• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Network Embedding-Based Anomalous Density Searching for Multi-Group Collaborative Fraudsters Detection in Social Media

    2019-07-18 02:00:00ChengzhangZhuWentaoZhaoQianLiPanLiandQiaoboDa
    Computers Materials&Continua 2019年7期

    Chengzhang Zhu , Wentao Zhao, , Qian Li Pan Li and Qiaobo Da

    Abstract: Detecting collaborative fraudsters who manipulate opinions in social media is becoming extremely important in order to provide reliable information, in which, however, the diversity in different groups of collaborative fraudsters presents a significant challenge to existing collaborative fraudsters detection methods.These methods often detect collaborative fraudsters as the largest group of users who have the strongest relation with each other in the social media, consequently overlooking the other groups of fraudsters that are with strong user relation yet small group size.This paper introduces a novel network embedding-based framework NEST and its instance BEST to address this issue.NEST detects multiple groups of collaborative fraudsters by two steps.In the first step, to disclose user collaboration, it represents users according to their social relations.Then, in the second step, to identify the collaborative fraudsters, it detects the user groups with anomalous large group density in its representation space.BEST instantiates NEST by using a bipartite network embedding method to represent users and adopting a fast density group detection method based on the k-dimensional tree.Our experiments show BEST (i) performs significantly better in detecting fraudsters on four real-word social media data sets, and (ii) effectively detects multiple groups of collaborative fraudsters, compared to three state-of-the-art competitors.

    Keywords: Fraudster detection, network embedding, social media.

    1 Introduction

    The reliability of social media content is becoming increasingly significant because social media heavily affects people every day.Unfortunately, a large proportion of social media content is proposed by fraudsters who collaborate to manipulate social opinions driven by huge profit and incentives of reputation [Mukherjee, Venkataraman, Liu et al.(2013); Xiang, Li, Hao et al.(2018)].As a result, effectively detecting such collaborative fraudsters is critical and with great bossiness values [Akoglu, Chandy and Faloutsos (2013)].

    Recent year has seen significant progress made in fraudsters detection.Current efforts mainly focused on extracting fraudster indicators and/or features from users’ behavior [Mukherjee, Liu and Glance (2012); Ye and Akoglu (2015); Hooi, Shin, Song et al.(2017)] or users’ proposed content [Mukherjee, Venkataraman, Liu et al.(2013); Wang, Liu and Zhao (2017); You, Qian and Liu (2018)].Because of the great distinguishing ability of anomalous behavior and content, these indicators and/or features have shown remarkable performance in detecting individual fraudsters [Rayana and Akoglu (2016)].However, identifying fraudsters with collaborative manipulation is a challenging task.Specifically, the collaborative manipulation poses the two major challenges below: (i) The content of collaborative fraudsters may not be anomalous because the collaborative manipulation may dominate social opinions.(ii) The professional fraudsters will imitate the behavior of honest users to evade inspection [Hooi, Song, Beutel et al.(2016)].These two challenges cause the failure of current behavior and content-based fraudsters detection methods in detecting collaborative fraudsters.

    To detect collaborative fraudsters, the dense subgraph mining methods [Hooi, Song, Beutel et al.(2016); Hooi, Shin, Song et al.(2017); Wu, Hu, Morstatter et al.(2017); Liu, Hooi and Faloutsos (2017); Xiang, Shen, Qin et al.(2018); Xiang, Zhao, Li et al.(2018)] are the major solutions, which detect collaborative fraudsters according to the significant collaboration footprint.Specifically, the dense subgraph mining methods always detect collaborative fraudsters as the largest group of users who have the strongest relation with each other in the social media.However, in this way, they may overlook the other groups of fraudsters that are with strong user relation yet small group size.In reality, social media may contain multiple groups of collaborative fraudsters instead of only the largest group of collaborative fraudsters.

    In this paper, we introduce a novel Network Embedding-based denSiTy subgraph mining (NEST for short) framework for multi-group collaborative fraudsters detection in social media.Specifically, NEST first represents users according to their social relations to dis- close user collaboration.In this process, users who have similar activities will be embed- ded near to each other in the representation space.NEST then detects the user groups with anomalous large group density in its representation space to identify the collaborative fraudsters.Accordingly, any group of collaborative fraudsters with large joint activities can be effectively detected.

    Essentially, this detection procedure simultaneously tackles three challenges brought by collaborative fraudsters: content domination, behavior camouflage, and multiple fraudsters groups, resulting in a robust and comprehensive collaborative fraudsters detecting result.In the first step, NEST solves the content domination and behavior camouflage problems by distilling user social relations which are reflected in users’ joint activities.The rationale is that the cooperation of collaborative fraudsters to manipulate opinions cannot be avoided.In the second step, NEST discovers fraudsters groups by analyzing the outlier of group density in its representation space.The intuition is that the joint activities of collaborative fraudsters must be more frequent than honest users, but the number of fraudsters is much less than honest users.

    We further implement NEST by proposing a Bipartitie networking Embedding-based fast denSiTy subgraph mining method based on the k-dimensional tree structure, termed BEST.Specifically, BEST first models the users and their activities as a bipartite network as demonstrated in Fig.1.In the bipartite network, the nodes on each side are users and activities, and a link refers to a user participates in an activity.Then, to comprehensively capture user collaborations, BEST represents users by embedding both the explicit and implicit relations in the bipartite network.Lastly, to fast detect the collaborative fraudsters, BEST builds a k-dimensional tree for the representation space and searches the anomalous density group based on the k-dimensional tree.

    Accordingly, this paper makes two major contributions:

    ● We introduce a novel network embedding-based framework NEST for identifying collaborative fraudsters in social media.NEST represents users according to their social relations and detects fraudsters by analyzing the outlier of group density in the representation space.It results in a more reliable and comprehensive collaborative fraudsters detection, compared to existing dense subgraph mining-based solutions.

    ● We instantiate NEST to an effective and efficient multi-group collaborative fraudsters detection method, BEST, by introducing bipartite network embedding and k- dimensional tree-based anomalous density group searching.The bipartite network embedding captures both explicit and implicit user relations, and the k-dimensional tree-based method guarantees the efficiency of density groups searching.

    Extensive empirical results show that (i) BEST performs significantly better in detecting fraudsters on four large real-world social media data sets; and (ii) BEST effectively detects multiple groups of collaborative fraudsters, compared to three state-of-the-art competitors.

    2 Related work

    2.1 Fraudster detection

    Current efforts on fraudster detection can be roughly classified into two categories:

    individual characteristics-based methods and relational characteristics-based methods.The individual characteristics-based methods use the user proposed content and/or user’s behavior to identify whether a user is a fraudster.The information used by these methods mainly include the statics and linguistic characteristics of a content [Li, Huang, Yang et al.(2011); Mukherjee, Kumar, Liu et al.(2013); Wang, Liu and Zhao (2017); You, Qian and Liu (2018)], and the historical actions of a user [Fei, Mukherjee, Liu et al.(2013); Mukherjee, Venkataraman, Liu et al.(2013)].These individual characteristics are designed as features for fraudster detection [Jindal and Liu (2008); Lim, Nguyen, Jindal et al.(2010); Zhao, Resnick and Mei (2015); Li, Fei, Wang et al.(2017)].However, as evidenced by Hooi et al.[Hooi, Song, Beutel et al.(2016)], the individual characteristics are not robust for collaborative fraudsters who jointly manipulate social opinions and fraudsters may imitate the behavior of honest users.

    The relational characteristics-based methods capture user-activity, user-user, and activity-activity relations, typically via a graph [Pandit, Chau, Wang et al.(2007); Stringhini, Kruegel and Vigna (2010); Akoglu, Chandy and Faloutsos (2013); Junqué de Fortuny, Stankova, Moeyersoms et al.(2014); Akoglu, Tong and Koutra (2015); Shehnepoor, Salehi, Farahbakhsh et al.(2017)].They hold an assumption that fake reviews are manipulated by groups of fraudsters.With this assumption, they assume a group of fraudsters will have dense links to a group of manipulated activities (useractivity relation) [Akoglu, Chandy and Faloutsos (2013); Wang, Xie, Liu et al.(2011)], a group of fraudsters will co-occur in many activities (user-user relation) [Wu, Hu, Morstatter et al.(2017); Sun, Qu, Chakrabarti et al.(2005); Xu, Zhang, Chang et al.(2013)], and different manipulated activities will have overlapped linked fraudsters (activity-activity relation) [Hovy (2016)].

    Although current methods show their strengths to disclose fraudsters, most of them fail to discover multiple groups of collaborative fraudsters in social network.In this paper, we propose a networking-embedding based framework NEST to fill the gaps of multi- group collaborative fraudsters detection.The proposed NEST achieves a more reliable and comprehensive detection by revealing users within density groups in its representation space, which delicately embeds the user’s social relationships.

    2.2.Network embedding

    Our proposed method is based on network embedding, which can be categorized into two types: matrix factorization (MF)-based and neural network-based methods.

    MF-based methods involve linear [Cox and Cox (2000)] and nonlinear [Nedich and Ozdaglar (2008)] procedures in the embedding process.While the linear procedures adopt linear transformations, such as singular value decomposition (SVD) and multiple dimensional scaling (MDS), to generate low-dimensional embedding [Cox and Cox (2000)], the non- linear methods utilize nonlinear transformations, e.g.kernel PCA and manifold learning, to capture complicated data structures.However, both have high computational cost because of their eigen-decomposition operation on data matrix.Accordingly, these methods do not suit for large social network embedding.

    Recently, neural network-based methods have shown the state-of-the-art performance.Followed by DeepWalk [Perozzi, Al-Rfou and Skiena (2014)] and Node2Vec [Grover and Leskovec (2016)], most of neural network-based methods reformulate a network embedding task as a word embedding task via performing truncated random walks in a network to convert the network to sentences.More recently, advanced work embeds both explicit and implicit relations in a network and shows its significance [Tang, Qu, Wang et al.(2015); Wang, Cui and Zhu (2016); Cao, Lu and Xu (2015); Xu, Wei, Cao et al.(2017)].However, the above methods are not designed for social network embedding.They treat the nodes in a network homogeneously, and thus, cannot capture the difference between user and activity in social media.In addition, the truncated random walks used in these methods do not consider the user-activity joint distribution in social network.

    In this paper, we instantiate NEST as an effective and efficient method, BEST, via a bipartite network embedding method.This Bipartitie network embedding method is tailored for social media.Accordingly, it captures user-activity relations better in its user representation space, which provides a solid foundation for collaborative fraudsters detection.

    3 NEST for collaborative fraudster detection

    NEST framework adopts a two-steps procedure to detect collaborative fraudsters in social media.The workflow of NEST framework is shown in Fig.1.For a social media S with a set of usersand a set of activitiesin the first step, NEST extracts a bipartite network G from S aswhere U and A are the nodes on the two sides of G, respectively, and E U V? × defines the inter-set edges.Here, each edge in E carries a non-negative weightijw , reflecting the strength between a useriu and an activityja , and theijw will be zero if the useriu does not join the activityja .Accordingly, the weights in the bipartite network can be represented by a n × m matrix W =[ wij].Then, NEST learns an embedding function f(?):U→ Rd, which maps a useriu to a d dimensional vector representationiu .The embedding function f(?) should capture and embed the social relations of users in the bipartite network into their representation space.In the second step, NEST finds the anomalous density groups in the user representation space and treats the users in the anomalous density groups as collaborative fraudsters.

    Formally, NEST detects a set of collaborative fraudster groupsaccording to

    NEST has a good generalizability since it can be instantiated by specifying any network embedding method and any anomalous density groups searching method.We introduce an instance of NEST in next section and then verify its performance by empirical analyses.

    4 A NEST instance: BEST

    BEST instantiates NEST by a bipartite network embedding method catering for social net- work, and a k-dimensional tree-based anomalous density group searching method for efficient fraudsters detection.

    Figure 1: NEST Framework.In the first step, NEST extracts a bipartite network from social media data, and represents user into a vector space by embedding their social relation in the bipartite network.In the second step, NEST searches the anomalous density group of users in the representation space for collaborative fraudsters detection.The detected collaborative fraudsters are illustrated with a grey background, and their corresponding groups are highlighted by a dotted circle

    4.1 Bipartite network embedding

    The network embedding reveals and embeds social relations of a user into the user’s vector representation, which reflects the cooperation of users in social media.We introduce a bipartite network embedding method to jointly capture the explicit and implicate relations of users in social media.

    4.1.1 Explicit relations embedding

    The explicit relations refer to the direct links between users and activities, which reflect the activities a user jointed.If two users always joint similar activities, their similarity should be large in the representation space.

    To preserve the explicit relations, we keep the preference of users in their representation space.Specifically, we measure the preference of a user in both social media and representation space, and make the preference of a user in representation space similar to that in social media.For the preference measurement in social media, we consider the probability of a user join in an activity.Given the bipartite network, this probability can be calculated as follows:

    where wijis the weight of edge eij.The measurement reflects the preference distribution of users.We follow the setting of word2vec to use the sigmoid function to measure the interaction of a user and an activity in their representation space in a probability space:

    where ui∈Rdand aj∈Rdare the embedding vectors of uiand aj, respectively.Then, we adopt KL-divergence to measure the difference between P andand optimize the user and activity representation to minimize the KL-divergence as follows:

    Considering P(i,j) is a constant, minimizing the Eq.(4) equals to follows:

    4.1.2 Implicit relations embedding

    The implicit relations refer to the relations between users and activities that are not directly connected.For two users, if there exist a path between them in the bipartite network, they may have an implicit relation, and the weight of the path reflects the strength of this implicit relation.However, counting the paths between two nodes in a bipartite network has a great high complexity, which is impracticable in social media.

    Inspired by DeepWalk [Perozzi, Al-Rfou and Skiena (2014)], we also perform a truncated random walks on the network to generate nodes corpus as random walk paths, which contain higher order implicit relations between nodes.We move a step further to reconstruct the bipartite network G as two networks where each network only contains users G(u)or activitiesG(a), and conduct random walks on these two transformed networks.It results in a stationary distribution of random walks on social media data [Gao, Chen, He et al.(2018)].InG(u), uiand ujwill have an edgeif exists a tkthat∈ E and∈ E where E is the edge set ofG.InG(a), aiand ajwill have an edgeif exists a ukthat∈ E and∈ E where E is the edge set ofG.

    The random walk paths generation procedure is illustrated in Algorithm 1, which generates a set of random walk paths D(u)ofU, a set of random walk paths D(a)of A.The implicit relations embedding aims to maximize the conditional probability of the context of a node.For user corpus()u

    D , it maximizes the conditional probability as follows:

    where S refers to the sequence in the context,refers the context nodes of node uiin sequence s.Similarly, for activities corpusthe implicit embedding maximizes the conditional probability as:

    ?

    BEST jointly considers the explicit and implicit relations embedding, forming a joint embedding objective function:

    where α , β and γ are the hyper-parameters to trade-off the effects of the three components.This objective function can be effectively solved by stochastic optimization methods.By solving the objective function (8), BEST represents users into a vector space where user’s social relations have been embedded.

    4.2 K-dimensional tree-based anomalous density group searching

    To fast search the anomalous density group, BEST first builds a k-dimensional tree (kdtree for short) for the user representation space, and then estimates the density around each user in that space.Finally, it adopts the criteria Eq.(1) in NEST to identify the anomalous density groups.

    Figure 2: Example of kd-tree.The illustrated kd-tree is built on the user representation space shown in Fig.1.Each level splits one dimension of the space into two parts

    4.2.1 Building kd-tree

    For user representation set u ={u1,u2???, un}, BEST builds a kd-tree, v, by Algorithm 2.As illustrated in Fig.2, the kd-tree v is a binary tree storing the user representation with their structure information, which enables the fast searching of anomalous density groups.

    Algorithm 2: Building kd-tree Procedure name: BUILDKDTREE(u,depth) Input: A set of point u, and the current depth.Output: The root of the kd-tree, v, storing u 1 if u contains only one point then 2 return a leaf storing this point.3 else 4 l ←depth%d+1; 5 Split u into two subsets according to the median value q in the l th-dimension of the points inu.Let (1)u be the set of points which l th-dimension value is smaller or equal to the q, and let (2)u be the set of other points ; 6 leftv← BUILDKDTREE( (1)u , depth+1) ; 7 rightv← BUILDKDTREE( (2)u , depth+1) ; 8 Create a node v storing the q in the l th-dimension, make leftvleftv the left child of v, and make rightv the right child of v ; 9 return v.10 end

    4.2.2 Density estimation

    BEST estimates the density around each user in its representation space based on the kd- tree v according to the Algorithm 3, where the function SEARCHKDTREE(iu ,v,ρ) returns a set of users that around the useriu within the range η based on the kd-tree v.Essentially, BEST estimates the density around a user by the number of users close to the user within a certain distance in the representation space.If a user has a large density, the user should have a lot of collaborations with others.Accordingly, BEST uses the density as an important evidence to identify collaborative fraudsters.

    Algorithm 3: Density estimation based on kd-tree Input : A set of point u, the kd-tree v and η.Output: A set of densities around each user ρ, a set of user sets S.1 {}ρ ← 2 foreach iu in u do 3 iS ←SEARCHKDTREE( iu , v, η) ; 4 iiS ρ ← ; 5 { }i ρρρ← ∪; 6 { }i S SS← ∪; 7 end 8 return ρ,S.

    4.2.3 Collaborative fraudsters detection

    BEST detects collaborative fraudsters after estimating density around users in the user representation space.Specifically, it treats the density larger than a thresholdε , e.g.five times of the averaged density, as anomalous, and assigns the users in the density areas as fraudsters.The procedure is summarized in the Algorithm 4.

    Algorithm 4: Collaborative fraudsters detection Input : A set of densities around each user ρ, a set of user sets S, a threshold ε Output: A set of fraudster users F..1 {}ρ ← 2 foreach iS in S do 3 if iρ ε> then; 4 i FF S← ∪ 5 end 6 return F

    5 Experiments

    5.1 Data sets

    The experiments are carried on two large scale real word social media data sets, including Yelp restaurant and Yelp hotel data sets used in Mukherjee et al.[Mukherjee, Venkataraman, Liu et al.(2013)].All the activities in these data sets have been assigned authenticity labels given by commercial filters.

    5.2 Evaluation metrics

    We evaluate their performance by three metrics - precision, recall, and F-score.While precision evaluates the fraction of true fraudsters among detected fraudsters, recall reflects the fraction of true fraudsters that have been detected over the total amount of true fraudsters.The precision and recall should be jointly considered since fraudsters detection is an imbalance problem [Luca and Zervas (2016)], i.e., fraudsters are much less than honest users.Thus, we use F-score, which balances the precision and recall, as an averaged indicator.Higher F-score indicates a better performance of a fraudsters detection method.We report these three metrics per ground-truth honest user and fraudster classes to illustrate the performance for different categories.We further average them to show overall performance.

    We follow the literature [Wang, Liu and Zhao (2017)] to use the results of the Yelp commercial fraud filter to evaluate the performance.Because the Yelp commercial fraud filter only give the authenticity labels of activities, we transform the authenticity labels to the honest labels of users as the ground-truth.Considering the fraud activities distribution per each user assigned by the commercial filters, we assign the fraudster label to a user if more than 80% of the activities of the user have been labeled as fraud.The rationale is that we need to filter the false positive made by the commercial filters [Li, Chen, Liu et al.(2014)].In other words, we assume that a user with a higher proportion of the assigned fraud activities will be more likely a real fraudster.

    5.3 Parameters settings

    In the experiments, we set the parameters of BEST as follows.To balance the explicit and implicit social relations, we set the hyper-parameters α , β , and γ is the network embedding objective function Eq.(8) as 0.5, 0.25, and 0.25, respectively.We train the network embedding by Adam [Kingma and Ba (2014)] with embedding dimension 128 and batch size 32.For the density estimation, we set the distance range η as 1.For the anomalous density detection, we set the threshold s as the five times of the averaged density.For the parameters in the compared methods, we take their recommended settings.

    5.4 Evaluation of BEST effectiveness on fraudster detection

    5.4.1 Experimental settings

    BEST is compared with two state-of-the-art competitors: Frauder [Hooi, Song, Beutel et al.(2016)] and HoloScope [Liu, Hooi and Faloutsos (2017)] in detecting collaborative fraudsters.These two competitors are both based on dense subgraph mining, but with different setting on the graph construction.

    ● Fixed weighting dense subgraph mining-based method - FRAUDER [Hooi, Song, Beutel et al.(2016)].FRAUDER is a fraudsters detection method by dense subgraph mining.To detect camouflage and hijacked accounts, it adopts a fixed weighting strategy.

    ● Dynamic weighting dense subgraph mining-based method-HoloScope [Liu, Hooi and Faloutsos (2017)].HoloScope uses information from graph topology and temporal spikes to detect groups of fraudsters, and employs a dynamic weighting approach to allow a more accurately fraud detection.

    5.4.2 Findings-BEST significantly improving fraudsters detection performance, especially recall

    The precision, recall and F-score of BEST, Frauder, and HoloScope are reported in Tab.1.Overall, BEST significantly outperforms the competitors.It improves 21.8% and 10.03% compared with the best-performing method in terms of F-score on two data sets.

    Table 1: Collaborative fraudsters detection performance of different methods

    5.5 Evaluation of BEST-generated user representation quality

    5.5.1 Experimental settings

    We visualize the user representation in a two-dimensional space trough TSNE [Maaten and Hinton (2008)].To evaluate the user representation quality, we plot the ground-truth labels of each user at their positions in the representation space.A high-quality user representation will enable a dense distribution for the collaborative fraudsters.The behavior representation generated by BEST is compared with that generated by JETB [Wang, Liu and Zhao (2017)], which is the state-of-the-art user representation method for fraudsters detection.

    5.5.2 Findings-BEST generated user representation embeds fraudsters into groups with anomalous high density

    The user representations generated by BEST and JETB are visualized in Fig.3.In the JETB generated representation space, the users with large density are not consistent to the ground-truth fraudster label.In contrast, the density of BEST generated representation is consistent with the ground-truth fraudsters distribution.This qualitative illustrates that BEST effectively captures the social relation of users in social media, which is essential for the collaborative fraudsters detection.

    Figure 3: User representation with density of different methods on Yelp-hotel and Yelp- restaurant.The sub-figures (a), (b), (c), (d) contain the user representation information with the ground-truth labels, and the sub-figures (e), (f), (g), (h) show the density in the representation space

    6 Conclusion

    This paper introduces a network-embedding collaborative fraudsters detection framework NEST and its instance BEST.They perform an anomalous density searching procedure on a network embedding space which enables the detecting multiple groups of collaborative fraudsters.Two large real-world data sets demonstrate the performance of BEST is substantially better than the state-of-the-art competitors.

    Acknowledgements:The work is supported by National Natural Science Foundation of China under Grant No.U1811462.

    References

    Akoglu, L.; Chandy, R.; Faloutsos, C.(2013): Opinion fraud detection in online reviews by network effects.Proceedings of the International AAAI Conference on Web and Social Media, vol.13, pp.2-11.

    Akoglu, L.; Tong, H.; Koutra, D.(2015): Graph based anomaly detection and description: a survey.Data Mining and Knowledge Discovery, vol.29, no.3, pp.626-688.

    Cao, S.; Lu, W.; Xu, Q.(2015): GraRep: learning graph representations with global structural information.Proceedings of the ACM International on Conference on Information and Knowledge Management, pp.891-900.

    Cox, T.F.; Cox, M.A.(2000): Multidimensional scaling.Chapman and Hall/CRC.

    Fei, G.; Mukherjee, A.; Liu, B.; Hsu, M.; Castellanos, M.et al.(2013): Exploiting burstiness in reviews for review spammer detection.Proceedings of the International AAAI Conference on Web and Social Media, vol.13, pp.175-184.

    Gao, M.; Chen, L.; He, X.; Zhou, A.(2018): BiNE: bipartite network embedding.Proceedings of the International ACM SIGIR Conference on Research & Development in Information Retrieval, pp.715-724.

    Grover, A.; Leskovec, J.(2016): node2vec: scalable feature learning for networks.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.855-864.

    Hooi, B.; Shin, K.; Song, H.A.; Beutel, A.; Shah, N.et al.(2017): Graph-based fraud detection in the face of camouflage.ACM Transactions on Knowledge Discovery from Data, vol.11, no.4, pp.44:1-44:26.

    Hooi, B.; Song, H.A.; Beutel, A.; Shah, N.; Shin, K.; Faloutsos, C.(2016): FRAUDAR: Bounding graph fraud in the face of camouflage.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.895-904.

    Hovy, D.(2016): The enemy in your own camp: how well can we detect statistically- generated fake reviews-an adversarial study.Proceedings of the Annual Meeting of the Association for Computational Linguistics, vol.2, pp.351-356.

    Jindal, N.; Liu, B.(2008): Opinion spam and analysis.Proceedings of the ACM International WSDM Conference, pp.219-230.

    Junqué de Fortuny, E.; Stankova, M.; Moeyersoms, J.; Minnaert, B.; Provost, F.et al.(2014): Corporate residence fraud detection.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.1650-1659.

    Kingma, D.P.; Ba, J.(2014): Adam: a method for stochastic optimization.arXiv preprint arXiv:1412.6980.

    Li, F.; Huang, M.; Yang, Y.; Zhu, X.(2011): Learning to identify review spam.Proceedings of the International Joint Conference on Artificial Intelligence, pp.2488-2493.

    Li, H.; Chen, Z.; Liu, B.; Wei, X.; Shao, J.(2014): Spotting fake reviews via collective positive-unlabeled learning.Proceedings of the IEEE International Conference on Data Mining, pp.899-904.

    Li, H.; Fei, G.; Wang, S.; Liu, B.; Shao, W.et al.(2017): Bimodal distribution and cobursting in review spam detection.Proceedings of the International Conference on World Wide Web, pp.1063-1072.

    Lim, E.P.; Nguyen, V.A.; Jindal, N.; Liu, B.; Lauw, H.W.(2010): Detecting product review spammers using rating behaviors.Proceedings of the ACM International Conference on Information and Knowledge Management, pp.939-948.

    Liu, S.; Hooi, B.; Faloutsos, C.(2017): Holoscope: topology-and-spike aware fraud detection.Proceedings of the ACM International Conference on Information and Knowledge Management, pp.1539-1548.

    Luca, M.; Zervas, G.(2016): Fake it till you make it: reputation, competition, and yelp review fraud.Management Science, vol.62, no.12, pp.3412-3427.

    Maaten, L.v.d.; Hinton, G.(2008): Visualizing data using t-SNE.Journal of Machine Learning Research, vol.9, pp.2579-2605.

    Mukherjee, A.; Kumar, A.; Liu, B.; Wang, J.; Hsu, M.et al.(2013): Spotting opinion spammers using behavioral footprints.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.632-640.

    Mukherjee, A.; Liu, B.; Glance, N.(2012): Spotting fake reviewer groups in consumer reviews.Proceedings of the International Conference on World Wide Web, pp.191-200.

    Mukherjee, A.; Venkataraman, V.; Liu, B.; Glance, N.S.(2013): What yelp fake review filter might be doing? Proceedings of the International AAAI Conference on Web and Social Media, pp.409-418.

    Nedich, A.; Ozdaglar, A.(2008): A geometric framework for nonconvex optimization duality using augmented lagrangian functions.Journal of Global Optimization, vol.40, no.4, pp.545-573.

    Pandit, S.; Chau, D.H.; Wang, S.; Faloutsos, C.(2007): Netprobe: a fast and scalable system for fraud detection in online auction networks.Proceedings of the International Conference on World Wide Web, pp.201-210.

    Perozzi, B.; Al-Rfou, R.; Skiena, S.(2014): Deepwalk: Online learning of social representations.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.701-710.

    Rayana, S.; Akoglu, L.(2016): Collective opinion spam detection using active inference.Proceedings of the IEEE International Conference on Data Mining, pp.630-638.

    Shehnepoor, S.; Salehi, M.; Farahbakhsh, R.; Crespi, N.(2017): Netspam: a networkbased spam detection framework for reviews in online social media.IEEE Transactions on Information Forensics and Security, vol.12, no.7, pp.1585-1595.

    Stringhini, G.; Kruegel, C.; Vigna, G.(2010): Detecting spammers on social networks.Proceedings of the Annual Computer Security Applications Conference, pp.1-9.

    Sun, J.; Qu, H.; Chakrabarti, D.; Faloutsos, C.(2005): Neighborhood formation and anomaly detection in bipartite graphs.Proceedings of the IEEE International Conference on Data Mining, pp.1-8.

    Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.et al.(2015): Line: large-scale information network embedding.Proceedings of the International Conference on World Wide Web, pp.1067-1077.

    Wang, D.; Cui, P.; Zhu, W.(2016): Structural deep network embedding.Proceedings of the 22nd ACM SIGKDD international Conference on Knowledge Discovery and Data Mining, pp.1225-1234.

    Wang, G.; Xie, S.; Liu, B.; Philip, S.Y.(2011): Review graph based online store review spammer detection.ICDM, pp.1242-1247.

    Wang, X.; Liu, K.; Zhao, J.(2017): Handling cold-start problem in review spam detection by jointly embedding texts and behaviors.Proceedings of the Annual Meeting of the Association for Computational Linguistics, vol.1, pp.366-376.

    Wu, L.; Hu, X.; Morstatter, F.; Liu, H.(2017): Adaptive spammer detection with sparse group modeling.Proceedings of the International AAAI Conference on Web and Social Media, pp.319-326.

    Xiang, L.; Li, Y.; Hao, W.; Yang, P.; Shen, X.(2018): Reversible natural language watermarking using synonym substitution and arithmetic coding.Computers, Materials & Continua, vol.55, no.3, pp.541-559.

    Xiang, L.; Shen, X.; Qin, J.; Hao, W.(2018): Discrete multi-graph hashing for largescale visual search.Neural Processing Letters.

    Xiang, L.; Zhao, G.; Li, Q.; Hao, W.; Li, F.(2018): TUMK-ELM: A fast unsupervised heterogeneous data learning approach.IEEE Access, vol.6, pp.35305-35315.

    Xu, C.; Zhang, J.; Chang, K.; Long, C.(2013): Uncovering collusive spammers in Chinese review websites.Proceedings of the ACM International on Conference on Information and Knowledge Management, pp.979-988.

    Xu, L.; Wei, X.; Cao, J.; Yu, P.S.(2017): Embedding of embedding (EOE): Joint embedding for coupled heterogeneous networks.Proceedings of the ACM International Conference on Web Search and Data Mining, pp.741-749.

    Ye, J.; Akoglu, L.(2015): Discovering opinion spammer groups by network footprints.Proceedings of the European Conference on Machine Learning, pp.267-282.

    You, Z.; Qian, T.; Liu, B.(2018): An attribute enhanced domain adaptive model for cold- start spam review detection.Proceedings of the International Conference on Computational Linguistics, pp.1884-1895.

    Zhao, Z.; Resnick, P.; Mei, Q.(2015): Enquiring minds: early detection of rumors in social media from enquiry posts.Proceedings of the International Conference on World Wide Web, pp.1395-1405.

    伦理电影免费视频| 成人综合一区亚洲| 五月开心婷婷网| 久久久久久久久久久久大奶| 大码成人一级视频| 国产亚洲精品久久久com| 午夜精品国产一区二区电影| 五月开心婷婷网| 欧美日韩精品成人综合77777| 久久影院123| 在现免费观看毛片| 成人美女网站在线观看视频| 国产高清不卡午夜福利| 国产伦精品一区二区三区视频9| 精品少妇久久久久久888优播| 97精品久久久久久久久久精品| 免费少妇av软件| 国产av精品麻豆| 日本午夜av视频| 偷拍熟女少妇极品色| 欧美xxxx性猛交bbbb| 少妇精品久久久久久久| 国产精品一区二区性色av| 亚洲av男天堂| 午夜福利影视在线免费观看| 一个人免费看片子| 国产有黄有色有爽视频| 亚洲国产精品专区欧美| 春色校园在线视频观看| 日韩视频在线欧美| 22中文网久久字幕| 噜噜噜噜噜久久久久久91| 国产 精品1| 国产高清三级在线| 中文字幕人妻丝袜制服| 国产成人精品婷婷| 黄色视频在线播放观看不卡| 国产精品国产av在线观看| 欧美精品人与动牲交sv欧美| 男女国产视频网站| 精品人妻熟女av久视频| 亚洲精品一二三| 一级,二级,三级黄色视频| 午夜激情久久久久久久| 丝袜脚勾引网站| 精品久久久噜噜| 18禁动态无遮挡网站| 高清视频免费观看一区二区| 蜜臀久久99精品久久宅男| 一级毛片电影观看| 日本黄色片子视频| 黄色一级大片看看| 久久久久久伊人网av| 精品少妇内射三级| 国产日韩欧美亚洲二区| 一级毛片黄色毛片免费观看视频| 啦啦啦在线观看免费高清www| 国产精品久久久久成人av| 在线观看人妻少妇| 国内少妇人妻偷人精品xxx网站| 日本猛色少妇xxxxx猛交久久| 日韩亚洲欧美综合| 国产午夜精品一二区理论片| 91aial.com中文字幕在线观看| 青春草亚洲视频在线观看| 免费在线观看成人毛片| 亚洲,欧美,日韩| 只有这里有精品99| 中文字幕av电影在线播放| 三级国产精品片| 日韩成人伦理影院| 欧美日韩视频精品一区| 亚洲婷婷狠狠爱综合网| 国产深夜福利视频在线观看| 波野结衣二区三区在线| 久久久久久伊人网av| 国产精品久久久久成人av| 黄色欧美视频在线观看| 汤姆久久久久久久影院中文字幕| 成人漫画全彩无遮挡| 国产亚洲一区二区精品| 性高湖久久久久久久久免费观看| 精品国产乱码久久久久久小说| 国产黄片视频在线免费观看| 久久久久久人妻| 日韩熟女老妇一区二区性免费视频| 久久精品久久久久久噜噜老黄| 国精品久久久久久国模美| 自线自在国产av| 人人妻人人澡人人爽人人夜夜| 日本wwww免费看| 亚洲高清免费不卡视频| 丁香六月天网| 制服丝袜香蕉在线| 丰满乱子伦码专区| 在线亚洲精品国产二区图片欧美 | 观看av在线不卡| av在线播放精品| 中文字幕亚洲精品专区| 肉色欧美久久久久久久蜜桃| av天堂久久9| 在线观看www视频免费| 99re6热这里在线精品视频| 一区在线观看完整版| 亚洲,一卡二卡三卡| 国产91av在线免费观看| 日本黄大片高清| 久久人人爽人人爽人人片va| 青春草国产在线视频| 伦精品一区二区三区| 哪个播放器可以免费观看大片| 91在线精品国自产拍蜜月| 亚洲精品国产av蜜桃| 九九在线视频观看精品| 中国国产av一级| 国产无遮挡羞羞视频在线观看| 伊人久久精品亚洲午夜| xxx大片免费视频| 欧美日韩av久久| 国产成人午夜福利电影在线观看| 看非洲黑人一级黄片| 嫩草影院入口| 国产伦精品一区二区三区四那| 亚洲精品乱码久久久久久按摩| 成人影院久久| 国产在线一区二区三区精| 国产av码专区亚洲av| 亚洲国产欧美在线一区| 51国产日韩欧美| 亚洲国产精品999| 婷婷色综合大香蕉| av不卡在线播放| 日韩一区二区视频免费看| 亚洲av中文av极速乱| 人人澡人人妻人| 中文字幕制服av| av天堂中文字幕网| 午夜激情久久久久久久| 超碰97精品在线观看| 国产成人精品福利久久| 午夜激情久久久久久久| 女的被弄到高潮叫床怎么办| 国产免费一级a男人的天堂| 亚洲精品国产色婷婷电影| 极品教师在线视频| 两个人的视频大全免费| 久久韩国三级中文字幕| 免费人成在线观看视频色| 中文欧美无线码| 国产免费视频播放在线视频| 久久婷婷青草| 最新中文字幕久久久久| 乱系列少妇在线播放| 色5月婷婷丁香| 九九久久精品国产亚洲av麻豆| 大香蕉97超碰在线| 99国产精品免费福利视频| 成人国产麻豆网| 在现免费观看毛片| 看免费成人av毛片| 九色成人免费人妻av| 建设人人有责人人尽责人人享有的| 亚洲国产日韩一区二区| 国产亚洲91精品色在线| 国产91av在线免费观看| 午夜日本视频在线| 成人无遮挡网站| 日韩精品免费视频一区二区三区 | 日本黄色日本黄色录像| 日韩三级伦理在线观看| 亚洲av综合色区一区| 免费av不卡在线播放| 一边亲一边摸免费视频| 精品99又大又爽又粗少妇毛片| 国产免费福利视频在线观看| 亚洲,一卡二卡三卡| tube8黄色片| www.av在线官网国产| 最黄视频免费看| 久久精品久久精品一区二区三区| 如何舔出高潮| 国产女主播在线喷水免费视频网站| 青青草视频在线视频观看| 精品亚洲成a人片在线观看| 美女大奶头黄色视频| 久久ye,这里只有精品| 国产欧美日韩一区二区三区在线 | 欧美日韩一区二区视频在线观看视频在线| 成人特级av手机在线观看| 美女视频免费永久观看网站| 夜夜看夜夜爽夜夜摸| 伦理电影免费视频| 一级爰片在线观看| 午夜av观看不卡| 亚洲va在线va天堂va国产| 午夜免费观看性视频| 婷婷色综合大香蕉| 亚洲精品成人av观看孕妇| 大香蕉久久网| 777米奇影视久久| 国产69精品久久久久777片| 国产男女超爽视频在线观看| 欧美性感艳星| 成人综合一区亚洲| 日韩不卡一区二区三区视频在线| 久久精品国产亚洲网站| 高清黄色对白视频在线免费看 | 九九在线视频观看精品| 一级二级三级毛片免费看| 国产乱人偷精品视频| 久久免费观看电影| 人妻人人澡人人爽人人| 人妻制服诱惑在线中文字幕| av天堂久久9| av在线app专区| 亚洲av中文av极速乱| 精品国产国语对白av| 国产精品人妻久久久久久| 亚洲伊人久久精品综合| 另类精品久久| 精品人妻偷拍中文字幕| 精品久久久精品久久久| 亚洲国产日韩一区二区| 青春草亚洲视频在线观看| 91成人精品电影| 蜜臀久久99精品久久宅男| 插阴视频在线观看视频| 久久鲁丝午夜福利片| 国产亚洲91精品色在线| 蜜桃久久精品国产亚洲av| 成人毛片a级毛片在线播放| 国产高清有码在线观看视频| 久久久欧美国产精品| 国产伦精品一区二区三区视频9| 午夜激情福利司机影院| 亚洲欧美精品自产自拍| av卡一久久| 国产精品不卡视频一区二区| 国产亚洲欧美精品永久| 99热这里只有精品一区| 亚洲欧美精品专区久久| 精品一区二区三区视频在线| 大陆偷拍与自拍| 在线观看国产h片| videos熟女内射| 街头女战士在线观看网站| 日本欧美国产在线视频| 免费av不卡在线播放| 国产精品女同一区二区软件| 国产成人精品一,二区| 久久精品国产自在天天线| av女优亚洲男人天堂| 少妇高潮的动态图| 免费大片18禁| 午夜视频国产福利| 九色成人免费人妻av| 乱人伦中国视频| 日产精品乱码卡一卡2卡三| 大香蕉97超碰在线| 国产av码专区亚洲av| 午夜免费鲁丝| 日韩成人伦理影院| 亚洲精品国产成人久久av| 国产色爽女视频免费观看| 3wmmmm亚洲av在线观看| 一级av片app| 中文天堂在线官网| 大香蕉97超碰在线| 一级毛片黄色毛片免费观看视频| 一区二区三区免费毛片| 欧美激情极品国产一区二区三区 | 丰满人妻一区二区三区视频av| 另类精品久久| 日本与韩国留学比较| 国语对白做爰xxxⅹ性视频网站| 亚洲国产精品999| 2018国产大陆天天弄谢| 国产深夜福利视频在线观看| 如日韩欧美国产精品一区二区三区 | 看非洲黑人一级黄片| 一级黄片播放器| 三级国产精品欧美在线观看| 日韩免费高清中文字幕av| 伊人久久精品亚洲午夜| 久久综合国产亚洲精品| 国产成人午夜福利电影在线观看| 97在线视频观看| 久久久a久久爽久久v久久| 日韩精品有码人妻一区| 久热久热在线精品观看| 日本与韩国留学比较| 乱系列少妇在线播放| 肉色欧美久久久久久久蜜桃| 一本久久精品| 国产高清不卡午夜福利| 一区二区三区免费毛片| .国产精品久久| 青青草视频在线视频观看| 国产在线男女| 午夜久久久在线观看| 国产色爽女视频免费观看| 搡女人真爽免费视频火全软件| 国产 精品1| 精品熟女少妇av免费看| 国语对白做爰xxxⅹ性视频网站| 黄色一级大片看看| 91久久精品国产一区二区成人| 亚洲欧美成人精品一区二区| 久久午夜综合久久蜜桃| 91精品一卡2卡3卡4卡| 久久人人爽人人爽人人片va| 日韩视频在线欧美| 午夜激情久久久久久久| 久久狼人影院| 免费不卡的大黄色大毛片视频在线观看| 亚洲美女搞黄在线观看| 国产欧美日韩综合在线一区二区 | av网站免费在线观看视频| 免费观看的影片在线观看| 成人亚洲欧美一区二区av| 日日摸夜夜添夜夜爱| 久久av网站| 亚洲欧洲日产国产| 午夜视频国产福利| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产成人一精品久久久| 精品久久久久久久久亚洲| 国产日韩欧美视频二区| 久久久亚洲精品成人影院| 中文乱码字字幕精品一区二区三区| 国产熟女欧美一区二区| 中文字幕精品免费在线观看视频 | 日本黄色日本黄色录像| 一区二区三区四区激情视频| 国产一区二区三区综合在线观看 | 精品一区在线观看国产| 久久久精品免费免费高清| 午夜激情久久久久久久| 精品一品国产午夜福利视频| 欧美国产精品一级二级三级 | 观看美女的网站| 人人妻人人看人人澡| 免费av中文字幕在线| 国产免费又黄又爽又色| 亚洲国产欧美在线一区| 一级毛片aaaaaa免费看小| 亚洲一级一片aⅴ在线观看| 国产乱人偷精品视频| 搡女人真爽免费视频火全软件| 嘟嘟电影网在线观看| 欧美三级亚洲精品| 天美传媒精品一区二区| 久久人妻熟女aⅴ| 久久午夜综合久久蜜桃| 我的女老师完整版在线观看| 精品少妇内射三级| 少妇的逼水好多| 国产欧美日韩综合在线一区二区 | 亚洲av在线观看美女高潮| 日韩av在线免费看完整版不卡| 久久午夜福利片| 少妇的逼水好多| 亚洲怡红院男人天堂| 最近手机中文字幕大全| 久久久欧美国产精品| 一边亲一边摸免费视频| 午夜视频国产福利| 成人18禁高潮啪啪吃奶动态图 | 三级经典国产精品| 最后的刺客免费高清国语| 熟女电影av网| 国产片特级美女逼逼视频| 日韩欧美 国产精品| 久久久久网色| 交换朋友夫妻互换小说| 狂野欧美激情性bbbbbb| 欧美亚洲 丝袜 人妻 在线| 97精品久久久久久久久久精品| 亚洲激情五月婷婷啪啪| 欧美3d第一页| 欧美日韩精品成人综合77777| 亚洲国产成人一精品久久久| 亚洲伊人久久精品综合| 一级爰片在线观看| 国产精品欧美亚洲77777| 国产在线男女| 免费大片18禁| 性高湖久久久久久久久免费观看| 最后的刺客免费高清国语| 你懂的网址亚洲精品在线观看| 丰满少妇做爰视频| 午夜福利在线观看免费完整高清在| 中文字幕精品免费在线观看视频 | 99精国产麻豆久久婷婷| 国产精品嫩草影院av在线观看| 亚洲欧美一区二区三区黑人 | 精华霜和精华液先用哪个| 嘟嘟电影网在线观看| 3wmmmm亚洲av在线观看| 精品人妻一区二区三区麻豆| 在线天堂最新版资源| 亚洲色图综合在线观看| 大又大粗又爽又黄少妇毛片口| 男的添女的下面高潮视频| a级片在线免费高清观看视频| 一区在线观看完整版| 天堂俺去俺来也www色官网| 亚洲av欧美aⅴ国产| 久久国内精品自在自线图片| 国产白丝娇喘喷水9色精品| 国国产精品蜜臀av免费| 涩涩av久久男人的天堂| 观看av在线不卡| 中文字幕免费在线视频6| 99久久精品热视频| 国产色婷婷99| 青春草亚洲视频在线观看| 久久精品国产亚洲av涩爱| av在线播放精品| 亚洲成色77777| 亚洲精品国产av成人精品| 亚洲av日韩在线播放| 狂野欧美激情性bbbbbb| 久久国产乱子免费精品| 国产深夜福利视频在线观看| 大码成人一级视频| kizo精华| av在线播放精品| 国产高清不卡午夜福利| 亚洲国产精品成人久久小说| 国产黄频视频在线观看| 国产91av在线免费观看| 国产一区亚洲一区在线观看| 欧美高清成人免费视频www| 亚洲情色 制服丝袜| 伊人久久精品亚洲午夜| 国语对白做爰xxxⅹ性视频网站| 三级国产精品欧美在线观看| a级毛色黄片| 国产熟女午夜一区二区三区 | 一个人免费看片子| 多毛熟女@视频| 欧美老熟妇乱子伦牲交| 久久 成人 亚洲| 亚洲成人av在线免费| 亚洲精品日本国产第一区| 伊人亚洲综合成人网| 一级黄片播放器| 69精品国产乱码久久久| av在线app专区| 少妇的逼好多水| 亚洲无线观看免费| 精品卡一卡二卡四卡免费| 亚洲国产精品一区二区三区在线| 少妇 在线观看| 91aial.com中文字幕在线观看| 成年av动漫网址| 久久久久视频综合| 在线播放无遮挡| 卡戴珊不雅视频在线播放| 最近中文字幕2019免费版| 男人爽女人下面视频在线观看| av在线观看视频网站免费| 精品一区二区三区视频在线| 只有这里有精品99| 老熟女久久久| 国产亚洲午夜精品一区二区久久| 国产精品99久久久久久久久| 亚洲婷婷狠狠爱综合网| 91久久精品电影网| 超碰97精品在线观看| 日韩制服骚丝袜av| 午夜免费观看性视频| 校园人妻丝袜中文字幕| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品第二区| 26uuu在线亚洲综合色| 少妇精品久久久久久久| 亚洲国产精品一区三区| 国产男女超爽视频在线观看| 国产精品99久久99久久久不卡 | 国产精品久久久久久av不卡| 天天操日日干夜夜撸| 国产亚洲一区二区精品| 亚洲av男天堂| 蜜桃在线观看..| 久久6这里有精品| 国产精品久久久久久久电影| 少妇 在线观看| 国产极品粉嫩免费观看在线 | 亚洲性久久影院| 精品国产国语对白av| 22中文网久久字幕| 精品99又大又爽又粗少妇毛片| 亚洲自偷自拍三级| 国产精品99久久久久久久久| 高清欧美精品videossex| 日产精品乱码卡一卡2卡三| 高清毛片免费看| 日本猛色少妇xxxxx猛交久久| 精品人妻熟女毛片av久久网站| 最近手机中文字幕大全| 亚洲精品,欧美精品| 精品亚洲乱码少妇综合久久| 男女国产视频网站| 黄色日韩在线| 水蜜桃什么品种好| 精品久久久久久久久亚洲| 高清在线视频一区二区三区| 国国产精品蜜臀av免费| 成人亚洲精品一区在线观看| av女优亚洲男人天堂| 精华霜和精华液先用哪个| 成人美女网站在线观看视频| 校园人妻丝袜中文字幕| 国产精品一区二区性色av| 国产一级毛片在线| 亚洲精品色激情综合| 91精品一卡2卡3卡4卡| 99九九在线精品视频 | 免费黄网站久久成人精品| av又黄又爽大尺度在线免费看| 91精品一卡2卡3卡4卡| av国产久精品久网站免费入址| 国内少妇人妻偷人精品xxx网站| 中文字幕亚洲精品专区| 国产精品免费大片| 看十八女毛片水多多多| 欧美xxxx性猛交bbbb| 亚洲欧美成人综合另类久久久| 国产伦精品一区二区三区四那| 国产成人免费无遮挡视频| 男的添女的下面高潮视频| 国产欧美日韩一区二区三区在线 | 狂野欧美白嫩少妇大欣赏| 日韩伦理黄色片| 波野结衣二区三区在线| 少妇熟女欧美另类| 亚洲伊人久久精品综合| 91精品一卡2卡3卡4卡| 亚洲va在线va天堂va国产| 日日爽夜夜爽网站| 在线天堂最新版资源| 日本黄色片子视频| xxx大片免费视频| 亚洲欧美日韩东京热| 曰老女人黄片| 国产黄频视频在线观看| 国产日韩欧美在线精品| 视频中文字幕在线观看| 成人毛片60女人毛片免费| 午夜精品国产一区二区电影| 免费av中文字幕在线| 夫妻性生交免费视频一级片| 国产中年淑女户外野战色| 桃花免费在线播放| 国产伦理片在线播放av一区| 国内精品宾馆在线| 看非洲黑人一级黄片| 人妻 亚洲 视频| av卡一久久| 日产精品乱码卡一卡2卡三| 黑人巨大精品欧美一区二区蜜桃 | 大码成人一级视频| 国产欧美亚洲国产| 丝袜脚勾引网站| 国产精品秋霞免费鲁丝片| av视频免费观看在线观看| 亚洲高清免费不卡视频| 在线观看免费日韩欧美大片 | 国内少妇人妻偷人精品xxx网站| 亚洲精品乱码久久久v下载方式| 免费av中文字幕在线| 欧美日韩综合久久久久久| 国产视频内射| 中文精品一卡2卡3卡4更新| 久久鲁丝午夜福利片| 狂野欧美激情性bbbbbb| 色吧在线观看| 成年人免费黄色播放视频 | 天堂中文最新版在线下载| 免费看日本二区| 有码 亚洲区| 欧美日韩综合久久久久久| 亚洲av综合色区一区| 免费久久久久久久精品成人欧美视频 | 国产免费一区二区三区四区乱码| 亚洲精品,欧美精品| 男人添女人高潮全过程视频| 六月丁香七月| 只有这里有精品99| 大又大粗又爽又黄少妇毛片口| 嫩草影院入口| 日本av免费视频播放| 精品一品国产午夜福利视频| 午夜91福利影院| 亚洲精品日韩av片在线观看| 日韩精品免费视频一区二区三区 | xxx大片免费视频| 看十八女毛片水多多多| 国产精品一二三区在线看| 国产精品人妻久久久影院| 国产白丝娇喘喷水9色精品| 国产精品国产三级国产专区5o| 777米奇影视久久| 国产精品一区二区在线观看99| 欧美丝袜亚洲另类| 国产亚洲欧美精品永久| 黑丝袜美女国产一区| 亚洲国产欧美日韩在线播放 | h日本视频在线播放| 国产乱来视频区| 日韩av免费高清视频| 美女脱内裤让男人舔精品视频| 18禁动态无遮挡网站|