• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles study of non-radiative carrier capture by defects at amorphous-SiO2/Si(100)interface

    2023-09-05 08:48:28HaoranZhu祝浩然WeifengXie謝偉鋒XinLiu劉欣YangLiu劉楊JinliZhang張金利andXuZuo左旭
    Chinese Physics B 2023年7期
    關鍵詞:刮骨銀蛇回龍

    Haoran Zhu(祝浩然), Weifeng Xie(謝偉鋒), Xin Liu(劉欣), Yang Liu(劉楊),Jinli Zhang(張金利), and Xu Zuo(左旭),4,5,?

    1College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China

    2Institute of Electronic Engineering,China Academy of Engineering Physics,Mianyang 621999,China

    3Microsystem and Terahertz Research Center,China Academy of Engineering Physics,Chengdu 610200,China

    4Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin,Nankai University,Tianjin 300350,China

    5Engineering Research Center of Thin Film Optoelectronics Technology,Ministry of Education,Nankai University,Tianjin 300350,China

    Keywords: interface defect,carrier capture coefficients

    1.Introduction

    Around the world, silicon dioxide (SiO2) is a common component of sands.In microelectronic systems, amorphous silicon dioxide(a-SiO2)is used as an insulating layer.Charge capture by defects in the SiO2and transition layers is a critical problem that must be addressed in order to improve semiconductor device dependability.Unlike defects in bulk a-SiO2,when defects capture charge carriers at the interface of a-SiO2and Si (a-SiO2/Si), it will be difficult to recover electric neutrality,causing device performance to deteriorate and eventually leading to device failure.[1–4]Unsaturated dangling bonds,also known asPb-type defects found at the a-SiO2/Si interface are the major electronically active defects,are located in the interface of a-SiO2/Si and are detected using the electron spin-resonance(ESR)spectroscopy[5–8].ThePbdefect is discovered at a-SiO2/Si(111), with its isolated sp3hybrid dangling bond oriented in the (111) direction, orthogonal to the interface[5].Other two unique defects,Pb0andPb1,which are situated in the technologically important(100)interface,with isolated sp3hybrid dangling bonds pointing in the directions of (111) and (211), respectively.[2,8]Because the capture and accumulation of carriers to these defects cause the gate voltage to change and acts as non-radiative recombination sites to diminish the minority carrier density,understanding the microscopic mechanism of carrier capture and identifying dominant defects is crucial.[9,10]Unlike point defects in a-SiO2, interface traps seldom anneal at ambient temperature and continue to interfere with device function.[9]

    Because direct measurement of the carriers capture process is challenging experimentally,especially in terms of identifying relevant defects, it is vital to investigate the related phenomena using theoretical calculations based on anab initiotechnique.[11,12]The adiabatic approximation,[13]Marcus theory,[14]quantum charge transfer theory[15]and static coupling theory[16–18]have been used to construct the electron–phonon coupling matrix, which determines the carriers capture properties of defects.Recently,Alkauskaset al.[18]established a method for calculating the electron–phonon coupling matrix using a one-dimensional(1D)configuration coordinate for the effective vibrational wave function and static coupling theory.This theory was applied to many hole capture defects in GaN and ZnO, and the hole capture coefficients found are consistent with experiment data.Therefore, in our work, we investigate the non-radiative carrier capture coefficients of thePb0andPb1defects using this 1D static coupling theory.Our results indicate that thePb0andPb1defects form positive centers more easily than negatively charged defect centers, and are indeed non-radiative recombination center in the interface of a-SiO2/Si(100).

    2.Theoretical method

    The spin-polarized first-principles calculations are performed in the Viennaab initiosimulation package (VASP)[19,20]with projector-augmented-wave (PAW)pseudopotentials.[21]Generalized gradient approximation(GGA) in the Perdew–Burke–Ernzerhof (PBE) form[22,23]is used for the optimization of geometrical structure and a cutoff energy of 500 eV for the plane-wave expansion is adopted.The convergence criteria are 10?5eV and 0.01 eV·?A?1for energy and force, respectively.The structure models ofPb0andPb1defects are obtained by Liet al.,[24]with a dimension of 15.4 ?A×15.4 ?A×35.0 ?A.Hybrid functional based on the Heyd–Scuseria–Ernzerhof (HSE06) method[25]is employed to obtain the exact electronic properties.

    The formation energy(Ef)of defectXin charge stateqis calculated by

    Theorris the change in electrostatic energy from the periodic boundary condition (Eperiodic) to the open boundary condition(Eisolated)for an isolated defect with chargeq[27]

    where the last term is an alignment term of the classical electrostatic calculation to that of the DFT calculation.[28]

    The finite element method is employed to correct the formation energy, and the charge density and dielectric constant profile of interface defects are extracted from the first principles calculations.[24]The defect charge is approximated by a Gaussian distribution.The Gaussian distribution is defined for the periodic boundary condition as[27]

    whereσis the standard deviation, which defines the localization of the defect wave function,Q0= 1.6×10?19C is the elementary charge, andqis the charge of the defect.The uniform background charge density ofqQ0/?is added to obtain better convergence under the periodic boundary condition,and?is the volume of the simulation unit cell.Under the ground boundary condition and without the uniform charge background,Eq.(3)can be written as

    The permittivity profile can be obtained by polarizabilities of atoms, which include the electronic polarizabilities(αelec) and the ionic polarizabilities (αion).[29]The static permittivity can be written as

    where polarizabilitiesαelecandαionof Si atoms in different oxidation states can be obtained in Ref.[29].A normalized Gaussian smearing function is multiplied to each atomic effective polarizability to smooth the permittivity profile.Thus,the permittivity profile along thez-axis is defined as

    whereαec+αnis the polarizability of thei-th Si atom at thez-positionzi,and the standard deviationσis chosen to be 1.4 ?A, which is the distance between two adjacent Si planes along the [001] direction, and the permittivity profile can be found in Ref.[24].

    武成龍和鬼算盤打得異常激烈?;佚垊θ玢y蛇飛舞,不斷攻擊著鬼算盤的全身,然而鬼算盤那二尺一寸長的、近尺寬的、怪異的、烏黑發(fā)亮的鐵算盤好像一面盾牌一樣有效扼制了長劍的攻勢。長劍的輕靈飄逸與鐵算盤的沉重而笨拙相映成趣,不時響起“叮!叮!叮!”輕脆悅耳的碰撞聲,如果沒有斗場中刺耳的剔肉刮骨聲摻雜其間,會讓人感到那不是一場生死搏殺,而是一場陶醉人心的表演。

    The electrostatic potentialV(r) is the solution of the Poisson equation ?·[ε(r)?V(r)] =?ρ(r), and the electrostatic energiesEperiodicandEisolatedare calculated by solvingE=(1/2)V(r)ρ(r)drfor the corresponding model electrostatic potentialV(r)under the respective boundary condition.It should be noted that theEisolatedis obtained by scaling the simulation box uniformly.

    Thus,the+/0 and 0/?charge-state transition levels calculated from the formation energy of Eq.(1)are given by

    The relevant calculation results can be found in the supporting information.

    Non-radiative carrier capture via multiphonon emission is a common phenomenon for deep defect levels in semiconductors.As shown in Fig.1, the initial excited state of the defect vibrates around the equilibrium geometry.Owing to the electron–phonon coupling, the deformation of the structure will change the electronic state of the defect and form final ground state.Then,the final ground state will relax to the equilibrium structure due to phonon–phonon interactions,and the atomic relaxations are represented by a 1D configuration coordinateQ,the minima of the two potential energy surfaces are offset vertically by ?E, which corresponds to the chargestate transition level, and horizontally by effective configuration coordinate ?Qbetween the excited state and the ground state.According to the 1D static coupling theory, the corresponding capture coefficient is given by Alkauskaset al.[18]

    whereVis the volume of the supercell, and it will replace byS(the surface areas of the a-SiO2/Si(100))because we are concerned with interface defects.gis the degeneracy factor(for a-SiO2/Si(100),g=1).W2ifis the elertron–phonon coupling matrix elements of initial and final states,ξimandξfnare the vibrational wave function of initial excited state with vibrational frequencyωiand final ground state with vibrational frequencyωf, respectively, the vibrational frequency can be obtained by solving the 1D Schr¨odinger equation for potential energy surfaces around the equilibrium geometry.ωmis the thermal occupation number of the initial excited vibrational stateξim,which determines the temperature-dependence of the capture coefficient,and ?Ecorresponds to the energy of charge-state transition with respect to the VBM for hole capture and CBM for electron capture.

    Fig.1.Schematic of configuration coordinate for non-radiative carrier capture.The red and blue lines represent initial excited state with vibrational wave function ξim and final ground state with vibrational wave function ξfn,respectively.?E is the ionization energy of the defect,?Eb serves as a classic energy barrier of carrier capture,and Q is 1D effective configuration coordinate.

    The degree of deformation is described by the 1D effective configuration coordinate ?Qof initial and final states

    wheremαand ?Rαtare the mass and the displacement along the directiontfrom the equilibrium atomic coordinate of atomα,respectively.

    The rationality of 1D static coupling theory is premised on Huang–Rhys factorS ?1,which corresponds to the large lattice relaxation associated with the change of the charge state,thus it is possible to replace the sum over all vibrational degrees of freedom with one special phonon model.[30]TheSis defined as

    3.Results and discussion

    3.1.Geometric structures and electronic properties of Pb0 and Pb1 defects

    The concentration of thePb0defect in the a-SiO2/Si(100)interface is approximately 5×1012cm?2,[32]located in the second Si layer near the interface.ThePb0defect is constructed primarily by removing a Si atom from the second layer of the interface on the Si side,resulting in four dangling bonds,three of which are saturated by H atoms,and the fourth dangling bond is thePb0defect(Fig.2(a)).In the case of thePb1defect,which is located in the topmost layer of the Si side,thePb1defect concentration in the a-SiO2/Si(100) interface is around 1×1012cm?2,[32]which is a fifth of thePb0defect concentration but nevertheless significant.Three different models have been proposed to define thePb1defect, including dimer, bridge and asymmetrically oxidized dimer (AOD)models.[32]The AOD model is the most likely candidate than the dimer and bridge models for thePb1defect, because the full set of hyperfine parameters is found to agree closely with the experimental data,[24,31]so we only choose this model in our research to study the carrier capture properties ofPb1defect.In the AOD model, the two lower back bonds of the fully coordinated Si atom near the SiO2layer are oxidized(Fig.2(b)).Due to the existence of dangling bonds,the neutralPb0andPb1defects have a magnetic moment of 1μB.

    Fig.2.The geometric structure of neutral (left) and positively charged(right)(a)Pb0 defect and(b)Pb1 defect.

    Fig.3.The geometric structure of neutral (left) and negatively charged(right)(a)Pb0 defect and(b)Pb1 defect.

    Table 1 shows the bond lengths and bond angles of the Si atom containing a dangling bond (Si0) and the other three Si atoms coordinated to Si0at defect centers.When the defect captures a hole, the unpaired electron of the dangling bond along with the magnetic moment vanishes, and the defect structure tends to a plane structure similar to that of sp2hybridization (Fig.2), resulting in shorter Si–Si bonds and larger ∠Si–Si–Si bond angles.However, for thePb1defect,the bond length of the Si atom connecting to the three O atoms(Si3O) and Si0becomes longer due to the higher electronegativity of the O atom, which makes the type of bonding between O and Si between covalent and ionic bonds,resulting in different properties of Si3O.In terms of electron capture, the dangling bond’s unpaired electron would pair, and the magnetic moment would vanish, while Si–Si bond lengths would lengthen and ∠Si–Si–Si bond angles would decrease(Fig.3).And the relaxation of Si0contributes the most to ?Q, which can be found in the percentage of ?QSi0in the ?Q(Table 1).

    The energy levels of thePb0andPb1defects before and after hole (electron) capture are all determined by examining the density of states(DOS),as shown in Fig.4.The Si0atom contributes the most to the defect energy level,when the neutral defect captures a hole(electron),the magnetic moment becomes zero due to the unpaired electron in the dangling bond would vanish(pair).

    Table 1.The change of Si–Si bond lengths,∠Si–Si–Si bond angles and mass-weighted distortions of Si atom with a dangling bond ?QSi0 and all atoms ?Q for Pb0 and Pb1 defects by capturing hole or electron.

    Fig.4.Spin-polarized local density of state (LDOS) of Pb0 defects (a) by capturing a hole and (b) by capturing an electron, Pb1 defects(c)by capturing a hole and(d)by capturing an electron.The red and blue lines represent defect levels before and after hole(electron)capture,respectively.The brown and cyan regions represent DOS projection to Si atom with a dangling bond.The energy level of valence-band maximum(VBM)is set to 0 eV.

    3.2.The carrier capture properties for Pb0 defect and Pb1 defect

    ThePb0andPb1defects are amphoteric defects, which act as both a donor and an acceptor state in the bandgap of Si.The complete non-radiative recombination is a sequence of electron-hole pair capture processes.Associated with the(+/0) transition level, there are two capture processes: hole(p) capture for the neutral state () and electron (n) capture for the positively charged state().Similarly,there are also two capture processes involved in the (0/?) transition level:electron capture for the neutral state()and hole capture for the negatively charged state().The 1D configuration coordinate diagram is used to analyze the capture processes.The relative parameters to describe the temperature dependence of carrier capture coefficients are shown in Table 1.

    For thePb0defect,the(+/0)and(0/?)transition levels are 0.26 eV and 0.79 eV above the VBM(i.e.,?Eare 0.26 eV and 0.38 in hole and electron capture for neutral state,respectively), respectively, which accords with the experimental results that the defect levels of thePb0defect are broadly distributed with(+/0)transition level approximately 1/3 eV below the middle of the band gap and the(0/?)transition level approximately 1/3 eV above the middle of the band gap.[4]Figure 5(a)shows the configuration coordinate diagram for the transition betweenPb0andP,the equilibrium configuration ofPandPb0correspond toQ=0 andQ=?Q,respectively.The energy barriers of hole capture (?) and electron capture (?E) are 5.34 meV and 199.53 meV, respectively, ?is much smaller than ?,indicating that the hole capture process for the neutral state is faster than the electron capture process for the positively charged state and smaller temperature dependence of carrier capture coefficient.Figure 5(b) shows the similar results for the transition betweenPb0and, the energy barriers ?and ?are 0.52 meV and 230.14 meV,respectively, indicating that the electron capture process for the neutral state is also faster than the hole capture process for the negatively charged state.

    The carrier capture coefficients as a function of temperature are depicted in Fig.5(c), which includes the electron–phonon coupling and the overlap of potential energy surfaces.And the total non-radiative carrier capture coefficient (Ctot)under steady-state conditions[33–35]can be derived as

    Fig.5.Calculated 1D confgiuration coordinate diagrams for the transition between(a)Pb0 and P,(b)Pb0 and P.(c)Non-radiative capture coefficients of Pb0 defect as a function of reciprocal temperature.

    Fig.6.Calculated 1D confgiuration coordinate diagrams for the transition between(a)Pb1 and ,(b)Pb1 and .(c)Non-radiative capture coefficients of Pb1 defect as a function of reciprocal temperature.

    4.Conclusion

    In summary, we use first principles calculations and the 1D static coupling approach to investigate the carrier capture properties ofPb0andPb1defects,the existence of initial dangling bonds,making these defects to capture holes or electrons easily to eliminate the dangling bonds.Because of the bigger hole capture coefficients for neutral states,thePb0andPb1defects have a stronger capacity to capture holes than electrons,and the large non-radiative recombination coefficient further indicates that these defects are the non-radiative recombination center.The present study further demonstrates how reducing the formation and suppressing the activity of these defects will be key to maintaining device performance in the future.

    Acknowledgments

    Project supported by the Science Challenge Project(Grant No.TZ2016003-1-105), Tianjin Natural Science Fundation (Grant No.20JCZDJC00750), and the Fundamental Research Funds for the Central Universities, Nankai University(Grant Nos.63211107 and 63201182).

    猜你喜歡
    刮骨銀蛇回龍
    元夕回龍窩歷史文化街區(qū)一瞥
    猜猜成語故事的主人公
    過跨海大橋
    岷峨詩稿(2022年4期)2022-09-02 22:10:28
    聞著茶香去旅行
    小讀者之友(2021年7期)2021-08-09 01:24:07
    燕歸巢(外一首)
    草堂(2020年11期)2020-11-18 11:21:35
    劉曦林作品
    國畫家(2020年4期)2020-11-05 06:18:58
    浙江省嘉興市“金翅膀”獎教助學項目 結(jié)對幫扶習水縣回龍鎮(zhèn)30名貧困學生
    晚晴(2019年11期)2019-12-13 07:16:48
    古代刮骨療傷的那些人
    醒獅國學(2019年11期)2019-02-24 06:54:37
    從“銀蛇”到名醫(yī)
    新民周刊(2018年45期)2018-12-01 04:52:58
    智斗李刮骨
    故事會(2017年6期)2017-03-23 18:34:53
    尤物成人国产欧美一区二区三区| 久久精品国产亚洲av香蕉五月| 日本-黄色视频高清免费观看| 亚洲精品乱码久久久v下载方式| 午夜福利在线观看吧| 熟女电影av网| 久久久久久久亚洲中文字幕| 国产成人av教育| 国产精品爽爽va在线观看网站| 国产不卡一卡二| 最新在线观看一区二区三区| 麻豆国产97在线/欧美| 亚洲成人久久性| 韩国av在线不卡| 国产精品嫩草影院av在线观看 | 国产精品一及| 一区福利在线观看| 99精品在免费线老司机午夜| 性色avwww在线观看| 色噜噜av男人的天堂激情| 黄色配什么色好看| 亚洲avbb在线观看| 国产精品久久视频播放| 久久精品国产清高在天天线| 日韩欧美 国产精品| 少妇熟女aⅴ在线视频| 成人精品一区二区免费| 国产精品国产高清国产av| 久久99热6这里只有精品| 国产亚洲精品av在线| 很黄的视频免费| 亚洲av免费在线观看| 3wmmmm亚洲av在线观看| aaaaa片日本免费| 国产精品一区二区三区四区免费观看 | 欧美人与善性xxx| 麻豆成人午夜福利视频| 精品一区二区免费观看| 午夜久久久久精精品| 国产精品三级大全| 亚洲乱码一区二区免费版| 色综合婷婷激情| 如何舔出高潮| 欧美黑人巨大hd| 十八禁网站免费在线| 午夜福利高清视频| 真人做人爱边吃奶动态| 熟女人妻精品中文字幕| 色吧在线观看| 国内精品美女久久久久久| av专区在线播放| 国产69精品久久久久777片| 免费大片18禁| 少妇丰满av| 麻豆成人av在线观看| 国产综合懂色| 人妻少妇偷人精品九色| 国产精品女同一区二区软件 | 亚洲精品久久国产高清桃花| 99久久精品热视频| 三级国产精品欧美在线观看| 成人精品一区二区免费| 在线免费观看不下载黄p国产 | 亚洲天堂国产精品一区在线| 毛片女人毛片| 欧美精品国产亚洲| 成人av一区二区三区在线看| 国产免费男女视频| 一进一出抽搐动态| 亚洲精品久久国产高清桃花| 舔av片在线| 精品久久国产蜜桃| 91av网一区二区| 在线天堂最新版资源| 国产亚洲精品av在线| 人妻丰满熟妇av一区二区三区| aaaaa片日本免费| 午夜福利在线观看吧| 99热网站在线观看| 国产精品人妻久久久久久| 国产精品伦人一区二区| 亚洲熟妇熟女久久| 日韩人妻高清精品专区| 啦啦啦观看免费观看视频高清| 亚洲人与动物交配视频| 色精品久久人妻99蜜桃| 国产国拍精品亚洲av在线观看| 国产高清视频在线播放一区| 两性午夜刺激爽爽歪歪视频在线观看| 欧美人与善性xxx| av在线亚洲专区| 国产探花在线观看一区二区| 老师上课跳d突然被开到最大视频| 91麻豆av在线| 热99re8久久精品国产| av女优亚洲男人天堂| 日日干狠狠操夜夜爽| a级毛片a级免费在线| 亚洲综合色惰| 国产男靠女视频免费网站| 人妻夜夜爽99麻豆av| 在线a可以看的网站| 亚洲无线观看免费| 亚洲人成网站高清观看| 亚洲美女搞黄在线观看 | 久久九九热精品免费| 欧美成人一区二区免费高清观看| 我要看日韩黄色一级片| 天堂动漫精品| 91麻豆精品激情在线观看国产| 精华霜和精华液先用哪个| 国产一级毛片七仙女欲春2| 日韩欧美在线乱码| 亚洲中文日韩欧美视频| 国内久久婷婷六月综合欲色啪| 人妻少妇偷人精品九色| 99久久无色码亚洲精品果冻| 99久久中文字幕三级久久日本| 18禁黄网站禁片免费观看直播| 色在线成人网| 99国产极品粉嫩在线观看| 波多野结衣高清无吗| 欧美日韩亚洲国产一区二区在线观看| 舔av片在线| 有码 亚洲区| 成人国产麻豆网| 永久网站在线| 在线观看免费视频日本深夜| 日本黄色视频三级网站网址| 在线观看66精品国产| 国产精品亚洲美女久久久| 国产 一区 欧美 日韩| 欧美中文日本在线观看视频| 日本撒尿小便嘘嘘汇集6| 精品无人区乱码1区二区| 在线免费十八禁| 在现免费观看毛片| 最后的刺客免费高清国语| 日本色播在线视频| 国产一级毛片七仙女欲春2| 国产一区二区三区视频了| 国产一级毛片七仙女欲春2| 在线天堂最新版资源| 白带黄色成豆腐渣| 国语自产精品视频在线第100页| 国产伦在线观看视频一区| 欧美日本视频| a级一级毛片免费在线观看| 亚洲欧美日韩高清在线视频| 久久久久精品国产欧美久久久| 精品日产1卡2卡| 中出人妻视频一区二区| 国产成人av教育| 欧美成人一区二区免费高清观看| 中国美女看黄片| 男插女下体视频免费在线播放| 好男人在线观看高清免费视频| 欧美在线一区亚洲| 亚洲精华国产精华精| 国产精品久久视频播放| 亚洲精品影视一区二区三区av| 深爱激情五月婷婷| 岛国在线免费视频观看| 国产精品人妻久久久影院| 日韩欧美三级三区| 日韩欧美三级三区| 免费不卡的大黄色大毛片视频在线观看 | 美女大奶头视频| 久久精品人妻少妇| 亚洲精品在线观看二区| 午夜影院日韩av| 自拍偷自拍亚洲精品老妇| 亚洲成人精品中文字幕电影| av中文乱码字幕在线| 大型黄色视频在线免费观看| 亚洲国产高清在线一区二区三| 白带黄色成豆腐渣| 国产精品不卡视频一区二区| 国产精品99久久久久久久久| 日本熟妇午夜| 免费看光身美女| 国产精品亚洲一级av第二区| 少妇高潮的动态图| 欧美日韩瑟瑟在线播放| 欧美日韩瑟瑟在线播放| 亚洲va日本ⅴa欧美va伊人久久| 欧美绝顶高潮抽搐喷水| 一个人看的www免费观看视频| 婷婷精品国产亚洲av| 免费av不卡在线播放| 婷婷精品国产亚洲av| 在线a可以看的网站| 悠悠久久av| 色噜噜av男人的天堂激情| 久久国产乱子免费精品| 午夜a级毛片| 婷婷六月久久综合丁香| 最新中文字幕久久久久| 国产精品av视频在线免费观看| 国产主播在线观看一区二区| 少妇被粗大猛烈的视频| 日本与韩国留学比较| 色在线成人网| 色噜噜av男人的天堂激情| 久久精品影院6| 国模一区二区三区四区视频| 嫩草影院新地址| 超碰av人人做人人爽久久| 亚洲av第一区精品v没综合| 午夜老司机福利剧场| а√天堂www在线а√下载| 听说在线观看完整版免费高清| 日韩欧美免费精品| 嫩草影院精品99| 欧美激情在线99| 搡老妇女老女人老熟妇| 国产精品爽爽va在线观看网站| 日韩精品有码人妻一区| 国产精品av视频在线免费观看| 亚洲一级一片aⅴ在线观看| 国产欧美日韩精品亚洲av| 黄色视频,在线免费观看| 岛国在线免费视频观看| 欧美激情在线99| 久久午夜福利片| 日本黄色片子视频| 免费看av在线观看网站| 国产精品永久免费网站| 91在线观看av| 小说图片视频综合网站| 97碰自拍视频| 国产蜜桃级精品一区二区三区| 国产精品女同一区二区软件 | 国产伦精品一区二区三区四那| 一本精品99久久精品77| 国产精品电影一区二区三区| 国产又黄又爽又无遮挡在线| 亚洲不卡免费看| 免费av观看视频| 黄色欧美视频在线观看| 国产精品人妻久久久久久| 免费无遮挡裸体视频| 国产乱人伦免费视频| 国产视频一区二区在线看| 成人高潮视频无遮挡免费网站| 日本免费一区二区三区高清不卡| 久久99热这里只有精品18| 欧美一区二区国产精品久久精品| 黄色视频,在线免费观看| 69人妻影院| 日韩高清综合在线| 无人区码免费观看不卡| 国产亚洲欧美98| 99热这里只有是精品50| 久久久久久久久中文| 精品不卡国产一区二区三区| 一级黄色大片毛片| 亚洲av中文av极速乱 | 97超级碰碰碰精品色视频在线观看| 日韩大尺度精品在线看网址| 日韩国内少妇激情av| 成年女人看的毛片在线观看| 久久人人精品亚洲av| 日日撸夜夜添| 女生性感内裤真人,穿戴方法视频| 淫秽高清视频在线观看| 亚洲av第一区精品v没综合| 午夜福利欧美成人| 天堂√8在线中文| 精品免费久久久久久久清纯| 国产精品嫩草影院av在线观看 | 国产大屁股一区二区在线视频| av在线亚洲专区| 人妻制服诱惑在线中文字幕| av福利片在线观看| 欧美+亚洲+日韩+国产| 3wmmmm亚洲av在线观看| 亚洲av免费在线观看| 国产高清有码在线观看视频| 韩国av在线不卡| 啦啦啦观看免费观看视频高清| 精品福利观看| 亚洲精品一区av在线观看| a级毛片免费高清观看在线播放| 麻豆国产av国片精品| 高清在线国产一区| 亚洲最大成人中文| av在线观看视频网站免费| 色吧在线观看| 国产精品久久久久久av不卡| 日韩 亚洲 欧美在线| 日韩欧美国产在线观看| 日本熟妇午夜| 日韩欧美 国产精品| 国产精品国产三级国产av玫瑰| videossex国产| 久久精品国产99精品国产亚洲性色| 联通29元200g的流量卡| 国产免费男女视频| 三级国产精品欧美在线观看| 免费看a级黄色片| 欧美性猛交黑人性爽| 成年人黄色毛片网站| 欧美成人免费av一区二区三区| 赤兔流量卡办理| 成人av一区二区三区在线看| 波多野结衣高清作品| 天天躁日日操中文字幕| 51国产日韩欧美| 国产成人a区在线观看| 变态另类成人亚洲欧美熟女| av中文乱码字幕在线| 一夜夜www| 中出人妻视频一区二区| 午夜日韩欧美国产| 91在线观看av| 小说图片视频综合网站| 国产蜜桃级精品一区二区三区| 亚洲性夜色夜夜综合| 亚洲av免费高清在线观看| 久久精品国产鲁丝片午夜精品 | 国产伦精品一区二区三区视频9| 欧美成人性av电影在线观看| 国产亚洲欧美98| 成人精品一区二区免费| 又紧又爽又黄一区二区| 日韩欧美三级三区| 亚洲国产精品sss在线观看| 久久亚洲精品不卡| 免费人成视频x8x8入口观看| xxxwww97欧美| 日韩一区二区视频免费看| 国产一级毛片七仙女欲春2| 99久久中文字幕三级久久日本| 最后的刺客免费高清国语| 尤物成人国产欧美一区二区三区| 亚洲国产精品合色在线| 一级a爱片免费观看的视频| 舔av片在线| 性欧美人与动物交配| 99热精品在线国产| 成人毛片a级毛片在线播放| 国产av不卡久久| 午夜福利在线观看吧| 亚洲不卡免费看| 国语自产精品视频在线第100页| 此物有八面人人有两片| 免费高清视频大片| 桃色一区二区三区在线观看| 精品一区二区三区视频在线观看免费| 五月玫瑰六月丁香| 给我免费播放毛片高清在线观看| 啦啦啦观看免费观看视频高清| 免费在线观看影片大全网站| 国产成人福利小说| 国产日本99.免费观看| 欧美+日韩+精品| 国产不卡一卡二| 日韩av在线大香蕉| 国产在视频线在精品| 永久网站在线| 露出奶头的视频| 精品无人区乱码1区二区| 伦精品一区二区三区| 九九久久精品国产亚洲av麻豆| 99riav亚洲国产免费| 国产探花在线观看一区二区| 又粗又爽又猛毛片免费看| 91久久精品国产一区二区三区| 一进一出抽搐动态| 91狼人影院| 国产一区二区在线观看日韩| 国产精华一区二区三区| 中文字幕高清在线视频| 精品久久久久久,| 男女视频在线观看网站免费| 99久久成人亚洲精品观看| 国产视频一区二区在线看| 88av欧美| 成年人黄色毛片网站| 成人精品一区二区免费| 国产精品无大码| а√天堂www在线а√下载| 一卡2卡三卡四卡精品乱码亚洲| 在线a可以看的网站| 欧美精品国产亚洲| 日韩 亚洲 欧美在线| 尾随美女入室| 久久久成人免费电影| 成人av在线播放网站| 亚洲中文日韩欧美视频| 久久人人精品亚洲av| 色精品久久人妻99蜜桃| 国内久久婷婷六月综合欲色啪| 三级男女做爰猛烈吃奶摸视频| 国产精品人妻久久久影院| 国产真实乱freesex| 亚洲成av人片在线播放无| 日韩欧美精品v在线| 99国产精品一区二区蜜桃av| 久久精品国产亚洲av天美| 人妻夜夜爽99麻豆av| 最近视频中文字幕2019在线8| 亚洲av免费高清在线观看| 亚洲美女搞黄在线观看 | 啦啦啦韩国在线观看视频| 日韩精品青青久久久久久| 日韩欧美免费精品| 欧美色欧美亚洲另类二区| 久久久久国产精品人妻aⅴ院| 欧美日韩精品成人综合77777| 日本 欧美在线| a级一级毛片免费在线观看| 国产男靠女视频免费网站| 毛片一级片免费看久久久久 | 日日夜夜操网爽| 久久人人精品亚洲av| 亚洲av第一区精品v没综合| 性欧美人与动物交配| 亚洲av二区三区四区| 日韩欧美一区二区三区在线观看| 欧美色视频一区免费| 日韩欧美在线乱码| 少妇人妻一区二区三区视频| 俄罗斯特黄特色一大片| 色av中文字幕| 亚洲国产日韩欧美精品在线观看| 亚洲第一区二区三区不卡| 99在线人妻在线中文字幕| 97热精品久久久久久| 少妇的逼水好多| 又粗又爽又猛毛片免费看| 校园人妻丝袜中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品一卡2卡三卡4卡5卡| 日韩精品有码人妻一区| 亚洲欧美清纯卡通| 国产成人av教育| 日韩一区二区视频免费看| 亚洲真实伦在线观看| 久久午夜福利片| 国产探花极品一区二区| 午夜影院日韩av| 99久久无色码亚洲精品果冻| 99久久精品一区二区三区| 久久久久久久午夜电影| 婷婷六月久久综合丁香| 日本爱情动作片www.在线观看 | 国产高清激情床上av| 99在线视频只有这里精品首页| 午夜日韩欧美国产| 日韩精品有码人妻一区| 成年人黄色毛片网站| 精品久久久噜噜| 国产男靠女视频免费网站| 欧美性感艳星| 色尼玛亚洲综合影院| 一进一出抽搐gif免费好疼| 我要看日韩黄色一级片| 国产在视频线在精品| 日韩一本色道免费dvd| 国产高清有码在线观看视频| 精品久久久久久久久久久久久| 成人国产一区最新在线观看| 嫩草影院新地址| 欧美国产日韩亚洲一区| 午夜福利欧美成人| videossex国产| 国产伦精品一区二区三区四那| 日韩欧美三级三区| 日本撒尿小便嘘嘘汇集6| 黄色配什么色好看| 日本爱情动作片www.在线观看 | 亚洲,欧美,日韩| 久久精品影院6| 久久久久久久久久久丰满 | 日韩av在线大香蕉| 成人永久免费在线观看视频| 国产精品爽爽va在线观看网站| 免费看av在线观看网站| 三级国产精品欧美在线观看| 亚洲av熟女| 91在线观看av| 长腿黑丝高跟| 亚洲精品乱码久久久v下载方式| 此物有八面人人有两片| 99久久精品国产国产毛片| 成年版毛片免费区| 我要搜黄色片| 国产精品99久久久久久久久| 免费大片18禁| 国产精品亚洲美女久久久| 欧美性感艳星| 亚洲美女搞黄在线观看 | 精品人妻视频免费看| 欧美色视频一区免费| 一区二区三区激情视频| 在线观看午夜福利视频| 尾随美女入室| 欧美一区二区国产精品久久精品| 十八禁国产超污无遮挡网站| 丰满的人妻完整版| 久久久国产成人精品二区| 在线观看免费视频日本深夜| 美女xxoo啪啪120秒动态图| 国产av麻豆久久久久久久| 婷婷六月久久综合丁香| 免费看av在线观看网站| 国产精品久久久久久亚洲av鲁大| 国产淫片久久久久久久久| 中文亚洲av片在线观看爽| 日日干狠狠操夜夜爽| 伦精品一区二区三区| 亚洲av日韩精品久久久久久密| 窝窝影院91人妻| 高清日韩中文字幕在线| 成人二区视频| 日本黄大片高清| www.www免费av| 欧美激情久久久久久爽电影| 少妇的逼好多水| 人妻久久中文字幕网| 97碰自拍视频| 男人和女人高潮做爰伦理| 成人欧美大片| 免费高清视频大片| 十八禁国产超污无遮挡网站| 搡女人真爽免费视频火全软件 | 欧美一区二区国产精品久久精品| 啦啦啦韩国在线观看视频| 国产男人的电影天堂91| 国产色婷婷99| 99久久中文字幕三级久久日本| 国产日本99.免费观看| 全区人妻精品视频| 男插女下体视频免费在线播放| 亚洲无线观看免费| 亚洲av美国av| 久久久久久久亚洲中文字幕| 国产精品国产三级国产av玫瑰| 尤物成人国产欧美一区二区三区| 久久精品国产自在天天线| 色av中文字幕| av国产免费在线观看| 极品教师在线视频| 国产女主播在线喷水免费视频网站 | 99在线人妻在线中文字幕| 国产v大片淫在线免费观看| 波多野结衣高清无吗| 最近在线观看免费完整版| 国产熟女欧美一区二区| 成人无遮挡网站| 日本成人三级电影网站| 午夜福利欧美成人| 中出人妻视频一区二区| 少妇丰满av| 一卡2卡三卡四卡精品乱码亚洲| 精品人妻视频免费看| 久久精品国产99精品国产亚洲性色| 日本五十路高清| 热99re8久久精品国产| 人妻夜夜爽99麻豆av| 久久久色成人| 欧美日韩黄片免| 亚洲欧美清纯卡通| av天堂中文字幕网| 久久天躁狠狠躁夜夜2o2o| 黄色配什么色好看| 欧美激情在线99| h日本视频在线播放| 少妇猛男粗大的猛烈进出视频 | 男女下面进入的视频免费午夜| 国产精品永久免费网站| 精品无人区乱码1区二区| 99视频精品全部免费 在线| 好男人在线观看高清免费视频| 成人av一区二区三区在线看| 国内精品久久久久久久电影| 精华霜和精华液先用哪个| 91麻豆av在线| 国产免费av片在线观看野外av| 尤物成人国产欧美一区二区三区| 97超视频在线观看视频| 国产色婷婷99| 淫秽高清视频在线观看| 91在线观看av| 校园人妻丝袜中文字幕| 色综合婷婷激情| 校园人妻丝袜中文字幕| av.在线天堂| 中文字幕精品亚洲无线码一区| 嫩草影视91久久| 久久99热6这里只有精品| 男人舔女人下体高潮全视频| 黄色丝袜av网址大全| 精品午夜福利在线看| 99精品在免费线老司机午夜| 精品久久国产蜜桃| 真人做人爱边吃奶动态| 免费大片18禁| 精品福利观看| a在线观看视频网站| 999久久久精品免费观看国产| 麻豆成人午夜福利视频| 此物有八面人人有两片| 国产69精品久久久久777片| 97人妻精品一区二区三区麻豆| 欧美日韩亚洲国产一区二区在线观看| 搡女人真爽免费视频火全软件 | 嫩草影院新地址| 成人国产综合亚洲| 成人无遮挡网站| 国产午夜福利久久久久久| 国产亚洲精品久久久com| 国产高潮美女av|