• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles study of non-radiative carrier capture by defects at amorphous-SiO2/Si(100)interface

    2023-09-05 08:48:28HaoranZhu祝浩然WeifengXie謝偉鋒XinLiu劉欣YangLiu劉楊JinliZhang張金利andXuZuo左旭
    Chinese Physics B 2023年7期
    關鍵詞:刮骨銀蛇回龍

    Haoran Zhu(祝浩然), Weifeng Xie(謝偉鋒), Xin Liu(劉欣), Yang Liu(劉楊),Jinli Zhang(張金利), and Xu Zuo(左旭),4,5,?

    1College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China

    2Institute of Electronic Engineering,China Academy of Engineering Physics,Mianyang 621999,China

    3Microsystem and Terahertz Research Center,China Academy of Engineering Physics,Chengdu 610200,China

    4Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin,Nankai University,Tianjin 300350,China

    5Engineering Research Center of Thin Film Optoelectronics Technology,Ministry of Education,Nankai University,Tianjin 300350,China

    Keywords: interface defect,carrier capture coefficients

    1.Introduction

    Around the world, silicon dioxide (SiO2) is a common component of sands.In microelectronic systems, amorphous silicon dioxide(a-SiO2)is used as an insulating layer.Charge capture by defects in the SiO2and transition layers is a critical problem that must be addressed in order to improve semiconductor device dependability.Unlike defects in bulk a-SiO2,when defects capture charge carriers at the interface of a-SiO2and Si (a-SiO2/Si), it will be difficult to recover electric neutrality,causing device performance to deteriorate and eventually leading to device failure.[1–4]Unsaturated dangling bonds,also known asPb-type defects found at the a-SiO2/Si interface are the major electronically active defects,are located in the interface of a-SiO2/Si and are detected using the electron spin-resonance(ESR)spectroscopy[5–8].ThePbdefect is discovered at a-SiO2/Si(111), with its isolated sp3hybrid dangling bond oriented in the (111) direction, orthogonal to the interface[5].Other two unique defects,Pb0andPb1,which are situated in the technologically important(100)interface,with isolated sp3hybrid dangling bonds pointing in the directions of (111) and (211), respectively.[2,8]Because the capture and accumulation of carriers to these defects cause the gate voltage to change and acts as non-radiative recombination sites to diminish the minority carrier density,understanding the microscopic mechanism of carrier capture and identifying dominant defects is crucial.[9,10]Unlike point defects in a-SiO2, interface traps seldom anneal at ambient temperature and continue to interfere with device function.[9]

    Because direct measurement of the carriers capture process is challenging experimentally,especially in terms of identifying relevant defects, it is vital to investigate the related phenomena using theoretical calculations based on anab initiotechnique.[11,12]The adiabatic approximation,[13]Marcus theory,[14]quantum charge transfer theory[15]and static coupling theory[16–18]have been used to construct the electron–phonon coupling matrix, which determines the carriers capture properties of defects.Recently,Alkauskaset al.[18]established a method for calculating the electron–phonon coupling matrix using a one-dimensional(1D)configuration coordinate for the effective vibrational wave function and static coupling theory.This theory was applied to many hole capture defects in GaN and ZnO, and the hole capture coefficients found are consistent with experiment data.Therefore, in our work, we investigate the non-radiative carrier capture coefficients of thePb0andPb1defects using this 1D static coupling theory.Our results indicate that thePb0andPb1defects form positive centers more easily than negatively charged defect centers, and are indeed non-radiative recombination center in the interface of a-SiO2/Si(100).

    2.Theoretical method

    The spin-polarized first-principles calculations are performed in the Viennaab initiosimulation package (VASP)[19,20]with projector-augmented-wave (PAW)pseudopotentials.[21]Generalized gradient approximation(GGA) in the Perdew–Burke–Ernzerhof (PBE) form[22,23]is used for the optimization of geometrical structure and a cutoff energy of 500 eV for the plane-wave expansion is adopted.The convergence criteria are 10?5eV and 0.01 eV·?A?1for energy and force, respectively.The structure models ofPb0andPb1defects are obtained by Liet al.,[24]with a dimension of 15.4 ?A×15.4 ?A×35.0 ?A.Hybrid functional based on the Heyd–Scuseria–Ernzerhof (HSE06) method[25]is employed to obtain the exact electronic properties.

    The formation energy(Ef)of defectXin charge stateqis calculated by

    Theorris the change in electrostatic energy from the periodic boundary condition (Eperiodic) to the open boundary condition(Eisolated)for an isolated defect with chargeq[27]

    where the last term is an alignment term of the classical electrostatic calculation to that of the DFT calculation.[28]

    The finite element method is employed to correct the formation energy, and the charge density and dielectric constant profile of interface defects are extracted from the first principles calculations.[24]The defect charge is approximated by a Gaussian distribution.The Gaussian distribution is defined for the periodic boundary condition as[27]

    whereσis the standard deviation, which defines the localization of the defect wave function,Q0= 1.6×10?19C is the elementary charge, andqis the charge of the defect.The uniform background charge density ofqQ0/?is added to obtain better convergence under the periodic boundary condition,and?is the volume of the simulation unit cell.Under the ground boundary condition and without the uniform charge background,Eq.(3)can be written as

    The permittivity profile can be obtained by polarizabilities of atoms, which include the electronic polarizabilities(αelec) and the ionic polarizabilities (αion).[29]The static permittivity can be written as

    where polarizabilitiesαelecandαionof Si atoms in different oxidation states can be obtained in Ref.[29].A normalized Gaussian smearing function is multiplied to each atomic effective polarizability to smooth the permittivity profile.Thus,the permittivity profile along thez-axis is defined as

    whereαec+αnis the polarizability of thei-th Si atom at thez-positionzi,and the standard deviationσis chosen to be 1.4 ?A, which is the distance between two adjacent Si planes along the [001] direction, and the permittivity profile can be found in Ref.[24].

    武成龍和鬼算盤打得異常激烈?;佚垊θ玢y蛇飛舞,不斷攻擊著鬼算盤的全身,然而鬼算盤那二尺一寸長的、近尺寬的、怪異的、烏黑發(fā)亮的鐵算盤好像一面盾牌一樣有效扼制了長劍的攻勢。長劍的輕靈飄逸與鐵算盤的沉重而笨拙相映成趣,不時響起“叮!叮!叮!”輕脆悅耳的碰撞聲,如果沒有斗場中刺耳的剔肉刮骨聲摻雜其間,會讓人感到那不是一場生死搏殺,而是一場陶醉人心的表演。

    The electrostatic potentialV(r) is the solution of the Poisson equation ?·[ε(r)?V(r)] =?ρ(r), and the electrostatic energiesEperiodicandEisolatedare calculated by solvingE=(1/2)V(r)ρ(r)drfor the corresponding model electrostatic potentialV(r)under the respective boundary condition.It should be noted that theEisolatedis obtained by scaling the simulation box uniformly.

    Thus,the+/0 and 0/?charge-state transition levels calculated from the formation energy of Eq.(1)are given by

    The relevant calculation results can be found in the supporting information.

    Non-radiative carrier capture via multiphonon emission is a common phenomenon for deep defect levels in semiconductors.As shown in Fig.1, the initial excited state of the defect vibrates around the equilibrium geometry.Owing to the electron–phonon coupling, the deformation of the structure will change the electronic state of the defect and form final ground state.Then,the final ground state will relax to the equilibrium structure due to phonon–phonon interactions,and the atomic relaxations are represented by a 1D configuration coordinateQ,the minima of the two potential energy surfaces are offset vertically by ?E, which corresponds to the chargestate transition level, and horizontally by effective configuration coordinate ?Qbetween the excited state and the ground state.According to the 1D static coupling theory, the corresponding capture coefficient is given by Alkauskaset al.[18]

    whereVis the volume of the supercell, and it will replace byS(the surface areas of the a-SiO2/Si(100))because we are concerned with interface defects.gis the degeneracy factor(for a-SiO2/Si(100),g=1).W2ifis the elertron–phonon coupling matrix elements of initial and final states,ξimandξfnare the vibrational wave function of initial excited state with vibrational frequencyωiand final ground state with vibrational frequencyωf, respectively, the vibrational frequency can be obtained by solving the 1D Schr¨odinger equation for potential energy surfaces around the equilibrium geometry.ωmis the thermal occupation number of the initial excited vibrational stateξim,which determines the temperature-dependence of the capture coefficient,and ?Ecorresponds to the energy of charge-state transition with respect to the VBM for hole capture and CBM for electron capture.

    Fig.1.Schematic of configuration coordinate for non-radiative carrier capture.The red and blue lines represent initial excited state with vibrational wave function ξim and final ground state with vibrational wave function ξfn,respectively.?E is the ionization energy of the defect,?Eb serves as a classic energy barrier of carrier capture,and Q is 1D effective configuration coordinate.

    The degree of deformation is described by the 1D effective configuration coordinate ?Qof initial and final states

    wheremαand ?Rαtare the mass and the displacement along the directiontfrom the equilibrium atomic coordinate of atomα,respectively.

    The rationality of 1D static coupling theory is premised on Huang–Rhys factorS ?1,which corresponds to the large lattice relaxation associated with the change of the charge state,thus it is possible to replace the sum over all vibrational degrees of freedom with one special phonon model.[30]TheSis defined as

    3.Results and discussion

    3.1.Geometric structures and electronic properties of Pb0 and Pb1 defects

    The concentration of thePb0defect in the a-SiO2/Si(100)interface is approximately 5×1012cm?2,[32]located in the second Si layer near the interface.ThePb0defect is constructed primarily by removing a Si atom from the second layer of the interface on the Si side,resulting in four dangling bonds,three of which are saturated by H atoms,and the fourth dangling bond is thePb0defect(Fig.2(a)).In the case of thePb1defect,which is located in the topmost layer of the Si side,thePb1defect concentration in the a-SiO2/Si(100) interface is around 1×1012cm?2,[32]which is a fifth of thePb0defect concentration but nevertheless significant.Three different models have been proposed to define thePb1defect, including dimer, bridge and asymmetrically oxidized dimer (AOD)models.[32]The AOD model is the most likely candidate than the dimer and bridge models for thePb1defect, because the full set of hyperfine parameters is found to agree closely with the experimental data,[24,31]so we only choose this model in our research to study the carrier capture properties ofPb1defect.In the AOD model, the two lower back bonds of the fully coordinated Si atom near the SiO2layer are oxidized(Fig.2(b)).Due to the existence of dangling bonds,the neutralPb0andPb1defects have a magnetic moment of 1μB.

    Fig.2.The geometric structure of neutral (left) and positively charged(right)(a)Pb0 defect and(b)Pb1 defect.

    Fig.3.The geometric structure of neutral (left) and negatively charged(right)(a)Pb0 defect and(b)Pb1 defect.

    Table 1 shows the bond lengths and bond angles of the Si atom containing a dangling bond (Si0) and the other three Si atoms coordinated to Si0at defect centers.When the defect captures a hole, the unpaired electron of the dangling bond along with the magnetic moment vanishes, and the defect structure tends to a plane structure similar to that of sp2hybridization (Fig.2), resulting in shorter Si–Si bonds and larger ∠Si–Si–Si bond angles.However, for thePb1defect,the bond length of the Si atom connecting to the three O atoms(Si3O) and Si0becomes longer due to the higher electronegativity of the O atom, which makes the type of bonding between O and Si between covalent and ionic bonds,resulting in different properties of Si3O.In terms of electron capture, the dangling bond’s unpaired electron would pair, and the magnetic moment would vanish, while Si–Si bond lengths would lengthen and ∠Si–Si–Si bond angles would decrease(Fig.3).And the relaxation of Si0contributes the most to ?Q, which can be found in the percentage of ?QSi0in the ?Q(Table 1).

    The energy levels of thePb0andPb1defects before and after hole (electron) capture are all determined by examining the density of states(DOS),as shown in Fig.4.The Si0atom contributes the most to the defect energy level,when the neutral defect captures a hole(electron),the magnetic moment becomes zero due to the unpaired electron in the dangling bond would vanish(pair).

    Table 1.The change of Si–Si bond lengths,∠Si–Si–Si bond angles and mass-weighted distortions of Si atom with a dangling bond ?QSi0 and all atoms ?Q for Pb0 and Pb1 defects by capturing hole or electron.

    Fig.4.Spin-polarized local density of state (LDOS) of Pb0 defects (a) by capturing a hole and (b) by capturing an electron, Pb1 defects(c)by capturing a hole and(d)by capturing an electron.The red and blue lines represent defect levels before and after hole(electron)capture,respectively.The brown and cyan regions represent DOS projection to Si atom with a dangling bond.The energy level of valence-band maximum(VBM)is set to 0 eV.

    3.2.The carrier capture properties for Pb0 defect and Pb1 defect

    ThePb0andPb1defects are amphoteric defects, which act as both a donor and an acceptor state in the bandgap of Si.The complete non-radiative recombination is a sequence of electron-hole pair capture processes.Associated with the(+/0) transition level, there are two capture processes: hole(p) capture for the neutral state () and electron (n) capture for the positively charged state().Similarly,there are also two capture processes involved in the (0/?) transition level:electron capture for the neutral state()and hole capture for the negatively charged state().The 1D configuration coordinate diagram is used to analyze the capture processes.The relative parameters to describe the temperature dependence of carrier capture coefficients are shown in Table 1.

    For thePb0defect,the(+/0)and(0/?)transition levels are 0.26 eV and 0.79 eV above the VBM(i.e.,?Eare 0.26 eV and 0.38 in hole and electron capture for neutral state,respectively), respectively, which accords with the experimental results that the defect levels of thePb0defect are broadly distributed with(+/0)transition level approximately 1/3 eV below the middle of the band gap and the(0/?)transition level approximately 1/3 eV above the middle of the band gap.[4]Figure 5(a)shows the configuration coordinate diagram for the transition betweenPb0andP,the equilibrium configuration ofPandPb0correspond toQ=0 andQ=?Q,respectively.The energy barriers of hole capture (?) and electron capture (?E) are 5.34 meV and 199.53 meV, respectively, ?is much smaller than ?,indicating that the hole capture process for the neutral state is faster than the electron capture process for the positively charged state and smaller temperature dependence of carrier capture coefficient.Figure 5(b) shows the similar results for the transition betweenPb0and, the energy barriers ?and ?are 0.52 meV and 230.14 meV,respectively, indicating that the electron capture process for the neutral state is also faster than the hole capture process for the negatively charged state.

    The carrier capture coefficients as a function of temperature are depicted in Fig.5(c), which includes the electron–phonon coupling and the overlap of potential energy surfaces.And the total non-radiative carrier capture coefficient (Ctot)under steady-state conditions[33–35]can be derived as

    Fig.5.Calculated 1D confgiuration coordinate diagrams for the transition between(a)Pb0 and P,(b)Pb0 and P.(c)Non-radiative capture coefficients of Pb0 defect as a function of reciprocal temperature.

    Fig.6.Calculated 1D confgiuration coordinate diagrams for the transition between(a)Pb1 and ,(b)Pb1 and .(c)Non-radiative capture coefficients of Pb1 defect as a function of reciprocal temperature.

    4.Conclusion

    In summary, we use first principles calculations and the 1D static coupling approach to investigate the carrier capture properties ofPb0andPb1defects,the existence of initial dangling bonds,making these defects to capture holes or electrons easily to eliminate the dangling bonds.Because of the bigger hole capture coefficients for neutral states,thePb0andPb1defects have a stronger capacity to capture holes than electrons,and the large non-radiative recombination coefficient further indicates that these defects are the non-radiative recombination center.The present study further demonstrates how reducing the formation and suppressing the activity of these defects will be key to maintaining device performance in the future.

    Acknowledgments

    Project supported by the Science Challenge Project(Grant No.TZ2016003-1-105), Tianjin Natural Science Fundation (Grant No.20JCZDJC00750), and the Fundamental Research Funds for the Central Universities, Nankai University(Grant Nos.63211107 and 63201182).

    猜你喜歡
    刮骨銀蛇回龍
    元夕回龍窩歷史文化街區(qū)一瞥
    猜猜成語故事的主人公
    過跨海大橋
    岷峨詩稿(2022年4期)2022-09-02 22:10:28
    聞著茶香去旅行
    小讀者之友(2021年7期)2021-08-09 01:24:07
    燕歸巢(外一首)
    草堂(2020年11期)2020-11-18 11:21:35
    劉曦林作品
    國畫家(2020年4期)2020-11-05 06:18:58
    浙江省嘉興市“金翅膀”獎教助學項目 結(jié)對幫扶習水縣回龍鎮(zhèn)30名貧困學生
    晚晴(2019年11期)2019-12-13 07:16:48
    古代刮骨療傷的那些人
    醒獅國學(2019年11期)2019-02-24 06:54:37
    從“銀蛇”到名醫(yī)
    新民周刊(2018年45期)2018-12-01 04:52:58
    智斗李刮骨
    故事會(2017年6期)2017-03-23 18:34:53
    一区二区三区乱码不卡18| 妹子高潮喷水视频| 人妻 亚洲 视频| 深夜精品福利| av网站免费在线观看视频| bbb黄色大片| 久久国产精品人妻蜜桃| 一级黄色大片毛片| 国产免费av片在线观看野外av| 国内毛片毛片毛片毛片毛片| 热99re8久久精品国产| 国产片内射在线| 一区二区三区国产精品乱码| 国产精品影院久久| 90打野战视频偷拍视频| 国产成人一区二区三区免费视频网站| 在线观看免费高清a一片| 久久久精品区二区三区| 欧美av亚洲av综合av国产av| 精品国产一区二区三区久久久樱花| 欧美日韩视频精品一区| 国产精品一区二区免费欧美| 国产视频一区二区在线看| 国产真人三级小视频在线观看| 午夜福利免费观看在线| 亚洲国产av新网站| 国产免费视频播放在线视频| 狠狠精品人妻久久久久久综合| 国产不卡一卡二| 大陆偷拍与自拍| 最黄视频免费看| av天堂久久9| 9热在线视频观看99| 国产成人系列免费观看| 人人妻人人澡人人爽人人夜夜| 香蕉国产在线看| 法律面前人人平等表现在哪些方面| 久久国产亚洲av麻豆专区| 悠悠久久av| 亚洲成人国产一区在线观看| 青草久久国产| 中文字幕最新亚洲高清| 亚洲成人免费电影在线观看| 欧美变态另类bdsm刘玥| 视频在线观看一区二区三区| 搡老乐熟女国产| 手机成人av网站| 91成人精品电影| www.999成人在线观看| 1024视频免费在线观看| 十分钟在线观看高清视频www| 黄片播放在线免费| 老司机靠b影院| 1024香蕉在线观看| 亚洲五月婷婷丁香| 人人妻人人添人人爽欧美一区卜| 动漫黄色视频在线观看| 欧美日本中文国产一区发布| 欧美日韩视频精品一区| 亚洲中文日韩欧美视频| 97在线人人人人妻| 久久人妻熟女aⅴ| 老司机午夜十八禁免费视频| 热re99久久国产66热| 亚洲国产欧美日韩在线播放| 五月开心婷婷网| 如日韩欧美国产精品一区二区三区| 国产片内射在线| 亚洲欧美激情在线| 成年人免费黄色播放视频| 后天国语完整版免费观看| 黄色a级毛片大全视频| 亚洲成人免费电影在线观看| 男女床上黄色一级片免费看| 91成人精品电影| 亚洲人成77777在线视频| 一区二区av电影网| 久久精品亚洲熟妇少妇任你| 国产主播在线观看一区二区| tocl精华| 国产免费视频播放在线视频| 久久国产精品男人的天堂亚洲| 18禁美女被吸乳视频| 欧美一级毛片孕妇| 午夜激情av网站| 80岁老熟妇乱子伦牲交| av福利片在线| 亚洲欧美一区二区三区久久| 国产淫语在线视频| 一区二区三区精品91| 丰满迷人的少妇在线观看| 亚洲精品中文字幕在线视频| 国产在线视频一区二区| 日本wwww免费看| 黑人操中国人逼视频| 丝瓜视频免费看黄片| 一个人免费在线观看的高清视频| 777米奇影视久久| 女性被躁到高潮视频| 国产日韩欧美在线精品| av网站免费在线观看视频| 国产高清国产精品国产三级| 18禁观看日本| 亚洲精品中文字幕一二三四区 | 亚洲色图av天堂| 精品一品国产午夜福利视频| 两性夫妻黄色片| 怎么达到女性高潮| 亚洲成人免费av在线播放| 狠狠婷婷综合久久久久久88av| 中文字幕色久视频| 国产日韩欧美视频二区| 亚洲人成77777在线视频| 欧美黄色淫秽网站| 女同久久另类99精品国产91| 午夜福利在线免费观看网站| √禁漫天堂资源中文www| 丰满饥渴人妻一区二区三| 欧美激情极品国产一区二区三区| 亚洲国产av新网站| 一级a爱视频在线免费观看| 深夜精品福利| aaaaa片日本免费| 9191精品国产免费久久| 国产av一区二区精品久久| 丝袜人妻中文字幕| 成人影院久久| 婷婷成人精品国产| 免费观看av网站的网址| 黄色a级毛片大全视频| 丝瓜视频免费看黄片| 国产伦人伦偷精品视频| 国产日韩一区二区三区精品不卡| 亚洲精品在线观看二区| 国产精品av久久久久免费| 大码成人一级视频| 午夜两性在线视频| 老司机影院毛片| 一级片'在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精品二区激情视频| 午夜老司机福利片| 一二三四在线观看免费中文在| 欧美激情 高清一区二区三区| 麻豆国产av国片精品| 亚洲成人手机| 国产精品久久久人人做人人爽| 又大又爽又粗| 亚洲 欧美一区二区三区| 韩国精品一区二区三区| 免费看十八禁软件| 啦啦啦中文免费视频观看日本| 国产野战对白在线观看| 超色免费av| 亚洲 欧美一区二区三区| 亚洲美女黄片视频| 大香蕉久久成人网| 欧美乱码精品一区二区三区| 免费在线观看完整版高清| 麻豆国产av国片精品| 女人爽到高潮嗷嗷叫在线视频| 一区二区日韩欧美中文字幕| 国产欧美日韩综合在线一区二区| 黄色视频在线播放观看不卡| 女性生殖器流出的白浆| 亚洲精品国产一区二区精华液| 亚洲成人免费电影在线观看| 少妇裸体淫交视频免费看高清 | 亚洲性夜色夜夜综合| 免费人妻精品一区二区三区视频| 国产精品自产拍在线观看55亚洲 | 夜夜骑夜夜射夜夜干| 王馨瑶露胸无遮挡在线观看| 国产精品亚洲一级av第二区| 少妇精品久久久久久久| 露出奶头的视频| 最新的欧美精品一区二区| 国产精品亚洲av一区麻豆| 久久国产亚洲av麻豆专区| 91字幕亚洲| 久久久精品免费免费高清| 天堂中文最新版在线下载| 久久久精品国产亚洲av高清涩受| 国产精品一区二区免费欧美| 欧美精品亚洲一区二区| 亚洲少妇的诱惑av| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲va日本ⅴa欧美va伊人久久| 久久狼人影院| a在线观看视频网站| 伦理电影免费视频| 亚洲欧美激情在线| 极品教师在线免费播放| 免费在线观看日本一区| av欧美777| 男人操女人黄网站| 国产精品久久久久久精品电影小说| 久久久久精品人妻al黑| 午夜久久久在线观看| 国产成人欧美| 国产精品久久久久久人妻精品电影 | 国产日韩欧美亚洲二区| 欧美成狂野欧美在线观看| 久久精品亚洲精品国产色婷小说| 午夜福利,免费看| 日本vs欧美在线观看视频| 欧美精品亚洲一区二区| 超碰97精品在线观看| 大香蕉久久网| 国产精品一区二区免费欧美| 久久亚洲精品不卡| 亚洲成a人片在线一区二区| 777久久人妻少妇嫩草av网站| 国产一区二区三区综合在线观看| 午夜成年电影在线免费观看| 十八禁高潮呻吟视频| 1024视频免费在线观看| 欧美精品啪啪一区二区三区| 成人免费观看视频高清| 午夜成年电影在线免费观看| 欧美精品高潮呻吟av久久| 汤姆久久久久久久影院中文字幕| 热99国产精品久久久久久7| 国产91精品成人一区二区三区 | 国产精品国产av在线观看| 精品久久久久久电影网| 少妇粗大呻吟视频| 亚洲精品中文字幕一二三四区 | 国产免费福利视频在线观看| 精品国产国语对白av| 亚洲精品一二三| 18禁裸乳无遮挡动漫免费视频| 老汉色∧v一级毛片| 男女之事视频高清在线观看| 在线观看免费高清a一片| 欧美变态另类bdsm刘玥| av网站在线播放免费| 黄色 视频免费看| 满18在线观看网站| 又黄又粗又硬又大视频| 性高湖久久久久久久久免费观看| 丰满迷人的少妇在线观看| 国产成人系列免费观看| 欧美日韩一级在线毛片| 999久久久精品免费观看国产| 国产福利在线免费观看视频| 精品少妇内射三级| 国产欧美日韩精品亚洲av| 午夜久久久在线观看| av天堂在线播放| 中文欧美无线码| 欧美 亚洲 国产 日韩一| 精品少妇黑人巨大在线播放| 成人18禁高潮啪啪吃奶动态图| 国产野战对白在线观看| 精品一区二区三区四区五区乱码| 久久久久久久国产电影| 国产欧美日韩一区二区精品| 麻豆乱淫一区二区| 久久精品91无色码中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 美女高潮到喷水免费观看| 黑人猛操日本美女一级片| 精品亚洲乱码少妇综合久久| 午夜精品久久久久久毛片777| 成年人午夜在线观看视频| 女性生殖器流出的白浆| 国产精品电影一区二区三区 | 国产黄色免费在线视频| 高清欧美精品videossex| 精品人妻熟女毛片av久久网站| svipshipincom国产片| 日本五十路高清| 久久精品亚洲av国产电影网| 欧美日韩精品网址| 国产免费福利视频在线观看| 热re99久久国产66热| 国产精品二区激情视频| 亚洲情色 制服丝袜| 日韩视频在线欧美| 最新在线观看一区二区三区| 女人高潮潮喷娇喘18禁视频| 一进一出抽搐动态| 999久久久国产精品视频| 国产黄频视频在线观看| 侵犯人妻中文字幕一二三四区| 亚洲九九香蕉| 女人爽到高潮嗷嗷叫在线视频| 黄色视频不卡| 成人影院久久| 91麻豆精品激情在线观看国产 | 热99re8久久精品国产| 久久久久久免费高清国产稀缺| 人成视频在线观看免费观看| a级毛片黄视频| 丝袜美腿诱惑在线| 精品卡一卡二卡四卡免费| 一本一本久久a久久精品综合妖精| 成人三级做爰电影| 精品国产一区二区三区四区第35| 99久久精品国产亚洲精品| 纯流量卡能插随身wifi吗| 久久九九热精品免费| 欧美精品啪啪一区二区三区| 久久精品国产亚洲av高清一级| 热re99久久国产66热| 老汉色av国产亚洲站长工具| 免费在线观看日本一区| 成年人免费黄色播放视频| 亚洲情色 制服丝袜| 80岁老熟妇乱子伦牲交| 国产精品 欧美亚洲| 丝袜喷水一区| av又黄又爽大尺度在线免费看| 女人高潮潮喷娇喘18禁视频| 国产区一区二久久| 日韩成人在线观看一区二区三区| 操美女的视频在线观看| 99国产极品粉嫩在线观看| tocl精华| 午夜视频精品福利| 久久香蕉激情| 久久婷婷成人综合色麻豆| 纵有疾风起免费观看全集完整版| 欧美精品啪啪一区二区三区| 国产免费福利视频在线观看| 国产精品国产高清国产av | 大码成人一级视频| 国产真人三级小视频在线观看| 十分钟在线观看高清视频www| av线在线观看网站| 亚洲国产av新网站| 亚洲少妇的诱惑av| 一本—道久久a久久精品蜜桃钙片| www.自偷自拍.com| 欧美人与性动交α欧美精品济南到| 成人特级黄色片久久久久久久 | 欧美性长视频在线观看| 肉色欧美久久久久久久蜜桃| 亚洲专区字幕在线| 亚洲av日韩在线播放| 精品久久久精品久久久| 狠狠婷婷综合久久久久久88av| 亚洲欧美一区二区三区久久| 欧美激情高清一区二区三区| 国产精品熟女久久久久浪| 免费观看av网站的网址| 国产老妇伦熟女老妇高清| 国产有黄有色有爽视频| 一本久久精品| 中文字幕另类日韩欧美亚洲嫩草| 午夜91福利影院| 久久精品人人爽人人爽视色| 亚洲中文日韩欧美视频| 黑丝袜美女国产一区| 精品国产国语对白av| 国产精品一区二区在线观看99| 一级毛片女人18水好多| 亚洲熟妇熟女久久| 精品少妇内射三级| 国内毛片毛片毛片毛片毛片| 国产精品熟女久久久久浪| 日本a在线网址| 一本大道久久a久久精品| 肉色欧美久久久久久久蜜桃| 欧美激情久久久久久爽电影 | 免费在线观看影片大全网站| 久久久国产成人免费| 黄色 视频免费看| 国产熟女午夜一区二区三区| 久久久久久人人人人人| 老司机午夜十八禁免费视频| tube8黄色片| 老司机午夜福利在线观看视频 | aaaaa片日本免费| 人人妻,人人澡人人爽秒播| 女警被强在线播放| 99久久人妻综合| 99热网站在线观看| tube8黄色片| 久久久久国产一级毛片高清牌| 免费少妇av软件| 久久久国产一区二区| 久久久久国产一级毛片高清牌| 一个人免费看片子| 午夜久久久在线观看| 人妻 亚洲 视频| 高清在线国产一区| 十八禁网站免费在线| 亚洲 欧美一区二区三区| 国产在线免费精品| 热re99久久国产66热| 成在线人永久免费视频| 又黄又粗又硬又大视频| 老鸭窝网址在线观看| 麻豆成人av在线观看| 桃红色精品国产亚洲av| 国产亚洲一区二区精品| 国产熟女午夜一区二区三区| 乱人伦中国视频| 亚洲国产av影院在线观看| 国产日韩欧美亚洲二区| 美女扒开内裤让男人捅视频| 久久毛片免费看一区二区三区| 最新美女视频免费是黄的| 日本精品一区二区三区蜜桃| 精品高清国产在线一区| 日本a在线网址| 欧美日韩精品网址| 久久九九热精品免费| 久久久久久久大尺度免费视频| 中文字幕人妻熟女乱码| 国产在线一区二区三区精| 老司机午夜十八禁免费视频| 国产xxxxx性猛交| 色综合欧美亚洲国产小说| 99re在线观看精品视频| 久久影院123| 亚洲精品美女久久av网站| 国精品久久久久久国模美| 亚洲av电影在线进入| 又黄又粗又硬又大视频| 男女边摸边吃奶| 在线观看66精品国产| 久久性视频一级片| 999久久久国产精品视频| 极品人妻少妇av视频| 无遮挡黄片免费观看| 美女扒开内裤让男人捅视频| 美女高潮喷水抽搐中文字幕| 一级毛片精品| 久久人妻福利社区极品人妻图片| 欧美精品亚洲一区二区| 欧美日韩视频精品一区| 极品少妇高潮喷水抽搐| 午夜成年电影在线免费观看| 精品少妇黑人巨大在线播放| 咕卡用的链子| 久久免费观看电影| 精品国产超薄肉色丝袜足j| 999久久久国产精品视频| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久av美女十八| svipshipincom国产片| 一本一本久久a久久精品综合妖精| 亚洲精品av麻豆狂野| 国产一区二区三区在线臀色熟女 | 一区二区三区国产精品乱码| 国产免费福利视频在线观看| 亚洲欧美激情在线| 国产成人一区二区三区免费视频网站| 日本欧美视频一区| 黑人欧美特级aaaaaa片| 国产男女超爽视频在线观看| 精品福利观看| 两性夫妻黄色片| 丝瓜视频免费看黄片| 777米奇影视久久| 91麻豆精品激情在线观看国产 | 制服诱惑二区| 精品午夜福利视频在线观看一区 | 久久精品亚洲精品国产色婷小说| 国产午夜精品久久久久久| 国产97色在线日韩免费| 国产精品免费视频内射| 国产免费现黄频在线看| 久久影院123| 日韩成人在线观看一区二区三区| 免费人妻精品一区二区三区视频| 欧美乱码精品一区二区三区| kizo精华| 国产麻豆69| 国产精品亚洲一级av第二区| 久久久久久久久久久久大奶| 精品久久久精品久久久| 19禁男女啪啪无遮挡网站| 青青草视频在线视频观看| 热99久久久久精品小说推荐| 国产精品免费大片| 国产xxxxx性猛交| 可以免费在线观看a视频的电影网站| 精品亚洲成国产av| 人人妻人人澡人人看| 午夜精品国产一区二区电影| 欧美日韩视频精品一区| 久久久精品区二区三区| 一区二区三区精品91| 午夜两性在线视频| a在线观看视频网站| 色婷婷久久久亚洲欧美| 18禁美女被吸乳视频| www日本在线高清视频| 天天操日日干夜夜撸| 欧美精品啪啪一区二区三区| 18禁美女被吸乳视频| 女性被躁到高潮视频| 大型av网站在线播放| 亚洲午夜精品一区,二区,三区| 欧美在线一区亚洲| 欧美激情久久久久久爽电影 | 免费不卡黄色视频| 日本五十路高清| 两人在一起打扑克的视频| 建设人人有责人人尽责人人享有的| 国产黄频视频在线观看| 亚洲精品在线美女| 久久香蕉激情| 不卡一级毛片| 波多野结衣一区麻豆| 不卡一级毛片| 亚洲精华国产精华精| 色婷婷久久久亚洲欧美| 日本a在线网址| 高清欧美精品videossex| 日韩欧美免费精品| 50天的宝宝边吃奶边哭怎么回事| 99精品欧美一区二区三区四区| 男女高潮啪啪啪动态图| 久久毛片免费看一区二区三区| 老司机福利观看| av线在线观看网站| 两人在一起打扑克的视频| 午夜福利视频在线观看免费| 亚洲精品乱久久久久久| 国产野战对白在线观看| 国产精品亚洲av一区麻豆| 黑人巨大精品欧美一区二区蜜桃| av福利片在线| 国产欧美日韩一区二区三区在线| 一进一出抽搐动态| 纯流量卡能插随身wifi吗| 国产精品美女特级片免费视频播放器 | 一个人免费看片子| 精品一区二区三区av网在线观看 | 一区二区三区国产精品乱码| 国产精品 国内视频| www.自偷自拍.com| 久久久久精品国产欧美久久久| 一个人免费在线观看的高清视频| 亚洲五月色婷婷综合| 老司机午夜十八禁免费视频| 亚洲精品一二三| 一本久久精品| 久久午夜亚洲精品久久| 欧美在线黄色| 久久 成人 亚洲| 最近最新免费中文字幕在线| 99国产极品粉嫩在线观看| av天堂久久9| 日韩欧美免费精品| 婷婷成人精品国产| 国产男女内射视频| 大香蕉久久网| 久久国产精品影院| 极品人妻少妇av视频| 宅男免费午夜| 不卡av一区二区三区| 国产熟女午夜一区二区三区| 成年动漫av网址| 国产成人精品久久二区二区免费| 国产精品 国内视频| 国产精品影院久久| 国产精品一区二区免费欧美| 亚洲欧美一区二区三区黑人| 久久久久久人人人人人| 欧美日韩亚洲国产一区二区在线观看 | 亚洲全国av大片| 高清在线国产一区| 香蕉丝袜av| 黄色 视频免费看| www.精华液| 视频区欧美日本亚洲| 国产精品99久久99久久久不卡| 国产一区二区在线观看av| 亚洲第一av免费看| 亚洲 欧美一区二区三区| 一级片免费观看大全| av天堂在线播放| 青青草视频在线视频观看| 国产成人精品无人区| 亚洲av成人不卡在线观看播放网| 成人18禁高潮啪啪吃奶动态图| 一夜夜www| 天天躁夜夜躁狠狠躁躁| 国产高清国产精品国产三级| 性色av乱码一区二区三区2| 中文字幕制服av| 国产人伦9x9x在线观看| 一夜夜www| 好男人电影高清在线观看| 久久久精品94久久精品| 黑丝袜美女国产一区| 国产精品久久久久久精品古装| 国产精品免费大片| 亚洲性夜色夜夜综合| 老汉色∧v一级毛片| 欧美国产精品一级二级三级| 日韩视频一区二区在线观看| 亚洲欧美激情在线| 777米奇影视久久| 国产成人精品在线电影| 精品国产超薄肉色丝袜足j| 熟女少妇亚洲综合色aaa.| 黑丝袜美女国产一区| 欧美亚洲日本最大视频资源| 夫妻午夜视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产成人一精品久久久| 国产精品一区二区在线不卡| 亚洲国产精品一区二区三区在线| 成人国产一区最新在线观看| 国产精品一区二区在线不卡| 在线看a的网站| 伊人久久大香线蕉亚洲五| 国产精品一区二区在线不卡|