• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Singular Effects in the Relativistic Landau Levels in Graphene with a Disclination?

    2018-12-13 06:33:40RosinildodoNascimentoDiegoCogolloEdilbertoSilvaMoisRojasandCleversonFilgueiras
    Communications in Theoretical Physics 2018年12期

    Rosinildo F.do Nascimento, Diego Cogollo, Edilberto O.Silva, Moisés Rojas,and Cleverson Filgueiras,?

    1Instituto de Física,Universidade Federal de Uberlandia,Uberlandia,MG,Brasil

    2Unidade Acadêmica de Física,Universidade Federal de Campina Grande,POB 10071,58109-970,Campina Grande-PB,Brazil

    3Departamento de Física,Universidade Federal do Maranh?o,65085-580,S?o Luís-MA,Brazil

    4Departamento de Física,Universidade Federal de Lavras,Caixa Postal 3037,37200-000,Lavras-MG,Brazil

    AbstractThe effect of a pseudo Aharonov-Bohm(AB)magnetic field generated by a disclination on a two-dimensional electron gas in graphene is addressed in the continuum limit within the geometric approach.The in fluence of the coupling between the spinor fields and the singular conical curvature is investigated,which shows that singularities have pronounced impact in the Hall conductivity.Moreover,the degeneracy related to the Dirac valleys is broken for negative values of the angular momentum quantum numbers,?,including ?≡ 0.In this case,a Hall plateau develops at the null filling factor.Obtaining the Hall conductivity by summing over the positive and the negative ?′s,the null Landau level is recovered and the plateau at the null filling factor disappears.In any case,the standard plateaus,which are seen in a lf at graphene are not obtained with these curvature and singular effects.

    Key words:Landau Levels,Hall conductivity,Graphene,Elastic deformations

    1 Introduction

    The carriers within Graphene behave as twodimensional massless Dirac fermions.[1?4]Its peculiar physical properties make it promising for nanoelectronic applications.[5?8]Graphene can be viewed as a zero-gap semiconductor,which in turns puts an obstacle towards the engineering of electronic devices based on it.It is worth to mention that there are possibilities to induce a gap by applying a perpendicular DC[9?10]and AC fields.[11?12]Another alternative to open a gap consists in inducing a strain field in a graphene sheet onto appropriate substrates.[13]In the continuum,these strain fields appear as effective gauge fields which yields pseudo magnetic fields.[14]One important difference from the actual magnetic fields is that they do not violate the time reversal symmetry.[15]A numerical study on the uniformity of the pseudomagnetic field in graphene as the relative orientation between the graphene lattice and straining directions was carried out in Ref.[16]and it was pointed out that observing them in Raman spectroscopy setup is feasible.In Ref.[17],two different mechanisms that could underlie nanometer-scale strain variations in graphene as a function of externally applied tensile strain is presented.A device to detect micro stresses in graphene able to measure AB interference at the nanometer scale was proposed in Ref.[18].It was shown on it that fictitious magnetic field associated with elastic deformations of the sample yields interference in the local density of states.A pseudo AB- field can also be induced by a topological defect called disclination.[19]The physical properties of graphene can be affected by topological defects in significant ways.Extensive studies on this manner have been carried out over the last years,[20?23]etc.Topological Defects could be viewed,at first,as imperfections which could affect the graphene performance. Therefore,research on defects and how they may in fluence the dynamics of carriers in graphene is important for the improvement of its technological applications.[24]This kind of defect appears as a result of removing(inserting)one or several carbon atoms from(into)the honeycomb lattice,not affecting the threefold coordination of other atoms,which leads to the warping of the graphene sheet. As a consequence,a positive(negative)curvature is induced at the location of a defect.Although the literature of topological defects in graphene is so vast,some important effects of them in its electronic properties still must be clarified.For example,the graphene sheet with a disclination takes shape of a cone with the value of the apex angle related to the num-ber of removed atoms.In the continuum approach,the geometric model for the elastic deformations introduced by topological defects in elastic solids is employed.[25]In this approach,the defects are represented by metrics with proper boundary conditions associated with them.So,the impact of the topology of a disclination together with the in fluence of a singular curvature represented by the Ricci scalar in the continuum limit are important aspects to be addressed.Assuming that the size of a defect is small as compared to the whole size of the graphene sample,we will investigate the in fluence of such a disclination on the relativistic Landau levels and,as consequence,in the Hall conductivity in a suspended graphene.It is important to point out that the problem addressed here can not be viewed as a clean non-interacting 2D electronic system with one localized impurity under the in fluence of a constant magnetic field.In such case,the Quantum Hall Effect(QHE)can not be modified,because this one impurity will produce one state between Landau levels that will not be visible in experiments.[26]However,a sample with such a elastic deformation caused by a disclination induces an extra gauge field,as discussed in Ref.[18].In this case,modifications in the QHE are going to be observed.

    The existence of a singular curvature make us to consider the existence of both the regular and the irregular wavefunctions as solutions of the problem.This fact depends either on the existence or not of the coupling between the spinor fields and the Ricci scalar(a deltalike curvature on a cone).So,the correct behavior of wavefuntions whenever we have singularities is investigated here,like in other quantum systems found in the literature.[27?31]Actually,conical singularities have significant impact in the QHE.[32]In our case,we will show that,if singular effects do not manifest,then a constraint in the orbital angular momentum eigenvalues shows up.The coupling of the wave functions with the delta-like curvature of the cone introduces the zero value of the angular momentum in the energy spectrum.This fact significantly in fluences the Hall conductivity.By considering the system prepared with only negative values of the angular momentum,the zero-energy,which exist when just a constant orthogonal magnetic field is present,does not develop around Dirac valleys,represented by K and K′.Then,a Hall plateau develop at the null filling factor(dimensionless ratio between the number of charge carries and the flux quanta).On the other hand,analyzing the QHE summing over all the orbital angular momentum eigenvalues allowed for the system(positive and negative),it is observed the standard plateaus at all integer n of 2e2/h,including n=0.This is due to the degeneracy related to the Dirac valleys,which is broken for negative values of the angular momentum.This contrasts with the usual QHE in graphene:for it,the quantum Hall conductivity exhibits the standard plateaus at all integer n of 4e2/h,for n=1,2,3,...,and 2e2/h for n=0.

    The plan of this work is the following.First,we briefly discuss the disclination in the context of the geometric approach.Next,we investigate how a pseudo AB field introduced by a disclination on a graphene sheet is going to affect the relativistic Landau levels.Then,we investigate the in fluence of it in the quantized Hall conductivity.At the end,we have the concluding remarks.

    2 A Disclination in the Geometric Approach

    In the Volterra process,a disclination is a topological defect associated to the removal of a wedge of threedimensional material with the subsequent identification of the loose ends.It introduces an angular deficit,which changes the boundary condition on the angular variable:? → ?+2π becomes ? → ?+2πα.[25]The case α <1 holds for the removed wedge angle of 2π(1?α).Conversely,if a wedge is added,α>1.This new boundary condition can be applied by working in a background space with the line element

    As it was shown in Ref.[25],the Frank vector which characterizes a disclination is the curvature flux associated to the defect.The above line element corresponds to a curvature scalar given by R=2((1 ? α)/α)(δ(ρ)/ρ)and its flux is I

    giving the Frank vector F(topological charge of the disclination).This result still holds for a two-dimensional surface with a disclination,which is a graphene sheet with a conical shape.This is the subject of this article.For graphene,α =1± λ/2π.In fact,to respect the symmetries of the carbon network,we must have λ = ±jπ/3,where j is an integer in the interval(0,6).[33]For j≡1,α =1 ? λ/2π =5/6(α =1+ λ/2π =7/6)stands for a graphene sheet where a single hexagon was substitute by a one-pentagon(one-heptagon)apex,creating a cone like(saddle-like)structure.In the continuum,both of them can be described by the metric(1).We consider only these two cases in what follows.

    3 Relativistic Landau Levels Around a Disclination

    In this section,we will investigate how a disclination on a graphene sheet is going to affect the relativistic Landau levels.The low energy excitation of graphene behave as massless Dirac fermions.[3,34]Their internal degrees of freedom are:sublattice index(pseudospin),valley index( flavor),and real spin,each one taking two values.The real spin will not be taken into account since it is irrelevant in our problem.Then,the low energy excitation around a valley is described by the(2+1)-dimensional Dirac equation as follows where σ =(σx,σy)are the Pauli matrices,Ψ =(φ1,φ2)Tis a two component spinor field,the speed of light c was replaced by the Fermi velocity(vF≈106m/s)andhas been fixed equal to one.The electronic states around the zero energy belong to the distinct sublattices,which is the reason of the existence of a two component wavefunction.Two indexes to indicate these sublattices,similar to spin indexes(up and down),must be considered.The inequivalent corners of the Brillouin zone,which are called Dirac points,are labeled as K and K′(valley index).[14]

    In this work,both the curvature and the topology of a graphene due to a disclination introduce two extra fields into the system:A1+A2,where A1is due to the correction introduced by the conical geometry of graphene and A2is due to the existence of a non-abelian gauge field,a term which breaks the degeneracy of the energy levels around the valleys.[14]This means that different signals must be considered for this gauge field at them since it does not break time reversal symmetry.[15]The relativistic Landau levels are achieved by coupling an azimuthal potential vector,given by

    from where we get B0=B0z,the constant orthogonal magnetic field.All these vector potentials are inserted into the Dirac equation via a minimal coupling,p→p?eA.The details of such calculations can be found in Ref.[19].They have found that each spinor field satisfy the following differential equation

    where ξ=eBρ2/2,

    The parameter s has a value of twice the spin value,characterizing the two pseudo spin states,with s=+1 for spin “up” and s= ?1 for “spin” down.Actually,they correspond to the different sub-lattices in the graphene.

    We investigate now some more details regardless the wave solutions as well as the energy spectrum.The general solution to this equation is given in terms of the confluent hypergeometric function of the first kind,[35]

    with

    where a?and b?are,respectively,the coefficients of the regular(non divergent as ξ→ 0)and irregular(divergent as ξ→ 0)solutions. The regular wave solution was investigated in Ref.[19]and it holds for b?≡ 0 and|Ms|>1.[30,36]As observed in Ref.[37],the spinor field couples with the Ricci scalar,which is obtained from the singular curvature in our case.So,the irregular solution should also be taken into account,which completes the analysis of the energy spectrum.[38]The two scenarios are possible since it can be introduced a physical mechanism so that the wave solutions become regular at the origin of the coordinate system,recovering the results found in Ref.[19].For a?≡ 0,we must have|Ms|<1 for the wave solution to be square integrable.Moreover,fs(r)must vanish at large values of r.So,from the asymptotic representation of the confluent hypergeometric function,this is achieved if

    with n being a non negative integer,n=0,1,2,...This way,we obtain

    In particular,it should be noted that for the case when|Ms| ≥ 1(the δ interaction is absent),only the regular solutions contribute for the bound state wave function(b?≡ 0),and the energy is given by Eq.(12)with plus sign.[19]On the other hand,if a singular interaction is present,then we have to add the energies with the minus signal,for which|Ms|<1.

    The energy spectrum above must be analyzed in terms of the values that the α parameter can assume,since the condition|Ms|≥1(|Ms|<1)for the regular(irregular)solution has to be fulfilled.Let us consider the regular wave functions at first.Then,the spectrum(12)in this case can be put in the following way

    for Ms≥ 1,with n′=n+(1?s)/2=0,1,2,3,...,and

    for Ms≤?1,with n=0,1,2,3,...Notice that the degeneracy regardless the sub-lattices,which are represented by the parameter s,is not broken.The degeneracy regardless the Dirac valleys K and K′is not broken in Eq.(13),but it is in Eq.(14).

    We now turn our attention to the case considering the irregular solution.We take into account the minus signal in Eq.(12).The energy spectrum is the same as showed in Eqs.(13)and(14),but the constraint|Ms|<1 allows only some values of ?,which depends on the values of α.For example,α =5/6(pentagon),we have ?= ?1,0 only,while that for α=7/6(heptagon),we may have?= ?2,?1,0.In contrast,for the regular wave solution,the energies(14)hold for ?= ?1,?2,?3,...for both cases.The presence of the disclination breaks the degeneracy of the relativistic Landau levels and new levels are introduced in the spectrum only for ?=0,?1,?2,?3,...

    In summary,in the absence of the coupling between the wavefunctions and the singular curvature,the constraint|Ms|≥1 must be imposed,restricting the allowed momentum eigenvalues ?,which guarantees that the wavefunctions are regular as ξ→ 0.If such coupling manifests,then the charge carriers are allowed to have other values of the angular momentum eigenvalues ? without such constraint.We will examine these two situations in order to show how singular effects are important if they manifest in the system.

    4 The Effect of a Disclination in the Hall Conductivity

    In this section,we investigate the in fluence of a disclination in the quantized Hall conductivity.We express the energy scale associated with the magnetic field in the units of temperature as follows,

    where vFand B are given in(m/s)and Tesla,respectively.

    We start by considering the expression for the Hall conductivity obtained in Ref.[39]in the clean limit.This way,we have

    where β0=1(for n=0), βn/β0=2(for n ≥ 1),T is the temperature andμis the chemical potential,which is considered to tune the graphene conductivity.[40]These values are related to the above-mentioned smaller degeneracy of the n=0 Landau level.Here,the degeneracy of energy levels related to these valleys is broken due to the disclination when ?=0,?1,?2,?3,...The consequence is that we have to consider a sum in the valley index.Therefore,we have the Hall conductivity as

    with

    where βn′,?(λ)=1,for any n′and ?.

    Fig.1 (Color online)Hall conductivity versus the chemical potential for α=5/6(one-pentagon apex)and α=7/6(one-heptagon apex). In(a),we have?=0,±1,±2,...while in(b)we have ?=0,?1,?2,...and a plateau develops at σxy=0.

    In Fig.1,we plot the Hall conductivity versus the chemical potential for different values of α.In the Quantum Hall effect in flat graphene(α≡1),the quantum Hall conductivity exhibits the standard plateaus at all integer n of 4e2/h,for n=1,2,3,...,and 2e2/h for n=0. For α≠1,intermediate plateaus are introduced between them.In Fig.1(a),the plot is built for?=0,±1,±2,±3,...and the quantum Hall conductivity exhibits the standard plateaus at all integer n of 2e2/h.In Fig.1(b)we analyze the case supposing that the system is prepared so that only the energies containing the parameter α are possible to be occupied by the charge carriers,that is,?=0,?1,?2,?3,...In this case,we have the condition Ms>1(regular solutions)and?1

    For α<1,the plateaus widths decrease and they decrease even more when α>1.For positive(negative)values of the chemical potentialμ,the steps shift to lower(higher)values of it.Nevertheless,due to the splitting of energy levels caused by the disclination,the number of states under the Fermi level increases,raising(lowering)the Hall conductivity forμ <0(μ >0)with respect to the flat sample case.The coupling of the wavefunctions with the curvature at the cone apex make these effects less pronounced,modifying the Hall conductivity in a significant way.

    5 Concluding Remarks

    In this work,we investigated how both the relativistic Landau levels and the quantum Hall conductivity are modified if fermions on graphene are held in the presence of a constant orthogonal magnetic field along with a pseudo AB- field induced by a disclination.We considered the continuum limit within the geometric approach.The squared Dirac equation yielded a differential equation whose solutions are well established in terms of Hypergeometric series,which contains both regular and irregular functions.We have observed that,for the existence of constraints on the orbital angular momentum eigenvalues allowed for the system(Ms≥1 for regular wavefunctions and?1

    As a final word,we have shown how a conical singularity can affect the relativistic Landau levels in graphene.It is important to have those questions in mind if one is interested to probe the effects of a singular curvature in these systems.The results found here may shade some light also in other graphene like materials with disclinations.

    国内精品久久久久久久电影| 在线免费观看的www视频| 日韩国内少妇激情av| 久久久久久伊人网av| 99热精品在线国产| 久久精品影院6| 啦啦啦韩国在线观看视频| 国产精品女同一区二区软件 | 一进一出好大好爽视频| h日本视频在线播放| 91精品国产九色| 欧美性感艳星| 黄色一级大片看看| 亚洲一区高清亚洲精品| 亚洲欧美日韩无卡精品| 国内精品久久久久久久电影| 国产大屁股一区二区在线视频| 噜噜噜噜噜久久久久久91| 日本与韩国留学比较| 婷婷丁香在线五月| 搡老妇女老女人老熟妇| 久久99热这里只有精品18| 成人av一区二区三区在线看| 老司机午夜福利在线观看视频| www.色视频.com| 看免费成人av毛片| 非洲黑人性xxxx精品又粗又长| 国产午夜精品久久久久久一区二区三区 | 亚洲在线观看片| 毛片女人毛片| 精品久久久久久久久av| 欧美日韩国产亚洲二区| 亚洲avbb在线观看| 男人和女人高潮做爰伦理| 免费av毛片视频| 人妻制服诱惑在线中文字幕| 一进一出抽搐动态| 国产精品国产三级国产av玫瑰| 一个人看视频在线观看www免费| 欧美xxxx性猛交bbbb| 亚洲av成人av| 免费观看在线日韩| 欧美国产日韩亚洲一区| 亚洲自偷自拍三级| 黄色日韩在线| 内地一区二区视频在线| 偷拍熟女少妇极品色| 久久精品国产亚洲av涩爱 | 国产黄a三级三级三级人| 久久精品91蜜桃| 直男gayav资源| 亚洲aⅴ乱码一区二区在线播放| 国产 一区 欧美 日韩| 俄罗斯特黄特色一大片| 精品人妻偷拍中文字幕| 中文字幕久久专区| 夜夜夜夜夜久久久久| 男插女下体视频免费在线播放| 嫩草影视91久久| 国产探花在线观看一区二区| 国产真实乱freesex| 少妇裸体淫交视频免费看高清| 婷婷六月久久综合丁香| 国产白丝娇喘喷水9色精品| 人妻久久中文字幕网| 狠狠狠狠99中文字幕| 草草在线视频免费看| 亚洲av五月六月丁香网| 国产大屁股一区二区在线视频| 国产精华一区二区三区| 丰满的人妻完整版| 精品一区二区三区视频在线观看免费| 亚洲在线观看片| 最近在线观看免费完整版| 亚洲成人中文字幕在线播放| 色综合色国产| 日本一本二区三区精品| 久99久视频精品免费| 我的女老师完整版在线观看| 日韩在线高清观看一区二区三区 | 国产真实伦视频高清在线观看 | 亚洲精品一区av在线观看| 在线国产一区二区在线| 在线免费观看不下载黄p国产 | 亚洲精品国产成人久久av| 成人特级黄色片久久久久久久| 91狼人影院| 99热这里只有是精品50| 精品午夜福利视频在线观看一区| 欧美色视频一区免费| 在线观看美女被高潮喷水网站| 欧美bdsm另类| 不卡视频在线观看欧美| 久久精品国产99精品国产亚洲性色| av在线天堂中文字幕| 美女免费视频网站| 国内精品一区二区在线观看| 国内久久婷婷六月综合欲色啪| 午夜精品在线福利| 国产欧美日韩精品亚洲av| 嫩草影视91久久| 老熟妇乱子伦视频在线观看| 91麻豆av在线| 国产精品自产拍在线观看55亚洲| 欧美bdsm另类| 日韩一区二区视频免费看| 18禁裸乳无遮挡免费网站照片| 国产精品人妻久久久影院| 久久亚洲精品不卡| 国产午夜精品久久久久久一区二区三区 | 久久午夜福利片| 有码 亚洲区| 免费大片18禁| 夜夜爽天天搞| 床上黄色一级片| 成人毛片a级毛片在线播放| 18+在线观看网站| 搡女人真爽免费视频火全软件 | 日本黄色视频三级网站网址| 欧美日韩瑟瑟在线播放| 九九爱精品视频在线观看| 99riav亚洲国产免费| 日本免费一区二区三区高清不卡| 91在线观看av| 如何舔出高潮| 国内精品久久久久久久电影| 男人的好看免费观看在线视频| 免费高清视频大片| 午夜影院日韩av| 国产亚洲精品久久久久久毛片| 成人永久免费在线观看视频| 精品人妻一区二区三区麻豆 | 九九在线视频观看精品| 成人一区二区视频在线观看| 99热只有精品国产| 国产极品精品免费视频能看的| 男女那种视频在线观看| 日本免费a在线| 日韩人妻高清精品专区| av在线老鸭窝| 丰满人妻一区二区三区视频av| 国产精品无大码| 三级毛片av免费| 91午夜精品亚洲一区二区三区 | 动漫黄色视频在线观看| 又爽又黄无遮挡网站| 欧美一区二区亚洲| 国产三级在线视频| 国产精品一区二区性色av| 亚洲七黄色美女视频| 亚洲美女黄片视频| 日日夜夜操网爽| 春色校园在线视频观看| 国产高潮美女av| 久久久久免费精品人妻一区二区| 亚洲精品乱码久久久v下载方式| 久久99热这里只有精品18| 国产毛片a区久久久久| 日本撒尿小便嘘嘘汇集6| 免费人成视频x8x8入口观看| 国产精品一区二区性色av| 国产成人a区在线观看| 性插视频无遮挡在线免费观看| 久久精品国产自在天天线| 国产亚洲精品久久久久久毛片| 日韩一区二区视频免费看| 欧美成人a在线观看| 欧美绝顶高潮抽搐喷水| 亚洲人成伊人成综合网2020| 日本 av在线| 999久久久精品免费观看国产| 亚洲av不卡在线观看| 午夜亚洲福利在线播放| 精品人妻视频免费看| 成人永久免费在线观看视频| 内地一区二区视频在线| 日韩av在线大香蕉| 亚洲成人精品中文字幕电影| 国产亚洲精品综合一区在线观看| 麻豆精品久久久久久蜜桃| 少妇猛男粗大的猛烈进出视频 | 偷拍熟女少妇极品色| 精品久久国产蜜桃| 12—13女人毛片做爰片一| 亚洲av中文字字幕乱码综合| 99久久精品国产国产毛片| 观看美女的网站| 亚洲欧美日韩无卡精品| 成人永久免费在线观看视频| 99热这里只有是精品在线观看| 日韩高清综合在线| 亚洲国产精品sss在线观看| 成人av一区二区三区在线看| 91久久精品电影网| 亚洲第一区二区三区不卡| 精品不卡国产一区二区三区| 国产精品久久久久久精品电影| 亚洲av日韩精品久久久久久密| 亚洲无线在线观看| 丰满乱子伦码专区| 狂野欧美激情性xxxx在线观看| 国产精品免费一区二区三区在线| 免费看a级黄色片| ponron亚洲| 精品人妻偷拍中文字幕| 国产高潮美女av| 日韩一本色道免费dvd| 久久热精品热| 日日夜夜操网爽| 超碰av人人做人人爽久久| 综合色av麻豆| 天堂√8在线中文| 日韩欧美一区二区三区在线观看| 亚洲人成网站高清观看| 男女那种视频在线观看| 精品一区二区三区av网在线观看| 久久精品国产鲁丝片午夜精品 | 国产爱豆传媒在线观看| 日韩一区二区视频免费看| 嫁个100分男人电影在线观看| 我要搜黄色片| 欧美日韩国产亚洲二区| 看黄色毛片网站| 乱系列少妇在线播放| 午夜亚洲福利在线播放| 日本免费a在线| 丝袜美腿在线中文| 十八禁网站免费在线| 99久久中文字幕三级久久日本| 亚洲综合色惰| 国产不卡一卡二| 色综合亚洲欧美另类图片| 美女高潮的动态| 欧美xxxx性猛交bbbb| 欧美bdsm另类| 国内久久婷婷六月综合欲色啪| 性欧美人与动物交配| 国产精品一及| 一区二区三区激情视频| 免费人成在线观看视频色| 美女高潮的动态| 91在线精品国自产拍蜜月| 久久人人爽人人爽人人片va| 国产伦精品一区二区三区视频9| 午夜免费成人在线视频| 成人av一区二区三区在线看| 三级男女做爰猛烈吃奶摸视频| 欧美+日韩+精品| 老司机午夜福利在线观看视频| 97超视频在线观看视频| 国产精品久久久久久精品电影| 精品一区二区三区人妻视频| 日本三级黄在线观看| 亚洲va在线va天堂va国产| 亚洲综合色惰| 香蕉av资源在线| 变态另类丝袜制服| 日韩欧美国产一区二区入口| 久久精品久久久久久噜噜老黄 | 男人舔女人下体高潮全视频| www日本黄色视频网| 久久亚洲精品不卡| 国产国拍精品亚洲av在线观看| 欧美黑人欧美精品刺激| 床上黄色一级片| 一夜夜www| 九九久久精品国产亚洲av麻豆| 亚洲美女视频黄频| 日韩中字成人| 国产av不卡久久| a级毛片免费高清观看在线播放| 制服丝袜大香蕉在线| 亚洲五月天丁香| 欧美色视频一区免费| av在线天堂中文字幕| 岛国在线免费视频观看| 一区二区三区四区激情视频 | 九色国产91popny在线| 亚洲人成网站高清观看| av.在线天堂| 99久久九九国产精品国产免费| 日本免费一区二区三区高清不卡| 无人区码免费观看不卡| 欧美一区二区精品小视频在线| 日韩欧美国产一区二区入口| 观看免费一级毛片| 国产av一区在线观看免费| 日韩高清综合在线| 热99在线观看视频| 韩国av一区二区三区四区| 免费看光身美女| 亚洲国产日韩欧美精品在线观看| 搡老熟女国产l中国老女人| 天堂网av新在线| 亚洲性久久影院| 老司机深夜福利视频在线观看| 国产老妇女一区| 精品久久久久久久人妻蜜臀av| 精品一区二区三区视频在线| 美女 人体艺术 gogo| 禁无遮挡网站| 91在线精品国自产拍蜜月| 午夜老司机福利剧场| a级毛片免费高清观看在线播放| 亚洲av美国av| 毛片一级片免费看久久久久 | 欧美最黄视频在线播放免费| 一个人看视频在线观看www免费| ponron亚洲| 色在线成人网| 男女做爰动态图高潮gif福利片| www.色视频.com| 久久久久久久久久黄片| 丰满乱子伦码专区| 91在线精品国自产拍蜜月| 亚洲人与动物交配视频| 免费看日本二区| 最近最新中文字幕大全电影3| 欧美潮喷喷水| 久久久久久久久久成人| 国产精品1区2区在线观看.| 人妻夜夜爽99麻豆av| 男人舔女人下体高潮全视频| 国产精品国产三级国产av玫瑰| 日韩强制内射视频| 人妻少妇偷人精品九色| 国产精品久久电影中文字幕| 国产亚洲精品综合一区在线观看| 国产乱人视频| 久久久久久久久大av| 国产精品女同一区二区软件 | 国产精品久久电影中文字幕| 免费在线观看日本一区| 熟妇人妻久久中文字幕3abv| 熟女电影av网| 亚洲欧美日韩无卡精品| 国产精品三级大全| 熟女人妻精品中文字幕| 国产大屁股一区二区在线视频| 欧美精品啪啪一区二区三区| 日本五十路高清| 久久久精品欧美日韩精品| 99在线视频只有这里精品首页| 国产单亲对白刺激| 啦啦啦观看免费观看视频高清| 国产精品人妻久久久久久| 99久久久亚洲精品蜜臀av| 精品一区二区免费观看| 国产高清有码在线观看视频| av女优亚洲男人天堂| 亚洲五月天丁香| 亚洲欧美日韩高清专用| 免费人成视频x8x8入口观看| 非洲黑人性xxxx精品又粗又长| 国产综合懂色| 国产乱人伦免费视频| 久久人人精品亚洲av| 欧美性猛交╳xxx乱大交人| 午夜免费激情av| 成熟少妇高潮喷水视频| 99久久精品一区二区三区| 国产一区二区三区视频了| 有码 亚洲区| 日韩亚洲欧美综合| 成人无遮挡网站| 麻豆精品久久久久久蜜桃| 夜夜夜夜夜久久久久| 久久精品国产鲁丝片午夜精品 | 国产欧美日韩精品一区二区| 亚洲,欧美,日韩| 久久久久久久久久成人| 亚洲一区二区三区色噜噜| 国内少妇人妻偷人精品xxx网站| 神马国产精品三级电影在线观看| 午夜影院日韩av| 成人国产麻豆网| 亚洲无线在线观看| 超碰av人人做人人爽久久| 无人区码免费观看不卡| 精品久久久久久久久久久久久| 99久久九九国产精品国产免费| 免费av不卡在线播放| 男人舔女人下体高潮全视频| 免费av毛片视频| 一级毛片久久久久久久久女| 性色avwww在线观看| 久久久久久久久中文| 国产一级毛片七仙女欲春2| 九九久久精品国产亚洲av麻豆| 国产国拍精品亚洲av在线观看| 久久精品夜夜夜夜夜久久蜜豆| 日本 欧美在线| 日韩欧美在线乱码| 国产真实伦视频高清在线观看 | 国产一区二区亚洲精品在线观看| 日韩亚洲欧美综合| 国产精品野战在线观看| 国产乱人视频| 国产精品爽爽va在线观看网站| 国产精品永久免费网站| 在线天堂最新版资源| 久久精品影院6| 色av中文字幕| 国产白丝娇喘喷水9色精品| 亚洲av免费在线观看| 很黄的视频免费| 欧美高清成人免费视频www| 成人av一区二区三区在线看| 久久中文看片网| 色视频www国产| 少妇的逼水好多| 国产av在哪里看| 免费大片18禁| 国产综合懂色| 亚洲第一区二区三区不卡| 亚洲一级一片aⅴ在线观看| 久久精品久久久久久噜噜老黄 | 欧美日韩国产亚洲二区| 精品久久久久久久久亚洲 | 在线观看舔阴道视频| 91午夜精品亚洲一区二区三区 | 人人妻,人人澡人人爽秒播| 一夜夜www| 欧美3d第一页| 少妇熟女aⅴ在线视频| 色噜噜av男人的天堂激情| 久久久久国内视频| 成人亚洲精品av一区二区| 精品久久久噜噜| 中文字幕av成人在线电影| 欧美性猛交╳xxx乱大交人| 国产综合懂色| 国内少妇人妻偷人精品xxx网站| 久久婷婷人人爽人人干人人爱| 夜夜爽天天搞| 婷婷丁香在线五月| 日本成人三级电影网站| 在线观看一区二区三区| 岛国在线免费视频观看| 色视频www国产| 少妇的逼水好多| 日韩精品青青久久久久久| 露出奶头的视频| 99久国产av精品| 女同久久另类99精品国产91| 亚洲综合色惰| 亚洲欧美清纯卡通| 熟妇人妻久久中文字幕3abv| 成人国产麻豆网| 俺也久久电影网| 免费观看精品视频网站| 亚洲自拍偷在线| 性色avwww在线观看| 国产激情偷乱视频一区二区| 999久久久精品免费观看国产| 偷拍熟女少妇极品色| 日本黄色片子视频| 村上凉子中文字幕在线| 国产成年人精品一区二区| 久久久色成人| 欧美国产日韩亚洲一区| 国产精品98久久久久久宅男小说| 国产精品综合久久久久久久免费| 日韩精品有码人妻一区| 亚洲av熟女| 如何舔出高潮| 欧美日韩国产亚洲二区| 久久婷婷人人爽人人干人人爱| videossex国产| 欧美潮喷喷水| www日本黄色视频网| 亚洲人与动物交配视频| 国产精品不卡视频一区二区| 搡老岳熟女国产| 午夜福利在线观看吧| 九色国产91popny在线| 日韩欧美国产一区二区入口| 欧美zozozo另类| 久久久久久久亚洲中文字幕| 男人舔女人下体高潮全视频| 禁无遮挡网站| 啦啦啦韩国在线观看视频| 国产精品一区二区性色av| 俺也久久电影网| 午夜日韩欧美国产| 日韩人妻高清精品专区| 国产一区二区亚洲精品在线观看| 真人一进一出gif抽搐免费| 亚洲天堂国产精品一区在线| 欧美三级亚洲精品| 国产一区二区激情短视频| 精品日产1卡2卡| 九九在线视频观看精品| 日韩欧美三级三区| 国产日本99.免费观看| 精品福利观看| 精品午夜福利在线看| 99热这里只有精品一区| 午夜老司机福利剧场| 免费看日本二区| 欧美最新免费一区二区三区| 美女黄网站色视频| 97热精品久久久久久| 久久精品国产亚洲av涩爱 | 欧美一区二区精品小视频在线| 高清日韩中文字幕在线| 成年人黄色毛片网站| 国产精品永久免费网站| 欧美日韩综合久久久久久 | 欧美日韩精品成人综合77777| 一个人免费在线观看电影| 人妻久久中文字幕网| 天天一区二区日本电影三级| 亚洲av成人av| 国产麻豆成人av免费视频| 免费av观看视频| 最好的美女福利视频网| 日韩强制内射视频| 亚洲人成网站在线播| 99久久成人亚洲精品观看| 男人舔女人下体高潮全视频| 麻豆国产av国片精品| 欧美日韩综合久久久久久 | 久久99热6这里只有精品| 2021天堂中文幕一二区在线观| 久久午夜福利片| 在线播放无遮挡| 亚洲精华国产精华液的使用体验 | h日本视频在线播放| 成人特级av手机在线观看| 免费观看精品视频网站| 国产精品国产三级国产av玫瑰| 国产精品久久电影中文字幕| 在线观看av片永久免费下载| 午夜爱爱视频在线播放| 99视频精品全部免费 在线| 毛片一级片免费看久久久久 | 国内精品美女久久久久久| 嫩草影院入口| 搞女人的毛片| 国产精品精品国产色婷婷| 精品久久久噜噜| 高清日韩中文字幕在线| 日韩欧美在线二视频| 少妇被粗大猛烈的视频| 国产69精品久久久久777片| 国产三级中文精品| av女优亚洲男人天堂| 欧美日韩黄片免| 99riav亚洲国产免费| 欧美日韩综合久久久久久 | 中文字幕免费在线视频6| av天堂在线播放| 午夜激情福利司机影院| 国产免费一级a男人的天堂| 成年人黄色毛片网站| 国产亚洲精品久久久久久毛片| 欧美成人a在线观看| 国产乱人伦免费视频| 搡老妇女老女人老熟妇| 免费一级毛片在线播放高清视频| 国产男人的电影天堂91| 亚洲图色成人| 久久精品国产亚洲av香蕉五月| 亚洲久久久久久中文字幕| 他把我摸到了高潮在线观看| 亚洲成a人片在线一区二区| 自拍偷自拍亚洲精品老妇| 97超级碰碰碰精品色视频在线观看| 看黄色毛片网站| 少妇丰满av| 别揉我奶头~嗯~啊~动态视频| 成人毛片a级毛片在线播放| 色精品久久人妻99蜜桃| 欧美日本视频| 国产精品自产拍在线观看55亚洲| 午夜激情福利司机影院| 999久久久精品免费观看国产| 欧美性猛交╳xxx乱大交人| 亚洲精品乱码久久久v下载方式| 精品不卡国产一区二区三区| 少妇猛男粗大的猛烈进出视频 | www.色视频.com| 日韩 亚洲 欧美在线| 国产伦一二天堂av在线观看| 最近视频中文字幕2019在线8| 久久久精品大字幕| 国产精品一区二区三区四区久久| 精品99又大又爽又粗少妇毛片 | 中国美女看黄片| 99热这里只有是精品50| 欧美日本亚洲视频在线播放| 桃红色精品国产亚洲av| 国产视频一区二区在线看| 成人特级av手机在线观看| 麻豆精品久久久久久蜜桃| 黄色配什么色好看| 男女之事视频高清在线观看| 免费人成在线观看视频色| 国产亚洲91精品色在线| 亚洲av不卡在线观看| 中文字幕av成人在线电影| 国产亚洲精品久久久com| 两性午夜刺激爽爽歪歪视频在线观看| 一进一出好大好爽视频| 成年免费大片在线观看| 又粗又爽又猛毛片免费看| 在线观看午夜福利视频| 特级一级黄色大片| 丰满的人妻完整版| 免费看日本二区| 久久精品人妻少妇| 18禁黄网站禁片午夜丰满| 黄色配什么色好看| 国产精品自产拍在线观看55亚洲|