• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Outage Capacity Analysis for Cognitive Non-Orthogonal Multiple Access Downlink Transmissions Systems in the Presence of Channel Estimation Error

    2019-07-18 02:00:20YinghuaZhangYanfangDongLeiWangJianLiuYunfengPengandJimFeng
    Computers Materials&Continua 2019年7期

    Yinghua Zhang , Yanfang Dong, Lei Wang Jian Liu , Yunfeng Peng and Jim Feng

    Abstract: In this paper, we propose a downlink cognitive non-orthogonal multiple access (NOMA) network, where the secondary users (SUs) operate in underlay mode.In the network, secondary transmitter employs NOMA signaling for downlink transmission, and the primary user (PU) is interfered by the transmission from SU.The expressions for the outage probabilities are derived in closed-form for both primary and secondary users in the presence of channel estimation error.Numerical simulation results show that the channel estimation error and the inter-network interference cause degradation of the downlink outage performance.Also the power allocation and the location have a significant impact on the outage probability.The numerical experiments demonstrate that the analytic expressions of the outage probabilities match with the simulation results.

    Keywords: Cognitive radio, NOMA, serial interference cancellation, channel estimation error, outage probability.

    1 Introduction

    Non-orthogonal multiple access (NOMA) is a newly proposed 5G multiplexing technology, which can meet the rapidly growing demand of mobile services.By actively introducing interference at the transmitting end and adopting interference cancellation technology at the receiving end, NOMA can obtain higher spectral efficiency and improve system throughput compared with the traditional orthogonal transmission technology [Al-Imari, Imran and Xiao (2017); Islam, Avazov, Dobre et al.(2017); Dai, Wang, Yuan et al.(2015); Timotheou and Krikidis (2015); Yang, Wang, Ng et al.(2017); Zeng, Yadav, Dobre et al.(2017)].This is in line with the explosive data growth and access demand in the coming 5G era.Thus NOMA has attracted the attention of researchers all over the world.Especially in the cellular network of the Internet of Things (IoT), NOMA provides the need for large-scale connection of IoT devices with low delay by accommodating multiple users in the same frequency spectrum [Liaqat, Noordin, Abdul Latef et al.(2018); Liu, Song and Gui (2018); Borkar and Pande (2016)].For example, in Ding et al.[Ding, Dai and Poor (2016)], the authors consider a novel precoding and power allocation strategy to realize the potential of NOMA in IoT.These proposed strategies can be applied to scenarios with two users or more.In order to take advantage of uplink NOMA technology in reducing the energy consumption of secondary users, an edge computing solution based on the NOMA technique is presented in Kiani et al.[Kiani and Ansari (2018)].In the paper, the author minimizes the energy consumption of secondary users by utilizing an NOMA-based optimization framework.In DOCOMO [DOCOMO (2014)], the author uses NOMA scheme to improve the spectral efficiency which is essential for the construction of Internet of Things (IoT).NOMA technology now has been adopted in the 3GPP long term evolution [3rd Generation Partnership Project (2015)].

    Similarly, in order to make full use of radio resources, researchers introduce NOMA technology into cognitive radio network (CRN), which allows multiple secondary users to adopt overlapping transmission mode on the same frequency band of authorized users to realize multi-user spectrum sharing and further improve the system performance of CRN [Lv, Ma, Zeng et al.(2018); Lv, Chen, Ni et al.(2017); Chen, Wang and Jiao (2017)].In [Lv, Ni, Ding et al.(2017)], the authors introduce NOMA scheme into a cooperative spectrum-sharing networks and compare the advantages of NOMA scheme with orthogonal multiple access (OMA).In Lv et al.[Lv, Chen and Ni (2016)], the authors propose a cooperative transmission scheme based on CR-NOMA network to achieve the maximum diversity at SUs.In these papers, the study mainly focuses on the scheme of power allocation and user locations to improve system performance which assumes perfect CSI.

    However, it is rather difficult to obtain perfect CSI of the system in the practical application scenario.The power consumption of the system would increase heavily in order to obtain perfect CSI [Gedik and Uysal (2009)], especially in large-scale wireless networks [Liu, Luo, Liu et al.(2018)].Under these practical constraints, we focus on the application of imperfect CSI, which is of great significance to reduce system complexity and power consumption.Recently, in Yang et al.[Yang, Ding, Fan et al.(2016)], the optimal power allocation strategy based on the channel estimation errors has been studied, and the outage probability has been calculated to evaluate the system performance.Also NOMA technology in a downlink scenario with channel estimation errors is studied and the performance is evaluated by outage probability.In Arzykulov et al.[Arzykulov, Tsiftsis, Nauryzbayev et al.(2018)], with the existence of channel estimation errors, a scheme of decode-and-forward cooperative underlay CR-NOMA is studied, and the expressions of outage probability are derived.The authors choose a set of power allocation factors based on different distances to ensure the fairness of secondary users.In Liu et al.[Liu, Song and Gui (2018)], the authors propose a basic framework to evaluate the security and reliability of cooperative NOMA in cognitive networks.Compared with the traditional schemes, the proposed scheme can effectively improve the system performance.The change of transmission distance is also taken into account because that the path loss has significant impact on the outage probability.Furthermore, in most of the CRN models, the interference from the primary network on SUs is generally ignored, which decreases the criterion of QoS and reduces the effectiveness of CRN systems.Based on the above problems, we analyze the outage performance of a cooperative underlay downlink CR-NOMA network in the presence of channel estimation error.The channel estimation error is regarded as interference in the systems.In CR-NOMA network, we take into account both the channel estimation error and the inter-network interference between the primary network (PN) and the secondary network (SN).Also, we make a comparison between imperfect CSI and perfect CSI in NOMA systems.The closed-form expressions of outage probabilities are derived for both primary and secondary users.Simulation results show that the channel estimation error and the internetwork interference cause degradation of the downlink outage performance.Furthermore, the transmit distance has a significant impact on the outage probability, since the path loss is a dominant factor in the CR-NOMA network, which has a significant impact on the outage probability.

    The paper is organized as follows.Section II gives a brief view of the system and channel model.Section III derives outage probability expressions of the SUs and PU respectively.Section IV discusses numerical and Monte Carlo simulations results.Finally, Section V concludes the paper with a summary and some final remarks.

    2 System model

    Consider a downlink CR-NOMA system which consists of one primary transmitter (P), one secondary transmitter (S) and one primary destination (P0)as well as N secondary destinations Uk(k=1,2,..., N), as shown in Fig.1.

    Figure 1: System model of the CR-NOMA network

    In CR-NOMA network, we assume that each node with a single antenna operates in a half-duplex mode.Each channel keeps independently with each other, and complies with identically distributed.The total transmission power at secondary transmitter is limited by Ps.Similarly, define the transmit power of primary user as Pt.We assume that hpp0, hsukand hsp0denote the channel coefficients from P to P0(P → P0), from S to Uk(S → Uk), and from S to P0(S → P0).Respectively, each channel satisfies complex Gaussian distribution with zero-mean and variance 1.For example, the channel coefficient pertaining from S tois denoted by hsukandThe channel between the transmitting end i and the receiving end j is given by

    whereijd denotes the distance between the user i and j, and α represents the path loss parameter.Similarly, it can be obtained that

    2.1 NOMA transmission protocol

    As is known, in practical scenarios the feedback delay errors always cause the channel estimation errors.So it is rather difficult to obtain perfect CSI of the wireless network.The channel coefficients can be given as [Ikki and Aissa (2012); Wang, Liu and Dong (2012); Ma and Jin (2007)]:

    where Psdenotes the transmission power, anddenotes the power allocation factor, with

    Thus, the received signals at P0and Ukare given respectively as

    For the convenience of mathematical derivation, we assumeAnd denotesas the signal-to-noise ratio (SNR) of transmitting end.

    During the secondary cooperative transmission process, it is assumed that the PU has a strong channel condition while the PU correctly transmits the message.Under such circumstances, we assume that the interference from the PU to the SU can be canceled at the secondary userTherefore, Serial interference cancellation (SIC) can be employed at Uk.Note that it is needed to detect the userwhose estimated gains of channel are worse than their own.If Ukdecodes the signal successfully, i.e.,wheredenotes the targeted rate of user Ui, then remove the signal si.Then Ukcan detect other userstep by step until Ukcan correctly decode its own signal.The general data rate expression for Ukto detect the signal is given by

    Now, if all the users Ui(k+ 1≤ i ≤N) correctly decode the message, the date rate of

    user Ukcan be expressed as

    In particular, when k = j= 1,

    In the downlink cognitive NOMA network, the user suffers interference from all of the other users.We assume that the estimated channel gain in the cell are sorted asis a strong channel user relative to all other users, so U1has interference-free transmission.

    In underlay mode, the secondary users can establish cooperation transmission without exceeding the PU interference threshold.But the interference from the SU to the PU always exists.If the estimated error of the interference from the secondary users to the primary is ignored, the date rate of P0in the presence of channel estimation error is given by

    Similarly, in practical systems, if the interference from SU to PU is within an controllable range, i.e.,and the channel estimation error of the interference is ignored, the date rate of0P in practical systems can be expressed as

    2.2 Density functions of channel gains

    According to statistics [David (2003)], in most cases the locations of users are fixed, and distances and path loss are deterministic.Also the fading is Rayleigh distributed.The cumulative distribution function (CDF) of the k-th estimation channel gainis given by Yang et al.[Yang, Ding, Fan et al.(2016)]

    Therefore, the Probability density function (PDF) of the unordered channel gain is expressed as follows:

    Given the fact that the interference imposed to the primary receiver is controllable, and the interference would not exceed the threshold of the PU, it is critical to ensure that the message of S be decoded at Uk, and the instantaneous receiving date rate of each useron the receiving end exceed the threshold of targeted rate set by each user in advance.andare the thresholds of date rate that can be properly demodulated by the PU and the i-th user respectively.Therefore, if the k-th user wants to achieve correct demodulation, it must satisfy these conditions:and

    3 Performance of NOMA with channel estimation error

    Suppose that the k-th user Ukcan successfully decodes its own signal and its subsequent signal as eventNote that the Ukneeds to detect its own signal, meanwhile the estimation channel of the gains of all of the other users are worse than its own.The event is expressed as

    From Eq.(14), it can be seen that when the event can be established, it must satisfy:

    During the secondary cooperative transmission process, the secondary users can establish cooperation transmission without exceeding the PU interference threshold.In other words, it refers to the secondary cooperative transmission while the primary user can transmit normally, i.e., γp>γthp.Now, assume that the PU transmits normally, the outage probability is expressed as

    From (18), the outage probability of is given by

    Similarly, the outage probability of the PU is also worth our analysis.In this section, it can be clearly proved that the interference of secondary users to PU and the channel estimation error affect the outage performance.If SU transmits normally, the outage probability of user P0can be expressed as

    4 Numerical results and simulations

    In this section, we set up a coordinate system firstly.Then simulations are performed here on the proposed scheme.Assuming that the CR-NOMA network has two secondary destination users (1U ,2U).So the distances between all of the users are expressed asand d2, respectively.The small-scale fading gain is Rayleigh distributed, i.e., hi~CN(0,1).The average channel coefficient is set aswith dkrepresenting the normalized distance between node S and node Uk.Assume that the path loss exponent α = 3, the power allocation factor a1=0.25, a2=0.75 and the distance dpp0=1m.Monte Carlo simulations are performed here to evaluate the performance of the proposed resource allocation algorithms.The simulation results are obtained after510 independent trials.

    Figure 2: Impact of channel estimation error on secondary outage probability

    Fig.2 shows the outage probability of SUs with channel estimation errors varianceobserved in NOMA.In the figure, the SNR is set as 30 dB, and the distances are set asWith the increase ofthe outage probability increases respectively.It can be seen that the simulation results match perfectly with the analytical results.Also larger channel estimation error brings stronger interference to the wireless system.In addition, it can be observed from Fig.2 that the outage probability will always be 1 when choosing larger value ofAt this point, the parameter selection scheme fails to satisfy the condition

    Figure 3: Impact of SNR on secondary outage probability.For the curve of User 1* and User 2* with under NOMA scheme, please refer to Yang et al.[Yang, Ding, Fan et al.(2016)]

    Fig.3 depicts the impact of channel estimation erroron the outage probability of secondary user Uk.In the figure, we set the targeted ratebit/s/Hz , the distance d1= d2=5m and dsp0=10m.It is observed that the outage performance can be significantly improved by increasing the transmitting SNR.Numerical simulation results show that the channel estimation error caused by partial channel information has a significant impact on the outage probability of Uk.Furthermore, we compare the results of the NOMA atto those obtained from Yang et al.[Yang, Ding, Fan et al.(2016)].It can be observed from Fig.3 that the accurate results from Yang et al.[Yang, Ding, Fan et al.(2016)] can be achieved only with higher SNRs, and in the paper, the analytical results are in good consistence with Monte Carlo simulations within the overall range of SNR.Under NOMA scheme, the secondary transmission with imperfect CSI cannot obtain diversity gain due to channel estimation error, while secondary transmission with perfect CSI can obtain a diversity gain.

    Fig.4 shows the analytical results of the primary outage probability.In the figure, the SNR is set as 30 dB, the distances d1= d2=5m and dsp0=10m.As can be seen from the figure, with the increase of error variance2pσ , the outage probability also increases, and the theoretical analysis results in Eq.(20) are in good consistence with Monte Carlo simulations.

    Figure 4: Impact of channel estimation error on primary outage probability

    Figure 5: Impact of SNR on primary outage probability

    Fig.5 depicts the impact of channel estimation erroron the primary outage probability.In Fig.5, we set the targeted ratethe distancesThe outage performance of PU is compared both using imperfect CSI and perfect CSI in NOMA systems.As expected, NOMA scheme with perfect CSI outperforms scheme with imperfect CSI.Thus, the simulation here can verify the correctness of the conclusion on the above simulation of secondary transmission system.

    Figure 6: Secondary outage probability vs.SNR with different transmission distance d2

    From Fig.6, we can find the impact of SNR on the outage probability with different distance d2.We set the targeted rateand the distanceIt is observed from Fig.6 that, the lager we increase the transmitting SNR, the better outage performance can be got.Here we assume that the interference from the primary user to the secondary user is negligible.So the quality of data transmission only depends on the quality of the channel.From the Fig.6, with the increase of d2, the outage probability increases.This is because the increase of transmission distance d2leads to an increase of path loss and a deterioration of channel quality, which has a serious impact on outage performance.

    Figure 7: Primary outage probability vs.SNR with different transmission distance d sp0of interference link

    Fig.7 shows the outage probability simulation results of PU with different dsp0.The targeted rate is set asthe distanceAs can be seen from the figure, with the increase of SNR, the outage probability of the PU deteriorates.Also the outage performance decreases with the increase of dsp0.Concluded from the simulation, the performance of NOMA scheme with perfect CSI outperforms system with imperfect CSI.

    5 Conclusions

    In this paper, we propose a single-cell underlay downlink NOMA network.The interference of PN on SN is considered in the established model, and then we derive the expression of the outage probability for PU and SU.We also take channel estimation error into consideration and investigate the performance of NOMA scheme.Simulation results show that the outage performance deteriorates with the increase of the error variance and higher channel estimation error results in stronger interference.The Monte Carlo simulations match well with numerical results and NOMA scheme outperforms conventional OMA scheme.

    Acknowledgement:This work is supported by National Major Project (No.2017ZX03001021005), NSFC Project (61871029) and 2018 Sugon New Model Program of Intelligent Factory on Advanced Computing Devices.

    References

    3rd Generation Partnership Project(2015): Study on Downlink Multiuser Superposition Transmission (MUST) for LTE (Release 13).3GPP Organizational Partners.

    Al-Imari, M.; Imran, M.A.; Xiao, P.(2017): Radio resource allocation for multicarrier low-density-spreading multiple access.IEEE Transactions on Vehicular Technology, vol.66, no.3, pp.2382-2393.

    Arzykulov, S.; Tsiftsis, T.A.; Nauryzbayev, G.; Abdallah, M.(2018): Outage performance of cooperative underlay CR-NOMA with imperfect CSI.IEEE Communications Letters, pp.1.

    Borkar, S.; Pande, H.(2016): Application of 5g next generation network to internet of things.International Conference on Internet of Things and Applications, pp.443-447.

    Chen, Y.; Wang, L.; Jiao, B.(2017): Cooperative multicast non-orthogonal multiple access in cognitive radio.IEEE International Conference on Communications, pp.1-6.

    Dai, L.L.; Wang, B.C.; Yuan, Y.F.; Han, S.F.; I, C.I.et al.(2015): Non-orthogonal multiple access for 5g: solutions, challenges, opportunities, and future research trends.IEEE Communications Magazine, vol.53, no.9, pp.74-81.

    David, H.A.(2003): Order Statistics, 3rd Edition.

    Ding, Z.; Dai, L.; Poor, H.V.(2016): Mimo-noma design for small packet transmission in the internet of things.IEEE Access, vol.4, pp.1393-1405.

    Ding, Z.; Yang, Z.; Fan, P.; Poor, H.V.(2014): On the performance of non-orthogonal multiple access in 5g systems with randomly deployed users.IEEE Signal Processing Letters, vol.21, no.12, pp.1501-1505.

    DOCOMO(2014): 5G Radio Access: Requirements, Concepts and Technologies.NTT DOCOMO, Inc.

    Gedik, B.; Uysal, M.(2009): Impact of imperfect channel estimation on the performance of amplify-and-forward relaying.IEEE Transactions on Wireless Communications, vol.8, no.3, pp.1468-1479.

    Ikki, S.S.; Aissa, S.(2012): Two-way amplify-and-forward relaying with gaussian Imperfect channel estimations.IEEE Communications Letters, vol.16, no.7, pp.956-959.

    Islam, S.M.R.; Avazov, N.; Dobre, O.A.; Kwak, K.(2017): Power-domain nonorthogonal multiple access (noma) in 5G systems: potentials and challenges.IEEE Communications Surveys Tutorials, vol.19, no.2, pp.721-742.

    Kiani, A.; Ansari, N.(2018): Edge computing aware noma for 5g networks.IEEE Internet of Things Journal, vol.5, no.2, pp.1299-1306.

    Liaqat, M.; Noordin, K.A.; Abdul Latef, T.; Dimyati, K.(2018): Power-domain non orthogonal multiple access (pd-noma) in cooperative networks: an overview.Wireless Networks, pp.1-23.

    Liu, M.; Song, T.; Gui, G.(2018): Deep cognitive perspective: Resource allocation for noma based heterogeneous iot with imperfect sic.IEEE Internet of Things Journal, pp.1.

    Liu, W.; Luo, X.; Liu, Y.; Liu, J.; Liu, M.et al.(2018): Localization algorithm of indoor wi-fi access points based on signal strength relative relationship and region division.Computers, Materials & Continua, vol.55, pp.71-93.

    Lv, L.; Chen, J.; Ni, Q.(2016): Cooperative non-orthogonal multiple access in cognitive radio.IEEE Communications Letters, vol.20, no.10, pp.2059-2062.

    Lv, L.; Chen, J.; Ni, Q.; Ding, Z.(2017): Design of cooperative non-orthogonal multicast cognitive multiple access for 5G systems user scheduling and performance analysis.IEEE Transactions on Communications, vol.65, no.6, pp.2641-2656.

    Lv, L.; Ni, Q.; Ding, Z.; Chen, J.(2017): Application of non-orthogonal multiple access in cooperative spectrum-sharing networks over nakagami-m fading channels.IEEE Transactions on Vehicular Technology, vol.66, no.6, pp.5506-5511.

    Lv, T.; Ma, Y.; Zeng, J.; Mathiopoulos, P.T.(2018): Millimeter-wave noma transmission in cellular m2m communications for internet of things.IEEE Internet of Things Journal, vol.5, no.3, pp.1989-2000.

    Ma, Y.; Jin, J.(2007): Effect of channel estimation errors on m-qam with mrc and egc in nakagami fading channels.IEEE Transactions on Vehicular Technology, vol.56, no.3, pp.1239-1250.

    Timotheou, S.; Krikidis, I.(2015): Fairness for non-orthogonal multiple access in 5G systems.IEEE Signal Processing Letters, vol.22, no.10, pp.1647-1651.

    Wang, C.; Liu, T.C.; Dong, X.(2012): Impact of channel estimation error on the performance of amplify-and-forward two-way relaying.IEEE Transactions on Vehicular Technology, vol.61, no.3, pp.1197-1207.

    Yang, Q.; Wang, H.; Ng, D.W.K.; Lee, M.H.(2017): Noma in downlink sdma with limited feedback: performance analysis and optimization.IEEE Journal on Selected Areas in Communications, vol.35, no.10, pp.2281-2294.

    Yang, Z.; Ding, Z.; Fan, P.; Karagiannidis, G.K.(2016): On the performance of nonorthogonal multiple access systems with partial channel information.IEEE Transactions on Communications, vol.64, no.2, pp.654-667.

    Zeng, M.; Yadav, A.; Dobre, O.A.; Tsiropoulos, G.I.; Poor, H.V.(2017): Capacity comparison between mimo-noma and mimo-oma with multiple users in a cluster.IEEE Journal on Selected Areas in Communications, vol.35, no.10, pp.2413-2424.

    一进一出好大好爽视频| 五月玫瑰六月丁香| 99在线人妻在线中文字幕| 欧美+亚洲+日韩+国产| 一级黄色大片毛片| 无限看片的www在线观看| 一二三四在线观看免费中文在| 999久久久精品免费观看国产| 精品一区二区三区视频在线观看免费| 人人妻人人看人人澡| 欧美日韩瑟瑟在线播放| 亚洲中文字幕一区二区三区有码在线看 | 很黄的视频免费| 757午夜福利合集在线观看| 黄色成人免费大全| 国内精品美女久久久久久| 亚洲 国产 在线| 亚洲国产精品sss在线观看| 国产精品av视频在线免费观看| 国产高清视频在线观看网站| 综合色av麻豆| 午夜福利在线观看吧| 男人和女人高潮做爰伦理| av片东京热男人的天堂| 国产久久久一区二区三区| 观看免费一级毛片| 欧美日韩国产亚洲二区| 亚洲成人免费电影在线观看| 99久久久亚洲精品蜜臀av| 亚洲国产精品999在线| 99久久精品热视频| 色综合站精品国产| 免费搜索国产男女视频| 国产淫片久久久久久久久 | 午夜精品一区二区三区免费看| 精品久久久久久成人av| 日韩大尺度精品在线看网址| 丁香六月欧美| 又黄又爽又免费观看的视频| 亚洲国产高清在线一区二区三| 久久久久亚洲av毛片大全| 国产精品香港三级国产av潘金莲| 深夜精品福利| 国产一区二区在线av高清观看| 香蕉丝袜av| 两性夫妻黄色片| av片东京热男人的天堂| 91老司机精品| 特级一级黄色大片| 亚洲成人久久性| 久久人人精品亚洲av| 久久久成人免费电影| 欧美日韩中文字幕国产精品一区二区三区| 99国产精品一区二区蜜桃av| 99精品久久久久人妻精品| 中文字幕精品亚洲无线码一区| 色视频www国产| 99久久成人亚洲精品观看| 麻豆一二三区av精品| 亚洲色图av天堂| 1000部很黄的大片| 亚洲国产看品久久| 久久精品国产亚洲av香蕉五月| 床上黄色一级片| cao死你这个sao货| 两人在一起打扑克的视频| 中文在线观看免费www的网站| 亚洲av电影不卡..在线观看| 国产高清三级在线| 两个人看的免费小视频| 激情在线观看视频在线高清| 欧美又色又爽又黄视频| 国产精品免费一区二区三区在线| 一个人免费在线观看的高清视频| 欧美xxxx黑人xx丫x性爽| 亚洲七黄色美女视频| 两性夫妻黄色片| 啦啦啦观看免费观看视频高清| 国产一区二区三区视频了| 天堂√8在线中文| 1024手机看黄色片| 日日摸夜夜添夜夜添小说| 一进一出抽搐gif免费好疼| 国产av不卡久久| 亚洲五月天丁香| 国产成人av教育| 国产av一区在线观看免费| 欧美乱码精品一区二区三区| 国产午夜福利久久久久久| 日韩欧美精品v在线| 99热只有精品国产| 一个人免费在线观看电影 | 成人av在线播放网站| 午夜福利成人在线免费观看| 免费一级毛片在线播放高清视频| 黄色成人免费大全| 丁香欧美五月| 亚洲国产欧美人成| 精品欧美国产一区二区三| 成人鲁丝片一二三区免费| av黄色大香蕉| 欧美日韩瑟瑟在线播放| 亚洲av成人不卡在线观看播放网| 久久精品国产清高在天天线| 男女之事视频高清在线观看| 熟女人妻精品中文字幕| 伦理电影免费视频| 成人永久免费在线观看视频| 三级国产精品欧美在线观看 | 国产高清有码在线观看视频| 欧美zozozo另类| 三级毛片av免费| 久久久久精品国产欧美久久久| 色综合婷婷激情| 国产精品99久久99久久久不卡| 亚洲精品一区av在线观看| 五月玫瑰六月丁香| 久久天躁狠狠躁夜夜2o2o| 国产成人aa在线观看| 国产人伦9x9x在线观看| 白带黄色成豆腐渣| 亚洲 国产 在线| 天堂动漫精品| 99riav亚洲国产免费| 一卡2卡三卡四卡精品乱码亚洲| 一区二区三区国产精品乱码| 国产高潮美女av| 国产精品免费一区二区三区在线| 天天躁日日操中文字幕| 又爽又黄无遮挡网站| 午夜久久久久精精品| 亚洲欧美日韩东京热| 国产三级中文精品| 国产av不卡久久| 中国美女看黄片| 亚洲av电影不卡..在线观看| 免费看光身美女| 97碰自拍视频| 亚洲精品国产精品久久久不卡| 18禁裸乳无遮挡免费网站照片| 男人和女人高潮做爰伦理| 天堂影院成人在线观看| 网址你懂的国产日韩在线| 美女大奶头视频| 午夜福利免费观看在线| 老司机午夜十八禁免费视频| 国产伦精品一区二区三区四那| 欧美日韩综合久久久久久 | 亚洲男人的天堂狠狠| 欧美高清成人免费视频www| 午夜福利在线观看免费完整高清在 | 欧美极品一区二区三区四区| 特级一级黄色大片| 亚洲国产精品sss在线观看| 国产69精品久久久久777片 | 免费看光身美女| 久久精品亚洲精品国产色婷小说| 男人舔女人的私密视频| 亚洲国产欧美人成| 成人性生交大片免费视频hd| 午夜精品一区二区三区免费看| 国产精品久久久久久久电影 | 一区二区三区国产精品乱码| 日本黄色视频三级网站网址| 在线永久观看黄色视频| а√天堂www在线а√下载| 亚洲人成电影免费在线| 久久国产精品人妻蜜桃| 亚洲人成网站在线播放欧美日韩| 久久亚洲精品不卡| 国产成人精品久久二区二区91| 国产亚洲欧美98| 色尼玛亚洲综合影院| 超碰成人久久| 免费看a级黄色片| 亚洲无线在线观看| 午夜激情欧美在线| 日日摸夜夜添夜夜添小说| 悠悠久久av| 久久天堂一区二区三区四区| 18美女黄网站色大片免费观看| 欧美成人免费av一区二区三区| 成人精品一区二区免费| 午夜福利高清视频| 天堂√8在线中文| 午夜精品在线福利| 日本一本二区三区精品| 全区人妻精品视频| 亚洲真实伦在线观看| 亚洲国产欧美人成| 国产成人av教育| а√天堂www在线а√下载| 亚洲av日韩精品久久久久久密| 91麻豆av在线| 三级国产精品欧美在线观看 | 亚洲专区字幕在线| 97超视频在线观看视频| 亚洲国产色片| 国产毛片a区久久久久| 国产成年人精品一区二区| 欧美丝袜亚洲另类 | 成年人黄色毛片网站| 国产伦在线观看视频一区| 色综合亚洲欧美另类图片| 亚洲成人久久爱视频| 国产精品国产高清国产av| 欧美黑人欧美精品刺激| 欧美一级毛片孕妇| 国内少妇人妻偷人精品xxx网站 | 免费在线观看影片大全网站| 一个人免费在线观看电影 | 极品教师在线免费播放| 国产高清三级在线| 色在线成人网| 国产成人影院久久av| 成人一区二区视频在线观看| 老汉色∧v一级毛片| 日本一二三区视频观看| 中文字幕av在线有码专区| 日韩欧美一区二区三区在线观看| 成年免费大片在线观看| 精品一区二区三区视频在线观看免费| 亚洲欧美日韩卡通动漫| 99久久精品一区二区三区| 国产又色又爽无遮挡免费看| 亚洲成人久久爱视频| 国产黄片美女视频| 国产一区二区三区在线臀色熟女| 国产在线精品亚洲第一网站| av国产免费在线观看| 亚洲色图 男人天堂 中文字幕| 成人永久免费在线观看视频| 国产成人福利小说| 亚洲欧洲精品一区二区精品久久久| 国产三级中文精品| 两性夫妻黄色片| 757午夜福利合集在线观看| 19禁男女啪啪无遮挡网站| 人妻久久中文字幕网| 悠悠久久av| 欧美黑人巨大hd| 精品久久久久久久人妻蜜臀av| 国产精品av久久久久免费| 老司机福利观看| 999久久久国产精品视频| 99久久无色码亚洲精品果冻| 亚洲午夜理论影院| 亚洲av成人av| 一本精品99久久精品77| 一级a爱片免费观看的视频| 麻豆国产av国片精品| 欧美激情久久久久久爽电影| 视频区欧美日本亚洲| 国产精品 欧美亚洲| 亚洲精品一区av在线观看| 午夜精品在线福利| 老司机在亚洲福利影院| 欧美日韩乱码在线| 国产激情偷乱视频一区二区| 亚洲av免费在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲专区中文字幕在线| 18禁裸乳无遮挡免费网站照片| 91九色精品人成在线观看| 他把我摸到了高潮在线观看| 狂野欧美激情性xxxx| 亚洲成人久久性| 母亲3免费完整高清在线观看| 99久久精品一区二区三区| 草草在线视频免费看| 亚洲欧美激情综合另类| ponron亚洲| 欧美xxxx黑人xx丫x性爽| 国产伦一二天堂av在线观看| 亚洲国产欧美人成| 国内精品久久久久精免费| av欧美777| 97超级碰碰碰精品色视频在线观看| 亚洲 欧美 日韩 在线 免费| 色播亚洲综合网| 欧美高清成人免费视频www| 国产精品一区二区三区四区久久| svipshipincom国产片| 精品人妻1区二区| 亚洲成av人片免费观看| 亚洲专区国产一区二区| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产综合久久久| 大型黄色视频在线免费观看| 又大又爽又粗| 黄色成人免费大全| 亚洲国产精品成人综合色| 欧美高清成人免费视频www| 免费高清视频大片| 中文在线观看免费www的网站| 中文字幕人成人乱码亚洲影| 少妇的丰满在线观看| 国内少妇人妻偷人精品xxx网站 | 日本五十路高清| 久久久色成人| 亚洲人成网站在线播放欧美日韩| 中亚洲国语对白在线视频| 天天一区二区日本电影三级| 观看美女的网站| 99国产精品99久久久久| 99精品欧美一区二区三区四区| 欧美中文综合在线视频| 18禁黄网站禁片免费观看直播| 在线观看日韩欧美| 亚洲中文字幕一区二区三区有码在线看 | 国产精品电影一区二区三区| 一二三四社区在线视频社区8| 亚洲欧洲精品一区二区精品久久久| 亚洲国产精品999在线| x7x7x7水蜜桃| 大型黄色视频在线免费观看| 亚洲国产色片| 日韩欧美 国产精品| 这个男人来自地球电影免费观看| 在线观看66精品国产| а√天堂www在线а√下载| 在线观看舔阴道视频| 九色成人免费人妻av| 中文在线观看免费www的网站| avwww免费| 老司机午夜福利在线观看视频| 久久久久亚洲av毛片大全| 欧美日韩一级在线毛片| 麻豆久久精品国产亚洲av| www.www免费av| 在线十欧美十亚洲十日本专区| av在线天堂中文字幕| 国产精品野战在线观看| 亚洲18禁久久av| 观看免费一级毛片| 亚洲av美国av| 观看免费一级毛片| 美女高潮喷水抽搐中文字幕| 国内久久婷婷六月综合欲色啪| av国产免费在线观看| 成人鲁丝片一二三区免费| 亚洲精品在线观看二区| 很黄的视频免费| 国产爱豆传媒在线观看| 无人区码免费观看不卡| 精品一区二区三区视频在线观看免费| 桃红色精品国产亚洲av| 黑人巨大精品欧美一区二区mp4| 两个人视频免费观看高清| 搞女人的毛片| 一夜夜www| 久久久久免费精品人妻一区二区| 视频区欧美日本亚洲| 久久久精品大字幕| 中文字幕人妻丝袜一区二区| 欧美成人免费av一区二区三区| 99国产极品粉嫩在线观看| 熟女人妻精品中文字幕| 国产三级中文精品| 在线看三级毛片| 精品电影一区二区在线| 一进一出抽搐动态| 男人舔奶头视频| 三级毛片av免费| 嫩草影视91久久| 熟女人妻精品中文字幕| 久久久久亚洲av毛片大全| 精品无人区乱码1区二区| 18禁观看日本| 无人区码免费观看不卡| 人人妻人人澡欧美一区二区| 国产97色在线日韩免费| 无遮挡黄片免费观看| 女人被狂操c到高潮| 亚洲欧美日韩无卡精品| 精品99又大又爽又粗少妇毛片 | 亚洲人成网站高清观看| 亚洲18禁久久av| 精品国产乱子伦一区二区三区| 精品乱码久久久久久99久播| 精品国内亚洲2022精品成人| 综合色av麻豆| 又黄又粗又硬又大视频| cao死你这个sao货| 在线观看66精品国产| 又大又爽又粗| 1000部很黄的大片| 在线免费观看不下载黄p国产 | 法律面前人人平等表现在哪些方面| 国产高清激情床上av| 国内久久婷婷六月综合欲色啪| 丰满的人妻完整版| 天堂网av新在线| 哪里可以看免费的av片| 亚洲国产欧美网| or卡值多少钱| 一个人看视频在线观看www免费 | 欧洲精品卡2卡3卡4卡5卡区| 色吧在线观看| 精品国产乱子伦一区二区三区| 99在线人妻在线中文字幕| 丁香六月欧美| 免费大片18禁| 国内精品一区二区在线观看| 天天躁日日操中文字幕| 精品国产亚洲在线| bbb黄色大片| 嫩草影视91久久| 桃色一区二区三区在线观看| 国产不卡一卡二| www.精华液| 香蕉av资源在线| 亚洲在线自拍视频| 国产一区二区激情短视频| 波多野结衣巨乳人妻| 国产精品自产拍在线观看55亚洲| 欧美乱色亚洲激情| 亚洲国产精品成人综合色| 在线观看66精品国产| 禁无遮挡网站| 午夜视频精品福利| 国产日本99.免费观看| 2021天堂中文幕一二区在线观| 国产单亲对白刺激| 亚洲美女视频黄频| 黑人欧美特级aaaaaa片| 亚洲精品国产精品久久久不卡| 欧美高清成人免费视频www| 免费观看人在逋| 婷婷亚洲欧美| 午夜福利视频1000在线观看| 91字幕亚洲| 国产日本99.免费观看| 村上凉子中文字幕在线| 校园春色视频在线观看| 18禁国产床啪视频网站| 亚洲 欧美一区二区三区| or卡值多少钱| 欧美不卡视频在线免费观看| 一本久久中文字幕| www.自偷自拍.com| 成人三级做爰电影| 1024香蕉在线观看| 看片在线看免费视频| 成在线人永久免费视频| 一个人看视频在线观看www免费 | 久久久久久久久免费视频了| 综合色av麻豆| 婷婷亚洲欧美| 香蕉国产在线看| 亚洲av成人不卡在线观看播放网| 老司机福利观看| 91麻豆精品激情在线观看国产| 亚洲av成人精品一区久久| 十八禁人妻一区二区| 日本黄大片高清| 国产美女午夜福利| 巨乳人妻的诱惑在线观看| 日本在线视频免费播放| 亚洲熟妇中文字幕五十中出| 91九色精品人成在线观看| 色播亚洲综合网| 亚洲精品在线美女| 97超级碰碰碰精品色视频在线观看| 午夜福利欧美成人| 国产 一区 欧美 日韩| 成年女人永久免费观看视频| 特级一级黄色大片| 高清毛片免费观看视频网站| 此物有八面人人有两片| 精品日产1卡2卡| 黄片小视频在线播放| 久久伊人香网站| 88av欧美| 国产熟女xx| cao死你这个sao货| 我的老师免费观看完整版| 亚洲成a人片在线一区二区| 最新中文字幕久久久久 | 亚洲美女视频黄频| 国产激情欧美一区二区| 性色av乱码一区二区三区2| 国语自产精品视频在线第100页| 黄片大片在线免费观看| 精品人妻1区二区| 亚洲国产精品久久男人天堂| 亚洲精品粉嫩美女一区| 欧美绝顶高潮抽搐喷水| 亚洲精品久久国产高清桃花| 日韩免费av在线播放| 久久久久国产一级毛片高清牌| 色吧在线观看| 中文资源天堂在线| 嫩草影院入口| 又粗又爽又猛毛片免费看| 狂野欧美激情性xxxx| 18禁国产床啪视频网站| 91在线观看av| 亚洲精华国产精华精| 午夜福利高清视频| 亚洲av电影不卡..在线观看| 亚洲精品美女久久av网站| 国产免费男女视频| 久久九九热精品免费| 神马国产精品三级电影在线观看| 久久伊人香网站| 国产精品九九99| 久久久久国产精品人妻aⅴ院| 亚洲成av人片免费观看| 在线视频色国产色| 精品一区二区三区av网在线观看| 免费观看人在逋| 全区人妻精品视频| 成年免费大片在线观看| 丰满人妻一区二区三区视频av | 免费av不卡在线播放| 国产精品美女特级片免费视频播放器 | 99精品久久久久人妻精品| 丁香欧美五月| 啦啦啦观看免费观看视频高清| 午夜亚洲福利在线播放| 国产一级毛片七仙女欲春2| 免费在线观看亚洲国产| 黄色女人牲交| 真人做人爱边吃奶动态| 亚洲精华国产精华精| 成人国产一区最新在线观看| 国产精品久久电影中文字幕| 久久精品综合一区二区三区| 国产精品1区2区在线观看.| 在线观看日韩欧美| 亚洲片人在线观看| 免费一级毛片在线播放高清视频| 免费搜索国产男女视频| 欧美+亚洲+日韩+国产| svipshipincom国产片| 久久久国产精品麻豆| 亚洲精品一卡2卡三卡4卡5卡| 狂野欧美白嫩少妇大欣赏| 久久精品aⅴ一区二区三区四区| 国产伦精品一区二区三区四那| 一个人观看的视频www高清免费观看 | 亚洲精品国产精品久久久不卡| 激情在线观看视频在线高清| 一进一出抽搐动态| 色综合亚洲欧美另类图片| 国产亚洲精品综合一区在线观看| 日本 欧美在线| 国产精品久久久久久亚洲av鲁大| 国产人伦9x9x在线观看| 久久中文字幕一级| 亚洲一区二区三区色噜噜| 少妇的丰满在线观看| 久久久久久久久久黄片| 日本熟妇午夜| 久99久视频精品免费| avwww免费| 亚洲中文日韩欧美视频| 性色avwww在线观看| 午夜福利18| 两个人看的免费小视频| 日本a在线网址| 国产精品综合久久久久久久免费| 日韩欧美在线二视频| 亚洲av电影在线进入| 国产亚洲精品久久久久久毛片| 欧美3d第一页| 哪里可以看免费的av片| 国产精品99久久99久久久不卡| 很黄的视频免费| 欧美黄色片欧美黄色片| 亚洲自偷自拍图片 自拍| 香蕉国产在线看| 亚洲国产看品久久| 久久久久久久久中文| 亚洲五月天丁香| 人人妻,人人澡人人爽秒播| 两个人看的免费小视频| 岛国在线免费视频观看| 久久久久久人人人人人| 午夜视频精品福利| 午夜精品久久久久久毛片777| 国产高清激情床上av| 国产亚洲精品av在线| 午夜免费激情av| 精华霜和精华液先用哪个| 国产1区2区3区精品| 在线观看午夜福利视频| 亚洲国产精品sss在线观看| 欧美一级a爱片免费观看看| 亚洲av第一区精品v没综合| 国内少妇人妻偷人精品xxx网站 | 久久久国产精品麻豆| 欧美精品啪啪一区二区三区| 桃红色精品国产亚洲av| 亚洲中文字幕一区二区三区有码在线看 | 禁无遮挡网站| 九九在线视频观看精品| 欧美一级毛片孕妇| 欧美日韩中文字幕国产精品一区二区三区| 女同久久另类99精品国产91| 精品久久蜜臀av无| 视频区欧美日本亚洲| 精品国产亚洲在线| 亚洲国产中文字幕在线视频| a级毛片a级免费在线| 全区人妻精品视频| 欧美日韩亚洲国产一区二区在线观看| a级毛片a级免费在线| 国产一级毛片七仙女欲春2| 欧美中文综合在线视频| 国内毛片毛片毛片毛片毛片| 老熟妇仑乱视频hdxx| 99久久成人亚洲精品观看| 精品免费久久久久久久清纯|