• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Singular Effects in the Relativistic Landau Levels in Graphene with a Disclination?

    2018-12-13 06:33:40RosinildodoNascimentoDiegoCogolloEdilbertoSilvaMoisRojasandCleversonFilgueiras
    Communications in Theoretical Physics 2018年12期

    Rosinildo F.do Nascimento, Diego Cogollo, Edilberto O.Silva, Moisés Rojas,and Cleverson Filgueiras,?

    1Instituto de Física,Universidade Federal de Uberlandia,Uberlandia,MG,Brasil

    2Unidade Acadêmica de Física,Universidade Federal de Campina Grande,POB 10071,58109-970,Campina Grande-PB,Brazil

    3Departamento de Física,Universidade Federal do Maranh?o,65085-580,S?o Luís-MA,Brazil

    4Departamento de Física,Universidade Federal de Lavras,Caixa Postal 3037,37200-000,Lavras-MG,Brazil

    AbstractThe effect of a pseudo Aharonov-Bohm(AB)magnetic field generated by a disclination on a two-dimensional electron gas in graphene is addressed in the continuum limit within the geometric approach.The in fluence of the coupling between the spinor fields and the singular conical curvature is investigated,which shows that singularities have pronounced impact in the Hall conductivity.Moreover,the degeneracy related to the Dirac valleys is broken for negative values of the angular momentum quantum numbers,?,including ?≡ 0.In this case,a Hall plateau develops at the null filling factor.Obtaining the Hall conductivity by summing over the positive and the negative ?′s,the null Landau level is recovered and the plateau at the null filling factor disappears.In any case,the standard plateaus,which are seen in a lf at graphene are not obtained with these curvature and singular effects.

    Key words:Landau Levels,Hall conductivity,Graphene,Elastic deformations

    1 Introduction

    The carriers within Graphene behave as twodimensional massless Dirac fermions.[1?4]Its peculiar physical properties make it promising for nanoelectronic applications.[5?8]Graphene can be viewed as a zero-gap semiconductor,which in turns puts an obstacle towards the engineering of electronic devices based on it.It is worth to mention that there are possibilities to induce a gap by applying a perpendicular DC[9?10]and AC fields.[11?12]Another alternative to open a gap consists in inducing a strain field in a graphene sheet onto appropriate substrates.[13]In the continuum,these strain fields appear as effective gauge fields which yields pseudo magnetic fields.[14]One important difference from the actual magnetic fields is that they do not violate the time reversal symmetry.[15]A numerical study on the uniformity of the pseudomagnetic field in graphene as the relative orientation between the graphene lattice and straining directions was carried out in Ref.[16]and it was pointed out that observing them in Raman spectroscopy setup is feasible.In Ref.[17],two different mechanisms that could underlie nanometer-scale strain variations in graphene as a function of externally applied tensile strain is presented.A device to detect micro stresses in graphene able to measure AB interference at the nanometer scale was proposed in Ref.[18].It was shown on it that fictitious magnetic field associated with elastic deformations of the sample yields interference in the local density of states.A pseudo AB- field can also be induced by a topological defect called disclination.[19]The physical properties of graphene can be affected by topological defects in significant ways.Extensive studies on this manner have been carried out over the last years,[20?23]etc.Topological Defects could be viewed,at first,as imperfections which could affect the graphene performance. Therefore,research on defects and how they may in fluence the dynamics of carriers in graphene is important for the improvement of its technological applications.[24]This kind of defect appears as a result of removing(inserting)one or several carbon atoms from(into)the honeycomb lattice,not affecting the threefold coordination of other atoms,which leads to the warping of the graphene sheet. As a consequence,a positive(negative)curvature is induced at the location of a defect.Although the literature of topological defects in graphene is so vast,some important effects of them in its electronic properties still must be clarified.For example,the graphene sheet with a disclination takes shape of a cone with the value of the apex angle related to the num-ber of removed atoms.In the continuum approach,the geometric model for the elastic deformations introduced by topological defects in elastic solids is employed.[25]In this approach,the defects are represented by metrics with proper boundary conditions associated with them.So,the impact of the topology of a disclination together with the in fluence of a singular curvature represented by the Ricci scalar in the continuum limit are important aspects to be addressed.Assuming that the size of a defect is small as compared to the whole size of the graphene sample,we will investigate the in fluence of such a disclination on the relativistic Landau levels and,as consequence,in the Hall conductivity in a suspended graphene.It is important to point out that the problem addressed here can not be viewed as a clean non-interacting 2D electronic system with one localized impurity under the in fluence of a constant magnetic field.In such case,the Quantum Hall Effect(QHE)can not be modified,because this one impurity will produce one state between Landau levels that will not be visible in experiments.[26]However,a sample with such a elastic deformation caused by a disclination induces an extra gauge field,as discussed in Ref.[18].In this case,modifications in the QHE are going to be observed.

    The existence of a singular curvature make us to consider the existence of both the regular and the irregular wavefunctions as solutions of the problem.This fact depends either on the existence or not of the coupling between the spinor fields and the Ricci scalar(a deltalike curvature on a cone).So,the correct behavior of wavefuntions whenever we have singularities is investigated here,like in other quantum systems found in the literature.[27?31]Actually,conical singularities have significant impact in the QHE.[32]In our case,we will show that,if singular effects do not manifest,then a constraint in the orbital angular momentum eigenvalues shows up.The coupling of the wave functions with the delta-like curvature of the cone introduces the zero value of the angular momentum in the energy spectrum.This fact significantly in fluences the Hall conductivity.By considering the system prepared with only negative values of the angular momentum,the zero-energy,which exist when just a constant orthogonal magnetic field is present,does not develop around Dirac valleys,represented by K and K′.Then,a Hall plateau develop at the null filling factor(dimensionless ratio between the number of charge carries and the flux quanta).On the other hand,analyzing the QHE summing over all the orbital angular momentum eigenvalues allowed for the system(positive and negative),it is observed the standard plateaus at all integer n of 2e2/h,including n=0.This is due to the degeneracy related to the Dirac valleys,which is broken for negative values of the angular momentum.This contrasts with the usual QHE in graphene:for it,the quantum Hall conductivity exhibits the standard plateaus at all integer n of 4e2/h,for n=1,2,3,...,and 2e2/h for n=0.

    The plan of this work is the following.First,we briefly discuss the disclination in the context of the geometric approach.Next,we investigate how a pseudo AB field introduced by a disclination on a graphene sheet is going to affect the relativistic Landau levels.Then,we investigate the in fluence of it in the quantized Hall conductivity.At the end,we have the concluding remarks.

    2 A Disclination in the Geometric Approach

    In the Volterra process,a disclination is a topological defect associated to the removal of a wedge of threedimensional material with the subsequent identification of the loose ends.It introduces an angular deficit,which changes the boundary condition on the angular variable:? → ?+2π becomes ? → ?+2πα.[25]The case α <1 holds for the removed wedge angle of 2π(1?α).Conversely,if a wedge is added,α>1.This new boundary condition can be applied by working in a background space with the line element

    As it was shown in Ref.[25],the Frank vector which characterizes a disclination is the curvature flux associated to the defect.The above line element corresponds to a curvature scalar given by R=2((1 ? α)/α)(δ(ρ)/ρ)and its flux is I

    giving the Frank vector F(topological charge of the disclination).This result still holds for a two-dimensional surface with a disclination,which is a graphene sheet with a conical shape.This is the subject of this article.For graphene,α =1± λ/2π.In fact,to respect the symmetries of the carbon network,we must have λ = ±jπ/3,where j is an integer in the interval(0,6).[33]For j≡1,α =1 ? λ/2π =5/6(α =1+ λ/2π =7/6)stands for a graphene sheet where a single hexagon was substitute by a one-pentagon(one-heptagon)apex,creating a cone like(saddle-like)structure.In the continuum,both of them can be described by the metric(1).We consider only these two cases in what follows.

    3 Relativistic Landau Levels Around a Disclination

    In this section,we will investigate how a disclination on a graphene sheet is going to affect the relativistic Landau levels.The low energy excitation of graphene behave as massless Dirac fermions.[3,34]Their internal degrees of freedom are:sublattice index(pseudospin),valley index( flavor),and real spin,each one taking two values.The real spin will not be taken into account since it is irrelevant in our problem.Then,the low energy excitation around a valley is described by the(2+1)-dimensional Dirac equation as follows where σ =(σx,σy)are the Pauli matrices,Ψ =(φ1,φ2)Tis a two component spinor field,the speed of light c was replaced by the Fermi velocity(vF≈106m/s)andhas been fixed equal to one.The electronic states around the zero energy belong to the distinct sublattices,which is the reason of the existence of a two component wavefunction.Two indexes to indicate these sublattices,similar to spin indexes(up and down),must be considered.The inequivalent corners of the Brillouin zone,which are called Dirac points,are labeled as K and K′(valley index).[14]

    In this work,both the curvature and the topology of a graphene due to a disclination introduce two extra fields into the system:A1+A2,where A1is due to the correction introduced by the conical geometry of graphene and A2is due to the existence of a non-abelian gauge field,a term which breaks the degeneracy of the energy levels around the valleys.[14]This means that different signals must be considered for this gauge field at them since it does not break time reversal symmetry.[15]The relativistic Landau levels are achieved by coupling an azimuthal potential vector,given by

    from where we get B0=B0z,the constant orthogonal magnetic field.All these vector potentials are inserted into the Dirac equation via a minimal coupling,p→p?eA.The details of such calculations can be found in Ref.[19].They have found that each spinor field satisfy the following differential equation

    where ξ=eBρ2/2,

    The parameter s has a value of twice the spin value,characterizing the two pseudo spin states,with s=+1 for spin “up” and s= ?1 for “spin” down.Actually,they correspond to the different sub-lattices in the graphene.

    We investigate now some more details regardless the wave solutions as well as the energy spectrum.The general solution to this equation is given in terms of the confluent hypergeometric function of the first kind,[35]

    with

    where a?and b?are,respectively,the coefficients of the regular(non divergent as ξ→ 0)and irregular(divergent as ξ→ 0)solutions. The regular wave solution was investigated in Ref.[19]and it holds for b?≡ 0 and|Ms|>1.[30,36]As observed in Ref.[37],the spinor field couples with the Ricci scalar,which is obtained from the singular curvature in our case.So,the irregular solution should also be taken into account,which completes the analysis of the energy spectrum.[38]The two scenarios are possible since it can be introduced a physical mechanism so that the wave solutions become regular at the origin of the coordinate system,recovering the results found in Ref.[19].For a?≡ 0,we must have|Ms|<1 for the wave solution to be square integrable.Moreover,fs(r)must vanish at large values of r.So,from the asymptotic representation of the confluent hypergeometric function,this is achieved if

    with n being a non negative integer,n=0,1,2,...This way,we obtain

    In particular,it should be noted that for the case when|Ms| ≥ 1(the δ interaction is absent),only the regular solutions contribute for the bound state wave function(b?≡ 0),and the energy is given by Eq.(12)with plus sign.[19]On the other hand,if a singular interaction is present,then we have to add the energies with the minus signal,for which|Ms|<1.

    The energy spectrum above must be analyzed in terms of the values that the α parameter can assume,since the condition|Ms|≥1(|Ms|<1)for the regular(irregular)solution has to be fulfilled.Let us consider the regular wave functions at first.Then,the spectrum(12)in this case can be put in the following way

    for Ms≥ 1,with n′=n+(1?s)/2=0,1,2,3,...,and

    for Ms≤?1,with n=0,1,2,3,...Notice that the degeneracy regardless the sub-lattices,which are represented by the parameter s,is not broken.The degeneracy regardless the Dirac valleys K and K′is not broken in Eq.(13),but it is in Eq.(14).

    We now turn our attention to the case considering the irregular solution.We take into account the minus signal in Eq.(12).The energy spectrum is the same as showed in Eqs.(13)and(14),but the constraint|Ms|<1 allows only some values of ?,which depends on the values of α.For example,α =5/6(pentagon),we have ?= ?1,0 only,while that for α=7/6(heptagon),we may have?= ?2,?1,0.In contrast,for the regular wave solution,the energies(14)hold for ?= ?1,?2,?3,...for both cases.The presence of the disclination breaks the degeneracy of the relativistic Landau levels and new levels are introduced in the spectrum only for ?=0,?1,?2,?3,...

    In summary,in the absence of the coupling between the wavefunctions and the singular curvature,the constraint|Ms|≥1 must be imposed,restricting the allowed momentum eigenvalues ?,which guarantees that the wavefunctions are regular as ξ→ 0.If such coupling manifests,then the charge carriers are allowed to have other values of the angular momentum eigenvalues ? without such constraint.We will examine these two situations in order to show how singular effects are important if they manifest in the system.

    4 The Effect of a Disclination in the Hall Conductivity

    In this section,we investigate the in fluence of a disclination in the quantized Hall conductivity.We express the energy scale associated with the magnetic field in the units of temperature as follows,

    where vFand B are given in(m/s)and Tesla,respectively.

    We start by considering the expression for the Hall conductivity obtained in Ref.[39]in the clean limit.This way,we have

    where β0=1(for n=0), βn/β0=2(for n ≥ 1),T is the temperature andμis the chemical potential,which is considered to tune the graphene conductivity.[40]These values are related to the above-mentioned smaller degeneracy of the n=0 Landau level.Here,the degeneracy of energy levels related to these valleys is broken due to the disclination when ?=0,?1,?2,?3,...The consequence is that we have to consider a sum in the valley index.Therefore,we have the Hall conductivity as

    with

    where βn′,?(λ)=1,for any n′and ?.

    Fig.1 (Color online)Hall conductivity versus the chemical potential for α=5/6(one-pentagon apex)and α=7/6(one-heptagon apex). In(a),we have?=0,±1,±2,...while in(b)we have ?=0,?1,?2,...and a plateau develops at σxy=0.

    In Fig.1,we plot the Hall conductivity versus the chemical potential for different values of α.In the Quantum Hall effect in flat graphene(α≡1),the quantum Hall conductivity exhibits the standard plateaus at all integer n of 4e2/h,for n=1,2,3,...,and 2e2/h for n=0. For α≠1,intermediate plateaus are introduced between them.In Fig.1(a),the plot is built for?=0,±1,±2,±3,...and the quantum Hall conductivity exhibits the standard plateaus at all integer n of 2e2/h.In Fig.1(b)we analyze the case supposing that the system is prepared so that only the energies containing the parameter α are possible to be occupied by the charge carriers,that is,?=0,?1,?2,?3,...In this case,we have the condition Ms>1(regular solutions)and?1

    For α<1,the plateaus widths decrease and they decrease even more when α>1.For positive(negative)values of the chemical potentialμ,the steps shift to lower(higher)values of it.Nevertheless,due to the splitting of energy levels caused by the disclination,the number of states under the Fermi level increases,raising(lowering)the Hall conductivity forμ <0(μ >0)with respect to the flat sample case.The coupling of the wavefunctions with the curvature at the cone apex make these effects less pronounced,modifying the Hall conductivity in a significant way.

    5 Concluding Remarks

    In this work,we investigated how both the relativistic Landau levels and the quantum Hall conductivity are modified if fermions on graphene are held in the presence of a constant orthogonal magnetic field along with a pseudo AB- field induced by a disclination.We considered the continuum limit within the geometric approach.The squared Dirac equation yielded a differential equation whose solutions are well established in terms of Hypergeometric series,which contains both regular and irregular functions.We have observed that,for the existence of constraints on the orbital angular momentum eigenvalues allowed for the system(Ms≥1 for regular wavefunctions and?1

    As a final word,we have shown how a conical singularity can affect the relativistic Landau levels in graphene.It is important to have those questions in mind if one is interested to probe the effects of a singular curvature in these systems.The results found here may shade some light also in other graphene like materials with disclinations.

    久久国产乱子伦精品免费另类| 琪琪午夜伦伦电影理论片6080| 最近最新中文字幕大全免费视频| 老司机午夜福利在线观看视频| 麻豆一二三区av精品| 精品国产超薄肉色丝袜足j| 日韩 欧美 亚洲 中文字幕| av在线天堂中文字幕| 51国产日韩欧美| 精品日产1卡2卡| 91在线观看av| 久久欧美精品欧美久久欧美| 欧美性感艳星| 日本撒尿小便嘘嘘汇集6| 天堂网av新在线| 婷婷精品国产亚洲av| 亚洲成人中文字幕在线播放| 岛国在线免费视频观看| svipshipincom国产片| 欧美日韩瑟瑟在线播放| 亚洲片人在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美成人免费av一区二区三区| 国产伦在线观看视频一区| 97碰自拍视频| 俄罗斯特黄特色一大片| 欧美一级毛片孕妇| 免费无遮挡裸体视频| 18禁黄网站禁片免费观看直播| 亚洲性夜色夜夜综合| 女警被强在线播放| 中文资源天堂在线| 91av网一区二区| 一个人免费在线观看的高清视频| 夜夜夜夜夜久久久久| 人人妻人人看人人澡| 12—13女人毛片做爰片一| 美女高潮喷水抽搐中文字幕| 99精品久久久久人妻精品| 男女那种视频在线观看| 久久精品91蜜桃| 色综合亚洲欧美另类图片| 啪啪无遮挡十八禁网站| 中文在线观看免费www的网站| 亚洲av二区三区四区| 最新中文字幕久久久久| 国产成人影院久久av| 在线播放国产精品三级| 国产精品久久久久久久电影 | 非洲黑人性xxxx精品又粗又长| 国产精品野战在线观看| av中文乱码字幕在线| 亚洲狠狠婷婷综合久久图片| 少妇的丰满在线观看| 无限看片的www在线观看| 最后的刺客免费高清国语| www.熟女人妻精品国产| 日本黄大片高清| www.999成人在线观看| 午夜精品在线福利| 久久久久久久久中文| 97碰自拍视频| av视频在线观看入口| 久久草成人影院| 内射极品少妇av片p| 亚洲美女黄片视频| 岛国在线免费视频观看| 成人18禁在线播放| 老汉色∧v一级毛片| 免费高清视频大片| 三级毛片av免费| 真人做人爱边吃奶动态| 少妇人妻一区二区三区视频| 亚洲aⅴ乱码一区二区在线播放| 特大巨黑吊av在线直播| 久久香蕉精品热| 国产精品,欧美在线| 嫁个100分男人电影在线观看| 制服人妻中文乱码| 在线观看av片永久免费下载| 欧美一区二区国产精品久久精品| 久久草成人影院| 国产精品国产高清国产av| 国产精品香港三级国产av潘金莲| 久久九九热精品免费| 午夜精品一区二区三区免费看| 亚洲中文字幕一区二区三区有码在线看| 男女床上黄色一级片免费看| 非洲黑人性xxxx精品又粗又长| 久久精品国产综合久久久| 欧美日本亚洲视频在线播放| av视频在线观看入口| 国产精品 欧美亚洲| 免费av不卡在线播放| 国产主播在线观看一区二区| 男人的好看免费观看在线视频| 真实男女啪啪啪动态图| 中文字幕av成人在线电影| 久久久久久久午夜电影| 欧美成人免费av一区二区三区| h日本视频在线播放| 日韩欧美一区二区三区在线观看| 国产淫片久久久久久久久 | 久久久久免费精品人妻一区二区| 美女免费视频网站| 日韩欧美精品免费久久 | 国产一级毛片七仙女欲春2| 一二三四社区在线视频社区8| 国产精品美女特级片免费视频播放器| 久久久久免费精品人妻一区二区| 热99在线观看视频| 亚洲国产色片| netflix在线观看网站| 国产午夜精品久久久久久一区二区三区 | 中国美女看黄片| 制服人妻中文乱码| 亚洲一区二区三区色噜噜| 国产三级黄色录像| 欧美一级毛片孕妇| 成人特级黄色片久久久久久久| 99精品欧美一区二区三区四区| 1024手机看黄色片| 亚洲一区二区三区不卡视频| www.色视频.com| 国模一区二区三区四区视频| 亚洲在线观看片| 久久久久久人人人人人| 18禁美女被吸乳视频| 老司机午夜福利在线观看视频| 国语自产精品视频在线第100页| 18禁国产床啪视频网站| 精品无人区乱码1区二区| 无限看片的www在线观看| 国内揄拍国产精品人妻在线| 久9热在线精品视频| 中文字幕av在线有码专区| 午夜影院日韩av| 岛国在线免费视频观看| 国产探花在线观看一区二区| 18禁黄网站禁片免费观看直播| 国模一区二区三区四区视频| 小蜜桃在线观看免费完整版高清| 精品国产三级普通话版| 日韩亚洲欧美综合| 99国产精品一区二区三区| 国产不卡一卡二| 日韩高清综合在线| 国产精品亚洲美女久久久| 午夜a级毛片| 久久性视频一级片| 伊人久久精品亚洲午夜| 天堂动漫精品| 成年女人毛片免费观看观看9| 麻豆成人av在线观看| 哪里可以看免费的av片| 熟女少妇亚洲综合色aaa.| 夜夜看夜夜爽夜夜摸| 女生性感内裤真人,穿戴方法视频| xxxwww97欧美| 午夜两性在线视频| 国产精品自产拍在线观看55亚洲| 欧美大码av| 久久久久久人人人人人| 精品久久久久久久末码| 欧美高清成人免费视频www| 少妇丰满av| 亚洲av免费高清在线观看| 免费av观看视频| 久久精品国产自在天天线| 俺也久久电影网| 一区二区三区国产精品乱码| 日韩欧美一区二区三区在线观看| 成年免费大片在线观看| 国产极品精品免费视频能看的| or卡值多少钱| 国产aⅴ精品一区二区三区波| 好男人电影高清在线观看| 俄罗斯特黄特色一大片| 亚洲欧美日韩高清在线视频| 亚洲精品一区av在线观看| 一个人观看的视频www高清免费观看| 国产成人a区在线观看| 神马国产精品三级电影在线观看| 美女cb高潮喷水在线观看| 麻豆一二三区av精品| 男女下面进入的视频免费午夜| 亚洲欧美日韩高清专用| 老司机在亚洲福利影院| 国产三级黄色录像| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品香港三级国产av潘金莲| 国产中年淑女户外野战色| 网址你懂的国产日韩在线| 19禁男女啪啪无遮挡网站| 狂野欧美激情性xxxx| 久久香蕉精品热| 99视频精品全部免费 在线| 丰满乱子伦码专区| www.熟女人妻精品国产| 日韩成人在线观看一区二区三区| 久久久国产成人免费| 少妇熟女aⅴ在线视频| 88av欧美| 国产精品 欧美亚洲| 亚洲专区中文字幕在线| www.www免费av| 免费av观看视频| 丰满的人妻完整版| 日本撒尿小便嘘嘘汇集6| 变态另类成人亚洲欧美熟女| 亚洲欧美一区二区三区黑人| 怎么达到女性高潮| www.色视频.com| 在线看三级毛片| 国产精品亚洲一级av第二区| 免费看美女性在线毛片视频| 久久久久久久亚洲中文字幕 | 欧美zozozo另类| 久久人妻av系列| 亚洲乱码一区二区免费版| 18禁裸乳无遮挡免费网站照片| 99久久99久久久精品蜜桃| 高清日韩中文字幕在线| 久久久久性生活片| 午夜福利在线观看免费完整高清在 | 天天躁日日操中文字幕| 少妇的逼水好多| 黄色女人牲交| 欧美一级毛片孕妇| ponron亚洲| 夜夜爽天天搞| 中文字幕av在线有码专区| 国产欧美日韩一区二区三| 国产中年淑女户外野战色| 午夜两性在线视频| 精品免费久久久久久久清纯| 亚洲午夜理论影院| 欧美午夜高清在线| 欧美成人免费av一区二区三区| 老熟妇仑乱视频hdxx| 啪啪无遮挡十八禁网站| 欧美绝顶高潮抽搐喷水| 国产精品自产拍在线观看55亚洲| 日日摸夜夜添夜夜添小说| 久久这里只有精品中国| 免费在线观看亚洲国产| 国产99白浆流出| 亚洲欧美日韩卡通动漫| 久久久久免费精品人妻一区二区| 欧美一区二区国产精品久久精品| 久久久久精品国产欧美久久久| 欧美+亚洲+日韩+国产| 在线观看美女被高潮喷水网站 | a级一级毛片免费在线观看| 内射极品少妇av片p| 国产一区在线观看成人免费| 成人午夜高清在线视频| 蜜桃久久精品国产亚洲av| 小说图片视频综合网站| 色综合站精品国产| 最新在线观看一区二区三区| 激情在线观看视频在线高清| 3wmmmm亚洲av在线观看| 亚洲国产精品成人综合色| 夜夜夜夜夜久久久久| 亚洲欧美日韩东京热| 亚洲欧美日韩无卡精品| 中文字幕熟女人妻在线| 免费在线观看亚洲国产| 国产探花极品一区二区| 免费在线观看影片大全网站| 99精品欧美一区二区三区四区| 狂野欧美白嫩少妇大欣赏| 人人妻人人看人人澡| 一区二区三区高清视频在线| 天堂√8在线中文| 无人区码免费观看不卡| 亚洲国产日韩欧美精品在线观看 | 男插女下体视频免费在线播放| 国产探花在线观看一区二区| 此物有八面人人有两片| 亚洲av日韩精品久久久久久密| 国产中年淑女户外野战色| 亚洲va日本ⅴa欧美va伊人久久| 国产精品香港三级国产av潘金莲| 一边摸一边抽搐一进一小说| 啦啦啦韩国在线观看视频| 国产精品影院久久| 欧美激情在线99| 两个人看的免费小视频| 日韩欧美国产一区二区入口| 亚洲aⅴ乱码一区二区在线播放| 亚洲午夜理论影院| 90打野战视频偷拍视频| 成人精品一区二区免费| 国产精品三级大全| 怎么达到女性高潮| 一二三四社区在线视频社区8| 99久久成人亚洲精品观看| 国产一区在线观看成人免费| 欧美一级毛片孕妇| www日本黄色视频网| 国产中年淑女户外野战色| 免费在线观看影片大全网站| 好男人在线观看高清免费视频| 国产精品99久久99久久久不卡| 51午夜福利影视在线观看| 18+在线观看网站| www.999成人在线观看| 级片在线观看| 国产精品一及| 久久人妻av系列| 国产蜜桃级精品一区二区三区| 色综合欧美亚洲国产小说| 国产男靠女视频免费网站| 麻豆国产av国片精品| 欧美日韩综合久久久久久 | 国产主播在线观看一区二区| 国产精品久久电影中文字幕| 欧美bdsm另类| 亚洲一区高清亚洲精品| 此物有八面人人有两片| 久久久久性生活片| 人人妻人人澡欧美一区二区| bbb黄色大片| 亚洲中文字幕一区二区三区有码在线看| 欧美成人一区二区免费高清观看| 女同久久另类99精品国产91| 高清毛片免费观看视频网站| 女同久久另类99精品国产91| 嫁个100分男人电影在线观看| 亚洲av二区三区四区| 女人十人毛片免费观看3o分钟| 欧美+日韩+精品| 黄色视频,在线免费观看| 一级毛片高清免费大全| 色综合站精品国产| 99久久99久久久精品蜜桃| 琪琪午夜伦伦电影理论片6080| 99热精品在线国产| 亚洲国产欧美人成| 免费一级毛片在线播放高清视频| 午夜福利免费观看在线| 91九色精品人成在线观看| or卡值多少钱| 欧美+日韩+精品| 叶爱在线成人免费视频播放| 欧美+日韩+精品| 欧美一区二区亚洲| 国产免费男女视频| 一个人免费在线观看电影| 在线播放无遮挡| 亚洲av电影在线进入| 中文字幕av在线有码专区| 亚洲人与动物交配视频| 国产精品98久久久久久宅男小说| 啪啪无遮挡十八禁网站| 欧美日韩综合久久久久久 | 香蕉av资源在线| 精品久久久久久成人av| 搡女人真爽免费视频火全软件 | 久久人人精品亚洲av| 欧美色欧美亚洲另类二区| 欧美+亚洲+日韩+国产| 国产成人av教育| 午夜福利高清视频| 亚洲av免费高清在线观看| 午夜福利在线观看免费完整高清在 | 一区二区三区免费毛片| 又紧又爽又黄一区二区| 久久九九热精品免费| 欧美日韩黄片免| 亚洲av免费高清在线观看| 身体一侧抽搐| bbb黄色大片| 男人舔奶头视频| 亚洲人成伊人成综合网2020| 日韩成人在线观看一区二区三区| 亚洲av电影不卡..在线观看| 黄色女人牲交| 亚洲在线自拍视频| 国产黄a三级三级三级人| 精品国内亚洲2022精品成人| 久久久国产精品麻豆| 18+在线观看网站| 乱人视频在线观看| 国产精品乱码一区二三区的特点| 亚洲aⅴ乱码一区二区在线播放| 白带黄色成豆腐渣| 久久久久国内视频| 国产一区二区三区视频了| 亚洲欧美日韩高清专用| 日韩精品青青久久久久久| 99精品久久久久人妻精品| 日韩人妻高清精品专区| 黄色片一级片一级黄色片| 国产精品影院久久| 欧美一级毛片孕妇| 五月伊人婷婷丁香| 非洲黑人性xxxx精品又粗又长| 国内精品美女久久久久久| 午夜精品久久久久久毛片777| 一个人看的www免费观看视频| 九九热线精品视视频播放| 免费av观看视频| 香蕉丝袜av| 搞女人的毛片| 国产精品久久久久久人妻精品电影| 国产精品98久久久久久宅男小说| 欧美乱妇无乱码| ponron亚洲| 免费在线观看成人毛片| 少妇人妻一区二区三区视频| 国产精品 欧美亚洲| 色吧在线观看| 99热精品在线国产| 俄罗斯特黄特色一大片| 老熟妇乱子伦视频在线观看| 禁无遮挡网站| 嫩草影视91久久| 国产69精品久久久久777片| 国产真实伦视频高清在线观看 | e午夜精品久久久久久久| 久久人人精品亚洲av| 色综合欧美亚洲国产小说| 99久久精品热视频| 日韩大尺度精品在线看网址| 亚洲狠狠婷婷综合久久图片| 成人国产综合亚洲| 免费观看的影片在线观看| 我的老师免费观看完整版| 国产成人aa在线观看| 免费看a级黄色片| 欧美成人免费av一区二区三区| 九九久久精品国产亚洲av麻豆| 亚洲成av人片在线播放无| 国产一区二区在线av高清观看| 波多野结衣巨乳人妻| 亚洲av一区综合| 国产黄片美女视频| 欧美乱妇无乱码| 久久精品人妻少妇| 老司机福利观看| 久久精品国产清高在天天线| 脱女人内裤的视频| 亚洲av一区综合| h日本视频在线播放| 国产亚洲av嫩草精品影院| 精品人妻偷拍中文字幕| 久久精品国产99精品国产亚洲性色| 日本 av在线| 最近最新中文字幕大全电影3| 有码 亚洲区| 在线观看舔阴道视频| 狠狠狠狠99中文字幕| 欧美最新免费一区二区三区 | 首页视频小说图片口味搜索| 九九久久精品国产亚洲av麻豆| 淫妇啪啪啪对白视频| 国产亚洲欧美在线一区二区| 又黄又粗又硬又大视频| 色精品久久人妻99蜜桃| 国内少妇人妻偷人精品xxx网站| av片东京热男人的天堂| 久久精品夜夜夜夜夜久久蜜豆| 欧美大码av| АⅤ资源中文在线天堂| 成人永久免费在线观看视频| 国模一区二区三区四区视频| 中文字幕av成人在线电影| 亚洲精品456在线播放app | 在线观看一区二区三区| 国产色婷婷99| 叶爱在线成人免费视频播放| 小说图片视频综合网站| 三级毛片av免费| 中文字幕人成人乱码亚洲影| 99热这里只有是精品50| 欧美性感艳星| 欧美区成人在线视频| 日韩有码中文字幕| 中文字幕人成人乱码亚洲影| 天堂网av新在线| 一个人免费在线观看的高清视频| 网址你懂的国产日韩在线| 1024手机看黄色片| 亚洲国产精品sss在线观看| 久久久久精品国产欧美久久久| 久久香蕉国产精品| 免费看光身美女| 俺也久久电影网| 此物有八面人人有两片| 日本三级黄在线观看| www.999成人在线观看| 欧美日韩国产亚洲二区| 成人无遮挡网站| 欧美一区二区精品小视频在线| 欧美中文日本在线观看视频| 欧美黄色片欧美黄色片| 中文资源天堂在线| 久久久久国内视频| 99国产极品粉嫩在线观看| 欧美中文综合在线视频| 变态另类丝袜制服| 少妇熟女aⅴ在线视频| 欧美乱妇无乱码| 亚洲成人精品中文字幕电影| 黑人欧美特级aaaaaa片| 欧美性感艳星| 成人国产综合亚洲| 天天躁日日操中文字幕| 又紧又爽又黄一区二区| 两个人视频免费观看高清| 可以在线观看的亚洲视频| 国产极品精品免费视频能看的| 国产欧美日韩一区二区精品| 一区二区三区激情视频| 男人和女人高潮做爰伦理| 久久久久久九九精品二区国产| 日本撒尿小便嘘嘘汇集6| 日韩成人在线观看一区二区三区| 蜜桃久久精品国产亚洲av| 欧美午夜高清在线| 日韩大尺度精品在线看网址| a级毛片a级免费在线| 好看av亚洲va欧美ⅴa在| 一个人免费在线观看电影| 国产成+人综合+亚洲专区| 免费大片18禁| 91在线观看av| 日韩欧美免费精品| 亚洲欧美日韩东京热| 91久久精品国产一区二区成人 | 国产男靠女视频免费网站| 美女高潮的动态| 美女免费视频网站| 一卡2卡三卡四卡精品乱码亚洲| 最新中文字幕久久久久| 在线播放国产精品三级| 国产精品久久久人人做人人爽| 国产蜜桃级精品一区二区三区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产午夜福利久久久久久| 俺也久久电影网| 国产一级毛片七仙女欲春2| av女优亚洲男人天堂| 男女午夜视频在线观看| 国产综合懂色| 一个人免费在线观看电影| 欧美日韩黄片免| 亚洲欧美精品综合久久99| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品合色在线| 在线观看免费午夜福利视频| 男女做爰动态图高潮gif福利片| 波多野结衣巨乳人妻| 免费看十八禁软件| 精品人妻1区二区| 黑人欧美特级aaaaaa片| 狠狠狠狠99中文字幕| 久久久久久九九精品二区国产| 国产久久久一区二区三区| or卡值多少钱| 亚洲 欧美 日韩 在线 免费| 久久久国产成人精品二区| 亚洲av成人av| 老司机在亚洲福利影院| 免费在线观看亚洲国产| 亚洲av美国av| 又黄又爽又免费观看的视频| 51国产日韩欧美| 91麻豆精品激情在线观看国产| 成人永久免费在线观看视频| 1024手机看黄色片| 国产高清激情床上av| 少妇的逼水好多| 午夜免费激情av| 亚洲成人精品中文字幕电影| 脱女人内裤的视频| 亚洲精品影视一区二区三区av| 亚洲精品亚洲一区二区| 精品人妻一区二区三区麻豆 | 精品久久久久久久人妻蜜臀av| 中亚洲国语对白在线视频| 人人妻人人澡欧美一区二区| 国内精品久久久久精免费| 欧美zozozo另类| 国产精品影院久久| 精品一区二区三区av网在线观看| 日韩av在线大香蕉| 国产精品久久久久久亚洲av鲁大| 亚洲av成人精品一区久久| 日日干狠狠操夜夜爽| 日韩精品青青久久久久久| 男女那种视频在线观看| 最近最新中文字幕大全免费视频| 亚洲精品亚洲一区二区| 男女那种视频在线观看| 亚洲黑人精品在线| 人人妻人人澡欧美一区二区| 中文字幕久久专区| 中国美女看黄片| 91av网一区二区| 中文字幕av在线有码专区| 毛片女人毛片| 亚洲美女视频黄频| 欧美+日韩+精品| 国产成人aa在线观看| 黄片小视频在线播放| 激情在线观看视频在线高清| 欧美色欧美亚洲另类二区| 久久精品影院6| 麻豆成人av在线观看| 欧美一级毛片孕妇| or卡值多少钱|