• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Directed Dominating Set Problem Studied by Cavity Method:Warning Propagation and Population Dynamics?

    2018-12-13 06:33:34YusupjanHabibulla玉素甫艾比布拉
    Communications in Theoretical Physics 2018年12期
    關(guān)鍵詞:艾比布拉

    Yusupjan Habibulla(玉素甫·艾比布拉)

    School of Physics and Technology,Xinjiang University,Sheng-Li Road 14,Urumqi 830046,China

    AbstractThe minimal dominating set for a digraph(directed graph)is a prototypical hard combinatorial optimization problem.In a previous paper,we studied this problem using the cavity method.Although we found a solution for a given graph that gives very good estimate of the minimal dominating size,we further developed the one step replica symmetry breaking theory to determine the ground state energy of the undirected minimal dominating set problem.The solution space for the undirected minimal dominating set problem exhibits both condensation transition and cluster transition on regular random graphs.We also developed the zero temperature survey propagation algorithm on undirected Erd?os-Rényi graphs to find the ground state energy.In this paper we continue to develope the one step replica symmetry breaking theory to find the ground state energy for the directed minimal dominating set problem.We find the following.(i)The warning propagation equation can not converge when the connectivity is greater than the core percolation threshold value of 3.704.Positive edges have two types warning,but the negative edges have one.(ii)We determine the ground state energy and the transition point of the Erd?os-Rényi random graph.(iii)The survey propagation decimation algorithm has good results comparable with the belief propagation decimation algorithm.

    Key words:directed minimal dominating set,replica symmetry breaking,Erd?os-Rényi graph,warning propagation,survey propagation decimation

    1 Introduction

    The minimum dominating set for a general digraph[1?2]is a fundamental nondeterministic polynomialhard(NPhard)combinatorial optimization problem.[3]Any digraph D=V,A contains a set V≡1,2,...,N of N vertices and a set A≡{(i,j):i,j∈V}of M arcs(directed edges),where each arc(i,j)points from a parent vertex(predecessor)i to a child vertex(successor)j.The arc density α is defined by α ≡ M/N.A directed dominating set Γ is a vertex set such that,for any node in the network,either the node itself or one of its predecessors belongs to Γ.A directed minimal dominating set(DMDS)is a smallest directed dominating set.The DMDS problem is very important for monitoring and controlling the directed interaction processes[4?10]in the complex networks.

    The statistical physicists have widely studied this optimization problem using the statistical physics of spin glass systems.[11?19]The cavity method is used to estimate the occupation probability at each node,and a solution for the given problem is constructed using this probabilities.Using statistical physics does not always yield a single solution for a given graph,but if this graph does not contain any small loops,then the cavity equation may converge to a stable point,so we can study the problem using the cavity method.

    Research into spin glass systems can be divided into two levels-the replica symmetry(RS)level and the replica symmetry breaking(RSB)level.For a given optimization problem,RS theory finds the smallest set in the given graph that satisfy this problem,and RSB theory finds the number of solutions and the ground state energy.Previously,we have found the smallest minimal dominating set(MDS)using the cavity method on both directed and undirected networks,[20?21]and have found the ground state energy for undirected networks.[22]The current study is inspired by Ref.[22],where we studied the ground state energy for the DMDS problem also using the cavity method.At a temperature of zero,we used survey propagation to find the ground state energy of the Erd?os-Rényi graph(ER)random graph.

    This paper studies the solution space of the DMDS problem using one step replica symmetry breaking(1RSB)theory from statistical physics.This work is a continuation of our earlier work[22]on the solution space of the undirected MDS problem.We organize the paper as follows.In Sec.2,we recall RS theory for spin glass systems before introducing RSB theory.We present the belief propagation(BP)equation,thermodynamic quantities and warning propagation for the DMDS problem.In Sec.3,we introduce 1RSB theory and the associated thermodynamic quantities.We then derive 1RSB theory and thermodynamic quantities at β = ∞,and survey propagation(SP)for the DMDS problem,before introducing the survey propagation decimation(SPD)process for the DMDS problem in detail.Finally in Sec.4 we conclusion our results.

    2 Replica Symmetry

    2.1 General Replica Symmetry Theory

    To estimate the MDS for a given graph using the way of mean field theory,we must have the partition function for the given problem.The partition function Z is

    We use RS mean field theory,such as the Bethe-Peierls approximation[23]or partition function expansion,[24?25]to solve the above spin glass model.We assign the cavity messageon the every edge,and these messages must satisfy the equation

    known as the BP equation.The Kronecker symbol is defined by=1 if m=n and=0 otherwise.The cavity messagerepresents the joint probability that node i is in state ciand the adjacent node j is in state cjwhen the constraint for node j is not considered.The marginal probabilityfor node i is expressed as

    Finally the free energy can be calculated using mean field theory as

    where

    We use Fito denote the free energy at node i,and F(i,j)to denote the free energy of the edge(i,j).We iterate the BP equation until it converges to a stable point,and then calculate the mean free energy f≡F/N and the energy densityusing Eqs.(3)and(4).The entropy density is calculated as s= β(ω ?f).

    2.2 Warning Propagation

    In this section,we introduce BP at β = ∞,which is called warning propagation.Even though the warning propagation may converge very quickly,it can only converge for C<3.704 on an ER random network,so we must further consider the 1RSB case at β = ∞.To estimate the minimal energy of an MDS,we must consider the limit at β = ∞.There are three cases for a single node:(i)node i appears in every MDS,namely=1,=0;(ii)node i appears in no MDS,namely=0,=1;(iii)node i appears in some but not all MDSs,namely=0.5,=0.5.Thus there are nine cases for the pair of nodes(i,j).However,only four cavity messages are possible:(i)node i appears in every MDS and node j appears in some but not all MDSs,namelynode i appears in no MDS and node j appears in some but not all MDSs,namely(iii)node i appears in no MDS and node j appears in every MDS,namely(iv)node i appears in some but not all MDSs and node j appears in some but not all MDSs,namely

    The other five cases do not satisfy the normalization condition:(i)if node i appears in every MDS and node j appears in every MDS,namely,then from the relationshipwe can deriveso that the total probability is greater than 1,which is not possible;(ii)if node i appears in every MDS and node j appears in no MDS,namely,then in the same way we can derive,so the total probability is again greater than 1;(iii)if node i appears in some but not all MDSs and node j appears in every MDS,namely,then(iv)if node i appears in some but not all MDSs and node j appears in no MDS,namelythenif node i appears in no MDS and node j appears in no MDS,namely,then from Eqs.(2)and(3)we see thatis always smaller thanand does not exceed 0.5.It is good to understand that if a node is not occupied,then it cannot request any of its neighbors to be unoccupied in the MDS problem.On the other hand,if a node is occupied,then it cannot request any of its neighbors to be either occupied or unoccupied.There is one warning message pi→j=0 for a single node,but there are two warning messages for a pair nodes(i,j),that is,andThe warning messageis called a first type warning,and the warning messageis called a second type warning.

    If node i is not covered or observed,so the neighbor node j must be covered,the corresponding case isIf node i is not covered,but it has been observed,so node j can be covered or uncovered,namely.So we can easily understand the upper equation.In the first line,if two or more neighbors(successors exactly)of the node i are not covered or observed,then we must cover the node i to observe them,namelyorIn the second line,if only one neighbor(successor exactly)of the node i is not covered or observed,then we have both opportunity to cover or uncover the node i,namelyor.In the third line,if every successor of the node i is observed,but it is observed predecessors less than k+?1,then we must not cover the node i,the neighbor j can be covered or uncovered,namelyor.In the fourth line,if every successor of the node i is observed,but the every predecessors of the node i are observed except node j,so we must not cover the node i,and the neighbor j must be covered,namelyWe can find that only the successor nodes provide the first type warning,in the same way we can read the following equation

    The above equations are called warning propagation equations.Only the messagecan produce a first type warning when the incoming messages do not include any first type messages and the incoming positive messages have?i+? 1 second type messages.If we find the stable point of the warning propagation,then we can calculate the coarse-grained state of every node as

    and we can calculate the free energy for the DMDS problem in the general case as

    The energy equals the free energy when β = ∞,so from the above questions we can write the free energy and the energy as

    The warning propagation convergence speed is very fast,and gives the same results as BP,but it does not converge when the mean variable degree is greater than 3.704 on the ER random graph.For some single graphs,the convergence degree is greater than 3.704,but it is very close to 3.704 in most single graph networks.

    3 One Step Replica Symmetry Breaking Theory

    In this section,we introduce 1RSB theory for spin glass systems,which is calculated using the graph expansion method.We first introduce the generalized partition function,free energy,SP,grand free energy and complexity in the general case.To obtain the ground state energy,we must consider the limiting behavior of the DMDS problem at β = ∞,so we next derive the simplified equations at β=∞for the DMDS problem,and then introduce the numerical simulation process for population dynamics.

    3.1 General One Step Replica Symmetry Breaking Theory

    The RS theory only finds low energy configurations.To study the subspace structure for a given problem,researchers have been developing 1RSB theory.In 1RSB theory,our order parameter is a free energy function.At higher temperatures,the microscopic thermodynamic state consisting of some higher energy configurations determines the statistical physics properties of the given system,and the subspace of this microscopic state is ergodic.However,at lower temperatures the microscopic state is no longer ergodic but is divided into several subspaces,and the contribution of these subspaces to the equilibrium properties are not the same.We define the generalized partition function Ξ by

    We use α to denote the microscope states that achieve the minimum free energy,and thushas the following form:

    The notation Ii→j[p?ij]is short-hand for messages updating equation(2),and Ii←j[p?ij]is short-hand for messages updating equation(3).The weight free energies fi→jand fi←jare respectively equal to

    The generalized free energy density g0is

    where

    We further have the mean free energy density

    where

    Finally,with mean free energy〉and generalized free energy g,we derive the complexity as

    3.2 Coarse-Grain Survey Propagation

    We next derive the SP for the case β = ∞and estimate the ground state energy,and then predict the energy density using the SPD method.We find that the SP results fit with the SPD results,which are as good as the belief propagation decimation(BPD)results.To obtain the SP,we must know the form of the free energy Fi→jat a temperature of zero.From the general form,we can derive the free energy Fi→jas

    the survey propagation for general case as

    We can obtain the SP at a temperature of zero using Eqs.(28)–(31)as

    and the grand free energy of node i and edge(i,j)for the general case as

    From Eqs.(35)–(38),we can derive the grand free energy of node i and edge(i,j)at a temperature of zero as

    where

    the grand free energy density is

    The free energy of the macroscopic state α when β = ∞ has several different ground state energies Emin,we cannot calculate the ground state energies one at a time.We are only concerned with the average ground state energy,so we focus our discussion on this.We denote the microscopic average minimal energy by 〈Eβ=∞〉,which is calculated using the following equation:

    We can study the ensemble average properties of the DMDS problem using population dynamics and Eqs.(28)–(31),(37)and(38).Figure 1 indicates the results of the ensemble everage 1RSB population dynamics for the DMDS problem on the ER random graph with mean connectivity C=5.The complexity∑=0 at y=0,and the complexity is not a monotonic function of the Parisi parameter y.It increases as the Parisi parameter y increases,and reaches its maximum value when y≈3.7.The complexity then begins to decrease as y increases and becomes negative when y≈8.35.From Fig.1,we can see that there are two parts to the complexity graph when it is a function of energy,but because of only the concave part is decline function of energy,so it has the physical meaning.The grand free energy is not a monotonic function of y either.It reaches a maximum when the complexity becomes negative at y≈8.35,so the corresponding energy density u=0.3212 is the minimum energy density for the DMDS problem at this mean connectivity.

    Fig.1 The 1RSB results for the zero temperature DMDS problem on the ER random graph with mean connectivity c=5 using population dynamics.In the upper two and bottom left graphs,the x-axis denotes the Parisi parameter Y,and the y-axis denotes the thermodynamic quantities.The complexity becomes negative when the Parisi parameter is approximately 8.35.At this point,we select the corresponding energy as the ground state energy,which equals 0.3212.In the bottom right graph,the x-axis denotes the energy density and the y-axis denotes the complexity.

    We can calculate some microscopic statistical quantities using Eqs.(32)–(34)at a temperature of zero.For example,for the probability(statistical total weight of all macrostates)of the variable staying in a coarse grained state,we use pi(0)to denote the probability of the variable staying in a totally uncovered state,pi(1)to denote the probability of the variable staying in a totally covered state,and pi(?)to denote the probability of the variable staying in an unfrozen(some microstates covered)state.We can derive the representation of these three probabilities using 1RSB mean field theory as

    Using the 1RSB population dynamics,we obtain the minimal energy densities for ER random network ensembles with different mean connectivities.In Table 1,we list the theoretical computational results for C≤10.We can see that the ground state energy and transition point depend on the mean connectivity C.From Ref.[22],we know that the transition point does not depend on the mean connectivity C in undirected networks.

    Table 1 The parisi parameter y?transition point and the ground state energy for ER random graphs.

    In these simulations,we update the population MI=1000 times.That is,we update each element in the population 1000 times on average to reach a stable point for the population,and sample MS=5000 times to obtain the transition point of∑(second∑=0 points)and the corresponding ground state energy value Eminon the ER random graph.The cluster transition point is only correct when the Parisi parameter sample distance is▽y≥ 0.1,but the ground state energy is correct in any small enough Parisi parameter sampling distance with a precision of▽E=0.0001.We use two types of population,a positive population and a negative population,and set the population size to N=1 000 000.Increasing the number of updates or the number of samples does not affect the simulation results.However,increasing the population size N used to calculate the thermodynamic quantities improves the results.Within a sampling distance of▽y=0.1,we can also obtain good results with fewer updates.However,with a sampling distance of▽y=0.01,we need an increasing number of updates to obtain good results.The required numbers of updates and samples increases as the variable degree decreases.

    3.3 Survey Propagation Decimation

    We studied undirected networks using SP in Ref.[22].We can also study the statistical properties of microscopic configurations in a single directed network using the SP in Eqs.(32)–(34).The results are similar to those for an undirected network.For example,SP can find a stable point for a given directed network easily when the Parisi parameter y is small enough,and we can then calculate the thermodynamic quantities using Eqs.(35),(36),and(39)–(42).However,SP does not converge when y is too large.For example,SP does not converge when y≥7 for an ER random network when C=10.We have already discussed the reasons for this in undirected network in Ref.[22],namely that the coarse-grained assumption and 1RSB mean field theory are not sufficient to describe microscopic configuration spaces when the energy is close to the ground state energy,so a more detailed coarse-grained assumption and a higher-level expansion of the partition function are required.For further discussion of convergence of coarse-grained SP,see Refs.[26–27].

    We can construct one or more solutions that are close to the optimal DMDS for a given graph W using 1RSB mean field theory.One very efficient algorithm is the SPD algorithm.[22,26?27]The main idea of this algorithm is to first determine the probability of being covered,and then select a small subset of variables that has the highest probability of being covered.We then set the covering probability for this subset of variables to ci=1,and delete all variables for which the covering probability equals 1,along with the adjacent edges,and then simplify the network iteratively.If a node i is unobserved(it is empty and has no adjacent occupied parent node),then the output messages Pi→jand Pi←jare updated according to Eqs.(32)–(34),On the other hand,if node i is empty but observed(it has at least one adjacent occupied parent node),then this node presents no restriction on the occupation states of its unoccupied parent neighbors.For such a node i,the output messages Pi→jand Pi←jare then updated according to the following equations:

    As with Eqs.(47)–(49),the marginal probability distribution Pifor an observed empty node i can be evaluated according to

    We now present the details of this algorithm.

    (i)Read the network W,set the covering probability of every vertex to uncertain,and define four coarsegrained messages,andon each edge of the given graph.Randomly initialize the messages in the interval(0,1],ensuring that for every pair of messagesand,the normalization conditionsandare satisfied.An appropriate setting for the macroscopic inverse temperature y is a value close to the threshold value.For example,if SP does not converge when y≥3.01,then we set y=3.

    (ii)Iterate the coarse-grained SP equations(Eqs.(32)–(34)or Eqs.(47)–(49)),for L0steps,aiming for convergence to a stable point.At each iteration,select one node i and update all messages corresponding to node i.After updating the messages L0times,calculate the coarsegrained probability(Pi(1),Pi(?),Pi(0))using Eqs.(44)–(46)or Eqs.(50)–(52).

    (iii)Sort the variables that are not frozen in descending order according to the value of Pi(1).Select the first r percent to set the covering state as ci=1,and add these variables to the DMDS.

    (iv)Simplify the network by deleting all the edges between the observed nodes and deleting all the occupied variables.If the remaining network still contains one or more leaf nodes,[20]then apply the GLR process[21]until there are no leaf nodes in the network and simplify the network again.This procedure is repeated(simplify-GLR-simplify)until the network contains no leaf nodes.If the network contains no nodes and no edges,then stop the program and output the DMDS.

    (v)If the network still contains some nodes,then iterate Eqs.(32)–(34)or Eqs.(47)–(49)for L1steps.Repeat steps(iii),(iv),and(v).

    Figure 2 shows the numerical results of the SPD algorithm on an ER random graph.We can see that the SPD results are very close to the BPD results,and thus the SPD algorithm finds an almost optimal solution.We perform the BPD algorithm as detailed in Ref.[20].

    Fig.2 The solid line is the result of the SPD algorithm,and the crosses are the results of the BPD algorithm.Our simulation was performed on an ER random graph with 104variables.

    4 Discussion

    In this work,we first derived the warning propagation and proved that the warning propagation equation only converges when the network does not contain a core.[21]There is only one warning in the vertex cover problem,[28]but the MDS problem has two warnings.In the DMDS problem,a positive edge pi←jhas two warnings,but a negative edge pi→jhas one warning.The reason for this is that each nodes only requires the parent nodes,not child nodes,to be occupied to be able to observe itself,so only the psitive edges have first type warnings.Second,we derived the SP equation at a temperature of zero to find the ground state energy and the corresponding transition point of the macroscopic inverse temperature.The change rules of the transition point do not like with undirected MDS problem.It is a monotonic function of the mean variable degree in the DMDS problem,but not in the undirected MDS problem.[22]The corresponding energy of the transition point Parisi parameter Y equals the threshold value xc,namely EY=xc.We then implemented the SPD algorithm at a temperature of zero to estimate the size of a DMDS.The results are as good as the BPD results.

    We have previously studied the MDS problem on undirected networks and directed networks using statistical physics,and more recently we studied the undirected MDS problem using 1RSB mean field theory.We have now studied the DMDS problem using 1RSB theory.We plan to study the MDS and DMDS problems using long range frustration theory in the future.

    Acknowledgement

    Yusupjan Habibulla thanks Prof.Haijun Zhou for helpful discussions and guidance.Yusupjan Habibulla also thanks Prof.Xiaosong Chen for helpful discussions and support.We implemented the numerical simulations on the cluster in the School of Physics and Technology at Xinjiang University.We thank Peter Humphries,PhD,from Edanz Group(www.edanzediting.com/ac)for editing a draft of this manuscript.

    猜你喜歡
    艾比布拉
    戰(zhàn)斗機(jī)、導(dǎo)彈頭和布拉嗝
    吉米問答秀
    安安琪琪的故事16不拉肚就靠“布拉杜”
    媽媽寶寶(2018年9期)2018-12-05 02:19:46
    阿布拉卡達(dá)布拉!
    八歲女孩駕車救母
    艾比救母
    艾比救母
    送禮附發(fā)票的美國(guó)人
    開心皇冠
    奇幻之旅3
    在现免费观看毛片| 日本黄大片高清| 日本午夜av视频| 国产精品欧美亚洲77777| 午夜福利影视在线免费观看| 亚洲精品一区蜜桃| 伦理电影大哥的女人| 国产精品一国产av| 一区二区三区四区激情视频| 欧美日韩亚洲高清精品| 伊人久久精品亚洲午夜| 在线观看免费日韩欧美大片 | 中文字幕人妻熟人妻熟丝袜美| 久久精品国产a三级三级三级| 国产深夜福利视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产色婷婷99| 18+在线观看网站| kizo精华| 岛国毛片在线播放| 肉色欧美久久久久久久蜜桃| 久久热精品热| 亚洲精品日韩av片在线观看| av免费在线看不卡| 97在线视频观看| 久久青草综合色| 夜夜骑夜夜射夜夜干| 建设人人有责人人尽责人人享有的| 99久久人妻综合| 涩涩av久久男人的天堂| 久久亚洲国产成人精品v| 久久精品国产亚洲av涩爱| 九草在线视频观看| 亚洲欧美一区二区三区黑人 | 成人国语在线视频| 狂野欧美激情性xxxx在线观看| 黄片播放在线免费| 好男人视频免费观看在线| 一本一本综合久久| 飞空精品影院首页| 久久精品熟女亚洲av麻豆精品| 人妻 亚洲 视频| 日韩av免费高清视频| 亚洲精品国产色婷婷电影| 成人18禁高潮啪啪吃奶动态图 | xxxhd国产人妻xxx| 国语对白做爰xxxⅹ性视频网站| a 毛片基地| 国产亚洲精品第一综合不卡 | 国产毛片在线视频| 欧美精品一区二区免费开放| 人人澡人人妻人| 麻豆精品久久久久久蜜桃| 国产又色又爽无遮挡免| 超色免费av| 国产片内射在线| 在线免费观看不下载黄p国产| 久热这里只有精品99| 久久久久久久久久人人人人人人| 国产成人精品在线电影| 亚洲av免费高清在线观看| 国产av国产精品国产| 夫妻午夜视频| 最近最新中文字幕免费大全7| 欧美精品一区二区免费开放| 少妇的逼好多水| 黄色毛片三级朝国网站| 水蜜桃什么品种好| 九九久久精品国产亚洲av麻豆| 夫妻午夜视频| 一二三四中文在线观看免费高清| 91在线精品国自产拍蜜月| 日韩av不卡免费在线播放| 精品国产乱码久久久久久小说| 一区二区av电影网| 久久久久久伊人网av| 我的女老师完整版在线观看| 亚洲成人av在线免费| 精品国产一区二区三区久久久樱花| 日韩av不卡免费在线播放| 日本wwww免费看| 午夜久久久在线观看| 亚洲色图综合在线观看| 亚洲精品国产av成人精品| 丝瓜视频免费看黄片| 色网站视频免费| 成人国产av品久久久| 久久国产精品男人的天堂亚洲 | 日韩av免费高清视频| 九色亚洲精品在线播放| 秋霞伦理黄片| 哪个播放器可以免费观看大片| 久久97久久精品| 自线自在国产av| 看十八女毛片水多多多| 亚洲精品乱久久久久久| 欧美精品亚洲一区二区| 亚洲,欧美,日韩| 18在线观看网站| 色吧在线观看| 久久久久久久久久人人人人人人| 国产午夜精品一二区理论片| 久久久久国产网址| 精品熟女少妇av免费看| 草草在线视频免费看| 国产亚洲最大av| 午夜福利影视在线免费观看| 晚上一个人看的免费电影| 日本欧美视频一区| 欧美老熟妇乱子伦牲交| 免费观看av网站的网址| 少妇被粗大猛烈的视频| 制服人妻中文乱码| 免费日韩欧美在线观看| 狠狠精品人妻久久久久久综合| 亚洲在久久综合| 少妇丰满av| 婷婷色综合www| 精品视频人人做人人爽| 这个男人来自地球电影免费观看 | h视频一区二区三区| 日韩av不卡免费在线播放| 丰满乱子伦码专区| 久久久久久久久久久丰满| 国产免费福利视频在线观看| 成人影院久久| 热re99久久精品国产66热6| 国产一区二区三区综合在线观看 | 免费久久久久久久精品成人欧美视频 | 免费人成在线观看视频色| 制服人妻中文乱码| 国产午夜精品一二区理论片| 亚洲性久久影院| 全区人妻精品视频| 观看av在线不卡| 大码成人一级视频| 老司机亚洲免费影院| 赤兔流量卡办理| 国产精品无大码| 亚洲精品久久午夜乱码| 精品亚洲乱码少妇综合久久| 纵有疾风起免费观看全集完整版| 国产精品一区二区在线不卡| 九九爱精品视频在线观看| 美女脱内裤让男人舔精品视频| 国产成人精品婷婷| 久热久热在线精品观看| 日本黄大片高清| 亚洲欧洲日产国产| 亚洲人成网站在线播| 精品国产一区二区三区久久久樱花| 久久久国产一区二区| 国产日韩欧美视频二区| 人人妻人人澡人人爽人人夜夜| 五月玫瑰六月丁香| 亚洲欧美一区二区三区国产| 免费大片黄手机在线观看| 久久久久久伊人网av| 国产 精品1| 久久精品国产亚洲av涩爱| 搡女人真爽免费视频火全软件| av不卡在线播放| 赤兔流量卡办理| 欧美日韩精品成人综合77777| 丰满少妇做爰视频| 亚洲无线观看免费| 大码成人一级视频| 亚洲人成网站在线播| 亚洲欧美精品自产自拍| 国产黄片视频在线免费观看| 亚洲欧美色中文字幕在线| 国产极品天堂在线| av卡一久久| 亚洲国产成人一精品久久久| 伦精品一区二区三区| tube8黄色片| 少妇熟女欧美另类| 男男h啪啪无遮挡| 日产精品乱码卡一卡2卡三| 菩萨蛮人人尽说江南好唐韦庄| 一级二级三级毛片免费看| 久久人人爽人人片av| 美女视频免费永久观看网站| 大又大粗又爽又黄少妇毛片口| 国产白丝娇喘喷水9色精品| 欧美精品一区二区免费开放| av天堂久久9| 最近2019中文字幕mv第一页| 日本欧美视频一区| 久久99蜜桃精品久久| 嫩草影院入口| 中国美白少妇内射xxxbb| 日韩不卡一区二区三区视频在线| 在线免费观看不下载黄p国产| 成人免费观看视频高清| 久久午夜综合久久蜜桃| 丝袜喷水一区| 26uuu在线亚洲综合色| 老司机亚洲免费影院| 欧美+日韩+精品| 亚洲伊人久久精品综合| 欧美3d第一页| 成人毛片a级毛片在线播放| 天美传媒精品一区二区| 一级毛片aaaaaa免费看小| 哪个播放器可以免费观看大片| 热99国产精品久久久久久7| 欧美+日韩+精品| 中国三级夫妇交换| 国产欧美日韩一区二区三区在线 | 午夜福利视频精品| 亚洲无线观看免费| 午夜久久久在线观看| 亚洲精品国产av蜜桃| 三级国产精品欧美在线观看| 精品卡一卡二卡四卡免费| 99久久精品一区二区三区| 看非洲黑人一级黄片| a级毛片黄视频| 国产一区二区三区综合在线观看 | 日韩亚洲欧美综合| 国产白丝娇喘喷水9色精品| 久久久精品94久久精品| 午夜影院在线不卡| 亚洲怡红院男人天堂| 欧美xxxx性猛交bbbb| 久久久国产精品麻豆| 免费av中文字幕在线| 久久精品国产a三级三级三级| 国产黄色免费在线视频| 国产亚洲精品久久久com| 99国产精品免费福利视频| 日韩中文字幕视频在线看片| 久久精品国产a三级三级三级| 国产黄色免费在线视频| 国产精品久久久久久精品电影小说| 欧美激情极品国产一区二区三区 | 亚洲五月色婷婷综合| 色94色欧美一区二区| 亚洲欧洲精品一区二区精品久久久 | 日本黄色日本黄色录像| 国产精品一区二区在线不卡| 免费人成在线观看视频色| 视频区图区小说| 午夜激情福利司机影院| 亚洲av日韩在线播放| 日日摸夜夜添夜夜爱| 一区二区日韩欧美中文字幕 | 亚洲综合色网址| 丝袜在线中文字幕| 欧美亚洲 丝袜 人妻 在线| 美女cb高潮喷水在线观看| 在线精品无人区一区二区三| av一本久久久久| 极品少妇高潮喷水抽搐| 亚洲欧美成人综合另类久久久| 亚洲精品第二区| 中文字幕人妻丝袜制服| 国产av国产精品国产| 如何舔出高潮| 看十八女毛片水多多多| 亚洲激情五月婷婷啪啪| 免费人成在线观看视频色| 天堂中文最新版在线下载| 女人精品久久久久毛片| 精品酒店卫生间| 午夜福利视频在线观看免费| 国产成人一区二区在线| 久久精品人人爽人人爽视色| 男女啪啪激烈高潮av片| 欧美激情国产日韩精品一区| 日本与韩国留学比较| 高清av免费在线| 曰老女人黄片| 国产精品人妻久久久久久| 黄色视频在线播放观看不卡| 久久久久国产精品人妻一区二区| 男人添女人高潮全过程视频| 日韩av不卡免费在线播放| 亚洲av电影在线观看一区二区三区| 欧美成人精品欧美一级黄| 看十八女毛片水多多多| 最近最新中文字幕免费大全7| 久久久久精品性色| 国产精品国产av在线观看| 极品人妻少妇av视频| 蜜桃国产av成人99| 国产黄频视频在线观看| 国产 精品1| 亚洲成人av在线免费| 啦啦啦中文免费视频观看日本| av视频免费观看在线观看| 亚洲精品乱久久久久久| 涩涩av久久男人的天堂| 搡女人真爽免费视频火全软件| 久久久精品区二区三区| 一区二区三区精品91| 国产 精品1| 亚洲第一区二区三区不卡| av卡一久久| 欧美日本中文国产一区发布| 午夜免费鲁丝| 久久久久久久久久成人| 免费大片18禁| 在线精品无人区一区二区三| 亚洲情色 制服丝袜| 欧美97在线视频| 亚洲av.av天堂| 特大巨黑吊av在线直播| 亚洲美女黄色视频免费看| 国产 精品1| 寂寞人妻少妇视频99o| 好男人视频免费观看在线| 免费大片黄手机在线观看| 亚洲国产精品一区三区| 国产精品不卡视频一区二区| 中文字幕最新亚洲高清| 观看美女的网站| av专区在线播放| 五月玫瑰六月丁香| 夜夜爽夜夜爽视频| 中文精品一卡2卡3卡4更新| 乱码一卡2卡4卡精品| 亚洲欧美成人综合另类久久久| 另类精品久久| 免费高清在线观看视频在线观看| 久久人人爽人人片av| 美女大奶头黄色视频| 99久国产av精品国产电影| 免费av不卡在线播放| 高清不卡的av网站| 国产白丝娇喘喷水9色精品| 久久精品久久精品一区二区三区| 国产在线视频一区二区| 亚洲色图综合在线观看| 午夜影院在线不卡| 国产精品成人在线| 人妻人人澡人人爽人人| 考比视频在线观看| 亚洲精品久久久久久婷婷小说| 精品少妇久久久久久888优播| 精品亚洲成国产av| 午夜日本视频在线| 大片免费播放器 马上看| 久久精品熟女亚洲av麻豆精品| 如日韩欧美国产精品一区二区三区 | 亚洲国产欧美在线一区| 青春草国产在线视频| 久久久久久久久久久免费av| 国产亚洲午夜精品一区二区久久| 嘟嘟电影网在线观看| 亚洲第一区二区三区不卡| 色视频在线一区二区三区| 国产一区有黄有色的免费视频| 国产黄频视频在线观看| 亚洲欧美清纯卡通| 九九在线视频观看精品| 亚洲综合精品二区| 制服丝袜香蕉在线| 国产精品久久久久久精品电影小说| 国产成人精品久久久久久| 我要看黄色一级片免费的| 欧美日韩综合久久久久久| 精品国产国语对白av| 免费av不卡在线播放| 亚洲高清免费不卡视频| 熟女电影av网| 国产亚洲精品久久久com| 免费观看av网站的网址| a级毛片黄视频| 高清黄色对白视频在线免费看| 色婷婷久久久亚洲欧美| 边亲边吃奶的免费视频| 99热6这里只有精品| 2022亚洲国产成人精品| 在线观看www视频免费| 欧美精品一区二区免费开放| 久久久久久久大尺度免费视频| 看非洲黑人一级黄片| 亚洲精品国产av蜜桃| 视频区图区小说| 黑人巨大精品欧美一区二区蜜桃 | 亚洲成人手机| 在线天堂最新版资源| 能在线免费看毛片的网站| 色94色欧美一区二区| 一区二区三区免费毛片| 高清午夜精品一区二区三区| 成年人午夜在线观看视频| 男女免费视频国产| 九色亚洲精品在线播放| 在线观看免费日韩欧美大片 | 亚洲一级一片aⅴ在线观看| 免费黄频网站在线观看国产| 日韩av免费高清视频| 久久久精品免费免费高清| 国国产精品蜜臀av免费| 亚洲国产精品999| 人人妻人人添人人爽欧美一区卜| 国产精品.久久久| 精品卡一卡二卡四卡免费| 99视频精品全部免费 在线| 欧美 亚洲 国产 日韩一| 午夜福利在线观看免费完整高清在| 日韩亚洲欧美综合| 视频在线观看一区二区三区| 妹子高潮喷水视频| 亚洲av成人精品一二三区| 乱人伦中国视频| 亚洲av.av天堂| 午夜影院在线不卡| 激情五月婷婷亚洲| 欧美激情国产日韩精品一区| 男男h啪啪无遮挡| 99国产综合亚洲精品| 午夜福利影视在线免费观看| 亚洲av欧美aⅴ国产| 最近的中文字幕免费完整| 超色免费av| 丝袜在线中文字幕| 美女国产视频在线观看| 男女无遮挡免费网站观看| 激情五月婷婷亚洲| 亚洲精品美女久久av网站| 热re99久久国产66热| 国产精品久久久久久久电影| 亚洲欧美中文字幕日韩二区| 大香蕉久久成人网| 亚洲人成网站在线播| 女人精品久久久久毛片| 久久这里有精品视频免费| 国产日韩一区二区三区精品不卡 | 免费高清在线观看日韩| 亚洲精品,欧美精品| 超色免费av| 日韩免费高清中文字幕av| 老女人水多毛片| 极品少妇高潮喷水抽搐| 国产精品不卡视频一区二区| 亚洲av国产av综合av卡| av卡一久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日日摸夜夜添夜夜爱| 尾随美女入室| 夫妻午夜视频| 日韩视频在线欧美| 99久久中文字幕三级久久日本| 狠狠精品人妻久久久久久综合| 美女大奶头黄色视频| 99久国产av精品国产电影| 99精国产麻豆久久婷婷| 中文字幕av电影在线播放| 国产伦理片在线播放av一区| 国产精品三级大全| 黄色欧美视频在线观看| 女人精品久久久久毛片| 国产欧美日韩一区二区三区在线 | 啦啦啦啦在线视频资源| 亚洲精品日韩在线中文字幕| 曰老女人黄片| 高清黄色对白视频在线免费看| 午夜影院在线不卡| 女的被弄到高潮叫床怎么办| 亚洲人与动物交配视频| 国产欧美亚洲国产| 97在线视频观看| 久热久热在线精品观看| 天堂中文最新版在线下载| 一区二区三区免费毛片| 不卡视频在线观看欧美| 精品久久国产蜜桃| tube8黄色片| 国产成人免费观看mmmm| 国产免费又黄又爽又色| 国产精品秋霞免费鲁丝片| 久久久久久久大尺度免费视频| 91国产中文字幕| 亚洲精品第二区| 精品人妻偷拍中文字幕| 国产精品熟女久久久久浪| 国产男女超爽视频在线观看| 在线观看免费高清a一片| 国产成人freesex在线| 中国国产av一级| av视频免费观看在线观看| 九色成人免费人妻av| 免费少妇av软件| 大片电影免费在线观看免费| 久久精品国产鲁丝片午夜精品| 国产欧美日韩综合在线一区二区| 亚洲人与动物交配视频| 成人毛片60女人毛片免费| av不卡在线播放| 狠狠婷婷综合久久久久久88av| 亚洲高清免费不卡视频| 伦理电影大哥的女人| 色视频在线一区二区三区| 日本黄色日本黄色录像| 久久99热这里只频精品6学生| 不卡视频在线观看欧美| 日本av手机在线免费观看| 午夜福利视频在线观看免费| 国产亚洲av片在线观看秒播厂| 国产黄色免费在线视频| 国模一区二区三区四区视频| av有码第一页| videossex国产| 亚洲第一区二区三区不卡| 欧美 亚洲 国产 日韩一| 国产永久视频网站| 久久人人爽人人片av| 日本av免费视频播放| 在线亚洲精品国产二区图片欧美 | 国产 精品1| 午夜日本视频在线| 国产无遮挡羞羞视频在线观看| 3wmmmm亚洲av在线观看| 99久久人妻综合| 久久久久视频综合| 国产高清三级在线| 亚州av有码| 考比视频在线观看| 在线观看国产h片| 在线精品无人区一区二区三| 国产免费视频播放在线视频| 波野结衣二区三区在线| 人妻人人澡人人爽人人| 国产免费一级a男人的天堂| 在线免费观看不下载黄p国产| 免费高清在线观看视频在线观看| 亚洲av综合色区一区| av福利片在线| 伊人久久国产一区二区| 菩萨蛮人人尽说江南好唐韦庄| 极品少妇高潮喷水抽搐| 国产精品人妻久久久影院| 欧美97在线视频| 大片电影免费在线观看免费| 国产一区有黄有色的免费视频| 亚洲综合色网址| 午夜免费观看性视频| 久久ye,这里只有精品| 蜜桃在线观看..| 国产精品一区二区在线不卡| 精品人妻熟女毛片av久久网站| 精品少妇久久久久久888优播| 波野结衣二区三区在线| 热99国产精品久久久久久7| 日韩一本色道免费dvd| 啦啦啦啦在线视频资源| 最新中文字幕久久久久| 日本91视频免费播放| 2018国产大陆天天弄谢| 国产精品国产av在线观看| 亚洲情色 制服丝袜| 日日摸夜夜添夜夜添av毛片| 黄色怎么调成土黄色| 久久精品人人爽人人爽视色| 亚洲精品国产av成人精品| 中文天堂在线官网| 蜜桃国产av成人99| 菩萨蛮人人尽说江南好唐韦庄| 亚洲第一av免费看| 在线观看三级黄色| 成年女人在线观看亚洲视频| 国产精品一区二区在线不卡| a级片在线免费高清观看视频| 久久ye,这里只有精品| 人妻制服诱惑在线中文字幕| 美女内射精品一级片tv| av.在线天堂| 狂野欧美白嫩少妇大欣赏| 亚洲熟女精品中文字幕| 亚洲av不卡在线观看| 99热网站在线观看| 一级毛片aaaaaa免费看小| 国产综合精华液| 欧美最新免费一区二区三区| 男人爽女人下面视频在线观看| 18在线观看网站| 久久久久久久国产电影| 成人国语在线视频| 80岁老熟妇乱子伦牲交| 在线观看美女被高潮喷水网站| 亚洲成人av在线免费| 午夜激情av网站| 一区在线观看完整版| 99久久人妻综合| 自拍欧美九色日韩亚洲蝌蚪91| 日韩欧美一区视频在线观看| 欧美日韩视频高清一区二区三区二| 人人妻人人爽人人添夜夜欢视频| 观看美女的网站| 插逼视频在线观看| 老司机亚洲免费影院| 91国产中文字幕| 99久久人妻综合| av又黄又爽大尺度在线免费看| 男女无遮挡免费网站观看| av天堂久久9| 国产成人精品福利久久| 国语对白做爰xxxⅹ性视频网站| 久久99一区二区三区| 国产精品一国产av| 亚洲精品中文字幕在线视频| 国产精品 国内视频| 日韩欧美精品免费久久| 久久99一区二区三区| 99热这里只有是精品在线观看| 69精品国产乱码久久久| 国产亚洲最大av| 在线播放无遮挡| 亚洲婷婷狠狠爱综合网| 国产精品 国内视频| 女的被弄到高潮叫床怎么办|