜爽99麻豆av| 美女高潮的动态| 各种免费的搞黄视频| 国产精品99久久久久久久久| 日韩免费高清中文字幕av| 国产精品成人在线| 观看免费一级毛片| 黄色怎么调成土黄色| 身体一侧抽搐| 免费看av在线观看网站| 欧美精品国产亚洲| 少妇高潮的动态图| 最近的中文字幕免费完整| 精品国产三级普通话版| 国产精品人妻久久久久久| 精品久久久精品久久久| 91aial.com中文字幕在线观看| 亚洲国产毛片av蜜桃av| 91在线精品国自产拍蜜月| av网站免费在线观看视频| 亚洲美女搞黄在线观看| 国产高清国产精品国产三级 | 三级国产精品片| 一本—道久久a久久精品蜜桃钙片| 亚洲,欧美,日韩| 亚洲精品日本国产第一区| 精品国产乱码久久久久久小说| 人妻 亚洲 视频| 成人无遮挡网站| 国产午夜精品久久久久久一区二区三区| 国产亚洲av片在线观看秒播厂| 综合色丁香网| 亚洲av欧美aⅴ国产| 国产在线一区二区三区精| 国产精品精品国产色婷婷| 欧美xxⅹ黑人| 国产爽快片一区二区三区| 亚洲精品国产成人久久av| 国产有黄有色有爽视频| 男人狂女人下面高潮的视频| 国产男女内射视频| 欧美最新免费一区二区三区| 国产69精品久久久久777片| 久久人人爽人人爽人人片va| 五月开心婷婷网| 在线免费观看不下载黄p国产| 色吧在线观看| 成人高潮视频无遮挡免费网站| 久久久久精品性色| 亚洲伊人久久精品综合| 国产精品99久久久久久久久| 丝袜脚勾引网站| 日日撸夜夜添| 亚洲最大成人中文| 熟女人妻精品中文字幕| 国产成人免费观看mmmm| 亚洲在久久综合| 国产美女午夜福利| 亚洲综合色惰| 国产成人freesex在线| 最近2019中文字幕mv第一页| 色吧在线观看| 国产成人精品福利久久| 99热全是精品| 中文精品一卡2卡3卡4更新| 一个人看的www免费观看视频| 韩国高清视频一区二区三区| 久久久国产一区二区| 久久久久久久久久人人人人人人| 国产精品久久久久久精品古装| 日本猛色少妇xxxxx猛交久久| 久久国产精品大桥未久av | 国产一区二区三区综合在线观看 | 九九久久精品国产亚洲av麻豆| 高清视频免费观看一区二区| 国产 精品1| 18禁裸乳无遮挡动漫免费视频| 国产成人精品福利久久| 国产精品国产三级国产专区5o|