• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Outage Capacity Analysis for Cognitive Non-Orthogonal Multiple Access Downlink Transmissions Systems in the Presence of Channel Estimation Error

    2019-07-18 02:00:20YinghuaZhangYanfangDongLeiWangJianLiuYunfengPengandJimFeng
    Computers Materials&Continua 2019年7期

    Yinghua Zhang , Yanfang Dong, Lei Wang Jian Liu , Yunfeng Peng and Jim Feng

    Abstract: In this paper, we propose a downlink cognitive non-orthogonal multiple access (NOMA) network, where the secondary users (SUs) operate in underlay mode.In the network, secondary transmitter employs NOMA signaling for downlink transmission, and the primary user (PU) is interfered by the transmission from SU.The expressions for the outage probabilities are derived in closed-form for both primary and secondary users in the presence of channel estimation error.Numerical simulation results show that the channel estimation error and the inter-network interference cause degradation of the downlink outage performance.Also the power allocation and the location have a significant impact on the outage probability.The numerical experiments demonstrate that the analytic expressions of the outage probabilities match with the simulation results.

    Keywords: Cognitive radio, NOMA, serial interference cancellation, channel estimation error, outage probability.

    1 Introduction

    Non-orthogonal multiple access (NOMA) is a newly proposed 5G multiplexing technology, which can meet the rapidly growing demand of mobile services.By actively introducing interference at the transmitting end and adopting interference cancellation technology at the receiving end, NOMA can obtain higher spectral efficiency and improve system throughput compared with the traditional orthogonal transmission technology [Al-Imari, Imran and Xiao (2017); Islam, Avazov, Dobre et al.(2017); Dai, Wang, Yuan et al.(2015); Timotheou and Krikidis (2015); Yang, Wang, Ng et al.(2017); Zeng, Yadav, Dobre et al.(2017)].This is in line with the explosive data growth and access demand in the coming 5G era.Thus NOMA has attracted the attention of researchers all over the world.Especially in the cellular network of the Internet of Things (IoT), NOMA provides the need for large-scale connection of IoT devices with low delay by accommodating multiple users in the same frequency spectrum [Liaqat, Noordin, Abdul Latef et al.(2018); Liu, Song and Gui (2018); Borkar and Pande (2016)].For example, in Ding et al.[Ding, Dai and Poor (2016)], the authors consider a novel precoding and power allocation strategy to realize the potential of NOMA in IoT.These proposed strategies can be applied to scenarios with two users or more.In order to take advantage of uplink NOMA technology in reducing the energy consumption of secondary users, an edge computing solution based on the NOMA technique is presented in Kiani et al.[Kiani and Ansari (2018)].In the paper, the author minimizes the energy consumption of secondary users by utilizing an NOMA-based optimization framework.In DOCOMO [DOCOMO (2014)], the author uses NOMA scheme to improve the spectral efficiency which is essential for the construction of Internet of Things (IoT).NOMA technology now has been adopted in the 3GPP long term evolution [3rd Generation Partnership Project (2015)].

    Similarly, in order to make full use of radio resources, researchers introduce NOMA technology into cognitive radio network (CRN), which allows multiple secondary users to adopt overlapping transmission mode on the same frequency band of authorized users to realize multi-user spectrum sharing and further improve the system performance of CRN [Lv, Ma, Zeng et al.(2018); Lv, Chen, Ni et al.(2017); Chen, Wang and Jiao (2017)].In [Lv, Ni, Ding et al.(2017)], the authors introduce NOMA scheme into a cooperative spectrum-sharing networks and compare the advantages of NOMA scheme with orthogonal multiple access (OMA).In Lv et al.[Lv, Chen and Ni (2016)], the authors propose a cooperative transmission scheme based on CR-NOMA network to achieve the maximum diversity at SUs.In these papers, the study mainly focuses on the scheme of power allocation and user locations to improve system performance which assumes perfect CSI.

    However, it is rather difficult to obtain perfect CSI of the system in the practical application scenario.The power consumption of the system would increase heavily in order to obtain perfect CSI [Gedik and Uysal (2009)], especially in large-scale wireless networks [Liu, Luo, Liu et al.(2018)].Under these practical constraints, we focus on the application of imperfect CSI, which is of great significance to reduce system complexity and power consumption.Recently, in Yang et al.[Yang, Ding, Fan et al.(2016)], the optimal power allocation strategy based on the channel estimation errors has been studied, and the outage probability has been calculated to evaluate the system performance.Also NOMA technology in a downlink scenario with channel estimation errors is studied and the performance is evaluated by outage probability.In Arzykulov et al.[Arzykulov, Tsiftsis, Nauryzbayev et al.(2018)], with the existence of channel estimation errors, a scheme of decode-and-forward cooperative underlay CR-NOMA is studied, and the expressions of outage probability are derived.The authors choose a set of power allocation factors based on different distances to ensure the fairness of secondary users.In Liu et al.[Liu, Song and Gui (2018)], the authors propose a basic framework to evaluate the security and reliability of cooperative NOMA in cognitive networks.Compared with the traditional schemes, the proposed scheme can effectively improve the system performance.The change of transmission distance is also taken into account because that the path loss has significant impact on the outage probability.Furthermore, in most of the CRN models, the interference from the primary network on SUs is generally ignored, which decreases the criterion of QoS and reduces the effectiveness of CRN systems.Based on the above problems, we analyze the outage performance of a cooperative underlay downlink CR-NOMA network in the presence of channel estimation error.The channel estimation error is regarded as interference in the systems.In CR-NOMA network, we take into account both the channel estimation error and the inter-network interference between the primary network (PN) and the secondary network (SN).Also, we make a comparison between imperfect CSI and perfect CSI in NOMA systems.The closed-form expressions of outage probabilities are derived for both primary and secondary users.Simulation results show that the channel estimation error and the internetwork interference cause degradation of the downlink outage performance.Furthermore, the transmit distance has a significant impact on the outage probability, since the path loss is a dominant factor in the CR-NOMA network, which has a significant impact on the outage probability.

    The paper is organized as follows.Section II gives a brief view of the system and channel model.Section III derives outage probability expressions of the SUs and PU respectively.Section IV discusses numerical and Monte Carlo simulations results.Finally, Section V concludes the paper with a summary and some final remarks.

    2 System model

    Consider a downlink CR-NOMA system which consists of one primary transmitter (P), one secondary transmitter (S) and one primary destination (P0)as well as N secondary destinations Uk(k=1,2,..., N), as shown in Fig.1.

    Figure 1: System model of the CR-NOMA network

    In CR-NOMA network, we assume that each node with a single antenna operates in a half-duplex mode.Each channel keeps independently with each other, and complies with identically distributed.The total transmission power at secondary transmitter is limited by Ps.Similarly, define the transmit power of primary user as Pt.We assume that hpp0, hsukand hsp0denote the channel coefficients from P to P0(P → P0), from S to Uk(S → Uk), and from S to P0(S → P0).Respectively, each channel satisfies complex Gaussian distribution with zero-mean and variance 1.For example, the channel coefficient pertaining from S tois denoted by hsukandThe channel between the transmitting end i and the receiving end j is given by

    whereijd denotes the distance between the user i and j, and α represents the path loss parameter.Similarly, it can be obtained that

    2.1 NOMA transmission protocol

    As is known, in practical scenarios the feedback delay errors always cause the channel estimation errors.So it is rather difficult to obtain perfect CSI of the wireless network.The channel coefficients can be given as [Ikki and Aissa (2012); Wang, Liu and Dong (2012); Ma and Jin (2007)]:

    where Psdenotes the transmission power, anddenotes the power allocation factor, with

    Thus, the received signals at P0and Ukare given respectively as

    For the convenience of mathematical derivation, we assumeAnd denotesas the signal-to-noise ratio (SNR) of transmitting end.

    During the secondary cooperative transmission process, it is assumed that the PU has a strong channel condition while the PU correctly transmits the message.Under such circumstances, we assume that the interference from the PU to the SU can be canceled at the secondary userTherefore, Serial interference cancellation (SIC) can be employed at Uk.Note that it is needed to detect the userwhose estimated gains of channel are worse than their own.If Ukdecodes the signal successfully, i.e.,wheredenotes the targeted rate of user Ui, then remove the signal si.Then Ukcan detect other userstep by step until Ukcan correctly decode its own signal.The general data rate expression for Ukto detect the signal is given by

    Now, if all the users Ui(k+ 1≤ i ≤N) correctly decode the message, the date rate of

    user Ukcan be expressed as

    In particular, when k = j= 1,

    In the downlink cognitive NOMA network, the user suffers interference from all of the other users.We assume that the estimated channel gain in the cell are sorted asis a strong channel user relative to all other users, so U1has interference-free transmission.

    In underlay mode, the secondary users can establish cooperation transmission without exceeding the PU interference threshold.But the interference from the SU to the PU always exists.If the estimated error of the interference from the secondary users to the primary is ignored, the date rate of P0in the presence of channel estimation error is given by

    Similarly, in practical systems, if the interference from SU to PU is within an controllable range, i.e.,and the channel estimation error of the interference is ignored, the date rate of0P in practical systems can be expressed as

    2.2 Density functions of channel gains

    According to statistics [David (2003)], in most cases the locations of users are fixed, and distances and path loss are deterministic.Also the fading is Rayleigh distributed.The cumulative distribution function (CDF) of the k-th estimation channel gainis given by Yang et al.[Yang, Ding, Fan et al.(2016)]

    Therefore, the Probability density function (PDF) of the unordered channel gain is expressed as follows:

    Given the fact that the interference imposed to the primary receiver is controllable, and the interference would not exceed the threshold of the PU, it is critical to ensure that the message of S be decoded at Uk, and the instantaneous receiving date rate of each useron the receiving end exceed the threshold of targeted rate set by each user in advance.andare the thresholds of date rate that can be properly demodulated by the PU and the i-th user respectively.Therefore, if the k-th user wants to achieve correct demodulation, it must satisfy these conditions:and

    3 Performance of NOMA with channel estimation error

    Suppose that the k-th user Ukcan successfully decodes its own signal and its subsequent signal as eventNote that the Ukneeds to detect its own signal, meanwhile the estimation channel of the gains of all of the other users are worse than its own.The event is expressed as

    From Eq.(14), it can be seen that when the event can be established, it must satisfy:

    During the secondary cooperative transmission process, the secondary users can establish cooperation transmission without exceeding the PU interference threshold.In other words, it refers to the secondary cooperative transmission while the primary user can transmit normally, i.e., γp>γthp.Now, assume that the PU transmits normally, the outage probability is expressed as

    From (18), the outage probability of is given by

    Similarly, the outage probability of the PU is also worth our analysis.In this section, it can be clearly proved that the interference of secondary users to PU and the channel estimation error affect the outage performance.If SU transmits normally, the outage probability of user P0can be expressed as

    4 Numerical results and simulations

    In this section, we set up a coordinate system firstly.Then simulations are performed here on the proposed scheme.Assuming that the CR-NOMA network has two secondary destination users (1U ,2U).So the distances between all of the users are expressed asand d2, respectively.The small-scale fading gain is Rayleigh distributed, i.e., hi~CN(0,1).The average channel coefficient is set aswith dkrepresenting the normalized distance between node S and node Uk.Assume that the path loss exponent α = 3, the power allocation factor a1=0.25, a2=0.75 and the distance dpp0=1m.Monte Carlo simulations are performed here to evaluate the performance of the proposed resource allocation algorithms.The simulation results are obtained after510 independent trials.

    Figure 2: Impact of channel estimation error on secondary outage probability

    Fig.2 shows the outage probability of SUs with channel estimation errors varianceobserved in NOMA.In the figure, the SNR is set as 30 dB, and the distances are set asWith the increase ofthe outage probability increases respectively.It can be seen that the simulation results match perfectly with the analytical results.Also larger channel estimation error brings stronger interference to the wireless system.In addition, it can be observed from Fig.2 that the outage probability will always be 1 when choosing larger value ofAt this point, the parameter selection scheme fails to satisfy the condition

    Figure 3: Impact of SNR on secondary outage probability.For the curve of User 1* and User 2* with under NOMA scheme, please refer to Yang et al.[Yang, Ding, Fan et al.(2016)]

    Fig.3 depicts the impact of channel estimation erroron the outage probability of secondary user Uk.In the figure, we set the targeted ratebit/s/Hz , the distance d1= d2=5m and dsp0=10m.It is observed that the outage performance can be significantly improved by increasing the transmitting SNR.Numerical simulation results show that the channel estimation error caused by partial channel information has a significant impact on the outage probability of Uk.Furthermore, we compare the results of the NOMA atto those obtained from Yang et al.[Yang, Ding, Fan et al.(2016)].It can be observed from Fig.3 that the accurate results from Yang et al.[Yang, Ding, Fan et al.(2016)] can be achieved only with higher SNRs, and in the paper, the analytical results are in good consistence with Monte Carlo simulations within the overall range of SNR.Under NOMA scheme, the secondary transmission with imperfect CSI cannot obtain diversity gain due to channel estimation error, while secondary transmission with perfect CSI can obtain a diversity gain.

    Fig.4 shows the analytical results of the primary outage probability.In the figure, the SNR is set as 30 dB, the distances d1= d2=5m and dsp0=10m.As can be seen from the figure, with the increase of error variance2pσ , the outage probability also increases, and the theoretical analysis results in Eq.(20) are in good consistence with Monte Carlo simulations.

    Figure 4: Impact of channel estimation error on primary outage probability

    Figure 5: Impact of SNR on primary outage probability

    Fig.5 depicts the impact of channel estimation erroron the primary outage probability.In Fig.5, we set the targeted ratethe distancesThe outage performance of PU is compared both using imperfect CSI and perfect CSI in NOMA systems.As expected, NOMA scheme with perfect CSI outperforms scheme with imperfect CSI.Thus, the simulation here can verify the correctness of the conclusion on the above simulation of secondary transmission system.

    Figure 6: Secondary outage probability vs.SNR with different transmission distance d2

    From Fig.6, we can find the impact of SNR on the outage probability with different distance d2.We set the targeted rateand the distanceIt is observed from Fig.6 that, the lager we increase the transmitting SNR, the better outage performance can be got.Here we assume that the interference from the primary user to the secondary user is negligible.So the quality of data transmission only depends on the quality of the channel.From the Fig.6, with the increase of d2, the outage probability increases.This is because the increase of transmission distance d2leads to an increase of path loss and a deterioration of channel quality, which has a serious impact on outage performance.

    Figure 7: Primary outage probability vs.SNR with different transmission distance d sp0of interference link

    Fig.7 shows the outage probability simulation results of PU with different dsp0.The targeted rate is set asthe distanceAs can be seen from the figure, with the increase of SNR, the outage probability of the PU deteriorates.Also the outage performance decreases with the increase of dsp0.Concluded from the simulation, the performance of NOMA scheme with perfect CSI outperforms system with imperfect CSI.

    5 Conclusions

    In this paper, we propose a single-cell underlay downlink NOMA network.The interference of PN on SN is considered in the established model, and then we derive the expression of the outage probability for PU and SU.We also take channel estimation error into consideration and investigate the performance of NOMA scheme.Simulation results show that the outage performance deteriorates with the increase of the error variance and higher channel estimation error results in stronger interference.The Monte Carlo simulations match well with numerical results and NOMA scheme outperforms conventional OMA scheme.

    Acknowledgement:This work is supported by National Major Project (No.2017ZX03001021005), NSFC Project (61871029) and 2018 Sugon New Model Program of Intelligent Factory on Advanced Computing Devices.

    References

    3rd Generation Partnership Project(2015): Study on Downlink Multiuser Superposition Transmission (MUST) for LTE (Release 13).3GPP Organizational Partners.

    Al-Imari, M.; Imran, M.A.; Xiao, P.(2017): Radio resource allocation for multicarrier low-density-spreading multiple access.IEEE Transactions on Vehicular Technology, vol.66, no.3, pp.2382-2393.

    Arzykulov, S.; Tsiftsis, T.A.; Nauryzbayev, G.; Abdallah, M.(2018): Outage performance of cooperative underlay CR-NOMA with imperfect CSI.IEEE Communications Letters, pp.1.

    Borkar, S.; Pande, H.(2016): Application of 5g next generation network to internet of things.International Conference on Internet of Things and Applications, pp.443-447.

    Chen, Y.; Wang, L.; Jiao, B.(2017): Cooperative multicast non-orthogonal multiple access in cognitive radio.IEEE International Conference on Communications, pp.1-6.

    Dai, L.L.; Wang, B.C.; Yuan, Y.F.; Han, S.F.; I, C.I.et al.(2015): Non-orthogonal multiple access for 5g: solutions, challenges, opportunities, and future research trends.IEEE Communications Magazine, vol.53, no.9, pp.74-81.

    David, H.A.(2003): Order Statistics, 3rd Edition.

    Ding, Z.; Dai, L.; Poor, H.V.(2016): Mimo-noma design for small packet transmission in the internet of things.IEEE Access, vol.4, pp.1393-1405.

    Ding, Z.; Yang, Z.; Fan, P.; Poor, H.V.(2014): On the performance of non-orthogonal multiple access in 5g systems with randomly deployed users.IEEE Signal Processing Letters, vol.21, no.12, pp.1501-1505.

    DOCOMO(2014): 5G Radio Access: Requirements, Concepts and Technologies.NTT DOCOMO, Inc.

    Gedik, B.; Uysal, M.(2009): Impact of imperfect channel estimation on the performance of amplify-and-forward relaying.IEEE Transactions on Wireless Communications, vol.8, no.3, pp.1468-1479.

    Ikki, S.S.; Aissa, S.(2012): Two-way amplify-and-forward relaying with gaussian Imperfect channel estimations.IEEE Communications Letters, vol.16, no.7, pp.956-959.

    Islam, S.M.R.; Avazov, N.; Dobre, O.A.; Kwak, K.(2017): Power-domain nonorthogonal multiple access (noma) in 5G systems: potentials and challenges.IEEE Communications Surveys Tutorials, vol.19, no.2, pp.721-742.

    Kiani, A.; Ansari, N.(2018): Edge computing aware noma for 5g networks.IEEE Internet of Things Journal, vol.5, no.2, pp.1299-1306.

    Liaqat, M.; Noordin, K.A.; Abdul Latef, T.; Dimyati, K.(2018): Power-domain non orthogonal multiple access (pd-noma) in cooperative networks: an overview.Wireless Networks, pp.1-23.

    Liu, M.; Song, T.; Gui, G.(2018): Deep cognitive perspective: Resource allocation for noma based heterogeneous iot with imperfect sic.IEEE Internet of Things Journal, pp.1.

    Liu, W.; Luo, X.; Liu, Y.; Liu, J.; Liu, M.et al.(2018): Localization algorithm of indoor wi-fi access points based on signal strength relative relationship and region division.Computers, Materials & Continua, vol.55, pp.71-93.

    Lv, L.; Chen, J.; Ni, Q.(2016): Cooperative non-orthogonal multiple access in cognitive radio.IEEE Communications Letters, vol.20, no.10, pp.2059-2062.

    Lv, L.; Chen, J.; Ni, Q.; Ding, Z.(2017): Design of cooperative non-orthogonal multicast cognitive multiple access for 5G systems user scheduling and performance analysis.IEEE Transactions on Communications, vol.65, no.6, pp.2641-2656.

    Lv, L.; Ni, Q.; Ding, Z.; Chen, J.(2017): Application of non-orthogonal multiple access in cooperative spectrum-sharing networks over nakagami-m fading channels.IEEE Transactions on Vehicular Technology, vol.66, no.6, pp.5506-5511.

    Lv, T.; Ma, Y.; Zeng, J.; Mathiopoulos, P.T.(2018): Millimeter-wave noma transmission in cellular m2m communications for internet of things.IEEE Internet of Things Journal, vol.5, no.3, pp.1989-2000.

    Ma, Y.; Jin, J.(2007): Effect of channel estimation errors on m-qam with mrc and egc in nakagami fading channels.IEEE Transactions on Vehicular Technology, vol.56, no.3, pp.1239-1250.

    Timotheou, S.; Krikidis, I.(2015): Fairness for non-orthogonal multiple access in 5G systems.IEEE Signal Processing Letters, vol.22, no.10, pp.1647-1651.

    Wang, C.; Liu, T.C.; Dong, X.(2012): Impact of channel estimation error on the performance of amplify-and-forward two-way relaying.IEEE Transactions on Vehicular Technology, vol.61, no.3, pp.1197-1207.

    Yang, Q.; Wang, H.; Ng, D.W.K.; Lee, M.H.(2017): Noma in downlink sdma with limited feedback: performance analysis and optimization.IEEE Journal on Selected Areas in Communications, vol.35, no.10, pp.2281-2294.

    Yang, Z.; Ding, Z.; Fan, P.; Karagiannidis, G.K.(2016): On the performance of nonorthogonal multiple access systems with partial channel information.IEEE Transactions on Communications, vol.64, no.2, pp.654-667.

    Zeng, M.; Yadav, A.; Dobre, O.A.; Tsiropoulos, G.I.; Poor, H.V.(2017): Capacity comparison between mimo-noma and mimo-oma with multiple users in a cluster.IEEE Journal on Selected Areas in Communications, vol.35, no.10, pp.2413-2424.

    99热这里只有是精品在线观看| 亚洲av日韩在线播放| 欧美日韩在线观看h| 国产欧美另类精品又又久久亚洲欧美| 能在线免费看毛片的网站| 男人狂女人下面高潮的视频| 天天一区二区日本电影三级| 亚洲成人中文字幕在线播放| 中国国产av一级| 99在线视频只有这里精品首页| av黄色大香蕉| 日本免费在线观看一区| 五月玫瑰六月丁香| 久久久色成人| 天堂网av新在线| 三级男女做爰猛烈吃奶摸视频| 美女大奶头视频| 欧美性猛交╳xxx乱大交人| 能在线免费观看的黄片| 久久久久久久久中文| 91久久精品电影网| 99在线人妻在线中文字幕| 国产亚洲av嫩草精品影院| av黄色大香蕉| 麻豆久久精品国产亚洲av| 国产精品,欧美在线| 99国产精品一区二区蜜桃av| 亚洲av不卡在线观看| 亚洲在久久综合| 村上凉子中文字幕在线| 我要看日韩黄色一级片| 桃色一区二区三区在线观看| 国内精品一区二区在线观看| 亚洲av成人精品一二三区| av视频在线观看入口| 成人二区视频| 网址你懂的国产日韩在线| 日本午夜av视频| 免费大片18禁| 午夜福利成人在线免费观看| 免费av不卡在线播放| 日韩中字成人| 精品免费久久久久久久清纯| 亚洲人成网站在线播| 日韩,欧美,国产一区二区三区 | av女优亚洲男人天堂| 国产一区有黄有色的免费视频 | 国产三级中文精品| 一级毛片久久久久久久久女| 欧美极品一区二区三区四区| 国产熟女欧美一区二区| 国产男人的电影天堂91| 狂野欧美白嫩少妇大欣赏| 成人一区二区视频在线观看| 日本五十路高清| 乱人视频在线观看| 特大巨黑吊av在线直播| av天堂中文字幕网| 久久人人爽人人爽人人片va| 国产淫片久久久久久久久| 久久久精品大字幕| 边亲边吃奶的免费视频| 99九九线精品视频在线观看视频| 亚洲av不卡在线观看| 大香蕉久久网| 最近最新中文字幕免费大全7| 午夜老司机福利剧场| 亚洲国产精品国产精品| 1000部很黄的大片| 床上黄色一级片| 在线免费十八禁| 日韩视频在线欧美| 日韩av不卡免费在线播放| 国产精品日韩av在线免费观看| 水蜜桃什么品种好| 久久久久久国产a免费观看| 亚洲va在线va天堂va国产| 最近最新中文字幕大全电影3| 人体艺术视频欧美日本| 国产成人福利小说| 精品人妻熟女av久视频| 中国美白少妇内射xxxbb| 亚洲精品,欧美精品| 偷拍熟女少妇极品色| 男人狂女人下面高潮的视频| 美女脱内裤让男人舔精品视频| 高清日韩中文字幕在线| 国产淫片久久久久久久久| 婷婷六月久久综合丁香| 1024手机看黄色片| 成人欧美大片| 久久国产乱子免费精品| 性色avwww在线观看| 久久久久久久亚洲中文字幕| 国产精品福利在线免费观看| 91久久精品国产一区二区成人| av线在线观看网站| 国产女主播在线喷水免费视频网站 | 亚洲自偷自拍三级| 麻豆乱淫一区二区| 伊人久久精品亚洲午夜| 97超视频在线观看视频| 99热全是精品| 看十八女毛片水多多多| 亚洲av.av天堂| 日本一二三区视频观看| 国产成人午夜福利电影在线观看| 国产不卡一卡二| 国产精品久久视频播放| 啦啦啦韩国在线观看视频| 亚洲激情五月婷婷啪啪| 一个人免费在线观看电影| 欧美成人免费av一区二区三区| 精品酒店卫生间| 精品一区二区免费观看| 毛片女人毛片| 国产伦精品一区二区三区四那| 2022亚洲国产成人精品| 午夜福利在线观看吧| 天堂网av新在线| 亚洲精品亚洲一区二区| 91精品伊人久久大香线蕉| 午夜久久久久精精品| 亚洲av日韩在线播放| 国产亚洲最大av| 色视频www国产| 91狼人影院| 26uuu在线亚洲综合色| 能在线免费看毛片的网站| 国产淫语在线视频| 日韩中字成人| 国产精品一区www在线观看| 欧美日本视频| 在线免费观看的www视频| 午夜爱爱视频在线播放| 久久久久免费精品人妻一区二区| 七月丁香在线播放| 免费在线观看成人毛片| 成人亚洲欧美一区二区av| 中文精品一卡2卡3卡4更新| 国产麻豆成人av免费视频| 国产伦一二天堂av在线观看| 在线观看一区二区三区| 水蜜桃什么品种好| 免费av不卡在线播放| АⅤ资源中文在线天堂| 亚洲久久久久久中文字幕| 国产老妇女一区| 亚洲欧洲日产国产| 国产乱人偷精品视频| 三级国产精品欧美在线观看| 成人午夜高清在线视频| 丝袜喷水一区| 少妇人妻一区二区三区视频| 1024手机看黄色片| 搞女人的毛片| 亚洲av男天堂| 成年免费大片在线观看| 熟女电影av网| 搡老妇女老女人老熟妇| 中文字幕久久专区| 在线观看一区二区三区| 久久人人爽人人片av| 成年版毛片免费区| 中文精品一卡2卡3卡4更新| a级毛色黄片| 国产精品.久久久| av又黄又爽大尺度在线免费看 | 寂寞人妻少妇视频99o| 国产视频首页在线观看| 久久精品国产鲁丝片午夜精品| 亚洲精品aⅴ在线观看| 我要搜黄色片| 国产色婷婷99| 久久亚洲精品不卡| 久久久久性生活片| 国产一级毛片七仙女欲春2| 中文字幕熟女人妻在线| 尤物成人国产欧美一区二区三区| 久久99蜜桃精品久久| 欧美成人一区二区免费高清观看| 国产在线男女| 免费不卡的大黄色大毛片视频在线观看 | 久久久国产成人精品二区| 亚洲成人av在线免费| 国产精品三级大全| 特大巨黑吊av在线直播| 永久免费av网站大全| 观看美女的网站| 精品人妻一区二区三区麻豆| 国产精品无大码| 久久久久九九精品影院| 欧美+日韩+精品| 亚洲av.av天堂| 久久久久性生活片| 九九在线视频观看精品| 日日干狠狠操夜夜爽| 亚洲在线观看片| 少妇人妻一区二区三区视频| 亚洲人与动物交配视频| 九九在线视频观看精品| 狠狠狠狠99中文字幕| 夜夜爽夜夜爽视频| 婷婷色综合大香蕉| 国产中年淑女户外野战色| 伦理电影大哥的女人| 九色成人免费人妻av| 国产精品蜜桃在线观看| 男人舔奶头视频| 亚洲婷婷狠狠爱综合网| 在线播放无遮挡| 精品一区二区免费观看| 亚洲欧美精品综合久久99| 永久免费av网站大全| 欧美zozozo另类| 成人一区二区视频在线观看| av免费在线看不卡| 女的被弄到高潮叫床怎么办| 日韩人妻高清精品专区| 日本一二三区视频观看| 白带黄色成豆腐渣| 视频中文字幕在线观看| 看黄色毛片网站| 久久久成人免费电影| 在线免费观看不下载黄p国产| av天堂中文字幕网| 国产免费福利视频在线观看| 免费看美女性在线毛片视频| 国产一区有黄有色的免费视频 | 中文天堂在线官网| 插阴视频在线观看视频| 伊人久久精品亚洲午夜| 欧美性猛交╳xxx乱大交人| 老女人水多毛片| 国产三级在线视频| 国产美女午夜福利| 亚洲欧美精品自产自拍| 久久午夜福利片| 中文资源天堂在线| 日本猛色少妇xxxxx猛交久久| 欧美极品一区二区三区四区| 亚洲欧美精品专区久久| 最近的中文字幕免费完整| 国产高清不卡午夜福利| 久久6这里有精品| 日韩一区二区视频免费看| 国产精品av视频在线免费观看| 亚洲欧美一区二区三区国产| 成人亚洲欧美一区二区av| 一级毛片久久久久久久久女| 久久久久久久久中文| 最近最新中文字幕免费大全7| 国产单亲对白刺激| 久久99精品国语久久久| 精品人妻熟女av久视频| 色网站视频免费| 我要搜黄色片| 麻豆一二三区av精品| 精品一区二区免费观看| 亚洲久久久久久中文字幕| 国产极品天堂在线| 午夜精品在线福利| 夫妻性生交免费视频一级片| 亚洲国产精品成人综合色| 欧美潮喷喷水| 日韩三级伦理在线观看| 精品久久久久久久久久久久久| 亚洲精品,欧美精品| 中文乱码字字幕精品一区二区三区 | .国产精品久久| 我要搜黄色片| 亚洲国产成人一精品久久久| 伦精品一区二区三区| 国产精品一及| 99热这里只有精品一区| 亚洲欧美日韩无卡精品| 麻豆精品久久久久久蜜桃| 国产午夜福利久久久久久| 狠狠狠狠99中文字幕| 欧美高清成人免费视频www| 免费不卡的大黄色大毛片视频在线观看 | 午夜精品国产一区二区电影 | 日韩欧美在线乱码| 麻豆国产97在线/欧美| av线在线观看网站| 亚洲欧美成人综合另类久久久 | av免费在线看不卡| 高清在线视频一区二区三区 | 国产精品国产三级国产专区5o | 亚洲欧美精品综合久久99| 欧美不卡视频在线免费观看| av免费在线看不卡| 又爽又黄a免费视频| 天天躁夜夜躁狠狠久久av| 亚洲最大成人av| 99热这里只有是精品50| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久久亚洲中文字幕| 99久久中文字幕三级久久日本| 国产精品蜜桃在线观看| 97人妻精品一区二区三区麻豆| 亚洲成人久久爱视频| 中文亚洲av片在线观看爽| 免费搜索国产男女视频| 国产精品99久久久久久久久| 欧美性感艳星| 亚洲欧美成人精品一区二区| or卡值多少钱| 在线播放无遮挡| 色哟哟·www| 久久人妻av系列| 日本色播在线视频| 国产成人aa在线观看| 高清视频免费观看一区二区 | 51国产日韩欧美| 亚洲第一区二区三区不卡| 久久午夜福利片| 99久久九九国产精品国产免费| 99九九线精品视频在线观看视频| 欧美日本视频| 欧美一区二区亚洲| 高清视频免费观看一区二区 | 欧美丝袜亚洲另类| 国产一级毛片七仙女欲春2| 欧美成人一区二区免费高清观看| 在线a可以看的网站| 91在线精品国自产拍蜜月| 尾随美女入室| 免费看美女性在线毛片视频| 亚洲在久久综合| av在线天堂中文字幕| 小蜜桃在线观看免费完整版高清| 国产亚洲午夜精品一区二区久久 | 久久精品国产鲁丝片午夜精品| 精品久久久久久久久亚洲| 久久久国产成人精品二区| av在线观看视频网站免费| 午夜激情欧美在线| 婷婷色麻豆天堂久久 | 在线观看一区二区三区| 国产一级毛片在线| 哪个播放器可以免费观看大片| 色视频www国产| 亚洲精品久久久久久婷婷小说 | 午夜福利在线观看免费完整高清在| 性色avwww在线观看| av福利片在线观看| 午夜免费激情av| 99视频精品全部免费 在线| 美女内射精品一级片tv| 看十八女毛片水多多多| 久久午夜福利片| 波野结衣二区三区在线| 国模一区二区三区四区视频| 日本免费在线观看一区| 好男人在线观看高清免费视频| 午夜福利在线观看免费完整高清在| 男人的好看免费观看在线视频| 波野结衣二区三区在线| 久久久久九九精品影院| 身体一侧抽搐| 午夜精品在线福利| 国产精品综合久久久久久久免费| 三级毛片av免费| 亚洲精品亚洲一区二区| 色视频www国产| av播播在线观看一区| 美女高潮的动态| 欧美日本亚洲视频在线播放| 99久国产av精品| 精华霜和精华液先用哪个| 国产精品久久久久久久久免| 亚洲欧洲国产日韩| 乱码一卡2卡4卡精品| 高清日韩中文字幕在线| 欧美一级a爱片免费观看看| 日韩三级伦理在线观看| 成人欧美大片| 中国国产av一级| 91狼人影院| 日本免费a在线| 内射极品少妇av片p| 国产日韩欧美在线精品| 精品午夜福利在线看| 亚洲三级黄色毛片| 国产亚洲午夜精品一区二区久久 | 国产精品麻豆人妻色哟哟久久 | av女优亚洲男人天堂| 成人毛片a级毛片在线播放| 乱系列少妇在线播放| 久久久亚洲精品成人影院| 日韩 亚洲 欧美在线| 日韩av在线免费看完整版不卡| 熟女人妻精品中文字幕| 国产亚洲5aaaaa淫片| 欧美3d第一页| 免费播放大片免费观看视频在线观看 | 国内精品一区二区在线观看| 欧美xxxx黑人xx丫x性爽| 国产老妇女一区| 大香蕉97超碰在线| 欧美精品一区二区大全| 99热全是精品| 日韩中字成人| 亚洲图色成人| 亚洲欧美成人综合另类久久久 | 欧美性猛交黑人性爽| 日韩在线高清观看一区二区三区| 免费观看性生交大片5| 大香蕉久久网| 春色校园在线视频观看| 在线观看av片永久免费下载| 成年免费大片在线观看| 国内揄拍国产精品人妻在线| 男女那种视频在线观看| 成年女人永久免费观看视频| 国产午夜精品论理片| 久久99热这里只频精品6学生 | 偷拍熟女少妇极品色| 两性午夜刺激爽爽歪歪视频在线观看| 国产免费视频播放在线视频 | 黑人高潮一二区| 中文字幕久久专区| 激情 狠狠 欧美| 两性午夜刺激爽爽歪歪视频在线观看| 精品久久久久久久末码| 日本-黄色视频高清免费观看| 老司机影院成人| 又粗又爽又猛毛片免费看| 日本黄色片子视频| 亚洲美女视频黄频| 一级爰片在线观看| 丰满乱子伦码专区| 日韩国内少妇激情av| 99久久无色码亚洲精品果冻| 亚洲欧美精品自产自拍| 免费在线观看成人毛片| 男女下面进入的视频免费午夜| 级片在线观看| 99在线人妻在线中文字幕| 97超碰精品成人国产| 69人妻影院| av天堂中文字幕网| 简卡轻食公司| 亚洲欧美日韩无卡精品| av黄色大香蕉| 久久久久久久午夜电影| 日韩,欧美,国产一区二区三区 | 亚洲激情五月婷婷啪啪| 99久国产av精品| 国产成人91sexporn| 欧美97在线视频| 青春草亚洲视频在线观看| 九草在线视频观看| 毛片女人毛片| 只有这里有精品99| 成年av动漫网址| 亚洲精品乱久久久久久| 国产伦精品一区二区三区四那| 偷拍熟女少妇极品色| 国产精品.久久久| 99久久精品国产国产毛片| 亚洲激情五月婷婷啪啪| a级毛色黄片| 欧美日韩精品成人综合77777| 又爽又黄a免费视频| 亚洲内射少妇av| 麻豆成人av视频| 美女内射精品一级片tv| 人妻夜夜爽99麻豆av| 精品无人区乱码1区二区| 亚洲精品日韩av片在线观看| 级片在线观看| 九九热线精品视视频播放| 免费看光身美女| 国产在视频线精品| 日日啪夜夜撸| 亚洲不卡免费看| 国产高清视频在线观看网站| 国产午夜精品论理片| 午夜福利在线观看吧| 成人毛片a级毛片在线播放| 又爽又黄无遮挡网站| 久久久久久久久大av| 国产伦精品一区二区三区四那| 日韩成人av中文字幕在线观看| 老司机影院毛片| 亚洲成人久久爱视频| 亚洲精品成人久久久久久| 午夜久久久久精精品| 色综合站精品国产| 亚洲国产精品合色在线| 老司机影院成人| 亚洲自拍偷在线| 色尼玛亚洲综合影院| 国产国拍精品亚洲av在线观看| 91狼人影院| 能在线免费看毛片的网站| 男女啪啪激烈高潮av片| 老司机福利观看| 亚洲国产欧美在线一区| 精品少妇黑人巨大在线播放 | 国产亚洲5aaaaa淫片| 亚洲图色成人| 九九热线精品视视频播放| 色综合色国产| 亚洲国产精品成人久久小说| 看非洲黑人一级黄片| 午夜精品一区二区三区免费看| 嫩草影院精品99| 三级男女做爰猛烈吃奶摸视频| 狂野欧美白嫩少妇大欣赏| 最新中文字幕久久久久| 国产精品野战在线观看| 一二三四中文在线观看免费高清| 亚洲精品aⅴ在线观看| 99久国产av精品| 国产精品一区二区三区四区久久| 一个人看视频在线观看www免费| 男人的好看免费观看在线视频| 亚洲真实伦在线观看| 级片在线观看| 听说在线观看完整版免费高清| 亚洲成人av在线免费| 少妇熟女欧美另类| 日韩制服骚丝袜av| 日韩在线高清观看一区二区三区| 亚洲国产最新在线播放| 波多野结衣高清无吗| 亚洲美女搞黄在线观看| 男女国产视频网站| 夫妻性生交免费视频一级片| 韩国av在线不卡| 久久99热这里只有精品18| a级一级毛片免费在线观看| 色播亚洲综合网| 国产爱豆传媒在线观看| 国产91av在线免费观看| 一级毛片电影观看 | 久久精品久久精品一区二区三区| 国产精品一区二区性色av| 特大巨黑吊av在线直播| 国产一区二区在线av高清观看| 日本熟妇午夜| 99在线视频只有这里精品首页| 少妇被粗大猛烈的视频| 国产欧美日韩精品一区二区| 99国产精品一区二区蜜桃av| 天天躁夜夜躁狠狠久久av| 别揉我奶头 嗯啊视频| 国产精品爽爽va在线观看网站| 小说图片视频综合网站| 美女高潮的动态| 国产欧美另类精品又又久久亚洲欧美| 精品少妇黑人巨大在线播放 | 成人三级黄色视频| 精品国内亚洲2022精品成人| 卡戴珊不雅视频在线播放| 在线观看av片永久免费下载| 亚洲国产精品国产精品| 国产精品女同一区二区软件| 日本黄大片高清| 久热久热在线精品观看| 色哟哟·www| av福利片在线观看| 成年免费大片在线观看| 欧美精品国产亚洲| 白带黄色成豆腐渣| 人妻系列 视频| 久久久久久久久久黄片| 黄色配什么色好看| 国产人妻一区二区三区在| 免费播放大片免费观看视频在线观看 | 天天躁夜夜躁狠狠久久av| 亚洲精品一区蜜桃| 我要搜黄色片| 日韩欧美 国产精品| 别揉我奶头 嗯啊视频| 一级二级三级毛片免费看| av.在线天堂| 女的被弄到高潮叫床怎么办| 丰满乱子伦码专区| 夜夜看夜夜爽夜夜摸| 久久精品国产99精品国产亚洲性色| 床上黄色一级片| 一级黄色大片毛片| 国产精品一二三区在线看| 国产精品一区二区三区四区久久| 少妇高潮的动态图| 久久久久性生活片| 亚洲熟妇中文字幕五十中出| 三级经典国产精品| 青春草国产在线视频| 高清日韩中文字幕在线| 亚洲最大成人中文| 最近的中文字幕免费完整| 亚洲一级一片aⅴ在线观看| 亚洲在久久综合| 亚洲人与动物交配视频| 国产精品国产三级国产av玫瑰| 国产精品乱码一区二三区的特点| 国产精品一区www在线观看| 色综合亚洲欧美另类图片| 久久久久久久久久成人| 精品人妻熟女av久视频| 精品人妻熟女av久视频| 美女国产视频在线观看| 国产伦一二天堂av在线观看| 简卡轻食公司| 日韩大片免费观看网站 | 激情 狠狠 欧美| 人妻夜夜爽99麻豆av| 国产乱人偷精品视频| 91在线精品国自产拍蜜月| 婷婷色麻豆天堂久久 |